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Abstract—For several new applications, FPGA-based computation has shown better latency and energy efficiency compared to CPU or
GPU-based solutions. We note two clear trends in FPGA-based computing. On the edge, the complexity of applications is increasing,
requiring more resources than possible on today’s edge FPGAs. In contrast, in the data center, FPGA sizes have increased to the point
where multiple applications must be mapped to fully utilize the programmable fabric. While these limitations affect two separate domains,
they both can be dealt with by using dynamic partial reconfiguration (DPR). Thus, there is a renewed interestto deploy DPR for FPGA-based
hardware. In this work, we present Doing More with Less (DML)— a methodology for scheduling heterogeneous tasks across an FPGA’s
resources in a resource efficient manner while effectively hiding the latency of DPR. With the help of an integer linear programming (ILP)
based scheduler, we demonstrate the mapping of diverse computational workloads in both cloud and edge-like scenarios. Our novel
contributions include: enabling IP-level pipelining and parallelization to exploit the parallelism available within batches of work in our
scheduler, and strategies to map and run multiple applications simultaneously. We consider the application of our methodology on real world
benchmarks on both small (a Zedboard) and large (a ZCU106) FPGAs, across different workload batching and multiple-application
scenarios. Our evaluation proves the real world efficacy of our solution, and we demonstrate an average speedup of 5Xand up to 7.65X ona
ZCU106 over a bulk-batching baseline via our scheduling strategies. We also demonstrate the scalablity of our scheduler by simultaneously
mapping multiple applications to a single FPGA, and explore different approaches to sharing FPGA resources between applications.

Index Terms—Partial reconfiguration, integer linear programming, scheduling, FPGA, dynamic reconfiguration

1 INTRODUCTION

AS have proven to be capable of delivering energy-effi-
cient and high-performance accelerators from edge devi-
ces to data centers. However, we have observed several
challenges toward widespread adoption of FPGAs. First,
the complexity of workloads continues to grow rapidly, cre-
ating a demand for more FPGA resources. Second, diverse
applications may need to be mapped to the same FPGA.
Third, systems may require sharing the FPGA's resources
between multiple applications or users. Hence, we need a
flexible, high performance, and portable solution to enable
simultaneous mapping of large and complex workloads on
FPGAs. This requirement spans edge and cloud systems,
each of which has unique constraints.
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Dynamic partial reconfiguration (DPR) presents itself as a
strong solution by exploiting the ability to dynamically
reconfigure portions of the FPGAs to map workloads in frac-
tions at a time. DPR provides the ability to configure portions
of the programmable fabric while other sections continue
running. Effectively leveraging DPR, however, is fraught
with challenges. First, the latency of DPR can be large, in the
order of several milliseconds, adding a significant latency.
Second, the design of DPR based FPGA designs is time con-
suming and difficult, with the designer having to perform
manual placement of reconfiguration regions. This makes
scaling designs across different FPGAs difficult. Third, DPR
designs have statically designed and placed partitions. This
makes mapping several workloads to a single large FPGA
with DPR to be incredibly laborious. Finally, accelerators
often work on batches of data in cloud and edge systems to
increase efficiency. Modern DPR solutions must be cogni-
zant of this to exploit all available parallelism and minimize
any DPR overheads. Thus, leveraging DPR requires finding
a solution to two problems — scheduling and mapping.
Scheduling must decide: (1) when to trigger partial reconfig-
uration and deploy a portion of the workload to the FPGA,
and (2) in what order should each fraction of the workload
be deployed and executed. The mapping solution decides in
what region of the FPGA should each fraction of the work-
load be placed.

In this work, we present an end-fo-end solution that con-
siders all sizes of FPGAs, and can perform simultaneous
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mapping of multiple applications, and parallel pipelines,
to the same device. We call our solution Doing More with
Less (DML). Our work tackles the scalability challenge of
traditional DPR solutions and leverages integer linear pro-
gramming (ILP) based schedulers for optimal simulta-
neous scheduling and mapping. We combine our offline
static ILP-based scheduler and mapper with an online
dynamic runtime in hardware that executes the global
DPR order and mapping solution, by combining it with
additional dynamic information available at runtime. The
scheduler embraces workload batching by enabling task
pipelining and unrolls batches to run parallel pipelines.
We also present an architecture that partitions the FPGA
resources into uniform pieces (called Slots), which can be
dynamically reconfigured as bespoke accelerator parti-
tions (called IPs). This enables accelerator designers to be
abstracted away from the limitations of DPR and physical
design, enables simplified mapping of multiple workloads
to a single FPGA simultaneously, and allows designs to
be portable across cloud and edge FPGAs. We further
enhance our work by extending our ILP solution to tackle
the scheduling and mapping of multiple applications and
very large applications across FPGAs of all sizes. We also
explore different mapping strategies for sharing FPGA
resources between multiple applications via our sched-
uler. DML uses high quality schedules and mappings
from the static ILP-scheduler, is able to minimize design
time effort, and leverages dynamic runtime information,
and thus provides a balance between usability, scalablity,
and performance.
We summarize our contributions as follows:

1) We present DML, an end-to-end DPR methodology.
Our solution is comprised of a scalable architecture,
based on the constraints of partial reconfiguration,
and a novel static ILP-based scheduler and mapper.
Our scheduler is capable of pipelining and paralleliz-
ing across batch elements, and demonstrates signif-
ciant performance gains over naive bulk scheduling,
and works in concert with a dynamic runtime execu-
tion engine.

2) We provide in-depth design space exploration, and
explore multiple batching and partitioning schemes.
We also evaluate different strategies for simulta-
neously mapping and scheduling multiple applica-
tions to an FPGA.

3) Our solution scales from small to large FPGAs, and
we demonstrate the simultaneous mapping of ten
applications to a single FPGA via our scheduler.

4) We validate our framework by evaluating real-world
benchmarks in hardware, across large and small
FPGAs. We demonstrate an average speedup of 5X
and up to 7.65X on a ZCU106 via our novel schedul-
ing strategies over naive bulk scheduling.

The rest of this paper is organized as follows. In Section 2
we discuss related and prior work on DPR, followed by an
overview of our methodology in Section 3. We then discuss
our scheduler, ILP formulation, and mapping strategies for
large graphs and multiple applications in Section 4, provide
a detailed evaluation in Section 5, and finally conclude in
Section 6.
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2 RELATED WORK

Using DPR to map large workloads has been explored pre-
viously; however, these attempts have focused on a particu-
lar application or domain of applications [1], [2]. The use of
DPR and task-based scheduling have been explored as
well [3], [4], [5], [6], [7], [8], including ILP-based solu-
tions [5], [6], [7], [8]. However, these approaches either focus
on (1) a specific optimization or application, or (2) improv-
ing the speed and performance of ILP-based scheduling via
heuristics. In contrast to our work, they do not consider the
constraints and requirements of real-world applications
such as the need for pipelining and parallelizing batched
workloads, sharing FPGAs between multiple applications,
and portability from one FPGA to another.

Prior ILP-based approaches [6], [7], [8] have attempted to
mask the latency of reconfiguration by prefetching configura-
tions, similar to our work. However, in these works, the
authors consider a 2D reconfiguration problem, wherein the
FPGA is divided into uniform rows and columns, and tasks
canrequire different amounts of resources. Thus, each work-
load results in a new floorplan, with each task of the work-
load occupying a different amount of resources. In contrast
to our problem formulation, this approach is based on older
Xilinx architectures (Virtex 4 and 5), and is not scalable as it
does not consider devices of different sizes, portability, and
does not simplify or speedup the DPR-based designs for
modern computational workloads. Our solution considers
and improves ease of use, portability, performance, and
flexibility.

In Deiana et al. 5] the authors attempt to perform schedul-
ing and mapping, but the complexity of their ILP limits the
scalability, and they demonstrate the use of their iterative
solution to schedule up to five tasks at a time only, limiting
the efficiency of the solution. A two-stage process was pro-
posed by Purgato et al. [4], wherein an additional step is
needed to find a feasible floorplan solution. This non-ILP
approach cannot guarantee optimality. In contrast, our
approach standardizes the search space by using uniform-
sized DPR partitions (slots), and simultaneously provides a
schedule and mapping solution. Our formulation simplifies
the ILP problem, helping find optimal solutions for larger
graphs, and scheduling and mapping more tasks ata time.

Multiple recent works have presented frameworks cen-
tered around DPR [9], [10]. ReconOS [9] is a framework which
extends multithreaded programming abstractions to reconfig-
urable hardware utilizing DPR. ARTICo [10] is a DPR frame-
work, which provides an automatic toolflow to generate
partial bitstreams and a runtime to execute on a number of
fixed sized slots. DML differentiates from these works as nei-
ther work uses static information to generate a high-perfor-
mance schedule and mapping to combine with their dynamic
runtime. Also, neither framework automatically enables opti-
mizations such as pipelining and parallelism.

Finally, many tools have been proposed to automatically
perform stages of the DPR pipeline such as floorplanning
[11], [12] and application partitioning [11]. DARTS [11] is a
framework which utilizes a mixed ILP formulation to auto-
matically generate a floorplan, partition applications, and
generate schedules for real-time applications. In contrast to
DML, wherein our objective is to minimize the end-to-end
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Fig. 1. Proposed system architecture.

latency of a given application or group of applications,
DARTS goal is timing predictability and works towards a
solution for a user-provided time constraint. Furthermore,
DML splits up hardware applications into IPs, which are
independently mapped and scheduled with the precedence
constraints of the task-graph represented by the constraints
of the ILP. DML can then leverage automatic optimizations
such as pipelining and parallelism across IPs.

In comparison to prior attempts, our scheduler distin-
guishes itself with four novel features: (1) Ability to pipe-
line, (2) Unrolling and parallelizing across batch elements,
(3) Graph partitioning optimization to enable the mapping
of very large graphs, and (4) Simultaneous scheduling and
mapping. In addition, in this work, we do not rely on syn-
thetic graphs. Rather, we consider multiple real-world
applications from the Rosetta [13] benchmark suite and vali-
date our framework by testing on real hardware. Finally, we
demonstrate the simultaneous scheduling and mapping of
multiple applications on a single FPGA and present insights
into what strategies work best for such scenarios.

3 DoING MORE WITH LESS

We now present our Doing More with Less (DML) framework
— an end-fo-end and generic methodology that enables any
workload, or multiple workloads, to be efficiently mapped
to FPGAs of all sizes, with DPR. Our solution is comprised
of two key parts. First, we partition the FPGA into uniform
pieces, that we call slots and provide a scalable architecture,
as shown in Fig. 1. Second, we propose an ILP-based opti-
mizer that schedules and maps work into slots, while amor-
tizing the latency of reconfiguration by overlapping the
computation with reconfiguration. Our scheduler is capable
of pipelining and parallelizing applications by leveraging
the data parallelism available across elements in batches of
work, and uses a graph partitioning strategy to map very
large task graphs. Finally, our flexible architecture and
scheduler enable us to simultaneously schedule and map
multiple applications on an FPGA.

Leveraging dynamic partial reconfiguration (DPR)
requires manual floorplanning to carve out and designate
specific regions as static or dynamically reconfigurable.
Thus, the designer must decide where to physically place
the accelerator. In addition, there are several architectural
constraints and design rules that must be considered. A key
limiting factor is the speed of DPR, which is determined by
the bandwidth available in the Configuration Access Port
(CAP), and the size of the partial bitstream. The CAP band-
width is architecture specific and may not be changed, how-
ever, the size of the partial bitstream is determined by the
size of the dynamically configurable region (DPR Region)

2579

and not by how many resources within the DPR region are
in use. Note, that while we focus on Xilinx Zynq and Xilinx
Zynq Ultrascale+ [14], [15] series FPGA-SoCs in this work,
our solution is not limited to Xilinx devices. Fig. 1 presents
the system architecture we have designed in this work to
help overcome the challenges in leveraging DPR. We desig-
nate each slot as a resource partition that includes a recon-
figurable partition and a fixed interface. All slots are
uniform in their resources and since DPR requires slot inter-
faces to be uniform, we use AXI-based buses to create their
interfaces. The static region of the FPGA hosts the global
AXI interconnect, to which the slots connect.

To map an application to our architecture, we partition it
ata tasklevel and represent it as a task graph. The task graph
is a directed acyclic graph (DAG), G(V; E), such that each
vertex, v; € V, is a task, and each edge, e;; € E, represents a
dependency between tasks such that v; must complete before
v; can begin execution. We then create IPs for each task, and
assign the latency of the IP as the weight of the vertex in the
task graph. This task graph model is illustrated in Fig. 3a
where each vertex represents a task of the application that
has its own IP. Edge weights may be used to represent the
communication latency. IPs may be designed in any fashion
and allow users to deliver fine-grained customization on a
per-task level. Alternatively, users may choose to group sev-
eral tasks or kernels into a single large task and IP. Once the
application has been represented as a task graph, it must be
scheduled and mapped to slots on the FPGA, which we dis-
cuss in the next section. A key advantage of our approach is
that by grouping together task graphs of multiple applica-
tions, we can create a single task graph. Thus, we can simul-
taneously schedule multiple applications on a single FPGA,
without changes to the applications, floorplan, or scheduler.
Note that while DAGs by definition cannot have cycles,
DML can address statically resolvable cyclical patterns in the
task graph by either unrolling the cycles or absorbing the
cycles into a single node.

The size, shape, and location of the slots are determined
based on the DPR constraints of the FPGA, and their height
spans the entire clock region. This eliminates several of the
constraints involved in 2D reconfiguration described in ear-
lier works [6], [7], [8]. Slot sizes can be set to ensure that the
application’s IPs are able to fit into them, if the IP library
already exists. Note that the size of a slot determines the
latency of DPR and limits the performance of an IP that can
be mapped into it. Should an application’s task require an
IP that is too large for a slot size, then we must either split
the IP into smaller partitions that map to more than one
slot, or we must scale back the IP’s performance and reduce
its resource requirements. Finally, all slots communicate via
AXI in the global address space, i.e., DRAM. Hence, we set
the number of slots per FPGA such that the total required
DRAM bandwidth does not cause bus contention.

The use of uniform slots is a compromise we make to
speedup the design time, scale across all devices, and map
multiple applications to the same device simultaneously. In
cloud-like scenarios, where multiple applications may need
to be mapped, rapid deployment and reducing physical
design effort are very valuable. Thus, our architecture pro-
vides two key advantages: First, by employing fixed recon-
figuration partitions, the designer does not need to perform
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floor planning for each application, and can design accelera-
tors with defined IO constraints, and be ensured that it will
scale across devices. Second, the fixed slot sizes simplify the
scheduling and mapping constraints, helping to deliver
a scalable and deterministic design with uniform DPR
latency. The use of fixed slot sizes may not guarantee the
best utilization of the fabric, and requires some thought and
planning by the IP designer, as is the case in any IP design
effort. However, we believe that the aforementioned bene-
fits far outweigh the utilization benefits of using variable
slot sizes. In addition, a different slot size can be selected to
better suit the application(s).

Fig. 2 presents the overall flow and framework of our
solution. For a given FPGA, we have an overlay architecture
that determines the number of slots and DPR latency, and
for a given application that needs to be mapped to the
FPGA, we have a task graph comprised of kernels. Note
that this is not a computational overlay, such as a CGRA or
a systolic array. Our architecture is flexible and allows us to
deliver application and task-specific specialization with
high performance. We begin with kernels in the task graph
and generate IPs for them via high-level synthesis (HLS).

We then use the reported latency of the IPs, architectural
parameters, the chosen level of scheduler optimization
(pipelining and parallelism factor), and the task graph as
inputs to our static ILP-based scheduler. Note, DML is not
suitable for applications with IPs whose latency cannot be
estimated prior to runtime. The scheduler then delivers a
mapping solution and a DPR and IP execution schedule
which can be executed on the hardware by the dynamic
runtime. The mapping solution, and DPR and IP execution
schedules are represented by three components: (1) global
DPR order, which is a list of IPs in the order for them to be
reconfigured on the slots (2) IP slot mappings, which map
each IP to the physical slot on the device it will be run on,
and (3) dependencies, each IP has a list of dependencies
extracted from the task graph and used by the runtime. We
discuss the operation of this runtime in the next section.

In parallel, we use an automated version of the process
described in [16] to generate partial bitstreams, which we
call the Bitstream Generator. We use synthesized design
checkpoints of the IP and our custom overlay floorplan to
generate partial bitstreams. We feed the partial bitstreams
to a runtime that executes the applications based on the pro-
vided mapping and schedule. This runtime is implemented
in software and runs on the processing system (PS) of the
SoC-FPGA. Finally, note that without a slot mapping solu-
tion from our scheduler, users would need to design and
generate bitstreams for every possible IP-slot pair to enable
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Fig. 3. (a) Example task graph. Each vertex in this graph represents a
single task, and the directed edges between vertices represent task
dependencies. An IP is created for each vertex, and the weight of each
vertex is the latency of its corresponding IP. (b) Sample cut solutions for
a large task graph. Each cut has a max size of seven vertices.

a dynamic scheduler to map any IP to any slot at runtime. This
adds significant design effort and time overheads.

4 |ILP BASED SCHEDULING

At the heart of the scheduler is our ILP formulation. Our
goal is to find a high quality solution, while minimizing the
traditional time costs of ILP-based solutions. Our ILP solu-
tion performs simultaneous scheduling and mapping and
can provide an optimal solution on reasonable graph sizes.
Crucially, we consider real-world deployment constraints,
and include the ability to pipeline and parallelize tasks
across batches. While, our slot-based architecture helps sim-
plify the ILP formulation, finding a solution for the ILP can
be slow and does not scale well to large graphs. Hence, we
use heuristic schedulers to help tune the ILP solver's search
space, and explore different partitioning strategies to find
scheduling solutions when trying to map large graphs. We
also extend our framework to support two different solu-
tions for mapping multiple applications.

Our ILP solution performs simultaneous scheduling and
mapping, can provide an optimal solution on reasonable
graph sizes, and takes into account our scalable architecture,
which helps loosen the ILP constraints. Crucially, we con-
sider real-world deployment constraints, and include the
ability to pipeline and parallelize tasks across batches, and
include two different solutions for mapping multiple appli-
cations to a single FPGA.

4.1 ILP Formulation

The input to the ILP is an application task-graph, IP laten-
cies, DPR latency, and resource constraints. Our ILP simul-
taneously looks for a schedule, that provides the global
DPR order, and a mapping solution. We formally describe
the ILP formulation as follows:

Given: (1) A task graph G(V, E) as described in Section 3;
(2) A set of scheduling constraints, Cs; and (3) A set of
resource constraints, Cr. The scheduling constraints include
dependencies inferred from the graph, latency of nodes in
the graph, and DPR latency. In addition, we must ensure
only one partial reconfiguration is done at a time. The
resource constraints are the number of available slots, as
provided by the user. Additionally, the user may select opti-
mizations, such as pipelining or parallelization, to be
included. We will discuss these later in this section.

Goal: Minimize the latency of the entire task graph, such
that each task’s IP(s) are allocated a slot and experiences the
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latency of reconfiguration prior to the IP executing in the
slot, such that all constraints in C, and C, are satisfied.

ILP Variables: We will now define the variables that we
will solve to find our solution. We define the set V' as all the
vertices in the given graph. The sets L and Lpr contain the
execution latency of each node in V, and the latency of
reconfiguration, respectively. Then, we define the variables
S and Spr, as timestamps, where S € Z are the start times of
all IPs in the set V, and Spr € Z are the start times of the cor-
responding partial reconfigurations of each node in V. Next,
we describe our resource mapping variables. Let the num-
ber of available slots be Rs. Then, we define a binary vari-
able M;;, as My, = 1 if the i-th IP, v;, maps to the k-th slot,
where v; € V and k € R,. Next, since any IP can be mapped
to any slot, provided the slot is not occupied, we must
express the resource sharing between IPs. We define the
binary variable Y;; as Yj; = 1 if the i-th and j-th IP map to
the k-th slot, where v; € V, v; € V, and k € R,. Finally, vari-
ables Bl;;., B2;;, and B3;;, are Boolean decision variables
that we use to help encode our overlap constraints. Their
solution is determined by the ILP solver. We also add (',
(%, and Cj as large enough constants, and discuss how to
set them later in this section. Next, we describe our system
of equations that formulate the constraints of our problem.

Legality Constraints: We encode the fundamental con-
straints of the system by defining the solution space. We
must enforce bounds on start times, ensure that an IP maps
to only one slot, and only allow IPs to share a slot one at a
time. We begin by enforcing that the start times of all opera-
tions must be positive

S5 > 0VieV (1)

Spr; > ;Vie V. (2)

Then, we enforce that an IP can only map to one slot, by
using the resource mapping binary variable, M;;, and ensur-
ing only one slot-mapping is set, per IP. Thus we have

Y My=1VieV. 3
k

Finally, we need to define the resource mapping binary
variable Y;j, that tracks if two IPs use the same slot. Y;3 is
key to our ability to constrain and allow IPs and DPR to
overlap. Hence, we define Yj; as Y =1 if and only if,
M, =1and My, =1,Vk € R, and V i, j € V. We can express
this as

Yijr > My, + My, — 1 (4
Yip < My (5)
Yijr < Mjy. (6)

Latency and Dependency Constraints: Next, we define
our latency and edge dependency constraints. If there is an
edge e;; € E, from the i-th IP to the j-th IP, then the start
time of the j-th IP must be greater than the sum of the start
time of the i-th IP and its latency. Also, an IP can only start
once its reconfiguration is complete. Thus, the start time of
the i-th IP must be greater than the sum of the start time of
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the i-th IP’s DPR and the latency of reconfiguration. Hence,
we add

Sj ZS«;-l-Lg',Veg"jG E (7)
S‘a' Z Spf‘, 5 b Lpn,Vi eV (8)

Overlap Constraints: Next, we define our overlap con-
straints that ensure DPR doesn’t begin before the previous
IP in the slot has completed, only one DPR can be per-
formed at a time, and IPs mapped to the same slot do not
try to overlap their execution. Note that in (9) to (14), we use
the variables Bl;;;, B2;5;, and B35 as a tool to help express
an either/or inequality in a way that is amenable to ILP,
and Cj, (5, and Cj are large enough constants that we set.
We further explain and provide insight into these variables
later in the section.

Our first constraint is added to enable DPR to overlap
with computation. If the i-th and j-th IP map to the same
slot, and DPR of the i-th IP takes place before the j-th IP,
then the start time of the j-th IP must be greater than the end
time of the i-th IP.

Thus forall pairsofiand j,i € V, je V

Spr; — Sj == Ol.B].gjk > Lj.Yg-jk, Vk € R, (9)

Sp‘f‘j -5+ Cl.(l = B]_g-jk) g L@.Y}jk, vk € R,. (10)

We must also ensure that if two IPs are mapped to the
same slot, they cannot overlap their execution. Thus, if the i-
th and j-th IP map to the same slot, the start time of the i-th
IP must be greater than the end time of the j-th IP, or vice
versa. Hence we have

1y
(12)

5; — Sj + Cz.Bngk > Lj.}’;jk,Vk € R,
Sj -5+ CQ.(I - BZ,-J-;;) > Lg.Kjk,Vk € R,.

Finally, we must ensure that DPRs cannot overlap, since
only one DPR can occur at a time. Thus, for all pairs of i-th
and j-th IPs, the DPR start time of the i-th IP must be greater
than the DPR end time of the j-th IP, and vice versa. We add
the constraints

Spr‘a' - SPTJ + O:'i-B&s'jk > Lprj: Vk € RS,VE'.,je Vv:!' ‘_}éj
(13)

Spr; — Spri + Cs.(1 — B3;j) > Lpri, Yk € R, Vi, j € Vi # j.
(14)

As we mentioned earlier, in (9) to (14), we use the varia-
bles Bl;, B2;i, and B3, as a tool to help express an either/
or inequality in a way that is amenable to ILP. These binary
variables encode precedence relationships between configu-
ration and execution of IPs i and j. For example, in (9),
Bl = 1 encodes that IP i is configured before IP j is run,
while Bl;j;, = 0 encodes IP j is configured before IP i is run.
Similarly, B2;;; encodes the precedence relationship between
execution times of IP i and j, while B3;;. encodes the prece-
dence relationship between configuration times of IPs ¢ and
j- The ILP solver finds a solution for these variables in con-
junction with all the other latency, legality, and overlap
constraints.
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Fig. 4. Graphical depictions of three different schedules using the task graph in Fig. 3a with varying IP and DPR latencies.

Objective Function: In order to create our objective func-
tion, we create a sink node, Vsink, such that Vv € V there
exists an edge between Vsink and v, and the start time of
the sink node is Sj;,;. Thus our objective function is to mini-
mize the start time of the sink

Min(Ssink).- (15)

Leveraging Heuristics: To help express the conditional
constraints in Egs. (9) to (14) we introduced Cy, Cs, and Cj
as large enough constants, and introduced B1;;, B2, B3
as Boolean decision variables, whose values are determined
by the ILP solver. The constants help define the bounds of
the solution space and the value of the constant must be
very close to the upper bound of the variable. Choosing too
small a value might result in an infeasible problem. To help
find the bound, we use a heuristic list-scheduler to provide
a fast solution. Note that the list-scheduler does not consider
mapping solutions, is not optimal, and does not consider all
overlap constraints. So, we apply a safety margin to the
result of the list-scheduler to determine the bound.

Illustrative Example: To help illustrate the operation of
the scheduler, we consider the task graph shown in Fig. 3a
and present the resulting mapping and schedules from our
scheduler in three different scenarios with different IP and
DPR latencies in Fig. 4. For brevity, we restrict our example
to four slots, and consider scenarios where: (1) DPR latency
dominates execution time (Fig. 4a), (2) DPR latency is easily
masked by IP execution latencies (Fig. 4b), and (3) DPR and
IP and latencies have varied ratios Fig. 4c. For consistency,
we use the same notations as presented in Section 4.1.

Fig. 4 presents the solutions generated by our ILP formu-
lation. The generated solutions illustrate that our static ILP-
based scheduler will always try to minimize the total execu-
tion time. Note that the ILP-based scheduler can find optimal
solutions for reasonable problem sizes. However, given that
our target objective is to find the best performing order and
mapping, it is possible that multiple order-mapping solu-
tions provide the best performance. Thus, the delivered solu-
tion may not be intuitive. For example, in Fig. 4a, we can see
that the scheduler has opted not to use all four availableslots,
as it can achieve the minimum latency with just three. This is
because IP m is dependent on IPs j, k, and [, and thus i and k
form the critical path such that their execution latencies are
easily able to mask DPR latency. Moving IP [ or IP m into slot
0 would not have improved performance, but it would be
another solution. Meanwhile, in Fig. 4b, we consider a situa-
tion where IP j is on the critical path, but the latency of DPR
and the remaining IPs remain the same as in Fig. 4a. Here we

can see Egs. (11)-(12) in action, and they allow IPs i, j, and [
to overlap their execution, while Egs. (9)-(10) helps allow i, k,
l, and m to overlap their DPR with IP executions. Note that
all four slots are used in this example. Finally, in Fig. 4c, we
consider a situation where DPR latencies dominate, and thus
Eqgs. (13)-(14) are key in enforcing that DPRs do not overlap,
while Egs. (9)-(10) improve performance by allowing DPR
and IP execution to overlap.

4.2 Additional Support for Computational Workloads
Batching is commonly used in computational workloads
since each kernel needs to be run multiple times for a vari-
ety of inputs. It can also help amortize the cost of reconfigu-
ration in some cases. We initially consider batching from
three approaches: (1) Bulk batching, wherein a single
instance of the IP is re-used for each entry in the batch. For a
batch of size N we scale the latency of each IP by a factor of
N, thereby serializing the batch but increasing the time each
IP must remain configured on the device before it can be
swapped for another. (2) Parallel batching, wherein multi-
ple instances can run batch entries in parallel. We replicate
the graph N times, thereby creating N parallel instances,
which can potentially lead to better slot utilization but
blows up the size of the ILP problem, making it harder to
find a solution. Note that both of these approaches are pos-
sible with our described ILP formulation. (3) Pipelining
across batches, wherein like bulk batching, each IP’s latency
is scaled by a factor of N; however, we allow dependent IP
to overlap their execution since the dependencies exist
within a batch entry only. Thus, each pipeline stage is an IP,
operating on a separate entry in the batch. In order to do so,
we extend our ILP formulation. If there is an edge e;; € E,
from the i-th IP to the j-th IP, then the start time of the j-th IP
must be greater than the sum of the start time of the i-th IP
and the latency of one entry in the batch. Also, the penulti-
mate batch of the j-th IP must begin only after the last batch
of the i-th IP has completed. Thus we have

SJZS,-’-L%/N;VE,_?EV (16)

SJ+(N—].)LJ/NZSS-FL,;V%,}EV (17}
Note that we assume that the latency of the i-th IP, L; has
already been scaled by a factor of N. However, should the
latency of the j-th IP be much smaller than the i-th IP, we
must ensure that it still completes after the i-th IP and
respects the dependency

Si+L;i> 8+ L;Vi,jeV. (18)
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Fig. 5. DML ILP scheduler and graph partitioning flow.

4.3 Large Graphs and Multiple Applications

ILP based solvers can be slow and do not scale to large
graphs. This can be challenging when we attempt to map
very large applications, leverage parallelism (as it dupli-
cates the graph), or map multiple applications on to a single
FPGA. In this section we discuss our approach to dealing
with very large task graphs and multiple applications.

Handling Large Graphs: While ILP solvers are slow, it is
possible to find a non-optimal solution for the entire task
graph or find optimal solutions for subgraphs within rea-
sonable time. Thus, DML uses graph partitioning to sched-
ule large graphs. This is applicable for applications with
very large task graphs, leveraging parallel batching for a
single application, or while trying to map multiple applica-
tions to a single FPGA. We illustrate our overall ILP-based
scheduler flow in Fig. 5. We begin by setting upper bounds
on the size of the task graph and ILP solving time. If the
task graph is too big, or a solution cannot be found within
the time period, we partition the graph.

DML partitions the task graph into smaller subgraphs,
called cuts, performs ILP-based scheduling of each cut, and
then sequentially concatenates the schedules and mappings
of each cut to create the final global schedule and mapping.
Asshownin Fig. 5, the graph partitioning begins by perform-
ing topological sorting of the graph and sorts vertices into
levels, such that vertices in a level are tasks /IPs that have no
dependence on each other but are dependent on vertices in
higher levels. We then group together vertices, level-by-
level, into cuts of fixed sizes. When selecting vertices to be
placed into a cut, DML uses two different strategies: (1)
sorted cuts, and (2) fair cuts. The sorted cut strategy consid-
ers scenarios where we are trying to schedule and map mul-
tiple applications to a single FPGA at the same time, where
the task graph might be very large and have tasks/IPs with
very different execution latencies. Grouping together verti-
ces into a cut without considering the different execution
times may result in a final schedule with large bubbles in the
pipeline. Thus, in the sorted cut strategy, DML will first sort
the vertices in a level by their latencies. Thus, when cuts are
formed, we are less likely to have vertices with vastly differ-
ent execution times, thereby improving FPGA utilization. In
contrast, The fair cut strategy considers the case of parallel
batching, where we could have a very large graph, such that
the latency of nodes in each level are identical to each other.
In this case, we can schedule all nodes without bias. Having
formed the cuts, we then schedule and execute each cut
sequentially. This scheduling algorithm illustrated in the
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ple applications.

flow chart in Fig. 5, while Fig. 3b illustrates cuts and levels in
alarge task graph.

Strategies for Multiple Applications: Without DPR, run-
ning multiple applications on an FPGA would require time
multiplexing the applications over the entire FPGA, which
would be slow and would limit the ability to exploit the
available fine-grained customization and parallelism. We
call this approach Coarse-Grained Scheduling. As we discussed
in Section 3, our flexible architecture and scheduler enables
us to leverage DPR to share an FPGA across multiple appli-
cations simultaneously. We combine the task graphs of all
applications into a single monolithic graph, and our sched-
uler finds a solution for all applications simultaneously, as
we discussed in Section 4.3. We refer to this method as depen-
dent-scheduling, and illustrate it in Fig. 6. Note that any IP of
any application is free to be mapped to any slot of the FPGA.
This method can efficiently use all FPGA resources and infra-
structure, and can attempt to provide the optimal end-to-end
latency for the monolithic DAG. However, there are a few
potential disadvantages of this approach: (1) It only attempts
to optimize the total latency, not the per-application latency,
(2) The monolithic DAG can be very large which requires
graph cutting to generate a schedule in a timely fashion,
which will create a less-performant schedule, and (3) As the
graph is presented as a monolithic DAG, schedule genera-
tion can be slow as only one ILP solver is run.

Thus, in this work, we consider an alternative approach
to multiple applications - independent-scheduling. We stati-
cally designate a number of slots to each application, and
then independently run the scheduler on each application
for their designated number of slots. Thus, each application
runs with its best performance and does not interfere with
scheduling and ordering or other applications. This, how-
ever, does come at the cost of a potentially longer end-to-
end latency for the entire group of applications. We illus-
trate this scheme on the right side of Fig. 6. Note, however,
that the FPGA still has a single CAP interface that must be
shared across all applications. Our runtime allocates this in
around-robin fashion to each application.

Our DML framework is flexible and can implement either
multiple application mapping strategy based on the optimi-
zation goals. We explore the difference between dependent
and independent multi-app scheduling in Section 5, and
demonstrate scenarios where each is beneficial. Finally, we
note that another advantage of independent scheduling is
the ability to tune the number of slots based on application
characteristics. While intuitively one may think that the
number of slots required is proportional to the number of IPs
in an application’s task graph, our findings show that the
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number of slots needed depends on the topology of the task
graph, the latency of the IPs, and the batch size used. Sec-
tion 5.7 provides a quantitative analysis and demonstrates
the benefit of providing a bespoke number of slots to each
application.

4.4 Runtime Implementation

The DML runtime executes the schedule generated by the
scheduler. However, the static ILP scheduler is fed simulated
latencies of the IPs, which can differ from the actual hard-
ware latency. Thus, instead of using the exact IP start times
predicted by the scheduler, DML’s dynamic runtime uses
the mapping and global DPR order generated by the ILP-
based scheduler, along with the dependencies of the task
graph to execute the application. During execution, the run-
time iterates over the global DPR order. When the slot of the
next IP in the global DPR order is available, and no previous
DPR is running, the runtime will start DPR in the slot
denoted by the mapping. While waiting for the next DPR,
the runtime iterates over each IP that has already been con-
figured, and checks if the dependencies are complete. If the
dependencies are complete, the runtime will start the execu-
tion of the IP. This approach is beneficial as it combines the
static high-order information from the ILP-based scheduler,
such as mapping and global DPR order, with the dynamic
information the runtime has such as the exact time DPR is
available, or an application’s dependencies are complete.
While the operation of the dynamic runtime makes it possi-
ble that the IP start time in hardware differs from that pre-
dicted by the static scheduler, this does not impact
performance. We are simply adjusting DPR or IP start times
by using available slack in the schedule, between IP execu-
tion ending and DPR beginning in a slot, while still following
the global DPR order, IP slot mapping, and dependencies.
We quantitatively show in Section 5.3.1 that the acquired
speedup in the hardware matches or outperforms that esti-
mated by the scheduler, which is further explained in our
evaluation.

5 [EVALUATION

We now present an evaluation and exploration of our DML
framework. As we discussed in Section 3, our architecture
uses slots of uniform resources and interfaces. In this work,
our slots include 10000 LUTs, 40 DSPs, and 40 BRAMI18
units. We target two different sizes and architectures of
FPGAs: (1) A Xilinx Zyng-7000 based Zedboard, and (2) A
Xilinx Zynq Ultrascale+ ZCU106 board. Slots on the Zed-
board result in partial bitstreams of 1.2MiB that take 9.5ms
to reconfigure, while the ZCU106 slots are 0.98MiB in size
and take 2.9ms to reconfigure. This amounts to an average
reconfiguration bandwidth of 125 MiB/s and 340 MiB/s for
the Zedboard and ZCU106 respectively. We refer to these as
1X sized slots, and consider slots of twice as many resources
as well, and call them 2X slots.

We consider real-world benchmarks, as provided by the
Rosetta [13] benchmark suite — 3D Rendering (3DR), Digit
Recognition (DR), and Optical Flow (OF) - and in-house
developed accelerators for Alexnet (AL4) and LeNet (LN)
neural networks, and Image Compression (IMGC). All
benchmarks were developed with Xilinx HLS tools, and we
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(a) (b)

Fig. 7. Floorplans used to evaluate DML on (a) Zedboard and (b) Zyng
Ultrascale+ ZCU106, for 1X size slots.

modified the benchmarks by splitting them up into smaller
task modules and generating uniform AXI interfaces (via
HLS pragmas) for the IPs. We attempt to get the best possi-
ble performance from the available slot resources, and
where possible we split the task IPs across multiple slots,
especially in data-parallel applications like the DNNs (AL4
has four parallel branches). We also consider four synthetic
graphs, similar to those in Fig. 3b, to add diverse patterns to
our multi-application studies.

5.1 Methodology

Our scheduler is written in Python and uses CVXPY [17] and
Gurobi 8.1 [18] for the ILP backend. Our experiments are run
on a cluster with Intel Xeon E5-2680 v4, and werestrict Gurobi
to use four threads only.' ILP latencies of the application’s
task IPs have been generated from Xilinx Vivado HLS synthe-
sis and co-simulation. In this section, we present data gener-
ated by our scheduler to perform a detailed sweep, design
space explorations, and to prove the scalability of the method-
ology. We present data for both, the Zedboard and the
ZCU106, as they have different architectures and DPR laten-
cies. We also provide hardware validation of our methodol-
ogy by running the generated schedules on the Zedboard and
the ZCU106. We performed manual floorplanning on both
devices, to carve out equal-sized programmable regions. We
were able to fit four 1X sized slots on the Zedboard, and ten
1X sized slots on the ZCU106 board. Fig. 7 shows these two
floorplans, with labeled red rectangles denoting the slots.

Fig. 7b shows the 10-slot floorplan used on the ZCU106.
We can see that the static region, which hosts the AXI inter-
connects, is placed in the middle of the board, near the PS-
PL interface, and with the programmable slots on the outer
edges of the device. We also note the different slot aspect
ratios on the ZCU106 floorplan (i.e., Slot 6 is taller and thin-
ner than Slot 0). This is necessary as Xilinx FPGAs are not
uniform in their placement of DSP and BRAM columns.
Hence, some slots must be taller and thinner to consume the
correct number of BRAMs and DSPs. We did not find that
this difference in aspect ratio impacted the timing of the IPs
within the slots. Note that we attempted to fit 12 1X sized
slots on the ZCU106, but the additional slots created routing
congestion and we could not meet timing.

1. To find a solution in reasonable time, we limit solver time to
between 600 and 720 seconds. We empirically determined task graphs
of 25 vertices to be the upper bound that the ILP could attempt to solve
before we require partitioning, as described in Section 4.3. The parti-
tioner uses cuts of size 10 to 15, and defaults to fair-cut method.
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Fig. 9. Normalized end-to-end latency of applications across batch sizes
and number of available slots, for 1X sized slots on a Zynq Ultrascale+.

The runtime is run on the baremetal platform provided
by Xilinx. We utilize APIs available in the Board Support
Package (BSP) to configure slots via the Processor Configu-
ration Access Port (PCAP), which is the CAP connected to
the PS on the SoC. The global DPR order, IP slot mappings,
and dependencies are generated by the ILP static scheduler
as global array definitions in a header file, which is read by
the runtime when executing the application(s).

5.2 Exploring the Impact of DPR on Performance
We begin by exploring the impact of batch size and number
of slots. We first present the application’s end-to-end latency,
as reported by the scheduler, normalized against the end-to-
end latency of the application without DPR overheads (base-
line). For now, we consider bulk batching. Figs. 8 and 9 pres-
ent the normalized latency of applications, when mapped to
1X sized slots, as mapped to a Zyng-7000 (Zedboard) and a
Zynq Ultrascale+ (ZCU106) device. Applications that dem-
onstrate a normalized latency of 1.0 are operating completely
unperturbed by DPR overheads. In this study, we sweep the
size of the batch, as well as the number of available slots.
These results use HLS estimated latencies and measured
DPR time. The HLS estimated latencies for all 6 applications
range from 7.18ms to 1.91 minutes. The DPR time of a 1X slot
on the Zedboard and ZCU106 is 9.5ms and 2.9ms respec-
tively. This is why Figs. 8 and 9 show such diversity in the
performance impact of DPR.
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As we can see, batch size can have a significant impact on
the effective latency as it helps amortize the cost of DPR. For
a batch size of 1, many applications are unable to effectively
mask the DPR latency. This is very clear in LN and IMGC,
where the latency of DPR can be greater than that of the IPs
or the application itself. In the case of ALA4, the size of the
application requires multiple PRs to be done, thus incurring
more overhead. However, as the batch size increases, we
see almost all applications are able to mask the latency of
DPR. This matches our expectation and confirms that the
scheduler is performing as expected. Alexnet (AL4) per-
forms poorly even at large batch sizes, when the number of
slots available is just two. This is because its task graph is
large and has many parallel branches. However, due to the
large amount of task parallelism available in AL4, it is able
to effectively utilize the additional slots. The remaining
apps do not benefit much beyond two slots when we apply
bulk batching, due to limited task parallelism. Finally,
Figs. 8 and 9 show that the reduced DPR latency on the
Zynq Ultrascale+ provides a significant reduction in over-
head Overall, with the exception of AlexNet (AL4), we were
able to match the baseline performance, despite DPR over-
heads, given a large enough batch or a sufficient number of
slots with bulk batching alone.

5.3 Exploring Batching Strategies

Next, we consider the performance of our generated sched-
ules across different batching strategies. For the sake of brev-
ity, we will not sweep across the number of slots, and will
consider the performance of the Zedboard with its four slots,
and the ZCU106 with its ten slots. We consider batch sizes of
4 and 32, and explore five scenarios — Bulk batching, Pipelin-
ing only, Pipelining and four-way parallel batching (Parallel
4X), Pipelining and eight-way parallel batching (Parallel 8X),
and No DPR. No DPR is a hypothetical scenario where we
do not use DPR. Instead, we statically fill 80% of the FPGA
with as many copies as possible of the entire task graph to
mimic a data-parallel approach to computing. We assume
20% of the FPGA’s resources are needed for units like AXI
crossbars, memory controllers, etc. Figs. 10 and 11 presents
the end-to-end application speedup over the baseline, which
assumes bulk batching as well but no DPR.

Enabling pipelining allows the scheduler to effectively
overlap multiple IP executions. The amount of overlapping
is determined by DPR latency, the DAG topology, the num-
ber of slots available, and the batch size. Thus, we see that
pipelining alone is able to speedup execution by up to 2.2X
and 2.73X on the Zedboard and ZCU106, respectively for a
batch size of 32. On an average, we see speedups of 1.5X
and 1.8X on the Zed and ZCU106, respectively. Note that
for small batch sizes, pipelining is unable to provide speed-
ups for applications like IMGC, where the latency of DPR
dominates execution.

By enabling parallelization, we unlock even more oppor-
tunities for the scheduler. Note, however, the lack of avail-
able slots limits its ability to fully exploit the parallelism,
and the increased task graph size forces us to use graph par-
titioning, which further limits the performance of the sched-
ules. As we can see on the Zedboard, parallelism provides
up to 3.9X speedups, with an average of 2.67X. Note that the
performance of eight-way parallel batching is poor, due to
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31.8X. Note: 8-way parallel batching cannot be done on batch of 4.

the lack of available slots and graph partitioning. In con-
trast, we see up to 6.8X speedup on the ZCU106 with the
help of eight-way parallel batching, and 4.15X on average.
Thus, our scheduler is able to effectively utilize the available
FPGA resources and parallelism in the graphs and batches.

We also note that the relatively limited resources of the
Zedboard does not allow many of the applications to map
to it. Thus, we see that the No DPR solution was unable to
provide a solution for OF, IMGC, and AL4. This further
highlights the need for our DML strategy, which allows com-
pute to be mapped efficiently to any device. In cases where the
applications do fit, our pipelining and parallelization approach
is able to perform better by better utilization of the FPGA
resources. On the ZCU106, which has significantly more
resources, we see that for small batch sizes, it might be advan-
tageous to simply instantiate copies of the application (No
DPR) if the application is very small, such as DR. However,
given enough parallelism, we see that our scheduler is still
able to better utilize the FPGA resources, even on the ZCU106.

Next, we examine the effective utilization of resources by
our methodology by considering the slot utilization. Effective
slot utilization measures what percentage of available slots
were used over the run of the application on an average. A
utilization of 100% would imply all slots were used across
the run. Figs. 12 and 13 present our analysis.

Once again we see the effectiveness of our scheduling
solutions. On the Zedboard, pipelining alone is able to keep
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our utilization at 50% on average, while enabling paralleli-
zation brings it up to 84% on average, and up to 99%. The
ZCU106 has more resources, and can be harder to keep
busy for small applications and batch sizes. However, with
the help of parallelization, we are able to effectively utilize
53% on average, and up to 88%. Note that parallelization
approach forces the scheduler to partition and perform
localized scheduling which limits the efficiency.

53.1 HW Evaluation

Having demonstrated the efficacy of our scheduler and
its different batching strategies, we will now evaluate
them on real systems. Figs. 14 and 15 show the speedup
with the same baseline for bulk-batching, pipelining,
four-way parallel batching, and eight-way parallel batch-
ing on the Zedboard and ZCU106 respectively. Once
again, we observe that pipelining and parallelism can
greatly increase the performance of partial reconfigura-
tion applications on our hardware implementation. On
the Zedboard for batch 32 we observe an average
speedup of 2.87X across all applications and a max
speedup of 3.98X. On the ZCU106 for batch 32, we
observe an average speedup of 4.99X and a max speedup
of 7.65X. Here we observe that the speedup seen in the
hardware implementation is higher than that predicted
by the scheduler. For a batch size of 32, the average
speedup across all applications as measured on hard-
ware is 1.04X and 1.12X higher than that predicted by
the scheduler for the Zedboard and ZCU106 respectively.
This can be attributed to the IPs running slower in hard-
ware than predicted by Vivado HLS. Thus, DPR latency
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Fig. 14. Impact of different batching strategies. Relative speedup shown
for batch size 4 and 32 on a Zedboard, as measured on hardware. Note:
8-way parallel batching cannot be done on batch of 4.
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Fig. 15. Impact of different batching strategies. Relative speedup shown
for batch size 4 and 32 on a ZCU106, as measured on hardware. Note:
8-way parallel batching cannot be done on batch of 4.

is shorter, relative to the total runtime of the IP, in hard-
ware. This reduces the relative overhead of DPR, making
it easier to hide. Hence, the latency predicted by the
scheduler is longer, which results in the predicted
speedup being more pessimistic. In the case of our paral-
lelization strategies, which provide the best performance,
frequent PRs must be performed, and thus the average
speedup predicted by the scheduler is slightly lower
than what we observe in hardware.

Comparing Figs. 14 and 15 with Figs. 10 and 11 shows that
the performance trends are the same in both the scheduler
and the hardware. In all but two instances, the best perform-
ing optimization, as predicted by the scheduler, is the best
optimization in hardware, on all boards and batch sizes. This
means that the scheduler’s performance model is able to
effectively model the performance of the hardware imple-
mentation. The two discrepancies are LeNet with a batch of 4
on the Zedboard, and LeNet with a batch of 32 on the
ZCU106. This is because LeNet contains small IPs which
have a very low latency, making it more difficult to hide the
latency of DPR. As mentioned previously, the cost of DPR in
the scheduler’s performance model is higher than that in the
hardware. As LeNet already has difficulty masking the
latency of DPR, in both discrepencies, the scheduler predicts
a solution with less DPR (pipelining with batch 4 and four-
way parallel batching with batch 32) would be more perform-
ant. However, we see in the hardware that LeNet is actually
able to hide the DPR latency, and is most performant with the
maximum amount of parallelism available for either batch.

0
OF LN IMGCDR AL4 3DR
Batch 4

OF LN IMGC DR AL4 3DR
Batch 32

Fig. 16. Impact of slot size on performance. Relative speedup shown for
batch size 4 and 32 on a ZCU106 with 4-way parallel batching, for slot
size 1X and 2X.
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Fig. 17. Impact of slot size on performance. Relative speedup shown for
batch of 4 and 32 on a ZCU106 with pipelining, for slot size 1X and 2X.

5.4 Choosing Slot Size

So far, in this section we have only considered 1X sized
slots. We will now explore the impact of choosing a larger
slot size. Figs. 16 and 17 show the speedups for both 1X and
2X slot sizes on the ZCU106 when performing pipelining
and four-way parallel batching respectively. The 1X slot
design is using ten slots while the 2X design is using four
slots. As one can see, using 1X slots always achieves a
higher or the same speedup when compared to the 2X slots.
This is for several reasons. First, not all IPs are able to fill the
2X slot, wasting precious resources. Second, 1X gives more
flexibility for how IPs can be mapped across slots in time
and space, as there are more IPs and more slots. This gives
the ILP scheduler a larger space to find a high-performance
schedule. Third, 2X slots take almost twice as long to recon-
figure, thereby increasing the impact of DPR latency.
Finally, 1X slots give more fine-grained specialization than
2X, allowing each IP to be more specialized to the specific
computation it is performing.

5.5 Scalability and Multiple Applications

We now demonstrate the scalability of our solution, and
used our scheduler to simultaneously map ten applications
(The six application previously mentioned plus four syn-
thetic benchmarks) to a single FPGA, across varying batch,
resource, and slot sizes, and evaluate our fair-cut and
sorted-cut methods. Table 1 presents the scale of the prob-
lem, for a batch size of 32, with eight available slots, with
pipelining enabled. Since our scheduler runs ILP on several
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TABLE 1
Problem Size for Mapping Multiple Applications

SlotSize Time(s) ILP(s) Node MaxVar MinVar AvgVar

1X 768.3 234 178 3735 2808 36575
2X 3189 224 83 3735 1068  3290.5

cuts of the graph, we present the average number of ILP
variables that are solved, along with the max and min. We
also list the total time taken to find the final solution, as well
as the total time spent solving the ILP alone.

Table 2 presents the normalized speedup of mapping
multiple applications on to a single FPGA, as predicted by
the scheduler. We consider FPGAs ranging from a small
edge-scale device with four slots, to a large cloud-scale with
sixteen slots, and consider slot sizes of 1X and 2X, batch
sizes of 4 to 32. Here we consider coarse-grained multi-app
scheduling, as discussed in Section 4.3 to be our baseline,
wherein each application executes serially, incurring one
time reconfiguration cost for each application, and assume
that there are enough resources for the entire application to
fit. Using this baseline, we present the speedup, as reported
by our scheduler for the sorted-cut and fair-cut schemes.

We observe that our schedule is faster than the baseline
across almost every case. This is in part due to our sched-
uler’s ability to pipeline and overlap the execution of IPs,

TABLE 2
Mapping Multiple Applications
1X 2X
BatchSize Slots Fair Sorted Fair Sorted
Speedup
4 0.93x 0.93x 1:51x 1.49x
8 1.16x 1.15x 2.14x 2.36x
10 1.21x 1.15x 2.48x 2.44x
4 16 1.22x 1.19x 2:R7% 2.49x
4 1.15x 1-15x 1.51x 1.50x
8 1.47x 1.43x 2.13x 2.42x
10 1.52x 1.44x 2.48x 2:52x%
16 16 1:52% 1.49x 2.55x 2.53x
4 1.16x 1.16x 1hix 1.50x
8 1.48x 1.43x 2.13x 2.43x
10 1.53% 1.45x 2.48x 2.53x
32 16 1.53x 1.50x 2.55x 2.54x
Slot Utilization
4 0.64 0.63 0.89 0.86
8 041 041 0.61 0.67
10 0.34 0.33 0.59 0.56
4 16 0.21 0.21 0.38 0.35
4 0.66 0.64 0.88 0.86
8 043 043 0.6 0.68
10 0.37 0.35 0.59 0.57
16 16 0.23 0.23 0.38 0.36
4 0.66 0.64 0.88 0.86
8 044 043 0.60 0.68
10 0.37 0.35 0.59 0.58
32 16 023 023 0.39 0.36
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TABLE 3
Speedups on Hardware and Scheduler Over Coarse-Grained
Multi-App Scheduling for Four Apps

Fair Sorted
Batch  Sched HW Sched HW
4 1.30x 1.34x 1.44x 1.28x
16 1.40x 1.30x 1.64x 1.48x
32 1.42x  Out-of-Memory 1.68x Out-of-Memory

even within smaller graph cuts. Here we note that the sorted
and fair cut strategies perform similarly. In this group of
applications, a few select applications dominate the end-to-
end runtime. Thus, no matter how we perform the graph
cuts, the critical path is determined by the same set of verti-
ces. Also, we can see that for larger batch sizes and more
slots, the effective slot utilization is poor. This is due to the
large disparity in task graphs. Larger graphs, with long
latencies and limited task-parallelism, consume the tail end
of the schedule, and only require one or two slots.

Once again, we will validate our scheduler by testing it in
hardware. We consider four applications, OF, LN, AL4, and
3DR, running simultaneously on the ZCU106, with ten 1X
slots. We present the end-to-end speedup as measured on
the board versus the scheduler prediction in Table 3. As we
can see, the hardware performance once again matches the
predicted scheduler performance. Note that the ZCU106
did not have sufficient memory (off-chip DRAM) to host all
four applications with a batch size of 32. In addition, unlike
our 10 application experiment, the sorted cut strategy out-
performs the fair-cut strategy as the end-to-end latency is
not dominated by a single application in the tail-end.

5.6 Dependent versus Independent Scheduling for
Multiple Applications

We will now explore the impact of different scheduling
approaches for multiple applications. As discussed in Sec-
tion 4.3, the DML framework allows for two multi-application
scheduling schemes: independent-scheduling and dependent-
scheduling. We use both scheduling schemes to generate
multi-app schedules for four concurrently running applica-
tions: LeNet, AlexNet, Optical Flow, and 3D Rendering, and
consider the total end-to-end latency of all four applications,
and the end-to-end latency of each application. We run our
experiments on the ZCU106 board with ten 1X slots, and a
batch size of 16. For independent scheduling, we consider
three different allocations of slots per application. As dis-
cussed in Section 4.3, in dependent scheduling, the scheduler
will allocate slots to IPs from the global pool and try to opti-
mize the total end-to-end latency.

Fig. 18 shows the end-to-end speedup of the indepen-
dent-schedule over the dependent-schedule for the total
runtime of all application and the per-application runtime.
The per-application slot allocations are shown in the legend.
Independent scheduling always has worse end-to-end
latency, and on average increases the end-to-end latency by
1.74X. This is because the dependent scheduling optimizes
over a monolithic graph across all available slots, so it can
prioritize the applications with the longest latency. How-
ever, dependent scheduling only optimizes the end-to-end
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Fig. 18. Speedup of independent over dependent scheduling for total
end-to-end latency and on a per-application basis. We consider a mix of
four application, with a batch size of 16, and measure performance on a
ZCU106 in hardware. Legend denotes the number of slots provided to
each application as follows: NAME: SLOTS.

latency, which can severely hurt single application perfor-
mance by unfairly providing slots to the slowest applica-
tion. Fig. 18 shows that when running four applications,
providing two dedicated slots to LeNet gives a speedup of
14.4X, and providing a single dedicated slot to LeNet gives
a speedup of 9.8X over if they were dependently scheduled.
This can also be seen in 3DR where independently schedul-
ing provides a speedup of 15.7X and 10.7X for two and one
dedicated slots respectively. These speedups are so large as
depdendent scheduling will prioritize applications with the
longest latency, which is AlexNet. AlexNet has 38 IPs which
is much more than Optical Flow’s nine IPs, LeNet’s three
IPs, or 3DR’s three IPs. AlexNet also has parallel branches
in its DAG, allowing it to consume many slots at the same
time to further increase performance. Thus, the dependent
scheduler will give a large majority of the slots to AlexNet
to reduce its end-to-end latency as much as possible. While
this is good for end-to-end latency as well as the latency of
AlexNet, one can see it unfairly hurts the performance of
other applications. In this case, it is beneficial to use inde-
pendent scheduling to share the slots across the four
applications.

In contrast, we will now consider cases where dependent
scheduling is better. Fig. 19 shows the speedup that inde-
pendent scheduling has over dependent scheduling when
scheduling three applications: LeNet, Optical Flow, and
3DR. In this scenario, we see that independent scheduling

EOF: 4 LN: 33DR: 3
[ JOF: 8 LN: 13DR: 1
IOF: 6 LN: 230R: 2

iseet®

\speed® or s et

ot
Fig. 19. Speedup of independent over dependent scheduling for total
end-to-end latency and on a per-application basis. We consider a mix of
three application, with a batch size of 16, and measure performance on
a ZCU106 in hardware. Legend denotes the number of slots provided to
each application as follows: NAME: SLOTS.
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Fig. 20. Effect of number of slots on the performance of Alexnet (AL4)
and Optical Flow (OF) benchmarks.

actually hinders the performance. This is due to two rea-
sons: First, these three applications consist of 15 IPs, which
is small enough for the dependent scheduling to find an
optimal solution, without partitioning, for the entire DAG.
Second, these applications have very limited branches, and
do not require a larger number of slots for maximum perfor-
mance. In this scenario, there is less contention for slots,
which results in improved per-application performance.
Thus, it is better to use dependent scheduling.

5.7 Impact of Number of Slots on Scheduling
Multiple Applications

We have just shown that the best multi-app scheduling
scheme is highly dependent on the topology of DAGs in the
applications. To further quantify this phenomenon, Fig. 20
shows the performance impact of increasing the number of
slots for two different batch sizes for our two applications
with the most number of IPs— AlexNet and Optical Flow —
both run with pipelining and no parallel batching. AlexNet
has 38 IPs with many parallel branches, while Optical Flow
has 9 IPs and has no parallel branches. Fig. 20 shows the
performance of AlexNet continues to increase as we
increase the number of slots. This is due to the fact that
AlexNet has many parallel branches, so it can utilize all
slots provided and provides a maximum speedup of 6.60X
when using twelve slots. On the other hand, Optical Flow
sees no increase in performance after four and six slots
when using a batch of four and sixteen, respectively. This is
because there are no branches in Optical Flow, and the
scheduler can reuse the slots and obtain the same perfor-
mance. Increasing the batch size increases the number of
IPs which can run concurrently, however, even with a batch
of 16 the speedup when using twelve slots is only 2.60x,
despite there being nine IPs in the application. This trend
can be used to help determine if dependent or independent
scheduling is better for a given set of applications.

5.8 Comparison With Previous Work

We compare our work with an ILP-based approach and
heuristic optimized approach [4], [5] - Iterative Scheduling
(IS), which limits the number of tasks per itertation to 1 (IS-
1) and 5 (IS-5). The results of this comparison can be seen in
Table 4. Since we have used a novel architecture in this
work, and real-world benchmarks, it is difficult to perform
a fair one-to-one comparison with [4], [5] where they use
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TABLE 4
Comparative Performance of Our ILP Solution
This Work [5] [4]

Nodes Time(s) NumNodes IS-1 IS5 PAR/ISS
7 3.6 10 095 3470 4730

28 18.06 30 26.02 764 90.30

56 398 50 115.6 393 135.36

synthetic benchmarks. Thus, we use our four synthetic test
benchmarks as well, and target the same system: a Zedboard
with four 1X slots. An ILP-based solution will provide an
optimal (or near-optimal for the iterative schedulers in [5]
and [4]) solution. Thus, we restrict our comparison to ILP
runtimes only, for similar number of nodes in the graphs.
Since [5] and [4] do not have pipelining support, we set our
batch size to one to disable any pipelining optimization. As
we can see, the simplification of our ILP constraints allows
us to tackle large problems faster and more efficiently, hence
proving the efficacy of our approach. Note that I5-1 is faster
than us; however, the approach schedules one task in the
queue at a time, which limits the quality of the solution. In
contrast, we attempt to schedule up to 25 task nodes first,
before partitioning the graphinto cuts of 15 tasks.

6 CONCLUSION

In this work we presented DML, an end-to-end DPR sched-
uling and mapping solution. DML is generic, considers
FPGAs of all sizes, provides a scalable and portable archi-
tecture that reduces design effort, and includes a novel ILP-
based scheduler that provides the lowest latency schedule,
performs pipelining and parallelization across batch ele-
ments, and is capable of simultaneously scheduling and
mapping multiple applications at once.

We demonstrated the efficacy of our solution via an
extensive design space exploration via our scheduler, and
validated our methodology on edge and cloud scale FPGAs
— a Zedboard and a ZCU106. Our evaluation demonstrated
our scheduler’s ability to pipeline and parallelize the solu-
tion with an average speedup of 5X and up to 7.65X on a
ZCU106. Finally, we explored the trade-offs between simul-
taneously mapping multiple applications to a single FPGAs
versus partitioning and allocating resources to each applica-
tion, individually.
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