2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) | 978-1-6654-6272-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/MICR056248.2022.00042

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

IDIO: Network-Driven, Inbound Network Data Orchestration on Server Processors

Mohammad Alian!, Siddharth Agarwal?, Jongmin Shin®, Neel Patel', Yifan Yuan?, Daehoon Kim?, Ren Wang*
Nam Sung Kim?
YUniversity of Kansas, *University of Illinois, Urbana-Champaign, >DGIST, *Intel Labs

Abstract—High-bandwidth network interface cards (NICs),
each capable of transferring 100s of Gigabits per second, are
making inroads into the servers of next-generation datacen-
ters. Such unprecedented data delivery rates impose immense
pressure, especially on the server’s memory subsystem, as
NICs first transfer network data to DRAM before processing.
To alleviate the pressure, the cache hierarchy has evolved,
supporting a direct data I/O (DDIO) technology to directly
place network data in the last-level cache (LLC). Subsequently,
various policies have been explored to manage such LLC and
have proven to effectively reduce service latency and memory
bandwidth consumption of network applications. However, the
more recent evolution of the cache hierarchy decreased the
size of LLC per core but significantly increased that of mid-
level cache (MLC) with a non-inclusive policy. This calls for
a re-examination of the aforementioned DDIO technology and
management policies.

In this paper, first, we identify three shortcomings of the
current static data placement policy placing network data to
LLC first and the non-inclusive policy with a commercial server
system: (1) ineffectively using large MLC, (2) suffering from
high rates of writebacks from MLC to LLC, and (3) breaking
the isolation between application and network data enforced by
limiting cache ways for DDIO. Second, to tackle the three short-
comings, we propose an intelligent direct I/O (IDIO) technology
that extends DDIO to MLC and provides three synergistic
mechanisms: (1) self-invalidating I/O buffer, (2) network-driven
MLC prefetching, and (3) selective direct DRAM access. Our
detailed experiments using a full-system simulator — capable
of running modern DPDK userspace network functions while
sustaining 100Gbps+ network bandwidth — show that IDIO
significantly reduces data movement (up to 84% MLC and
LLC writeback reduction), provides LLC isolation (up to 22%
performance improvement), and improves tail latency (up to
38% reduction in 99™ latency) for receive-intensive network
applications.

Keywords-Non-inclusive Cache; DDIO; Datacenter Network;

I. INTRODUCTION

The evolution of networking technology has led to net-
work bandwidth in servers approaching memory bandwidth
and proper handling of network traffic across memory hi-
erarchy can noticeably affect overall performance. Direct
Cache Access (DCA) [19] was introduced to address this
challenge by allowing the NIC to directly write inbound
network data into the cache hierarchy instead of the main
memory (DRAM) first [24]. As such, DCA not only reduces
service latency and memory bandwidth consumption of
network applications but also improves the performance of

co-running applications with reduced interference between
the network and co-running applications at the memory
subsystem. The current implementation of DCA by Intel and
ARM CPUs are known as Data Direct I/O (DDIO) [1] and
Cache Stashing [7], respectively; AMD also implemented
a DCA technology in its Zen 4 microarchitecture [30] and
they will be collectively referred to as DDIO in this paper.

DDIO generally works well, but it has shortcomings
arising from the fact that all applications using the network
share the same limited number of LLC ways [35], [41],
[36]. Although the number of ways allocated for DDIO
is dynamically configurable [41], the precious shared LLC
space should be conserved for the co-running applications.
Furthermore, starting with the Skylake microarchitecture,
Intel Xeon CPUs, used predominantly in server platforms,
introduced drastic changes to the cache hierarchy, especially
for datacenter applications. Compared to the previous mi-
croarchitecture (Broadwell), Skylake decreased the size of
shared LLC from 2.5MB to 1.375MB per core in favor
of increasing the size of the private middle-level cache
(MLC) from 256KB to 1MB per core. As the LLC’s role
was demoted to being a victim cache for large MLCs, its
inclusion policy changed from inclusive to non-inclusive,
and its associativity shrunk from 20 to 11 ways. Although
this drastic change provides stronger inter-core isolation
and higher performance for some classes of datacenter
applications such as database [11], it increases pressure on
the shared LLC by applications and mechanisms like DDIO
that make heavy use of the shared LLC space.

Through detailed analysis of the cache activity using a
commercial system based on the Intel Skylake microarchi-
tecture, we identify three other Shortcomings for the DDIO
technology in a non-inclusive cache hierarchy. (S1) The
baseline DDIO — or even dynamic DDIO policies [41]
— does not take advantage of the large MLC. (S2) The
non-inclusive cache hierarchy suffers from a high rate of
writebacks from MLC to LLC by dead cachelines in high
bandwidth network processing. (S3) The non-inclusive cache
hierarchy can break the isolation enforced by limiting the
DDIO ways between I/0 and application data, causing DMA
bloating phenomenon.

To alleviate the aforementioned three shortcomings, (S1)-
(S3), we propose Intelligent Direct I/O (IDIO) technol-
ogy, a next-generation DDIO technology that implements
three Mechanisms. (M1) Self-invalidating I/O buffers:

978-1-6654-6272-3/22/$31.00 ©2022 IEEE 480
DOI 10.1109/MICR0O56248.2022.00042

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

We extend the current cache maintenance instructions to
implement a cache invalidate instruction that drops the
cacheline without writing it back to a lower level cache.
This instruction is executed by the application after a DMA
buffer data is consumed by the application (software stack).
(M2) Network-driven MLC prefetching: We propose a
network-driven prefetcher that is triggered by monitoring
the network activity and synergistically works with self-
invalidating buffers to minimize the LLC pressure. (M3)
Selective direct DRAM access: Although DCA improves
system performance by eliminating DRAM accesses for
network RX, it fails to provide any benefit when the use
distance of RX data is high, resulting in premature eviction
of the RX buffers to DRAM. We propose a selective direct
DRAM access mode, where DCA is disabled for the payload
of the RX packets of different application classes.

We enabled the gem5 simulator [27] to run modern DPDK
userspace network functions and sustain 100Gbps+ network
bandwidth. Our detailed experiments using full-system gem5
show that IDIO significantly reduces on- and off-chip data
movement (up to 84% MLC and LLC writeback reduction),
provides LLC isolation (up to 22% performance improve-
ment), and improves tail latency (up to 38% reduction in
99t latency) for receive-intensive network applications.

II. BACKGROUND

A. Network Stack and Memory Hierarchy Evolution: Data
Movement Perspective

Network data movement in a computer system: Computer
systems traditionally use direct memory access (DMA)
technology with memory-mapped /O (MMIO) to transfer
network data between NIC and CPU. The CPU allocates
DMA ring buffers in the main memory for data to be re-
ceived/transmitted from/to the NIC. The NIC’s DMA engine
copies data from the buffer to the NIC (TX) or from the
NIC to the buffer (RX) without CPU involvement. When
the DMA copies are completed, the NIC sends interrupts to
notify the CPU of RX and TX completion. The notification
can be implemented using a polling mode driver (PMD) as
well. In the case of RX, the CPU reads the newly arrived
data in the DMA ring buffer for processing.

Data direct I/O. Since memory bandwidth becomes a
performance bottleneck in high-speed networking technolo-
gies [9], direct cache access (DCA) [19] has been proposed
to improve the network performance by allowing the CPU
to write/read data directly to/from the LLC, bypassing
DRAM. Most modern CPUs from different vendors support
DCA. For example, Intel’s Xeon CPUs employ a DCA
implementation called data direct I/O (DDIO) technology.
DDIO directly uses the CPU’s LLC for data communication
between I/O devices and CPUs instead of going through
DRAM, reducing both access latency and memory band-
width consumption considerably [6], [21], [35], [22], [15],
[14], [41], [39], [101, [28], [32], [5].

481

" DRAM

tag/data

P

B2

P3

I‘~- bring to LLC :
P4 IEnuEE

P5

(directory) ExcTMLC IncT MLC ExclLLC

X X I -
gt -
read P1 “PZ'ZjTP:a'lJ @

’;PA-L update P4

PCle
write

P1-2 write alloc P1

alg P5-1 write alloc P5

A PcCle read

Figure 1: Data movement within a non-inclusive cache
hierarchy for PCIe write and PCle read. ‘P’ denotes packet.

Recent evolution in server CPU cache hierarchy: Starting
from the Skylake microarchitecture, Xeon CPUs, used pre-
dominantly in server platforms, introduced drastic changes
to the cache hierarchy. Compared to the previous microar-
chitecture (Broadwell), Skylake radically re-allocated on-
chip cache resources by decreasing shared LLC capacity
(from 2.5MB to 1.375MB per core) in favor of quadrupled
private L2 capacity (256KB to 1MB). As the LLC’s role
was demoted to being a victim cache for large L2s, its
inclusion policy changed from inclusive to non-inclusive,
and its associativity shrunk from 20 to 11 ways. Although
this drastic change facilitates inter-core isolation, it increases
pressure on workloads and mechanisms (like DDIO) that
heavily use shared LLC space.

DDIO data movement in the non-inclusive cache hierar-
chy: Figure 1 shows four parts of the LLC in a non-inclusive
Skylake CPU series [36], [40]. Excl MLC is the directory
that holds the tags of the valid MLC-resident cachelines,
used to filter coherence activity sent to MLCs. Two out
of 11 LLC ways store cachelines with a valid MLC copy
(Incl MLC in Fig.1). The Excl LLC and DDIO ways in the
figure store cachelines exclusively in LLC. In the default
configuration for PCle devices, like NICs, 2 out of 11 ways
of LLC are used by DDIO to write-allocate device writes
that miss in the LLC.

A PCle read or write request may find the target address
in five locations in the memory hierarchy. Blue rectangles
P1-P5 in Fig.1 represent packets that reside in these five
locations. PI is exclusively in the MLC. P2 is in both MLC
and LLC. P3 is exclusively in the non-DDIO ways of LLC.
P4 is exclusively in DDIO ways of LLC. P5 is not cached.
Note that all packets are backed by DRAM.

On the data egress path, when a PCle read request is
received (step in Fig.1), if the cacheline is in MLC
(i.e., P1 or P2) and dirty, the cacheline will be written back to
LLC (and steps) and then sent to the requesting
device [36]. If the requested cacheline is in LLC (i.e., P3 or

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

P4), the data will be read from LLC and sent to the device
(and steps). If the cacheline is not cached (i.e.,
P5), the data is read directly from DRAM, like conventional
DMA.

On the data ingress path, when a full cacheline PCle write
request is received' (step @0 in Fig.1), if the cacheline is
in MLC (i.e., P1 or P2), it will be invalidated (Bl and P25
steps). Next, if the cacheline was exclusively in MLC (i.e.,
P1), then a cacheline is allocated in the LLC’s DDIO ways
and gets updated with the PCle write data (step PIEZ). A
cacheline already present in LLC (i.e., P2 or P3) is directly
in-place updated (steps [P2%2 and P8HI). Finally, if the write
address is not cached (i.e., P5), it will be write-allocated in
the DDIO ways (step BSSI).

B. Demystifying Network Applications

The efficiency of inbound network data placement policies
highly depends on how the network applications consume
the RX data. Although most network applications use a
circular ring buffer to communicate with the NIC [35],
[16], from the I/O device’s standpoint, the reusability of
shared CPU/NIC buffers depends on how the application
recycles these buffers. We classify I/O buffer recycling into
three Modes. (M1) Copy: The consuming application (or
network stack) copies the received packets from the ring
buffer to the application space and processes the copied
packets later. This is how the Linux software stack works.
(M2) Re-allocate : The consuming application stashes the
pointers to buffers holding received but not yet processed
packets and replenishes the ring buffer by updating its
pointers to different DMA buffers. The application later uses
the stashed pointers to process the packet contained in the
corresponding buffers. This mode is used within the Linux
kernel to reduce memory copies for large packets. (M3) Run
to completion: The application processes the received DMA
buffers in place and only frees them after application-level
processing is completed. This prevents context switches and
memory copies and achieves more predictable latency for
latency-sensitive, network-intensive applications (e.g., Net-
work Functions). The DMA buffers are reused throughout
application execution. Latency-sensitive applications using
DPDK often follow this approach.

To study the life cycle of a DMA buffer in the memory
hierarchy while it is being processed, let’s consider the
application domain of Network Functions (NFs) as a prime
example of latency-sensitive, network-intensive applications.
A significant high-level distinction in packet processing
characteristics across applications in that family is whether
the NF performs shallow or deep packet inspection. The for-
mer category represents NFs that only inspect and operate on
each packet’s header (e.g., L2/L.3 forwarders, basic firewalls,

'We only consider full PCle writes in Fig.1 as the DMA write requests
are mostly full cacheline writes.

482

/A-8 processing Core 0

" DRAM tag/data

. J a
LN B
R LLC WB E
4 . (directory) ExcTMLC IncTMLC ExclLLC DDIO ¢
Al pcle T
Header . Payload . B4 write

Figure 2: Data movement within a non-inclusive cache
hierarchy for application operating on data received from
network.

NAT, load-balancers) [17]. The latter category represents
NFs that perform deep packet inspection (e.g., for intrusion
detection or general client-server networking applications)
and thus access each packet in its entirety.

Fig.2 demonstrates the different data movement patterns
the two application categories result in. Applications “A”
and “B” refer to the shallow and deep category, respectively.
We assume that the DMA buffer is already in the LLC’s
DDIO ways once a PCle write arrives. A packet arrival
results in a PCle write that updates the DMA buffer’s
corresponding cachelines in LLC (A8l and BH in Fig.2).
If the time between the arrival of PCle write and demand
miss from the MLC is long, then the cachelines might get
evicted to DRAM due to LLC contention (“LLC WB” in
Fig.2). In case of an LLC WB, once a demand miss is
received for application A, the packet header will be fetched
from DRAM, its tag will be allocated in the inclusive LLC
directory (step) and its data will be allocated in core
0’s MLC (step [2%2#). For application B, both header and
payload will be requested by core 1 for processing (steps
and [EJ0). If there is no LLC WB, then the data
will be read from LLC (steps AS2I2 and BS282) and its tag
will be moved to the directory (steps [AS2H and BEZHD.
Next, the applications process the fetched data (steps -
and BE8). Once the DMA buffer is processed by the core, it
will stay in MLC until it is evicted to LLC/DRAM (“MLC
WB” in Fig.2) or invalidated upon reuse by the NIC (i.e.,
another PCle write to the same address). By the time a
cacheline’s MLC WB occurs, it is likely that the cacheline
has already been evicted from the LLC. In that case, the
cacheline evicted from the MLC will be allocated inside the
non-DDIO ways of LLC, effectively increasing the footprint
of DMA data in the LLC. We call this effect DMA bloating.

C. Ethernet Flow Director

Intel Ethernet Flow Director [2] is a feature of Intel
NICs that directs incoming packets from the NIC to the core
on which the consuming application is running, avoiding

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

NIC tail

NIC tail
lv& -~ l‘%‘
é"b /CPU g CPU
g g
R pg
Q . Q "
o DMA Ring Buffer o DMA Ring Buffer
E 3
& &

NIC head

NIC head

Figure 3: DMA buffer residency in a non-inclusive memory
hierarchy throughout the buffer’s life cycle when running
(left) a general network application; (right) a zero-copy
shallow network function. Red indicates buffers residing in
the MLC.

unnecessary packet indirections. Flow Director comes in
two flavors: Externally Programmed (EP) and automated
Application Targeting Routing (ATR). EP mode allows
users/programmers to manually set the flows, therefore
comes in handy when an application can be pinned to a
physical core. On the other hand, ATR dynamically learns
the target core by populating a Filter Table with destination
core numbers. The Filter Table has up to 8k entries in
modern Ethernet adapters. Flow Director calculates the Filter
Table index value by hashing the incoming packets’ headers
and accessing the corresponding Filter Table entry to retrieve
each packet’s destination core. IDIO builds on top of Flow
Director’s mechanism.

III. DDIO LIMITATIONS

DDIO employs a static data steering policy in which it
always places incoming PCle writes in the LLC, as detailed
in Sec.II-A. This static data steering has two drawbacks:
(1) it does not leverage the exclusive MLC space to reduce
the LLC contention, (2) regardless of the application access
pattern (c.f., Sec.II-B), the entire packet is always placed
in LLC, which can cause interference in the LLC (both for
the network application itself and co-running applications).
These drawbacks result in leaky DMA and latent contender
issues detailed in prior work [35], [41], [36]. In this section,
we discuss a new problem: the writeback of consumed DMA
cachelines from MLC to LLC and DRAM. These cachelines
are dead and there is no point in keeping their data inside
the memory hierarchy. We show that these writebacks are
a side effect of DDIO implementation, application access
pattern to DMA buffers, non-inclusive cache hierarchy, CPU
processing rate, and network RX rate.

Observation (1): MLC-resident DMA buffers are invali-
dated upon reuse by the NIC. Fig.3 shows the residency of
DMA buffers in the memory hierarchy throughout their life
cycle. For illustration purposes, we assume that descriptors
and DMA buffers are one structure. In reality, the ring
buffer holds 128-Byte descriptors where each descriptor
stores metadata of RX packets, including a pointer to a

483

~{+med
—/—med_lwa

—>—low -—{}-med —<O—high —o—high

—O—high_1lway

|
~
<)

16

Norm. BW Uti

BW Util (Gbps
=
N

O o0 r &
o »n o wn
o » ®

64 ‘1024{2048 64 ‘1024‘2048 64 N1024{2048 64 1024{2048

DRAM Read DRAM Write
DMA Ring Buffer Size

12 evictions 12 silent drop
DMA Ring Buffer Size

Figure 4: MLC and DRAM Leaks at various load levels and
DMA ring buffer size.

DMA buffer. Another caveat is that DMA buffers are not
necessarily allocated at consecutive physical memory ad-
dresses, as might be perceived from Fig.3. However, this
simple illustration is useful to clarify the memory hierarchy’s
behavior while running network applications.

As shown in Fig.3 and detailed in Sec.II-A, received
DMA buffers initially reside inside the LLC. In the figure,
the most recently received DMA buffer is tracked by the
NIC head pointer. Then, each RX DMA buffer will stay
inside LLC or be written back to DRAM until the CPU de-
mands it for processing (CPU pointer in Fig.3). To amortize
the interrupt/polling overhead and improve cache locality,
network applications process RX packets in batches. For
example, DPDK’s default batch size is 32 packets. In a run-
to-completion software stack, the entire batch will be inside
MLC for processing. After processing a batch, the CPU
moves the NIC tail pointer, freeing up the processed DMA
buffers. Note that in zero-copy shallow network functions,
after processing a batch, the cachelines will reside in the
LLC because PCle reads from the NIC on the egress (TX)
path will invalidate MLC copies and bring them back to
LLC (Fig.3(right)). In a general network application, DMA
buffers will remain inside MLC after being processed by
the CPU until they get evicted to LLC (and from there get
evicted to DRAM if there is LLC contention) (Fig.3(left)).
Observation (2): Non-inclusive memory hierarchy can
cause a high rate of MLC writebacks. To emulate the
general DMA buffer usage illustrated in Fig.3(left), we run
10 instances of the TouchDrop DPDK application on
a server with 2x100Gbps Ethernet ports at various load
levels. TouchDrop receives 1514-byte packets, touches
their entire data, and drops them. Refer to Sec.VI for more
information about our experimental setup.

In an ideal scenario, an RX buffer remains in LLC until
the core consumes it and remains in MLC until being reused
by the NIC. Fig.4(left) shows MLC writebacks, and MLC
invalidations (due to a PCle write) rate normalized to the
RX network bandwidth at various DMA ring buffer sizes
and load levels. Fig.4(right) shows the DRAM bandwidth
numbers. low, med, and high load levels correspond to
8Mbps, 1Gbps, and 20Gbps steady RX rates, respectively.
As expected, when the ring buffer size is 64, the normalized
MLC writeback rate is low, and we have a high rate of MLC

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

invalidations. However, with DPDK’s default ring buffer
size of 1024 entries, regardless of load level, the MLC
writeback rate increases to ~1.52x of the RX network BW.
As shown, the MLC writeback rate linearly increases with
the network BW. Note that writebacks from the MLC cause
interference in the LLC since the evicted cachelines need
to be allocated in the non-inclusive LLC. MLC writebacks
are inevitable once the DMA ring buffer size exceeds MLC
size. For instance, when receiving 1514-Byte packets, ring
buffers sized larger than 692 exceed the IMB MLC size
(IMB < 692 x 1514B) and will inevitably experience such
writebacks. MLC writebacks take place regardless of the
network RX bandwidth and linearly increases with network
rate.

Observation (3): Non-inclusive cache hierarchy increases
the aggregate cache capacity for I/O data. Interestingly,
LLC writebacks (when the same network application causes
eviction of the previously received data to DRAM) are
rarely seen in a non-inclusive cache hierarchy. As shown
in Fig.4(right), we do not observe LLC writebacks even
if the aggregate DMA ring size of all NFs exceeds the
capacity of the DDIO ways (6.5SMB DDIO ways vs. 15MB
DMA aggregate ring buffer size for 10 NFs with 1024
ring size). There are two reasons: First, in a non-inclusive
cache hierarchy, DMA data is split between MLC and LLC,
increasing the effective cache capacity of the processor (red
and gray parts of Fig.3). Second, as discussed in Fig.2, after
an MLC writeback, the cacheline is no longer classified
as I/0O data and can be allocated in any of the LLC’s
ways, including non-DDIO ways. As a result, I/O data can
now occupy the entire LLC, a phenomenon we call DMA
bloating. We confirm DMA bloating by using LLC way-
partitioning to limit TouchDrop applications to a single
LLC way (*_Iway configuration in Fig.4(right)) and see
12.3x and 1.7x higher DRAM write BW at high load for
1024 and 2048 ring buffer sizes, respectively.

Observation (4): Writeback of consumed DMA buffers
causes unnecessary on-chip traffic and LLC evictions.
Another interesting observation from Fig.4(right) is that
LLC writebacks are more pronounced at high load levels.
Note that the working set size of our simple TouchDrop
application does not change with load level as it is always
equal to the DMA ring buffer size. The only thing that
changes with load is the distance between NIC and CPU
pointers in the ring buffer (Fig.3). Our hypothesis is that at
higher loads, as the CPU lags behind the NIC for processing
packets, the Use Distance increases, and thus LLC pressure
mounts. This results in more LLC writebacks at higher loads,
especially on bursty request arrivals at NIC.

Figure 5 shows MLC and LLC writebacks when a burst
of packets is received. Results are based on a simulation
setup detailed in Sec.VI, as it is not possible to perform such
fine-grained analysis on a real hardware setup. Note that we
scale down the LLC size in gem5 to 3MB and run only

484

300 —— MLC writebacks LLC writebacks ——network rate
200 20
60
100 ' 30
0 A | 1] ‘W 0

Execution Phase

DMA Phase
>

2] (..................

2 250 100

S =
& 200 80 &
o] o
e 150 60 =
‘x) o
8 100 a0 %
Q

= 2
g 50 nm/\q*['m’\vWVW’\»\ 20 g
c

S 0 . . , , , , . 0

= 120 122 124 126 128 13.0 13.2

11.8

Time (ms)

(-

Figure 5: MLC and LLC writebacks when processing bursty
network traffic using TouchDrop, with 1024 DMA ring
buffer size receiving 1514 Byte packets.

two TouchDrop instances. The top graph shows writebacks
over a timeline of 30 ms, and the bottom one zooms into the
second burst. The writeback timeline illustrates two phases
in processing RX packets from the DMA buffer:

DMA Phase: Burst is received at NIC, and NIC starts the
DMA transfer to LLC. There is a lag of several us from
the start of the RX burst, and experiencing high misses in
the LLC. In this phase, the NIC head pointer moves much
faster than the CPU pointer, and the Use Distance in Fig.3
increases. Therefore, after some DMA transfers, the LLC
DDIO ways become full, and we start experiencing high
LLC writebacks (DMA leak).

Execution Phase: Packet processing starts on the CPU.
When the CPU starts processing RX packets, the recently
received packets are brought into MLC for processing. In
this phase, the gap between the CPU pointer and NIC
head pointer (Fig.3) reduces. The overlap between DMA
and processing phases depends on the network RX rate,
batch processing mechanism in the software stack, and CPU
processing rate. The primary reason for LLC writebacks
during the processing phase in Fig.5 is the writebacks caused
by replacing consumed DMA buffers in the MLC. The data
written back from MLC to LLC (and possibly DRAM) is
dead and not used by TouchDrop applications anymore. As
we move towards the end of burst processing, the number
of LLC writebacks decreases due to the DMA bloating
phenomenon discussed earlier. This observation motivates
our proposal for self-invalidating I/O buffers detailed in
Sec.IV-A.

Observation (5): RX DMA buffer residency is correlated
to the network rate. Figure 5 reveals a strong correlation
between MLC/LLC writebacks and network RX rate. We

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

leverage this correlation to develop a dynamic network-
driven DMA buffer steering policy in IDIO to proactively
prefetch cachelines into MLC to prevent the high LLC miss
rates encountered in the DMA phase of processing bursty
RX network traffic (Sec.V).

IV. MITIGATING MLC/LLC WRITEBACKS AND DMA
BLOATING

Leveraging the observations made in Sec.IlI, we propose
three techniques for mitigating MLC/LLC writebacks and
the detrimental effects of DMA bloating on performance.

A. Self-Invalidating /O buffers

DMA buffers are allocated based on the MTU packet size,
which is 1514 Bytes for Ethernet; thus, the minimum DMA
buffer entry size is often 2KB. Once an RX DMA buffer is
processed, it becomes a dead buffer and sits inside the MLC
until it gets evicted into LLC and DRAM. Such evictions
are wasteful because DMA buffers will be overwritten by
the next received packet using several full/partial PCle write
transactions. Note that even when there is a partial PCle
write transaction, the non-overwritten part of the cacheline
is still part of the current DMA buffer and is never used.
Therefore, it is safe to just invalidate the DMA buffers after
they are consumed by the software stack instead of writing
them back to LLC and/or memory.

The challenge lies in determining when a DMA buffer
is dead and thus safe to invalidate. The hardware cannot
determine that moment in time on its own, as it solely
depends on the buffer usage behavior of the running software
stack. For example, if the RX DMA buffers are copied
to a new buffer before processing them, then it is safe to
invalidate the cachelines that belong to the DMA buffer after
the first touch by a core or copy engine. However, if the
running application is a zero-copy network function, then
the hardware cannot know the exact time that the NF is
finished using the RX DMA buffers.

We propose a cross-layer solution to address this chal-
lenge. Since there is no existing hardware knob that the
software can use to invalidate a cacheline without writing
it back to memory, we propose a new instruction with these
semantics. It is the software’s responsibility to explicitly
invalidate the RX DMA buffers after using them. As full
PCle cacheline write latency is lower when the cacheline is
not present in any of the MLCs, we want the software stack
to self-invalidate right after the RX data is consumed.

B. Network-Driven MLC Prefetching

As detailed in Sec.III, there is a strong correlation between
network RX rate, demand misses, and MLC and LLC
writebacks. We propose a network-driven MLC prefetching
technique that synergistically works with self-invalidating
I/O buffers to alleviate the LLC pressure at the DMA
phase of RX packet processing (Fig.5). More specifically,

485

— App - App
Application class ——
Destination core PCle Cself-mlv:alldate Cloia i
Header/payload ore : ore
Burst start 1/0$: Vs
v
Counters
Registers L2$ L2$
IDIO || IDIO Ctrl| | L2 Ctrl Prefetcher
Classifier t t 1
| Coherent On-chip Interconnect |
vPort 0~N
Vo] t t t
SmartNIC | MemCul | | Sliced LLC |

Figure 6: IDIO overall architecture.

we augment the NIC with logic that detects the arrival of a
burst and relays the information to the IDIO cache controller
to enable MLC prefetching. MLC prefetching is disabled
once the DDIO ways and MLC ways reach an equilibrium
state, and prefetching is not useful anymore (Sec.V-B).
With self-invalidating I/O buffers, as the NIC tail pointer
in Fig.3 moves, the MLC-resident buffers get invalidated,
freeing up MLC capacity. Once a burst is received, our MLC
prefetching uses this available MLC capacity to bring recent
RX packets to MLC and free up LLC (i.e., DDIO ways)
space.

C. Selective Direct DRAM Access

Although Direct Cache Access (DCA) improves system
performance by eliminating DRAM accesses for network
RX, it fails to provide any benefit when the use distance
of RX data is high, resulting in premature eviction of the
RX buffers to DRAM. In such application scenarios, DCA
causes contention in LLC and can hurt the performance
of collocated applications. We propose a hardware/software
solution for selective direct DRAM access mode, where
DCA is selectively disabled for the payload of RX packets
belonging to different application classes (Sec.V-A). We
always keep DCA enabled for the header part of the RX
packets as the header of each packet is typically processed
by the CPU upon reception, resulting in short use distance.

V. IDIO ARCHITECTURE

We design IDIO to address the limitations of modern
DDIO technology. IDIO makes dynamic decisions about
each individual packet’s placement in the memory hierar-
chy, improving DDIO’s flexibility in two dimensions. First,
instead of applying a fixed policy for all incoming packets,
IDIO applies differential treatment based on the per-packet
quality of service targets. Second, IDIO considers three
potential placements in the memory hierarchy: DRAM, LLC,
and MLC. IDIO continuously monitors network RX rate and
data movement in the memory hierarchy and periodically
adapts its placement decisions per traffic flow accordingly.

Figure 6 shows IDIO’s high-level architecture. The col-
ored components are the ones that IDIO modifies. IDIO

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

introduces two new components: IDIO classifier and IDIO
controller. IDIO also enhances MLC’s prefetcher to support
prefetches upon receiving hints from the IDIO controller and
extend cache maintenance instructions to implement a multi-
cacheline invalidate instruction. IDIO classifier resides in the
NIC and implements a logic to identify application class,
per-packet destination core, header versus payload, and the
start of an RX burst. The on-chip IDIO controller collects the
information embedded in each DMA transaction from IDIO
classifier and monitors per-core MLC eviction statistics
determine the best placement for each traffic flow. In the
rest of this section, we explain IDIO’s main components
and how the dynamic policy governing the IDIO controller
operates.

A. IDIO Classifier

IDIO classifier resides in the NIC and implements logic
to (1) identify the application class of each incoming packet,
(2) identify the DMA transfer that contains the first byte of
each RX packet, (3) identify the destination core for the RX
packet, and (4) detect RX bursts destined for the same core.
The IDIO controller uses the classification outcome men-
tioned above to steer RX packets in the memory hierarchy
intelligently (Sec.V-B).

We assume that the sending application includes informa-
tion about the application class in the header of the packets
it sends. For example, for TCP/IP packets, applications can
leverage the 8-bit differentiated services field (DS field) [3]
in the IP header for classification purposes. The 6-bit dif-
ferentiated services code point (DSCP) field can be set by
the setsockopt function for each socket connection and
updated on the fly. DSCP can be used to distinguish packets
coming from different applications with different DMA
buffer use distances. We define two application classes; class
0 are applications with short use distance, and class 1 are
applications with long use distance or applications whose
payload is rarely used/processed. For instance, a Denial of
Service (DoS) detention firewall application is a class 1
application as inspection of headers is mostly sufficient for
making a drop or pass decision, and further inspection into
the packet payload is rarely required. Such applications can
benefit from direct DRAM access for the payload to reduce
LLC contention.

As the header size of packets in all the well-known net-
work protocols is less than 64 Bytes, the DMA transaction
that transfers the very first cacheline of the RX packet
contains the protocol header. IDIO classifier marks the first
DMA transactions carrying RX data to CPU as the cacheline
that includes the header.

As IDIO supports network traffic steering to the MLCs,
the destination core for each packet should be known to
IDIO controller to determine which MLC to steer the packet
to if MLC steering is deemed beneficial. IDIO’s packet
classifier builds on existing NIC support to determine each

486

b 2b 5b 1b 3 4 4b 2b 10b
PCIe TLP
Header DWO |R‘ Fmt| Type R‘ TC | R | Attr |R| Length
1b 6b 1b
is burst (0~ 1)

Header/payload (0 ~ 1) Destination core number (0 ~ 62) and App Class (63)
Figure 7: PCle TLP reserved bits used by IDIO.

packet’s destination core. We leverage SR-IOV and Ethernet
Flow Director to create several virtual NIC ports (vPort)
and pin them to network sockets created on each core using
Application Device Queue (ADQ). In general, the purpose
of ADQ is to map RX/TX queues directly to the application,
so there is no DMA buffer or OS scheduler contention in a
multi-programmed server. With ADQ, the application sets a
hint (i.e., NAPI_ID) and uses this hint to map a socket to
specific RX/TX queues (so those queues would go to this
particular socket directly). Meanwhile, the NIC is configured
with rules based on 5-tuple so that the traffic can be directed
to certain RX/TX queues (using Flow Director’s perfect
match Filter Table, as introduced in Sec.Il), which in turn
match particular sockets corresponding to an application.
The classifier also keeps a 32-bit burst counter per physical
core to keep track of received bytes for each core. The
burst counters are reset every 1us. If the value of a counter
exceeds a threshold (rxBurstTHR), the classifier notifies
IDIO controller of a burst arrival.

To transfer the metadata extracted by the classifier on the
NIC to the on-chip IDIO controller, we embed them within
each DMA request by leveraging the reserved bits inside the
PCle’s Transaction Layer Packet (TLP) headers (“R” bits in
Fig.7). The target core number is encoded in 6 bits of the
PCle TLP header’s reserved bits (bits 23, [19:16], and 11).
As we will discuss in Sec.V-B, when the application class
is 1, regardless of the core number, IDIO directly writes the
data to DRAM. Application class 1 is identified by IDIO
controller when these 6 bits are set to 1. Using this encoding,
IDIO supports up to 63 cores. Header/payload and burst
information are encoded into the TLP header’s reserved bits
at offset 31 and 10, respectively.

B. IDIO Controller

The IDIO controller is tightly coupled with the PCle root
complex (PCle in Fig.6) on the CPU chip. IDIO controller
makes steering decisions based on the algorithm outlined
in Alg.1, using per-packet information received from the
classifier and per-core MLC writeback statistics monitored
within the CPU chip. IDIO controller maintains one 32-bit
counter, two 32-bit registers, and one 1-bit status register
per physical core: the 32-bit m1cWB counter counts MLC
writebacks at 1us intervals. The 32-bit m1cWBAcc register
accumulates 8192x consecutive samples of ml1cWB. As
shown in Alg.1 (lines 20-24), the 32-bit m1cWBAvg stores
the average number of MLC writebacks at 1us intervals

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: IDIO data plane and control plane

Data Plane @ IDIO controller
DMA [appClass, isHeader, isBurst, destCore] write
request is received
3 fsmState[destCore]l= isBurst?
O:fsmState[destCore]
if isHeader then
| Send prefetch-hint to destCore
else if appClass == 1 then
| Direct DRAM write
else if status[destCore] == MLC then
| Send prefetch-hint to destCore
else
n |

(SIS

e ® 9 ;&

Write-allocate or -update inside LLC

Control Plane @ IDIO controller
Every 1 ps:
for i in (0, number of cores) do
mlcPress= mlcWB[i]> (mlcWBAvg[i]+ mlcTHR)?
high:low
update fsmState (shown in Fig. 8)
mlcWBAcc[1i]+= mlcWB[1i]

19 end

20 Every 8192us:

21 for i in (0, number of cores) do

2 mlcWbAvg[i]= mlcWbAcc[i]/ 8192
23 mlcWbAcc[i]= 0

24 end

high micPress /high micPress

4
0b00
status = MLC

A

low micPress

0b10
status = MLC

0b01
status = MLC
low micPress

isBurst

S igh micPress

Ob11 h
status = LLC <€—

Figure 8: Per core FSM for setting status register in IDIO
controller.

over the past 8192us. We chose these intervals as they
experimentally work well (Sec.VII); however, all the time
intervals are configurable. Lastly, the one-bit status reg-
ister indicates the destination of incoming DMA requests as
follows: 0—LLC, 1-MLC.

If the DMA carries a header, regardless of its application
class, it will be prefetched to MLC (Alg.1, lines 4-5).
The rationale is that the header size is small, and the use
distance of the header is usually short. If the application
class (appClass) is 1, then we disable DDIO for that
transaction and directly write the data into DRAM (lines
6-7). If status bit of the destination core is 1 (i.e., MLC),
the data will be prefetched to MLC (lines 8-9). Otherwise,
the DMA stays in LLC (lines 10-11).

IDIO controller updates per-core status bit using the FSM
illustrated in Fig.8. The FSM implements a 2-bit saturating
counter to switch the status bit from MLC to LLC.
That is, by default, the MLC prefetching for a physical
core is disabled (state 0b11). Once a burst is identified
for a physical core (Sec.V-A), the FSM transitions to state

487

0b00 (line 3 in Alg.1). Every lus, the IDIO controller
measures the MLC pressure by comparing the number of
MLC writebacks during the past 1us interval (m1cWB) to the
average writebacks over the past 8192us (m1cWBAvVg). A
difference of m1cWB and m1cWBAvg exceeding a threshold
(m1cTHR) indicates high MLC pressure (mlcPress in
Alg.1 and Fig.8) and the saturating FSM counter is incre-
mented, otherwise it is decremented (saturating at 000 and
0bl1 as shown in Fig.8).

C. MLC Controller

The MLC controllers implement a simple queued
prefetcher logic that queues prefetch hints received from
IDIO controller for specific cache blocks and send prefetch
requests to the LLC accordingly. IDIO employs these
prefetch hints to steer incoming network data to MLCs. The
default MLC prefetcher queue size is 32 requests.

D. Buffer Invalidation

Modern ISAs support several cache maintenance instruc-
tions for cleaning and invalidating cachelines. We extend
the cache invalidate operation and introduce a new cache
maintenance operation that invalidates a cacheline from
private dcache and MLC, regardless of the dirty bit value.
That is, the invalidation does not result in a writeback. The
network application will use the instruction to explicitly
invalidate the DMA buffer after it is consumed by the
software stack, as shown in Fig. 6. Note that invalidate
without flush instructions has already been implemented
in several ISA. For example, Data Cache Invalidate by
Modified Virtual Address (DCIMVAC) operation in arm_v7
ISA [8] and Data Cache Block Invalidate (DCBI) instruction
in PowerPC [20] invalidate the cacheline that includes a
virtual address.

Making such instructions available to a userspace appli-
cation has some security implications. For example, imagine
that after a process dies, the OS zeroes one of the physical
pages used by that process and maps that page to a new
process. If the new process uses the invalidate without flush
instruction on the newly mapped page, it can observe the
old content, breaking data privacy between processes. To
mitigate the privacy issue, we introduce a special Invali-
datable buffer that the kernel can allocate for a userspace
application. We take a bit in the Page Table Entry (PTE) to
mark a page as Invalidatable (currently, the Linux kernel
has four reserved bits in PTE [25]). When a userspace
application requests such a buffer, the kernel first flushes
it to DRAM and then allocates it for the application. When
an invalidation instruction is issued, the PTE bit is checked
to ensure it is Invalidatable.

VI. METHODOLOGY

The results are either collected from a physical or sim-
ulated two-server setup. In our physical setup, each server

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

Table I: Simulation configuration.

Parameters Values
Core ISA, freq: aarch64, 3GHz
Superscalar 3 ways
ROB/IQ/LQ/SQ entries 384/128/128/128
Int & FP physical registers 128 & 192

BiMode/2048
32KB, 2/64KB, 2/1MB, 8/1.5MB, 12
1CC, 2/2CC, 6/12CC, 16/24CC, 32
DDR4-3200/4GB
Linux Linaro (kernel 5.4.0)
2x100Gbps Ethernet NICs
DPDK 21.11.0, 1514-byte packets

Branch predictor/BTB entries
I/D/L2/L3 (per core size, assoc)
I/D/L2/L3 (latency, MSHRs)
DRAM/mem size

Operating system

Network HW

Network SW

Table II: Functions used for evaluation. TouchDrop and
L2Fwd are DPDK-based network functions.

Function

Description

TouchDrop receive packets, touch data, drop packets.
L2Fwd receive packets, forward packets based on Ethernet header.
LLCAntagonist allocate a variable size buffer and randomly access elements

is equipped with an Intel Xeon Gold 6242 CPU, 96GiB
DDR4-3200 DRAM, 3 memory channels, and one Mellanox
ConnectX-5 Dual 100Gb Ethernet card. We use the Linux
Perf tool [12] to collect performance counter values. Table I
shows our gem5 configuration. We enabled gem5 in full-
system mode to run userspace networking functions devel-
oped on the DPDK framework.

Since this work focuses on efficient inbound network
data steering, we use three RX-intensive DPDK network
functions to evaluate IDIO. Table II shows the description
of the network functions as well as LLCAntagonist
that is used to create LLC interference at various degrees.
Before we collect stats with LLCAntagonist, we warm
up caches by initializing the allocated buffer. To ensure that
LLCAntagonist generates enough LLC pressure and is
sensitive to LLC contention, we set the MLC size of the
core running LLCAntagonist to 256KB.

We generate network traffic using DPDK pktgen [13] and
a hardware load generator model for the physical system and
gem5 experiments, respectively. The load generator model
enables simple network benchmarking in gem5 without
simulating multiple system nodes. Using hardware load gen-
erators is ubiquitous in the industry for evaluating the per-
formance of the network [31]. To measure network latency,
we annotate the DPDK applications in Table I with gem5
pseudo instructions to get the timestamps when a packet
is completely processed. For example, in TouchDrop, a
pseudo instruction is executed once a full packet is touched.

We generate steady and bursty network traffic with differ-
ent packet and DPDK ring buffer sizes. We define a packet
burst with three parameters: burst period, burst length, and
burst rate. The burst period is the time between the start of
two consecutive bursts, the burst length is the time between
the first and last packet generated within one burst, and the
burst rate is the packet rate (bits per second) during the
bursts. We fix the burst period to 10ms and set the burst
rate to either 10Gbps, 25Gbps, or 100Gbps. Based on the

488

burst rate and packet size, we then set the burst length to
receive exactly ring-buffer-size number of packets in each
burst. Unless stated otherwise, we set the packet size to 1514
bytes, which is equal to Ethernet maximum transmission unit
size. For instance, if the ring buffer size is 1024, then the
burst length for 10Gbps, 25Gbps, and 100Gbps burst rates
are 1.155, 0.231, and 0.115 ms, respectively. Therefore, the
burst length depends on the value of the burst rate, packet
size, and ring buffer size. The rationale for setting the burst
length proportional to ring buffer size is to prevent packet
drops within a single burst, as we experience packet drops
as soon as the ring buffer becomes full.

We experimentally set the rxBurstTHR and m1cTHR
threshold values to 10Gbps and 50 million writeback trans-
actions per second (MTPS), respectively. We perform a
sensitivity analysis to threshold values in Sec.VIIL.

VII. EVALUATION

In this section, we evaluate the effectiveness of IDIO in
reducing MLC/LLC writebacks, contention in LLC, and tail-
latency while processing NFs at various configurations.
DMA leak and unnecessary writebacks mitigation: Fig-
ure 9 compares MLC writeback and LLC writeback rates
while processing one burst in TouchDrop for DDIO and
IDIO at 100Gbps and 25Gbps burst rates. To show the
synergy between techniques, we include Invalidate (Fig.9c
and 9d) and Prefetch (Fig.9¢ and 9f) configurations that
only enable self-invalidating I/O buffers (Sec.IV-A) and
network-driven MLC prefetching (Sec.IV-B) techniques. The
Static (Fig.9g and Fig.9h) and IDIO (Fig.9i and Fig.9j)
configurations enable both techniques. However, the Static
configuration always enables MLC prefetching for appClass
0 (by hardcoding status register in Alg.1 to MLC), but IDIO
dynamically enables and disables MLC prefetching based on
the FSM explained in Fig.8. We also plot DMA request rate
of TouchDrop application to show different phases of the
burst processing. Note that since TouchDrop only receives
packets, all the DMA requests are write. The execution phase
starts ~1.9us after the first DMA transaction. This delay is
the time it takes for NIC to writeback the used descriptors
to the CPU after the DMA-transfer of the RX data to the
CPU is completed. Only after the descriptors are updated,
the DPDK polling mode driver can detect packet arrival and
start the execution phase (cf. Fig.9). Our sampling interval
for calculating the rates in Fig.9, Fig.11, and Fig.13 is 10us.

At first glance, two things stand out in Fig.9: 1) IDIO
significantly reduces the LLC writebacks at all load levels,
and 2) IDIO reduces the processing time of a burst. More-
over, Figures 9c~9f clearly show the synergy between self-
invalidating and MLC prefetching techniques. As evident in
the figures, self-invalidations significantly reduce both MLC
and LLC writebacks, while MLC prefetching reduces the
burst execution time by increasing the aggregate residency
of RX network data in the cache hierarchy. Fig.10 compares

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

MLC Writeback === LLC Writeback DMA Request s

200 200}

1001

MTPS
MTPS

o

f=}

0.5 1.0 1.5 0.5

Relative Time (ms)

(a) TouchDrop.DDIO.100Gbps

1.0 1.5
Relative Time (ms)

(b) TouchDrop.DDIO.25Gbps

200 200

100 100

MTPS

n
[al}
g
=

N 0 < N

0 15 05
Relative Time (ms)

1.0 1.5
Relative Time (ms)

0.5

(c) TouchDrop.Inv.100Gbps (d) TouchDrop.Inv.25Gbps

200 200

1001

MTPS

it

1.0 1.5
Relative Time (ms)

i
1.0 1.5
Relative Time (ms)

0.5 0.5

(e) TouchDrop.Prefetc.100Gbps(f) TouchDrop.Prefetch.25Gbps

200 200

100 100

MTPS

n
[al}
g
=

A

. i e T s it
005 1.0 15 0705
Relative Time (ms)

0 15
Relative Time (ms)

(g) TouchDrop.Static.100Gbps (h) TouchDrop.Static.25Gbps

200} {200}
95} [p]
3 &
= 100} 1= 100¢
0 vﬂ"\“‘l—M&._,,v.,h 0 e

Lo 15
Relative Time (ms) Relative Time (ms)

(i) TouchDrop.IDIO.100Gbps (j) TouchDrop.IDIO.25Gbps
Figure 9: Two TouchDrop processes running with 1024
ring buffer size and 1514 bytes packets. MTPS is Million
Transactions Per Second.

0.5 1.0 1.5 0.5

the number of MLC writebacks, LLC writebacks, DRAM
read, and DRAM write transactions during the burst shown
in Fig.9, normalized to that of DDIO. Exe Time in the figure
is the burst processing time (i.e., start of DMA phase till the
end of the execution phase) of IDIO normalized to the burst
processing time of DDIO. The MLC writebacks at 100Gbps,
25Gbps, and 10Gbps are reduced by 73.9%, 83.7%, and
63.8% compared to DDIO, respectively. Likewise, IDIO
significantly reduces LLC writebacks and DRAM bandwidth
utilization. In fact, IDIO almost eliminates DRAM write
bandwidth. Such data movement reductions in the memory
subsystem result in 18.5% and 22.0% improvement in burst

489

[0100Gbps @ 25Gbps @ 10Gbps

o
510

z

Exe Time
Exe Time
Exe Time

[=]
<
=
<
<
o

DRAM RD
DRAM RD

TouchDrop.Static TouchDrop.IDIO TouchDrop.IDIO +

LLCAntagonis

Figure 10: Normalized number of MLC writeback, LLC
writeback, DRAM read, and DRAM write transactions as
well as burst processing time (Exe Time) of Static and
dynamic IDIO for the configurations illustrated in Fig. 9
and a co-running scenario. Lower values are better.

processing time at 100Gbps and 25Gbps, respectively.
Although IDIO significantly reduces the number of MLC
and LLC writeback transactions at all burst rates, Fig.10
suggests that IDIO proves the most useful at 25Gbps com-
pared with 100Gbps or 10Gbps burst rates. The reason is
that at high burst rates, the MLC-prefetching mechanism
quickly fills up MLC and starts experiencing high MLC
writebacks, and gets disabled early on. However, at medium
burst rates, while IDIO prefetches RX data to MLC, the
core consumes data at a comparable rate, and thus the self-
invalidating mechanism in IDIO frees up MLC space for new
prefetches. Such timely prefetch-invalidate is realized when
IDIO prefetches at the same rate as the CPU consumes data.
Although our simple queued prefetcher performs adequately
well at all burst rates, a more sophisticated prefetcher that
follows the CPU pointer in the ring buffer to regulate
the MLC prefetching rate will likely provide more benefit.
Because at lower burst rates, the CPU processes data as soon
as the packets arrive at NIC, there is no room for IDIO to
prefetch RX data into MLC. However, the self-invalidating
mechanism is beneficial at any burst rate. Note that burst
processing time is not improved at the 10Gbps rate because
packets are not queued up in the ring buffer, and therefore
improvement in per-packet processing time does not improve
the burst processing time. However, we still see tail latency
reduction even at 10Gbps (as we will discuss later in Fig.12)
Interestingly, even the Static IDIO policy for MLC
prefetching provides most of the benefits of the dynamic
IDIO policy. The difference between Static and dynamic
IDIO configurations in Fig.9g and Fig.9i is where Static
configuration lets MLC writeback rate exceed 50 MTPS,
but IDIO regulates MLC writeback rate by disabling MLC
prefetching when MLC writeback rate exceeds ml1cTHR
(i.e., 50 MTPS). For lower burst rates like 25Gbps, there
is no difference between Static and IDIO since the CPU
processing rate of DMA buffers is comparable to the DMA
write rate, and thus the self-invalidating mechanism frees
up space in the MLC for new MLC prefetches without

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

MLC Writeback === LLC Writeback DMA Request

0.25 0.50 0.75
Relative Time (ms)

(a) L2Fwd.DDIO.100Gbps

0.25 0.50
Relative Time (ms)

(b) L2Fwd.DDIO.25Gbps

0.75

200 200

n 0N
= =
= 100} {Z 100}

Ty il
0.25 0.50 0.75
Relative Time (ms)

(c) L2Fwd.IDIO.100Gbps

0 0.25 0.50

Relative Time (ms)

(d) L2Fwd.IDIO.25Gbps

0.75

Figure 11: Two L2Fwd processes running with 1024
ring buffer size and 1024 bytes packets. MTPS is Million
Transactions Per Second.

introducing MLC pressure.

To summarize, here are the main takeaways from Fig.9:

(1) IDIO significantly reduces MLC, and LLC writebacks,
(2) IDIO improves packet processing rate, (3) IDIO’s ef-
ficiency is not sensitive to the threshold values due to
the seamless synergy between MLC prefetching and self-
invalidating buffer at various burst rates.
Experimenting with shallow NFs: Figure 11 shows the
MLC and LLC writeback rate timeline for L2Fwd with
1024 bytes packets with DDIO and IDIO configurations.
L2Fwd implements a zero-copy run-to-completion buffer
recycling model and uses the RX DMA buffer for forwarding
the packet back to the network. Therefore, a DMA buffer
is consumed only after the forwarding is completed. In
the baseline DDIO, the payload remains in the LLC or
leaks to DRAM, and only the header is used in L2Fwd
for processing. Since the header size is small (even a full
1024 size ring buffer only takes 64KB), as shown in Fig.11a
and Fig.11b, there is almost no MLC activity in the DDIO
configuration. However, the LLC writeback rate gradually
increases as more data is received from the network. These
writebacks can be DMA leaks (not consumed DMA buffers)
or unnecessary writebacks of consumed DMA buffers. In
contrast, IDIO significantly reduces the LLC writebacks by
(1) effectively utilizing the unused MLC space to admit data
to the non-inclusive MLC and reduce the LLC contention,
and (2) invalidating consumed LLC-resident buffers after
the forwarding is completed. IDIO explores an interesting
data steering option, and that is data admission to higher
level memory versus data eviction to lower level memory.
Such data steering has not been an option in inclusive cache
hierarchies and needs to be further explored in non-inclusive
cache hierarchies.

IDIO also supports direct DRAM access for application

490

100G bps @ 25Gbps E10Gbps

Latency Normalized to
1024 Ring TouchDrop.DDIO

50th 99th 50th 99th 50th 99th

1024 Ring TouchDrop.IDIO | 1024 Ring TouchDrop.DDIO +

LLCAntagonis

1024 Ring TouchDrop.IDIO +
LLCAntagonis

Figure 12: 50" and 99" percentile latency for TouchDrop
with 1514 byte packet size.

classes with high use distance of the RX payloads. L2Fwd
does not fit into this class as the payload is quickly used
for transmission. We evaluate the direct DRAM access
feature of IDIO by running a variant of L2Fwd where the
application drops the payload after processing the header. As
explained in Sec.V-A, each packet carries the class informa-
tion of the sending application and, in the RX server, IDIO
directly transfers the payload to DRAM. In this scenario,
the LLC writeback rate and DRAM write bandwidth are the
same as network RX bandwidth.

LLC contention mitigation: To quantify the benefit of
less LLC interference, we co-run LLCAntagonist and
TouchDrop with 1024 ring buffer size and 1514 byte
packets at various burst rates. As illustrated in Fig.10
(TouchDrop.IDIO + LLCAntagonist configuration),
IDIO is effective in reducing MLC and LLC writebacks and
DRAM bandwidth utilization even when co-running an NF
with an LLC-intensive application. More importantly, co-
running with IDIO improves burst processing time by 10.9%
and 20.8% for 100Gbps and 25Gbps compared with baseline
DDIO, respectively. The CPI of the LLCAntagonist is
also improved by 16.8%, 22.1%, and 15.7%, respectively.
Tail-latency mitigation and performance isolation: Fig-
ure 12 compares the 50 and 99" percentile latency of
packets processed in TouchDrop using 1024 ring buffer
sizes when running solo and co-run with LLCAntagonist.
We normalized all the data points to DDIO’s solo run. IDIO
reduces TouchDrop’s 99 latency by 7.9%, 30.5%, and
10.9% when running solo, and 6.1%, 32.0%, and 8.2% when
co-running at 100Gbp, 25Gbps, and 10Gbps, respectively.
As shown, IDIO also provides isolation between the network
function and LLCAntagonist at 25 and 10Gbps rates.
At higher network rates, the network function becomes too
sensitive to LLC interference, and more sophisticated mech-
anisms are required to provide performance isolation [26].
Experimenting with steady network traffic: So far, all the
results assumed bursty network traffic. Fig.13 illustrates the
effectiveness of IDIO in reducing MLC and LLC writebacks
where each TouchDrop receives steady network traffic
at 10Gbps rate (total 20Gbps). Note that we experience
packet drops at network rates higher than 12Gbps for each

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

MLC Writeback === LLC Writeback DMA Request
90 1 90
0 0
£ 601 | & 60
7 Banry swon, earicperpevione s pnnd
= =
30 1 305 A o) ot ol

55 6.0 65 7.0
Relative Time (ms)

(a) TouchDrop.DDIO.10Gbps (b) TouchDrop.IDIO.10Gbps
Figure 13: Two TouchDrop processes running with 1024
ring buffer size and 1514 bytes packets at steady load. MTPS
is Million Transactions Per Second.

55 60 6.5 7.0
Relative Time (ms)

91-0 E100Gbps

o

o 0.8

2

8 0.6

=}

©

> 04

o

(7]

N

< 0.2

£

200
OO0 000000 000000000000l o oo
A ANMNMWONOdANMWMOd AN MW O ANMWL Ol ANM WL O

- - - - -

MLC WB LLCWB DRAMRD | DRAMWR EXE

mlcTHR values (MTPS)
Figure 14: Sensitivity of IDIO to m1cTHR threshold value.

core. Although the LLC writeback rate is not as significant
as when a burst is received, Fig.13a shows that DDIO
experiences consistent MLC and LLC writebacks at a steady
RX rate. In fact, the MLC writeback rate is the same as
the bursty traffic. The reason is that most of the MLC
writebacks belong to the consumed DMA buffers, and since
the packet processing rate on the CPU is the same as
when a burst of packets is received, DDIO experiences the
same MLC writeback rate in both steady and bursty traffic.
Self-invalidating DMA buffer mechanism in IDIO removes
most of the MLC writebacks and significantly reduces LLC
writebacks.

Sensitivity to threshold values: Lastly, we show that IDIO
is not overly sensitive to the value of m1cTHR threshold.
Fig.14 compares the statistics reported in Fig.10 when
sweeping m1cTHR value from 10 MTPS to 100 MTPS. Note
that we set m1cTHR to 50 MTPS for all the previously re-
ported results. As illustrated in the figure, IDIO consistently
improves the reported statistics regardless of the threshold
value. We only show the sensitivity analysis for 100Gbps
burst rate because as the burst rate decreases, the sensitivity
to the m1cTHR also decreases.

VIII. RELATED WORK

On-chip communication acceleration: The trend of in-
creasing numbers of cores on the same chip and higher I/O
device bandwidth demands fast and efficient on-chip com-
munication. CAF [38] proposed a hardware-assisted core-
to-core queuing mechanism to reduce the coherence traffic

491

and also enable fine-grained core-to-core communication.
HyperPlane [29] designed a hardware coherence-assisted no-
tification mechanism for the multi-core software data plane.
MOPED [18] proposed extensions to the directory-based
coherence protocols to offload the message synchronization
and data copying to the hardware for accelerating MPI
messages on a CMP. IDIO is orthogonal and compatible
with them.

Network data placement: Data Direct [/O (DDIO) technol-
ogy [1] injects I/O data directly to CPU’s LLC instead of
detouring to DRAM, and several enhancements have been
proposed for the default static DDIO. For example, IAT [41]
implements a dynamic DDIO policy by re-configuring DDIO
LLC ways based on runtime monitoring of system stats
to mitigate LLC writebacks. CacheDirector [14] improves
default DDIO to steer the header of each network packet
into the LLC tile closest to the core that will process the
packet, with the goal of reducing the processing latency
for fine-grained network functions. However, due to the
limited flexibility of the current commercial hardware, they
are not able to fine-tune the destination of the inbound data
and still suffer from the penalty of a high MLC writeback
rate. IDIO proposes a more comprehensive and fine-grained
(both spatially and temporally) control mechanism for the
inbound I/O traffic, which is especially important for the
tail latency performance of the latency-critical NFs. DMA
Cache [34] identifies the different characteristics of DMA
versus CPU data and introduces a cache structure specifically
used for DMA data. One of IDIO’s side benefits is to enforce
isolation between DMA and CPU data. NEBULA [33]
proposed selective network data steering to private L1 data
caches. IDIO steers data to large MLCs and mitigate cache
trashing concerns while capturing similar latency and traffic
isolation benefits. NetDIMM [4] enables memory modules
to directly access network. IDIO can leverage NetDIMM to
directly move data to DRAM when selective direct DRAM
access is deemed beneficial.

Dynamic self invalidation: Dynamic Self Invalidation
(DSI) [23] opportunistically invalidates cachelines in a
shared memory multi-processor to reduce the overhead of
cache coherency. However, DSI does not drop the cacheline
like IDIO as the cacheline data is still alive and used by
other processors. Wang et al. [37] proposed a NIC-triggered
eviction policy for used network buffers. In contrast, the
network buffer invalidation in IDIO is triggered by the
software stack that has full knowledge about the liveliness
of the network buffers.

IX. CONCLUSION

In this paper, we started with a detailed explanation of
data movement in a non-inclusive cache hierarchy in the
context of network applications. Then we made three key
observations about the data movement in a non-inclusive
hierarchy by running carefully crafted network experiments

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

on real hardware and a full-system simulator: (1) MLC space
is not efficiently utilized by DMA buffers, (2) packet pro-
cessing software stacks suffer from high rates of writebacks
from MLC to LLC that results in LLC contention, and (3)
the LLC share of DMA buffers is often bloated, resulting
in breaking the isolation between I/O and other applica-
tions. We introduced IDIO that implements three synergistic
ideas for resolving the observed issues: (1) self-invalidating
I/O buffers, (2) network-driven MLC prefetching, (3) and
selective direct DRAM access. Our detailed experiments
using a full-system simulator — capable of running modern
DPDK userspace NFs and sustaining over 100Gbps network
bandwidth — show that IDIO is effective in reducing on-
chip data movement and providing isolation for shared LLC
when running various NFs.

ACKNOWLEDGEMENT

This work was supported in part by grants from Na-
tional Science Foundation (CNS-1705047), National Re-
search Foundation of Korea grant funded by the Korean
Government (NRF-2020R1C1C1013315), the Institute of In-
formation & communications Technology Planning & Eval-
uation grant funded by the Korean government (No.2018-0-
00503), Samsung Electronics, and Intel Corporation. Nam
Sung Kim has a financial interest in Samsung Electronics
and NeuroRealityVision Corporation.

REFERENCES

[1] “Intel Data Direct I/O Technology (Intel DDIO): A Primer.”
[Online]. Available: https://www.intel.com/content/www/us/e

n/io/data-direct-i-o-technology-brief.html

“Intel® Ethernet Flow Director and Memcached
Performance,” accessed: 03/14/2020. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/docum
ents/white-papers/intel-ethernet-flow-director.pdf

(2]

[3] “Type of service,” https://en.wikipedia.org/wiki/Type-of-ser

vice.

[4] M. Alian and N. S. Kim, “NetDIMM: Low-latency near-

memory network interface architecture,” in Proceedings of

the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 699-711.
[5] M. Alian, J. Shin, K.-D. Kang, R. Wang, A. Daglis, D. Kim,
and N. S. Kim, “IDIO: Orchestrating inbound network
data on server processors,” IEEE Comput. Archit. Lett.,
vol. 20, no. 1, p. 30-33, jan 2021. [Online]. Available:
https://doi.org/10.1109/LCA.2020.3044923
[6] M. Alian, Y. Yuan, J. Zhang, R. Wang, M. Jung, and N. S.
Kim, “Data direct I/O characterization for future I/O system
exploration,” in Proceedings of the 2020 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS’20), Virtual Event, Aug. 2020.
[71 ARM, “Arm DynamlIQ Shared Unit Technical Reference
Manual r3p0,” https://developer.arm.com/documentation/
100453/0300/.

492

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ARM Architecture Reference Manual ARMvV7-A and
ARMVvV7-R edition, “Cache maintenance operations AR_v7,”
https://developer.arm.com/documentation/ddi0406/c/System
-Level-Architecture/Virtual-Memory-System- Architectur
e-- VMSA-/Functional-grouping-of-VMSAv7-system-control
-registers/Cache-maintenance-operations--functional-group
--VMSA?lang=en#BEIEFEFI.

C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and
E. Zamanian, “The end of slow networks: It’s time for a
redesign,” Proc. VLDB Endow., vol. 9, no. 7, p. 528-539,
mar 2016. [Online]. Available: https://doi.org/10.14778/290
4483.2904485

Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and
R. Agarwal, “Understanding host network stack overheads,”
in Proceedings of the 2021 ACM SIGCOMM conference
(SIGCOMM’21), Virtual Event, Aug. 2021.

I. Cutress, “I Keep My Cache Private,” https://www.anandtec
h.com/show/11550/the-intel-skylakex-review-core-19-7900x
-17-7820x-and-i7-7800x-tested/4.

A. C. De Melo, “The new linux perf tools,” in Slides from
Linux Kongress, vol. 18, 2010, pp. 1-42.

DPDK, “Pktgen - Traffic Generator powered by DPDK,” ht
tps://github.com/pktgen/Pktgen-DPDK.

A. Farshin, A. Roozbeh, G. Q. M. Jr,, and D. Kostic, “Make
the most out of last level cache in intel processors,” in
Proceedings of the Fourteenth EuroSys Conference, 2019.

A. Farshin, A. Roozbeh, G. Q. Maguire Jr., and D. Kostic,
“Reexamining direct cache access to optimize I/O intensive
applications for multi-hundred-gigabit networks,” in Proceed-
ings of 2020 USENIX Annual Technical Conference (ATC’20),
Virtual Event, Jul. 2020.

J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan:
Mitigating interference at microsecond timescales,” in Pro-
ceedigs of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20), Virtual Event, Nov.
2020.

S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, and
M. L. Seltzer, “Parking packet payload with P4,” in CONEXT
'20: The 16th International Conference on emerging
Networking EXperiments and Technologies, Barcelona,
Spain, December, 2020, D. Han and A. Feldmann,
Eds. ACM, 2020, pp. 274-281. [Online]. Available:
https://doi.org/10.1145/3386367.3431295

J. Gu, Y. Sun, S. S. Lumetta, and R. Kumar, “MOPED:
Accelerating data communication on future cmps,” [EEE
Micro, vol. 31, no. 4, pp. 42-50, 2011.

R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache access
for high bandwidth network 1/O,” in Computer Architecture,
2005. ISCA’05. Proceedings. 32nd International Symposium
on. 1EEE, 2005, pp. 50-59.

IBM, “dcbi (Data Cache Block Invalidate) instruction,” https:
/Iwww.ibm.com/docs/en/aix/7.2topic=set-dcbi-data-cache-b
lock-invalidate-instruction.

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and
solutions for fast remote persistent memory access,” in Pro-
ceedings of the 11th ACM Symposium on Cloud Computing
(SoCC’20), Virtual Event, Oct. 2020.

M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos,
and K. Razavi, “NetCAT: Practical cache attacks from the
network,” in Proceedings of the 41st IEEE Symposium on
Security and Privacy (Oakland’20), Virtual Event, May 2020.

A. R. Lebeck and D. A. Wood, ‘“Dynamic self-
invalidation: Reducing coherence overhead in shared-
memory multiprocessors,” SIGARCH Comput. Archit. News,
vol. 23, no. 2, p. 48-59, may 1995. [Online]. Available:
https://doi.org/10.1145/225830.223995

E. A. Leon, K. B. Ferreira, and A. B. Maccabe, “Reducing
the impact of the memory wall for I/O using cache injec-
tion,” in 15th Annual IEEE Symposium on High-Performance
Interconnects (HOTI 2007), 2007, pp. 143-150.

Linux, “Page Table Types,” https://git.kernel.org/pub/scm/lin
ux/kernel/git/torvalds/linux.git/tree/arch/x86/include/asm/pgt
able_types.h.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency at
scale,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015, pp. 450—462.

J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Am-
slinger, M. Andreozzi, A. Armejach, N. Asmussen, B. Beck-
mann, S. Bharadwaj et al., “The gem5 simulator: Version
20.0+,” arXiv preprint arXiv:2007.03152, 2020.

A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry,
“Contention-aware performance prediction for virtualized net-
work functions,” in Proceedings of the 2020 ACM SIGCOMM
Conference (SIGCOMM’20), Virtual Event, Aug. 2020.

A. Mirhosseini, H. Golestani, and T. F. Wenisch, “Hyper-
Plane: A scalable low-latency notification accelerator for
software data planes,” in Proceedings of the 53rd IEEE/ACM
International Symposium on Microarchitecture (MICRO’20),
Virtual Event, Oct. 2020.

L. NEIO Systems, “DDIO — oh oh,” https://latency-matters
.medium.com/ddio-oh-oh-e0099754b7d9.

K. Pandit, B. Bian, V. M. Prasad, A. Kwatra, P. Lu, M. Riess,
W. Willey, H. Xie, and G. Xu, “Modeling the impact of
cpu properties to optimize and predict packet-processing
performance.”

B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The
benefits of general-purpose on-NIC memory,” in Proceedings
of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’22), Lausanne, Switzerland, Feb. 2022.

M. Sutherland, S. Gupta, B. Falsafi, V. J. Marathe, D. N.
Pnevmatikatos, and A. Daglis, “The NeBuLa rpc-optimized
architecture,” in 47th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2020, Valencia,
Spain, May 30 - June 3, 2020. 1EEE, 2020, pp. 199-212.
[Online]. Available: https://doi.org/10.1109/ISCA45697.2020
.00027

493

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

D. Tang, Y. Bao, W. Hu, and M. Chen, “DMA cache: Using
on-chip storage to architecturally separate i/o data from cpu
data for improving i/o performance,” in HPCA - 16 2010
The Sixteenth International Symposium on High-Performance
Computer Architecture, 2010, pp. 1-12.

A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki,
S. Ratnasamy, and S. Shenker, “ResQ: Enabling slos in
network function virtualization,” in /5th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, 2018.

M. Wang, M. Xu, and J. Wu, “Understanding I/O direct
cache access performance for end host networking,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 6, no. 1, feb 2022.
[Online]. Available: https://doi.org/10.1145/3508042

R. Wang, S. Gobriel, C. Maciocco, T.-Y. C. Tai, B.-Z.
Friedman, H. T. Nguyen, N. N. Venkatesan, M. A. O’hanlon,
S. M. Shah, S. Jain et al., “Technologies for network packet
cache management,” Jun. 5 2018, uS Patent 9,992,299.

Y. Wang, R. Wang, A. Herdrich, J. Tsai, and Y. Solihin,
“CAF: Core to core communication acceleration framework,”
in 2016 International Conference on Parallel Architecture and
Compilation Techniques (PACT). 1EEE, 2016, pp. 351-362.

X. Wei, X. Xie, R. Chen, H. Chen, and B. Zang, “Character-
izing and optimizing remote persistent memory with RDMA
and NVM,” in Proceedings of the 2021 USENIX Annual
Technical Conference (ATC’21), Virtual Event, Jul. 2021.

M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell,
and J. Torrellas, “Attack directories, not caches: Side channel
attacks in a non-inclusive world,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019, pp. 888-904.

Y. Yuan, M. Alian, Y. Wang, R. Wang, 1. Kurakin, C. Tai, and
N. S. Kim, “Don’t forget the I/O when allocating your LLC,”
in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2021, pp. 112-125.

Authorized licensed use limited to: University of lllinois. Downloaded on February 03,2023 at 15:51:11 UTC from IEEE Xplore. Restrictions apply.

