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Abstract. Ecological niches are increasingly appreciated as a long-term stable constraint on the geographic and
temporal distributions of species, including species involved in disease transmission cycles (pathogens, vectors,
hosts). Although considerable research effort has used correlative methodologies for characterizing niches,
sampling effort (and the biases that this effort may or may not carry with it) considerations have generally not
been incorporated explicitly into ecological niche modeling. In some cases, however, the sampling effort can
be characterized explicitly, such as when hosts are tested for pathogens, as well as comparable situations such
as when traps are deployed to capture particular species, etc. Here, we present simple methods for testing the
hypothesis that non-randomness in occurrence or detection exists with respect to environmental dimensions
(= a detectable signal of ecological niche); i.e., whether a pathogen occurs nonrandomly with respect to envi-
ronment, given the occurrence and sampling of its host. We have implemented a set of R functions that presents
an overall test for nonrandom occurrence with respect to a set of environmental dimensions, and, a posteriori, a
set of exploratory tests that identify in which dimension(s) and in which direction or form the nonrandom occur-
rence is manifested. Our tools correctly detected signals of niche in most of our example cases. Although such
a signal may not be detectable in cases in which the niche of interest is broader than the universe sampled, such
a possibility was correctly discarded in our analyses, preventing further interpretations. This kind of testing can
constitute an initial step in a process that would conclude with development of a more typical ecological niche
model. The particular advantage of the analyses proposed is that they consider the biases involved in sampling,
testing, and reporting, in the context of nonrandom occurrence with respect to environment before proceeding
to inferential and predictive steps.

Key words: ecological niche, host, niche position, niche breadth, non-parametric test, PERMANOVA

The ideas, tools, and methods wused under
the rubrics of ‘“ecological niche modeling” and
“species distribution modeling” (here referred to
as ENM/SDM), have seen extensive application to
understanding the geographic and environmental
distributions of species (Franklin 2010; Peterson
et al. 2011). Most popular have been correlative
approaches, in which environmental characteristics
of places of known occurrences of species are
subjected to a variety of model-fitting approaches,
to create a classification of different parts of
environmental space into suitable and unsuitable sets
of conditions (Peterson et al. 2011; Enriquez-Urzelai

et al. 2019). A major challenge for these methods,
however, has been the pervasive biases and gaps that
characterize the sampling that produced the primary
occurrence data, and how to avoid propagation of
those biases through the analytical sequence to the
results (Anderson and Gonzalez 2011; Acevedo et al.
2012; Araujo et al. 2019).

Some primary biodiversity occurrence data,
however, may be connected to information that
can characterize the sampling universe integrally.
Such data may take the form of occurrences of
pathogens detected by testing hosts (e.g., Eisen
and Paddock 2021), disease case data that come
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from active surveillance (e.g., M’ikanatha et al
2008), biodiversity data that are accumulated by
trapping where trap data are recorded (Meek et al.
2015), and biodiversity data that are accumulated
by standardized sampling protocols (Manley et al.
2005). In each case, the geographic and temporal
distribution of sampling can be characterized
precisely, and all positive records of the species
of interest must necessarily derive from one of the
sampling events. This additional information offers
considerable promise in informing the modeling
process precisely about the sampling universe, rather
than relying on assumptions of random sampling
(Phillips et al. 2009) or an interpolated sampling bias
surface (Warren et al. 2014).

To our knowledge, exploring signals of
ecological niche differentiation in data for which
the sampling universe is known has not been done
before. Most studies use traditional approaches
to characterize ecological niches of species and
compare such niches without explicit consideration
of the sampling universe. In this contribution, we
present a logic for a suite of analyses designed to
take advantage of this additional information (the
sampling universe) available for occurrence data that
come from such controlled sampling schemes. We
provide a methodological protocol that first tests for
any overall niche difference, and then characterizes
these differences in terms of a spectrum of possible
changes in niches in each environmental dimension.
We present the protocol in the form of a set of R
functions, to facilitate wide use and incorporation in
many other analyses.

ProT1OCOL DESCRIPTION

We offer two complementary approaches to
detect signals of niche: (1) a multivariate analysis
based on a permutational multivariate analysis of
variance (PERMANOVA; (Anderson 2017), and
(2) a univariate non-parametric method based on
descriptive statistics. To illustrate the utility of this
approach, we use a suite of virtual species. For each,
we created a sample of records that represent the
universe of sampling (e.g., a host species that is to
be tested for a particular pathogen), and then identify
a subgroup of those records that may or may not be
positive for the pathogen (see Example application).

That is, the data required to perform these
analyses consist of a set of records representing
the sampling universe, to which a test is applied

that determines presence or absence of the species
of interest (0 = negative and 1 = positive). Each
of these records carries with it a vector of relevant
environmental conditions (see example in Table S1).
A typical such situation would be sampling a host
species and testing for presence of a pathogen in each
host, but many parallel applications exist. Each host
record has a geographic reference and potentially also
information about collection time—this place and
time information can be used to extract environmental
data that is place-specific or place-and-time-specific
from diverse raster data layers (e.g., data on climate,
remote-sensing information, etc.) that are relevant in
niche characterization (Ingenloff and Peterson 2021).

Multivariate test

As a multivariate test to detect overall
signals of niche, we propose an approach using a
PERMANOVA. PERMANOVA is a non-parametric
multivariate test that allows comparison of samples
by testing a null hypothesis (H,) that the position and
dispersion of the sample are equivalent to those of
the sampling universe. Rejecting H indicates that
either the centroid (position) or spread (dispersion)
is different, which would be indicative of a niche in
the pathogen distinct from that of the host. Similarity
among groups is tested based on distances (e.g.,
Euclidean or Mahalanobis distances).

In this application, the groups to be compared
are records of the host of which a few are infected
(i.e., all host records vs records of infected hosts).
We chose to base our PERMANOVA analyses
on Mahalanobis distances, but other methods to
calculate dissimilarities can be used to perform these
processes (e.g., Euclidean distances, Bray-Curtis,
and Jaccard indices; see code documentation). The
PERMANOVA vyields a result of significant or
not, indicating rejection or acceptance of the null
hypothesis of equivalency, but does not characterize
the form of those differences. For this reason, the
univariate tests described below are used to provide
additional information about the form of these
differences.

Univariate test
To  characterize  niches in  individual
environmental dimensions, we use a comparison of
observed values of descriptive statistics summarizing
characteristics of distributions of environmental
conditions associated with known-infected hosts
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against a null distribution of those statistics derived
from many similar-sized random samples drawn from
the set of all host records. The descriptive statistics
explored and used in this approach are the mean,
median, standard deviation (SD), and range. The
mean and median of the environmental values are
used as estimators of niche position; the SD and the
range are descriptors of the spread of environmental
conditions comprising the niche.

A null distribution of statistics is derived from
many random samples (of size matching the number
of positive tests) drawn from the set of all host records;
this distribution informs about how common certain
values of the descriptive statistics would be if the
pathogen had no particular preference or bias from
among the set of environmental conditions used by
the host. Therefore, the null hypothesis (H,) for this
test is that the descriptive statistic calculated for the
samples in which the pathogen was detected cannot
be distinguished from the comparable statistic for
the host (or the sampling universe). This H_ is tested
for the mean, median, SD, and range, as different
measures of characteristics of the distribution.

The following is a sequential description of steps
involved in running this analysis:

1. The number of infected host records is calculated
(n).

2. The mean, median, SD, and range of environmental
conditions for the infected hosts are calculated.

3. A random sample of n records is drawn from the
entire set of host records.

4. The statistics of interest of environmental conditions
are calculated for the sample in step 3.

5. Steps 3 and 4 are repeated n, times (iterations;
generally n, = 1000).

6. The full distributions of the statistics of interest are
compiled and characterized, particularly as regards
the 2.5% and 97.5% levels of the distribution.

7. The observed value of the statistic of interest for
infected hosts (step 2) is compared against the null
distribution of values (step 6) to establish whether
it falls in the central 95% of the null distribution.

8. Depending on the results from step 7, the statistic of
interest for the niche of the pathogen is categorized
as different or not from null expectations.

9. The direction of the difference is characterized by
direct inspection to establish whether the patho-
gen’s niche is shifted upward or downward in the
values of the particular environmental dimension
(mean or median), or whether it has broadened or
narrowed (SD or range).
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Figure 1. Representation of outcome and suggested interpretation
of results from the univariate non-parametric test to detect signals
of niche dissimilarity. In this case, we present mean temperature
responses for Scenario 5; the null hypothesis would be rejected,
in favor of an alternative hypothesis of higher-than-null mean
temperature.

The results obtained from these steps allow us
to accept or reject H (Fig. 1). To reject H,, the value
of the statistic observed for the positive records must
be as extreme or more extreme than the 2.5% or
97.5% of the null distribution. We conclude that the
pathogen niche (in terms of the statistic under test)
is not distinct if H cannot be rejected. When H is
rejected, the statistic under test can be lower or higher
depending on in which tail of the null distribution the
observed value falls.

Software

We created a set of R functions to run the analyses
described above. To aid interpretation, we also
created functions to plot results from analyses. These
functions are open-source tools that can be accessed
following indications in Software Availability.
Proper documentation describing the data required
to run analyses and how parameter values can be
established is provided with the R scripts.

EXAMPLE APPLICATION
Example data
To explore and test the performance of the
protocols described above, we generated virtual
niches for a host and seven simulated pathogens
(Figs. 2, S1) representing a distinct scenario of
similarity of host and pathogen niches (Table 1). One
case (Scenario 1) was designed to have a pathogen
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Table 1. General description of parameters that define the host and pathogen virtual niches according to distinct scenarios
of niche similarity. Values of resulting pathogen prevalence in the host are also shown in the table. T = temperature; P =

precipitation.
. . Temperature range  Precipitation . Pathogen
Host / pathogen  Scenario description C) st Ginim) Covariance irevadengs
Host 12-26 700-2800 Lan
B P: 122,500 B
Pathogen 1 Pathogen niche is equal to host niche 12-26 7002800 P'I;ZSE-?OO 0.52
Pathogen niche has the same size as host niche but T:5.44
Pathogen 2 with o ed position 14-28 8002900 P- 122,500 0.38
Pathogen niche changed in position and size (smaller) 5 225
Pathogend compared to host niche A3 Lo P:8277 el
Pathogen 4 Pathogen niche smaller than host niche 15-23 10002500 Préiggo 0.68
Pathogen 5 Pathogen niche smaller and changed in position 18-25 10004000 Pg 510'3;)600 0.47
Pathogen niche larger than host niche, but overlaps T- 625
Pathogen 6 most of it 14-29 6004500 P- 422,500 029
Pathogen niche larger than host niche but contains it T:13.44
Pathogen 7 completely 8-30 200-3200 P- 250,000 030
with exactly the same niche as the host, in the other — b
scenarios, the host and pathogen niches overlap in & :
different ways (see Figs. 2, S1). Virtual niches were :

generated in R 4.1.1 (R Core Team 2021) using the
package “evniche!, which uses ellipsoids to create
niches based on user-defined limits (variable ranges)
and covariance values.

We considered annual mean temperature and
annual precipitation as the dimensions of our
virtual niches. To make our simulations more
realistic, when generating data from virtual niches,
we considered suitability values derived from
Mahalanobis distances (based on multivariate
normal distributions) to the centroids of the ellipsoid-
shaped niches, measured from points present in
available environmental conditions in a region (for
details see Etherington 2019; Nuifiez-Penichet et
al. 2021). Using ellipsoids and the multivariate
normal transformations generates responses that are
simple, symmetrical, and convex, which we consider
appropriate to represent virtual fundamental niches;
however, we emphasize that our methods are general,
and do not depend on assumptions of normality,
regardless of whether our example application makes
such assumptions. As a result, the density of records
generated from virtual niches increases towards the
centroid of the ellipsoids, but it will also depend
on the density of points representing available
conditions across the area of analysis. Available
environmental conditions were represented by values
of annual mean temperature and annual precipitation
present across South America. We used two of the so-
called “bioclimatic” data layers from the WorldClim
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Figure 2. Virtual niches (ellipses) of a host and 7 pathogen
scenarios used in the example application. Points in
black and red represent records of host and pathogen,
respectively, as if they were obtained from geographic
records. Host and pathogen records were derived from
ellipses, and are overlaid on environmental conditions
across South America (gray points).
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database v1.4 (Hijmans et al. 2005) and masked them
to South America to perform the analyses described
above. Raster processing was done using the package
“raster” (Hijmans 2019).

We generated populations of points via sampling
from the centrality-weighted ellipsoids for the host
and the pathogen niches separately, and then used as
“pathogen-positive” records those host-niche points
that coincided exactly with pathogen-niche points;
for this purpose, we generated 200 host-niche points
and 400 pathogen-niche points. Because in Scenario
1, host and pathogen niches were exactly the same,
we simply subsampled 200 points from among the
pathogen 400 points to exclude some of the host
records from being considered as infected. Because
records derived from ellipsoids with distinct sizes
and positions in the cloud of available environmental
conditions for host and pathogens, we were not able
to control pathogen prevalences (see Table 1).

Niche comparisons

We compared host and pathogen ecological
niches considering the 7 pathogen-niche scenarios
using both the multivariate and univariate approaches.
Multivariate comparisons were made using
PERMANOVA analyses with 1000 iterations for
calculation of statistical significance. For univariate
comparisons, the mean, standard deviation, and
range of values corresponding to infected hosts were
compared to the distribution of the same statistics for
1000 random samples from the host records.

To aid with interpretation, we created ellipsoids
for the environmental distributions of the host and
all pathogens. For pathogens, we considered the
data used in analyses (i.e, not all records generated
using virtual niches of pathogens, but rather only
those of pathogens that match the host). We plotted
all ellipsoids derived from the data to explore and
visualize the position and spread of host and pathogen
niches.

Results

Final datasets prepared for analysis consisted of
200 records of the host, of which 57-136 matched
virtual pathogen records, and thus were considered as
infected hosts (see Table 1 for pathogen prevalences;
see example dataset in Table S1). Environmental
representations of datasets showed distinct levels of
overlap between hostrecords and infected ones, which
helped us to understand the actual configurations of
host and pathogen records that can be observed in

real applications (Fig. 3).

No signal of a distinct pathogen niche
was detected in 3 of the 7 scenarios using the
PERMANOVA (scenarios 1, 6, and 7; Fig. 4). That
is, based on the multivariate analysis, the centroid
and dispersion of infected hosts can be considered
as non-distinguishable from those of all hosts for
scenarios 1, 6, and 7. Univariate analyses further
indicated that host and pathogen in scenarios 1 and
7 were not distinct in any individual dimension. For
all other scenarios, some signal of dissimilarity was
detected (Table 2). For these cases, the observed
mean, median, standard deviation, or range derived
from individual variable values of infected hosts fell
outside of the central 95% of the null distribution
of values derived from 1000 random samples of all
hosts for one or both of the environmental dimensions
(Figs. S2-S5). Considering the qualities of the 7
scenarios, both methods could not reject H when
niches were exactly equal (Scenario 1), or when the
pathogen niche contained completely that of the host
(Scenario 7). However, the PERMANOVA did not
detect niche dissimilarity for Scenario 6, even though
the original host and pathogen niches were different.
Both methods identified a signal of dissimilarity for
scenario 2, yet the niche of the pathogen had only a
slight change in position from that of the host.

Discussion

Both multivariate and univariate approaches
performed well in detecting signals of niche
dissimilarity in cases in which the pathogen niche
represented a subgroup of that of the host (or the
sampling universe). The two tests are complementary
in the sense that they are based on different procedures
and ideas, but both help to detect signals and interpret
the type of signal detected. The PERMANOVA-
based test seeks an overall signal of niche difference,
and also considers covariation among variables,
although a direct understanding of the sort of
difference manifested does not derive directly from
this test. The univariate analyses, in contrast, allow
one to understand changes in niche position and
breadth when an overall signal is detected, although
it does not consider covariation among multiple
environmental variables. Graphical representations
of results help considerably with interpretation and
complement further the understanding of the signals
detected.

Apart from the obvious differences between
the univariate and multivariate analyses, another
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Figure 3. Visualization of data derived from virtual niches representing hosts infected under 7 pathogen-niche scenarios.
This view shows how data would look if derived from sampling the host and testing for pathogens, with no previous
knowledge of host or pathogen niches. Niche differences between host and pathogen can be noted as conditions under
which hosts are not marked as infected, such as above 22°C in Scenario 3.
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Figure 4. Results from niche comparisons using PERMANOVA analyses. Ellipses were reconstructed from the data
created from virtual niches and the available background. Values of statistical significance are shown for each comparison.
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Table 2. Summary of results derived from univariate niche comparisons. Comparisons identified as higher or lower were
statistically significant (i.e., observed values from the pathogen were as extreme or more extreme than the central 95%

of the null distribution).
Path ich . . . :
. . ?negﬁzi ]:1113116 Pathogen niche median  Pathogen niche SD Pathogen niche range
Comparison  Variable R vs null distribution vs null distribution vs null distribution
distribution
) Temperature - - — -
Scenario 1 L
Precipitation - - — -
. Temperature - - lower lower
Scenario 2 L . .
Precipitation higher higher - —
. Temperature lower lower lower lower
Scenario 3 L
Precipitation - - lower lower
. Temperature lower lower lower lower
Scenario 4 L
Precipitation - - lower lower
. Temperature higher higher lower lower
Scenario 5 L . .
Precipitation higher higher - —
. Temperature - - lower —
Scenario 6 L .
Precipitation higher - - lower
) Temperature - - — -
Scenario 7 L
Precipitation - - — -

important difference should be noticed. In the
univariate analyses, as summary statistics from
pathogen testing data are compared against a null
distribution derived from sampling host data,
conditions analogous to accessible environments
(Soberén and Peterson 2005) are considered in the
univariate non-parametric approach. That is, the
univariate approaches are considering the set of
environmental conditions for all hosts as those to
which the pathogen could have had access. If some
conditions used by the host have no pathogen records,
itmay be because of niche-based limitations, and these
methods assess how nonrandom environmentally
those gaps in pathogen records are. These limitations
may be related to pathogen tolerance of or preference
for certain environments, or environmental conditions
limiting pathogen transmission from one host to
another. They could also relate to inappropriate
delimitation of relevant hosts for analysis, such as if
a pathogen were recently introduced in a region, and
has not yet reached all areas inhabited by the host.
This last detail is important because critical biases
can be introduced in analyses if the data have not been
filtered carefully based on ecological and biological
considerations (Barve et al. 2011; Machado-Stredel
etal. 2021).

Our protocols did not detect clear signals of
dissimilarity in Scenarios 6 and 7, in which the

pathogen niche was larger than and overlapped
with or included the host niche. This outcome
derives from the type of information available for
analysis—a set of host records of which some are
infected—which makes it difficult to detect signals
of dissimilarity because pathogen niches will be
characterized incompletely. A more comprehensive
characterization of pathogen niches may require
consideration of a larger group of host species, which
could inform about the type of conditions that are
suitable or unsuitable for a pathogen. However, the
fact that this latter set of information will be scarce
in real applications highlights the utility of our
protocols in exploring signals of niche in pathogens.
We note that a topic of current interest is that of co-
infections of multiple pathogen species (Collinge and
Ray 2006)—although the current implementation of
our methods is in terms of single pathogen species,
a clear potential extension is that of simultaneous
evaluation of environmental bias in distributions of
multiple pathogen species.

Although we have presented these protocols in
the context of tests for pathogen infections in host
organisms, as mentioned in the Introduction, these
methods can be useful in any situation in which (1)
the entire universe of sampling can be characterized,
and (2) the set of positive records will be a strict
subset of that universe of sampling. This situation

56



MARLON E. COBOS ET AL. — DETECTING SIGNALS OF SPECIES’ ECOLOGICAL NICHES

would be manifested in cases such as an analysis
based on a single sampling protocol (e.g., data from
the U.S. Breeding Bird Survey; Sauer et al. 2013),
or deriving from a single-investigator sampling
protocol (e.g., regional trapping of insects, such that
trap positions are known completely; Sciarretta and
Trematerra 2014). As such, this set of approaches
can be considered as a precursor to formal ecological
niche modeling, testing at the outset whether any
nonrandom environmental use (= ecological niche)
is manifested by that species, at that extent, at that
resolution, and in those environmental dimensions.
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