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he growth of the IoT

requires more com-

prehensive security

measures than ever. RF

fingerprinting (RFF) uti-

lizes features in the signals and wave-
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forms from transmitters’ physical-layer
imperfections to classify and authen-
ticate devices. To prevent attacks
from impersonators, combinatorial
randomness is exploited to augment
the RF fingerprints with a high-effi-
ciency PA for IoT applications. By
enabling different subsets of thinly
sliced PA elements, the transmitter
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can be reconfigured with 220 subsets
that exhibit distinctive RF fingerprints
for signal analysis at the edge. In this
work, a combinatorial-randomness-
based PA was implemented in a BLE
system. The BLE packets’ in-phase
and quadrature samples transmitted
from each configuration are collected
with different SNRs to emulate the
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environmental changes in commu-
nication channels. A lightweight
convolutional neural network (CNN)
classifier demonstrates the possibil-
ity of accurate and fast inference of
unique features in the IoT environ-
ment, which our approach exploits
to enable on-chip time-varying
RF fingerprints.

The State of the Art

With the growth of the IoT, network
security is becoming an increasingly
significant concern. In addition to
the ever-higher stakes at play due to
the increasing integration of the IoT
into critical infrastructure, industrial
systems, and health-care devices via
sensors, power meters, and so on
[1], the expansive nature of the IoT
makes it possible for attackers to col-
lect large amounts of information.
This information can be used for the
purpose of defeating security proto-
cols, enabling attackers to observe or
guess at security parameters used in
conventional authentication proto-
cols, such as Wi-Fi Protected Access
[2]. This points to a need for security
protocols that serve to authenticate
actual devices within a network, as
opposed to the data being transmit-
ted from them.

RFF has been investigated as a
software-based device authentication
mechanism that may be implemented
without requiring the redeployment
of physical IoT devices with better
security systems [3], [4], [5], [6]. RF
fingerprints consist of signal features
imprinted upon a radio’s transmit
waveform by its inherent hardware
characteristics [e.g., PA nonlinearity,
carrier frequency offset, in-phase/
quadrature (I/Q) imbalance, and so
on] [6] and can serve as unique physi-
cal signatures for their associated ra-
dio when extracted. Approaches that
require some form of data preprocess-
ing, such as a Gabor transform (GT) or
fast Fourier transform to explicitly
extract RF fingerprints prior to feed-
ing them into a machine-learning (ML)
classifier [3], [4], [6], and approaches
that simply feed raw I/Q samples to
an ML block for directly distinguish-

ing radios [5] have both been reported
in the literature.

Many works have contributed to
the RFF literature. These include a
CNN-based RFF system tested on a da-
taset of IEEE 802.11a frames collected
from Universal Software Radio Pe-
ripheral SDR transmitters [7], a drone
detection and identification system
using a database of RF signals col-
lected from drones [8], and a database
of recorded Bluetooth signals for test-
ing RFF methods [9]. In these studies,
the hardware impairments associated
with each recorded radio that yield RF
fingerprints remain fixed over time.

However, a mixture of security
and user capacity concerns motivates
the study of configurable and time-
varying RFF systems. For instance,
it is possible for attackers to replay
signals from legitimate radios to im-
personate trusted devices and thus
penetrate the RFF authentication [10].
The introduction of a time-varying
aspect to an RFF system would add
another dimension of complexity to
the measures required to successful-
ly engage in such a replay attack. Fur-
thermore, the configurability could
be applied to enhance the variability
of RF fingerprints within the system
and thus improve user capacity, such
as in the case of [11].

This work presents an ML-assisted
RF fingerprint classification with a
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transmit-side reconfigurable PA for
BLE IoT applications, as illustrated
in Figure 1. PA configurability is
achieved by selecting combinations
of sliced PA transistor elements, al-
tering the RF fingerprints imparted
upon the transmitted signal in cor-
respondence with the transistor pa-
rameters associated with the selected
elements. Data recordings are includ-
ed for different SNRs to facilitate the
analysis of the impact of noise on RFF
system performance.

The recorded data represent a far
greater assortment of distinct hard-
ware impairment-induced RF finger-
prints than those presented in the
datasets published in [7], [8], and [9],
the largest of which encompassed
oscilloscope samples from 86 differ-
ent Bluetooth-enabled smartphones.
Measurements were conducted
across 220 PA configurations, each
producing a distinct RF fingerprint.
Furthermore, as a result of the RF fin-
gerprints originating from within the
same device, our dataset represents
a more challenging classification task
and can serve as a stricter valida-
tion tool for RFF systems. Unlike the
works of [7] and [8], a direct RF sam-
pling transceiver with digital down-
conversion (DDC) to minimize the
impact of receiver impairments has
been investigated, so the impact of
custom receiver nonidealities using
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FIGURE 1: The RF fingerprint classification with the ML module for authentication. The RF
fingerprints are augmented with a configurable PA in the transmitter.

IEEE SOLID-STATE CIRCUITS MAGAZINE

FALL 2022 29

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 23,2022 at 15:18:43 UTC from IEEE Xplore. Restrictions apply.



I Output
Network |
Matching
'_ Network I
I

V.
Fl Network | n
: - VAV AVAY,

VDD

Output

Enabled - l
i Drivers - z

RFF; RFF,
: . Output With
- \ EN[0:N-1
> L ] Configured
Fingerprint
Time-Stamped |13 |5|7]|9|11

Fingerprint

(a)

. _Y% nn

EN[0:N=1]

Selectable PA
Elements

(b)

FIGURE 2: (a) The high-level structure of the reconfigurable PA and (b) the sliced transistor elements that are used to imprint configurable RF

fingerprints on BLE packets.

baseband models can be evaluated.
The work was validated using a light-
weight CNN classifier, which demon-
strates the preservation of relevant
RF fingerprint features within it.

The following section describes
the structure of the reconfigurable
PA and the measurement setup used
for collecting the dataset. The sec-
tion “Recorded Data Analysis” ana-
lyzes the recorded signals, and the
section “CNNs for PA Configuration
Classification” presents the imple-
mentation of the CNN classifier. The
section “Environmental Changes”
discusses the impacts of the environ-
mental changes, and the final section
concludes the article.

Reconfigurable PA
and Dataset Collection

Reconfigurable PA

The high-level structure of the recon-
figurable PA used for this study is
illustrated in Figure 2(a). The primary
PA transistor is sliced into several
parallel devices that may be enabled
independently of one another through
their driver circuitry, as shown in Fig-
ure 2(b). Each transistor is operated as
a switch and is connected to a single
Class E PA-style output network that
blocks higher order harmonic compo-
nents from reaching the output while
shaping the transistor current and
voltage waveforms to lower power

Technology 65-nm CMOS
Chip Area 1 mm?
Core Area 0.267 mm?
Set Number of
Choosing 9 220
From 12

1 mm

FIGURE 3: A die photo of the reconfigurable PA used to collect the data.
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dissipation. The total off-capacitance
present at the output network as
a result of the transistor parasitics
remains constant irrespective of PA
configuration, permitting configura-
tion-independent operation.

At the time of fabrication, each
selectable slice’s transistor param-
eters (Vm, B) are affected by random
process variations in accordance with
Pelgrom’s law [11]. Because these
transistor parameters ultimately give
rise to the PA's RF fingerprint, select-
ing different combinations of PA
device slices results in distinct RF
fingerprints. A design with 12 total
selectable slices was designed for a
frequency of 2.4 GHz and taped out. A
die photo of a fabricated chip sample
is shown in Figure 3. To maintain a
balance of output power and configu-
rability, it was decided to enable nine
slices at a time to allow a combinato-
rial search space of C (12,9) =220 pos-
sible PA configurations.

Bluetooth Low-Energy

Packet Parameters

A physical-layer waveform cor-
responding to a nonconnectable
advertising packet, such as those
used for transporting BLE Mesh pro-
tocol data units, was generated using
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Matlab’s Communications Toolbox and
repeatedly transmitted through the PA
test chip using the AD9082 RF trans-
ceiver board. Each BLE packet recorded
in the presented dataset was transmit-
ted over BLE channel 37 (2,402 MHz)
using the LEIM physical-layer mode.

Measurement Setup

and Data Processing

The dataset was captured using an
AD9082-FMCA-EBZ direct RF sampling
transceiver board as a receiver, with
the onboard RF DAC used to drive
the reconfigurable PA. Baseband 1/Q
samples were directly fetched at a
sampling rate of 250 MSPS from the
AD9082-FMCA-EBZ using the Analog
Devices High Speed Converter Tool-
box for Matlab, after being sampled
at 6 GSPS by the RF ADC and passing
through the on-chip digital downcon-
verter and decimation filters. These
were further decimated to a sampling
rate of 25 MSPS in Matlab to lower the
required storage space. A USB-6001
NI DAQ was used to generate the con-
trol signals necessary to switch the
PA between configurations. Sufficient
samples were collected for each PA
configuration to contain more than
1,000 received BLE packets. An image
of the measurement setup is shown
in Figure 4(a). Figure 4(b) illustrates
the connections of the different
components used in the measure-
ment setup. The power spectra of
the PA output while transmitting
the BLE packets are plotted in Fig-
ure 5 across 220 PA configurations.
It can be seen from the figure that
there is a +2-dB variation across all
220 configurations.

The I/Q samples corresponding
to actual BLE packets were extracted
from the fetched data using cross
correlation with the known BLE pre-
amble sequence to determine the
starting indices of the packet. After-
ward, demodulation was performed
to verify the integrity of each packet
in the dataset.

Recorded Data Analysis
Recordings were captured of the
transmitted BLE packets across all

220 PA configurations using the setup
described in the section “Reconfigu-
rable PA and Dataset Collection.”
Enough I/Q samples were taken to
collect more than 1,200 packets for

each PA configuration at a baseline
SNR of 35 dB. Later, an attenuator in
the measurement setup was used to
lower the signal power, and sufficient
samples were taken to collect more
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FIGURE 4: (a) The AD9082-FMCA-EBZ board was used as a direct conversion receiver with
DDC and as a transmitter to drive the PA. An NI DAQ USB-6001 is used to generate the
control signals for sweeping across the PA configurations. (b) The block diagram of the
connections of the different components used in the measurement setup.
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FIGURE 5: The power spectra of the PA output while transmitting the BLE packets were
measured across PA configurations with a spectrum analyzer. The different colored lines
are used to indicate the power spectrum for each of the 220 combinations.
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FIGURE 6: The average RF-DNA footprint for three separate PA configurations is visualized as an image for (a) the baseline SNR of 35 dB and
(b) a moderate SNR of 15 dB. Config.: configuration.

than 500 packets per configuration
at SNRs of 25 dB and 15 dB. It can be
seen from the analysis of this section
that the diminishing RF fingerprints
at the low SNR scheme would lead to a
more difficult classification problem.

RF Fingerprint Visualization

The distinct RF fingerprints pro-
duced by separate PA configurations
may be visualized through the cal-
culation of RF distinct native attri-
bute (RF-DNA) fingerprints using a
discrete Gabor transform (DGT), as
in [4]. For these purposes, the first
1,000 I/Q points making up the fixed
BLE preamble and access address of
each captured packet were taken.
The DGT was used to calculate the
time-varying frequency content of
these 1,000-point vectors for 100
frequency bins across 100 seg-
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ments of the input vector, and the
normalized squared magnitude of
the resultant 100 x 100 matrix was
calculated. These DGT settings were
chosen to yield a large number of
data points for computing the kur-
tosis (Kurt) and skewness (Skw)
of Nr=20x Nr=10 patches taken
from the DGT output.

The average RF-DNA fingerprint
for three different PA configura-
tions was computed across the cor-
responding recorded BLE packets
for the baseline SNR of 35 dB and a
moderate SNR of 15 dB. The resultant
matrices were interpolated and visu-
alized in Figure 6 using the color leg-
end on the right. Visual differences
between the fingerprints calculated
for distinct PA configurations can be
clearly seen, although some features
disappear at the lower SNR setting.
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FIGURE 7: t-SNE was used to visualize the distribution of RFFs within the presented dataset
for (a) the baseline SNR of 35 dB and (b) a moderate SNR of 15 dB.
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Clustering Analysis

The full distribution of recorded RF
fingerprints across PA configura-
tions can be visualized through the
usage of t-distributed stochastic
neighbor embedding (t-SNE) to proj-
ect the high-dimensional recorded
data to two dimensions for plotting.
Unlike principal component analy-
sis, which tries to separate dissimi-
lar data points, t-SNE seeks to group
similar data points, making it more
suited for visualizing some data-
sets [12]. After truncating the cap-
tured packets to the first 1,000 1/Q
points to isolate the preambles and
access addresses and interleaving
the I and Q samples into the same
vector, t-SNE was applied to cluster
a set of data containing 60 randomly
chosen BLE packets recorded from
each PA configuration. The clustered
low-dimensional results are plotted
in Figure 7 for data recorded with
SNRs of 35 and 15 dB. Although the
impact of noise is visible through the
reduced number of clusters in the
plot corresponding to the lower SNR,
RF fingerprint clusters correspond-
ing to different PA configurations in
the dataset are clearly present.

CNNs for PA Configuration
Classification

A CNN model was utilized to clas-
sify up to 220 PA configurations
from their transmitted packets’
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raw 1/Q data. The recorded packets
were truncated to the first 1,000 I/Q
points (40 bits) to isolate the fixed
BLE preambles and access addresses.
The recorded data were further pro-
cessed to simulate the impact of
quantization and receiver sampling
rate on the RFF system. The light-
weight CNN model was optimized
with post-training quantization to
speed up the inference on IoT edge
devices, and the power usage for
RFF classification was reported on a
Raspberry Pi to estimate the energy
and resource overhead that the RFF
system brings.

Dataset Normalization

Two major receiver specifications
considered in this example are the
ADC sampling rate and the bit reso-
lution. To demonstrate the required
ADC sampling rate in the receiver
for sufficient classification accu-
racy, we decimate the original raw
data to sampling rates of 1, 2, 5,
10, and 15 MSPS. A higher sampling
rate indicates a higher ADC speed
requirement and a higher ML classi-
fier input data length, which could
preserve more RFF features from
the signal with a cost of consuming
more power. The bit resolution sets
the precision of the digital domain
representations of the analog sig-
nal and is also critical for determin-
ing the RFF features available to the
classifier. In this case, the data are
quantized to 6 bits, 8 bits, 10 bits,
12 bits, 14 bits, and 16 bits to test
their impact on the classifier accu-
racy. Because the ADC sampling

TABLE 1. THE CNN ARCHITECTURE.

OUTPUT
LAYER DIMENSIONS
Input 2 x input size (In)
16 Ch1x5 16 x In/2
Conv, stride =2
16Ch1x5 16 x In/2

Conv, stride =2
Fully connected 128

220 (for 220 PA
configurations)

Fully connected

The bit resolution sets the precision of the

digital domain representations of the analog
signal and is also critical for determining the
RFF features available to the classifier.

rate and bit resolution are directly
related to the energy consumption
and cost of radios, achieving high
classification accuracy at a low
sampling rate and low bit resolu-
tion is desirable for energy-effi-
cient RFF usage.

The data normalization is done by
linearly scaling and shifting the raw
packets:

S[i]
STi]= round( maxéabs(s)) 'Q),

where S is all of the recorded signals
in the dataset, S[i] is a packet in the
recorded signal, S'[i] is the corre-
sponding normalized packet, and
Q=2"-1, which scales and shifts
the data to a range of [—1,1] with a
desired quantization level of N bits
to become the input to the CNN.

CNNs for RFF Classification

The structure of the CNN model is
shown in Table 1. The first 1,000
packets were selected to transmit
from each PA configuration from the
data recorded at the baseline SNR of
35 dB to form the CNN dataset with

a total size of 220,000. The packets
from each configuration were allo-
cated with a ratio of 4:3:3 to form
training, validation, and test sets,
respectively. Real and imaginary
samples are taken in by the CNN
as separate channels. The length of
the input vector N is 40*SPS (sam-
ples per BLE symbol), as a result of
each packet being truncated to the
40-symbol-long preamble/access ad-
dress sequence. The raw dataset is
processed and normalized using the
aforementioned bit resolutions and
sampling rates. An Adam optimizer
with a learning rate of 0.001 and
binary cross-entropy loss function
was chosen from our experimental
trials for training the CNN model,
with a batch size of 128. The train-
ing process was done with an Nvidia
V100 GPU. Each training epoch took
around 2.7-4 s, depending on the in-
put vector length. After training for
300 epochs, the model parameters
with the highest validation accuracy
were selected to be tested with the
test set, and the results are shown
in Figure 8.

The classification accuracy approa-
ches an asymptote for bit resolutions
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FIGURE 8: The CNN model’s 220-configuration RFF classification accuracy with different
receiver sampling rates and receiver bit resolutions.
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of larger than 8, below which the sam-
pling rate becomes more impactful on
accuracy. An SPS of 5 and a bit reso-
lution of 10 were used for the model

to achieve 98.53% accuracy with 220
classes to carry on further analysis of
the dataset for its moderate hardware
requirements on the radio receiver.

0
0.7 0.75 0.8 0.85 0.9 0.95 1
Accuracy

FIGURE 9: The distribution plot of the classification accuracies of 220 configurations with
SPS = 5 and bit resolution = 10.
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©
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Number of Best Configurations
FIGURE 10: Testing the trained model’s accuracy with only selected numbers of configura-

tions in the test set. The configurations being used are selected using the validation set’s
confusion matrix.

l/
TABLE 2. THE CNN PERFORMANCE ON A RASPBERRY PI 3B+.

MODEL MODEL INFERENCE DYNAMIC
TYPE ACCURACY SIZE TIME POWER
FP16 98.53 % 267 KB 1.32 ms 021W
INT8 95.09 % 138 KB 0.38 ms 021W

l/
TABLE 3. PERFORMANCE COMPARISON.

DYNAMIC
MODEL TASK ACCURACY PLATFORM POWER
CNN 220-class RFF 95.09 % Raspberry Pi -~ 0.21 W
classification
Bayesian neural Six-class RFF 89.5% Xilinx 019W
network [14] classification ZCU102
Feedforward neural Six-class modulation 94 % Xilinx 0.5W
network [15] classification XCZU9EG
34 FALL 2022 IEEE SOLID-STATE CIRCUITS MAGAZINE

The PA’s RFF reconfigurability de-
pends on the random process varia-
tions on the PA elements to form up to
220 RF fingerprints, and it is expected
that some configurations in the PA
would exhibit similar RF fingerprints,
thus affecting the classifier’s ability
to distinguish among these configu-
rations. By examining the confusion
matrix, the less-distinct configura-
tions could be identified and excluded
from usage. Instead of attempting to
visualize the large 220 x 220 confu-
sion matrix, the distribution of the
prediction accuracies on the datasets
is plotted in Figure 9. This plot pro-
vides information about the quantity
of the configurations that are exhibit-
ing more/less distinguishable RF fin-
gerprints. The trained models were
tested with the test set using only a
specific number of configurations,
where the configurations are selected
by ranking their accuracies in the vali-
dation set’s confusion matrix, and the
results are shown in Figure 10. The re-
sults show that the RF fingerprints ex-
hibited by different PA configurations
have varied performances. The clas-
sification accuracy can be improved
while the number of configurations is
reduced to keep the ones with bet-
ter distinguishability.

To verify the overhead of deploy-
ing RFF to a real system, the perfor-
mance of the CNN model was tested
on a Raspberry Pi 3B+. The trained
models were also processed with
post-training quantization with Ten-
sorFlow Lite to compress the model
and speed up the inference, and the
specifications are shown in Table 2.
As indicated in [13], the CNN model
suffers from different levels of accu-
racy loss from the original model
because of its small size. Because the
small model is already adequately fast
in floating point, trading off accuracy
by fully quantizing the model may
not be necessary, depending on the
case. The power consumption on the
Raspberry Pi was measured during
idle state and inference. The dynamic
power is used as a metric, which is
calculated by subtracting the Rasp-
berry Pi’s idle power consumption
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from the peak power consumption
during inference to estimate the over-
head brought to the system by classi-
fying the RFFs. Table 3 compares the
CNN model with other models imple-
mented on FPGAs using a Bayesian
neural network [14] and feedforward
neural network [15]. The presented
model can classify more classes with
a Raspberry Pi.

The size of the training set was
also explored to determine how it
affects the classification accuracy to
consider the case where only a limited
number of training samples is avail-
able during the device’s deployment.
Instead of using 400 samples from
each configuration in the training set,
the number of training samples was
limited to N = 20, 40, 60, 80, 100, 200,
and 300 from each configuration to
observe the model’s performance. The
same validation set and test set (300
signals from each configuration) were
used across these experiments. After
the validation accuracy converged, the
models’ performance was tested on
the test set, and the results are plotted
in Figure 11. In general, a larger train-
ing set results in better accuracy, and
the accuracy approaches an asymp-
tote beyond N=100.

Environmental Changes

To provide an example of validat-
ing the RFF classifier’s performance
under worse noise conditions with
the presented results, the proposed
CNN model was tested by drawing
the data from packets recorded at
lower SNRs. When the original clas-
sifier model, which trained with the
baseline 35-dB-SNR dataset, was
tested against the 25-dB-SNR and
15-dB-SNR noisy datasets, the clas-
sification accuracy was unsatisfac-
tory and fell under 2% for all of the
models with noisy signals.

For the model to be adequate for
classifying noisy data, the train-
ing set needed to include noisy
data as well. The CNN models were
trained with evenly mixed data
across the three available SNR lev-
els (200 packets for each SNR from
each configuration), and Figure 12

shows the classification accuracy for
the signals at each SNR. The classi-
fier showed 97.8% accuracy on the
35-dB data set, which is slightly
lower than the accuracy of the clas-
sifier only trained with the 35-dB
dataset (98.5%). However, the newly
trained classifier has an accuracy of
92.7% and 88.4% on 25 dB and 15 dB,
respectively, which is a much bet-
ter performance compared to that
of the original classifier, which had
less than 2% accuracy on the noisy
data. The result indicates that the
fingerprint features are kept and
can be identified even when data are
noisy. However, it would be more
desirable if the trained model could
be robust to the incoming signals
with features from environmental
changes that are not seen during
the training to build a more reliable
RFF system. Thus, in this manner a

100

dataset with different SNRs could be
used to test the adaptability of edge
computing models by selecting dif-
ferent mixtures of noise levels for
training and testing.

Conclusion

In this work, we presented an ML-
assisted RF fingerprint classification
with a combinatorial PA featuring aug-
mented RF fingerprints. The recorded
dataset includes more than 1,200 BLE
packets for each PA configuration
across all 220 PA configurations at a
baseline SNR of 35 dB. Moreover, more
than 500 packets per configuration at
SNRs of 25 dB and 15 dB were also col-
lected to evaluate the impacts of
environmental changes. The scheme
of a single device with multi-RFFs is
beneficial for IoT security with RFF
through the multiple configurations.
We also evaluated how a lightweight
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FIGURE 11: Classification versus training data size. N is the number of packets the training

set had for each PA configuration.
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FIGURE 12: The figure of classification accuracy versus SNR shows cases for choosing both 128
and 220 configurations. The tested model was trained by data with SNRs of 15, 25, and 35 dB.
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CNN model achieves different perfor-
mances on the data with various
system-level considerations, includ-
ing receiver cost and noise analysis,
which empowers the possibility of
adding another layer of protection
to wireless edge devices for secure
[oT communication.
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