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he growth of the IoT 
requires more com-
prehensive security 

measures than ever. RF 
fingerprinting (RFF) uti-

lizes features in the signals and wave-

forms from transmitters’ physical-layer 
imperfections to classify and authen-
ticate devices. To prevent attacks 
from impersonators, combinatorial 
randomness is exploited to augment 
the RF fingerprints with a high-effi-
ciency PA for IoT applications. By 
enabling different subsets of thinly 
sliced PA elements, the transmitter 

can be reconfigured with 220 subsets 
that exhibit distinctive RF fingerprints 
for signal analysis at the edge. In this 
work, a combinatorial-randomness-
based PA was implemented in a BLE 
system. The BLE packets’ in-phase 
and quadrature samples transmitted 
from each configuration are collected 
with different SNRs to emulate the 
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environmental changes in commu-
nication channels. A lightweight 
convolutional neural network (CNN) 
classifier demonstrates the possibil-
ity of accurate and fast inference of 
unique features in the IoT environ-
ment, which our approach exploits 
to enable on-chip time-varying 
RF fingerprints. 

The State of the Art
With the growth of the IoT, network 
security is becoming an increasingly 
significant concern. In addition to 
the ever-higher stakes at play due to 
the increasing integration of the IoT 
into critical infrastructure, industrial 
systems, and health-care devices via 
sensors, power meters, and so on 
[1], the expansive nature of the IoT 
makes it possible for attackers to col-
lect large amounts of information. 
This information can be used for the 
purpose of defeating security proto-
cols, enabling attackers to observe or 
guess at security parameters used in 
conventional authentication proto-
cols, such as Wi-Fi Protected Access 
[2]. This points to a need for security 
protocols that serve to authenticate 
actual devices within a network, as 
opposed to the data being transmit-
ted from them.

RFF has been investigated as a 
software-based device authentication 
mechanism that may be implemented 
without requiring the redeployment 
of physical IoT devices with better 
security systems [3], [4], [5], [6]. RF 
fingerprints consist of signal features 
imprinted upon a radio’s transmit 
waveform by its inherent hardware 
characteristics [e.g., PA nonlinearity, 
carrier frequency offset, in-phase/
quadrature (I/Q) imbalance, and so 
on] [6] and can serve as unique physi-
cal signatures for their associated ra-
dio when extracted. Approaches that 
require some form of data preprocess-
ing, such as a Gabor transform (GT) or 
fast Fourier transform to explicitly 
extract RF fingerprints prior to feed-
ing them into a machine-learning (ML) 
classifier [3], [4], [6], and approaches 
that simply feed raw I/Q samples to 
an ML block for directly distinguish-

ing radios [5] have both been reported 
in the literature.

Many works have contributed to 
the RFF literature. These include a 
CNN-based RFF system tested on a da-
taset of IEEE 802.11a frames collected 
from Universal Software Radio Pe-
ripheral SDR transmitters [7], a drone 
detection and identification system 
using a database of RF signals col-
lected from drones [8], and a database 
of recorded Bluetooth signals for test-
ing RFF methods [9]. In these studies, 
the hardware impairments associated 
with each recorded radio that yield RF 
fingerprints remain fixed over time. 

However, a mixture of security 
and user capacity concerns motivates 
the study of configurable and time-
varying RFF systems. For instance, 
it is possible for attackers to replay 
signals from legitimate radios to im-
personate trusted devices and thus 
penetrate the RFF authentication [10]. 
The introduction of a time-varying 
aspect to an RFF system would add 
another dimension of complexity to 
the measures required to successful-
ly engage in such a replay attack. Fur-
thermore, the configurability could 
be applied to enhance the variability 
of RF fingerprints within the system 
and thus improve user capacity, such 
as in the case of [11].

This work presents an ML-assisted 
RF fingerprint classification with a 

transmit-side reconfigurable PA for 
BLE IoT applications, as illustrated 
in Figure 1. PA configurability is 
achieved by selecting combinations 
of sliced PA transistor elements, al-
tering the RF fingerprints imparted 
upon the transmitted signal in cor-
respondence with the transistor pa-
rameters associated with the selected 
elements. Data recordings are includ-
ed for different SNRs to facilitate the 
analysis of the impact of noise on RFF 
system performance. 

The recorded data represent a far 
greater assortment of distinct hard-
ware impairment-induced RF finger-
prints than those presented in the 
datasets published in [7], [8], and [9], 
the largest of which encompassed 
oscilloscope samples from 86 differ-
ent Bluetooth-enabled smartphones. 
Measurements were conducted 
across 220 PA configurations, each 
producing a distinct RF fingerprint. 
Furthermore, as a result of the RF fin-
gerprints originating from within the 
same device, our dataset represents 
a more challenging classification task 
and can serve as a stricter valida-
tion tool for RFF systems. Unlike the 
works of [7] and [8], a direct RF sam-
pling transceiver with digital down-
conversion (DDC) to minimize the 
impact of receiver impairments has 
been investigated, so the impact of 
custom receiver nonidealities using 
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FIGURE 1: The RF fingerprint classification with the ML module for authentication. The RF 
fingerprints are augmented with a configurable PA in the transmitter.
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baseband models can be evaluated. 
The work was validated using a light-
weight CNN classifier, which demon-
strates the preservation of relevant 
RF fingerprint features within it.

The following section describes 
the structure of the reconfigurable 
PA and the measurement setup used 
for collecting the dataset. The sec-
tion “Recorded Data Analysis” ana-
lyzes the recorded signals, and the 
section “CNNs for PA Configuration 
Classification” presents the imple-
mentation of the CNN classifier. The 
section “Environmental Changes” 
discusses the impacts of the environ-
mental changes, and the final section 
concludes the article.

Reconfigurable PA  
and Dataset Collection

Reconfigurable PA
The high-level structure of the recon-
figurable PA used for this study is 
illustrated in Figure 2(a). The primary 
PA transistor is sliced into several 
parallel devices that may be enabled 
independently of one another through 
their driver circuitry, as shown in Fig-
ure 2(b). Each transistor is operated as 
a switch and is connected to a single 
Class E PA-style output network that 
blocks higher order harmonic compo-
nents from reaching the output while 
shaping the transistor current and 
voltage waveforms to lower power 

dissipation. The total off-capacitance 
present at the output network as 
a result of the transistor parasitics 
remains constant irrespective of PA 
configuration, permitting configura-
tion-independent operation.

At the time of fabrication, each 
selectable slice’s transistor param-
eters ( , )VTH b  are affected by random 
process variations in accordance with 
Pelgrom’s law [11]. Because these 
transistor parameters ultimately give 
rise to the PA’s RF fingerprint, select-
ing different combinations of PA 
device slices results in distinct RF 
fingerprints. A design with 12 total 
selectable slices was designed for a 
frequency of 2.4 GHz and taped out. A 
die photo of a fabricated chip sample 
is shown in Figure 3. To maintain a 
balance of output power and configu-
rability, it was decided to enable nine 
slices at a time to allow a combinato-
rial search space of C (12,9) = 220 pos-
sible PA configurations.

Bluetooth Low-Energy  
Packet Parameters
A physical-layer waveform cor-
responding to a nonconnectable 
advertising packet, such as those 
used for transporting BLE Mesh pro-
tocol data units, was generated using 
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FIGURE 3: A die photo of the reconfigurable PA used to collect the data.
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FIGURE 2: (a) The high-level structure of the reconfigurable PA and (b) the sliced transistor elements that are used to imprint configurable RF 
fingerprints on BLE packets.
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Matlab’s Communications Toolbox and 
repeatedly transmitted through the PA 
test chip using the AD9082 RF trans-
ceiver board. Each BLE packet recorded 
in the presented dataset was transmit-
ted over BLE channel 37 (2,402 MHz) 
using the LE1M physical-layer mode.

Measurement Setup  
and Data Processing
The dataset was captured using an 
AD9082-FMCA-EBZ direct RF sampling 
transceiver board as a receiver, with 
the onboard RF DAC used to drive 
the reconfigurable PA. Baseband I/Q 
samples were directly fetched at a 
sampling rate of 250 MSPS from the 
AD9082-FMCA-EBZ using the Analog 
Devices High Speed Converter Tool-
box for Matlab, after being sampled 
at 6 GSPS by the RF ADC and passing 
through the on-chip digital downcon-
verter and decimation filters. These 
were further decimated to a sampling 
rate of 25 MSPS in Matlab to lower the 
required storage space. A USB-6001 
NI DAQ was used to generate the con-
trol signals necessary to switch the 
PA between configurations. Sufficient 
samples were collected for each PA 
configuration to contain more than 
1,000 received BLE packets. An image 
of the measurement setup is shown 
in Figure 4(a). Figure 4(b) illustrates 
the connections of the different 
components used in the measure-
ment setup. The power spectra of 
the PA output while transmitting 
the BLE packets are plotted in Fig-
ure 5 across 220 PA configurations. 
It can be seen from the figure that 
there is a ±2-dB variation across all 
220 configurations.

The I/Q samples corresponding 
to actual BLE packets were extracted 
from the fetched data using cross 
correlation with the known BLE pre-
amble sequence to determine the 
starting indices of the packet. After-
ward, demodulation was performed 
to verify the integrity of each packet 
in the dataset.

Recorded Data Analysis
Recordings were captured of the 
transmitted BLE packets across all 

220 PA configurations using the setup 
described in the section “Reconfigu-
rable PA and Dataset Collection.” 
Enough I/Q samples were taken to 
collect more than 1,200 packets for 

each PA configuration at a baseline 
SNR of 35 dB. Later, an attenuator in 
the measurement setup was used to 
lower the signal power, and sufficient 
samples were taken to collect more 
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FIGURE 4: (a) The AD9082-FMCA-EBZ board was used as a direct conversion receiver with 
DDC and as a transmitter to drive the PA. An NI DAQ USB-6001 is used to generate the  
control signals for sweeping across the PA configurations. (b) The block diagram of the  
connections of the different components used in the measurement setup.
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FIGURE 5: The power spectra of the PA output while transmitting the BLE packets were 
measured across PA configurations with a spectrum analyzer. The different colored lines  
are used to indicate the power spectrum for each of the 220 combinations.
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than 500 packets per configuration 
at SNRs of 25 dB and 15 dB. It can be 
seen from the analysis of this section 
that the diminishing RF fingerprints 
at the low SNR scheme would lead to a 
more difficult classification problem.

RF Fingerprint Visualization
The distinct RF fingerprints pro-
duced by separate PA configurations 
may be visualized through the cal-
culation of RF distinct native attri-
bute (RF-DNA) fingerprints using a 
discrete Gabor transform (DGT), as 
in [4]. For these purposes, the first 
1,000 I/Q points making up the fixed 
BLE preamble and access address of 
each captured packet were taken. 
The DGT was used to calculate the 
time-varying frequency content of 
these 1,000-point vectors for 100 
frequency bins across 100 seg-

ments of the input vector, and the 
normalized squared magnitude of 
the resultant 100 × 100 matrix was 
calculated. These DGT settings were 
chosen to yield a large number of 
data points for computing the kur-
tosis (Kurt) and skewness (Skw) 
of N N20 10T F#= =  patches taken 
from the DGT output.

The average RF-DNA fingerprint 
for three different PA configura-
tions was computed across the cor-
responding recorded BLE packets 
for the baseline SNR of 35 dB and a 
moderate SNR of 15 dB. The resultant 
matrices were interpolated and visu-
alized in Figure 6 using the color leg-
end on the right. Visual differences 
between the fingerprints calculated 
for distinct PA configurations can be 
clearly seen, although some features 
disappear at the lower SNR setting.

Clustering Analysis
The full distribution of recorded RF 
fingerprints across PA configura-
tions can be visualized through the 
usage of t-distributed stochastic 
neighbor embedding (t-SNE) to proj-
ect the high-dimensional recorded 
data to two dimensions for plotting. 
Unlike principal component analy-
sis, which tries to separate dissimi-
lar data points, t-SNE seeks to group 
similar data points, making it more 
suited for visualizing some data-
sets [12]. After truncating the cap-
tured packets to the first 1,000 I/Q 
points to isolate the preambles and 
access addresses and interleaving 
the I and Q samples into the same 
vector, t-SNE was applied to cluster 
a set of data containing 60 randomly 
chosen BLE packets recorded from 
each PA configuration. The clustered 
low-dimensional results are plotted 
in Figure 7 for data recorded with 
SNRs of 35 and 15 dB. Although the 
impact of noise is visible through the 
reduced number of clusters in the 
plot corresponding to the lower SNR, 
RF fingerprint clusters correspond-
ing to different PA configurations in 
the dataset are clearly present.

CNNs for PA Configuration  
Classification
A CNN model was utilized to clas-
sify up to 220 PA configurations 
from their transmitted packets’ 
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FIGURE 7: t-SNE was used to visualize the distribution of RFFs within the presented dataset 
for (a) the baseline SNR of 35 dB and (b) a moderate SNR of 15 dB.
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raw I/Q data. The recorded packets 
were truncated to the first 1,000 I/Q 
points (40 bits) to isolate the fixed 
BLE preambles and access addresses. 
The recorded data were further pro-
cessed to simulate the impact of 
quantization and receiver sampling 
rate on the RFF system. The light-
weight CNN model was optimized 
with post-training quantization to 
speed up the inference on IoT edge 
devices, and the power usage for 
RFF classification was reported on a 
Raspberry Pi to estimate the energy 
and resource overhead that the RFF 
system brings.

Dataset Normalization
Two major receiver specifications 
considered in this example are the 
ADC sampling rate and the bit reso-
lution. To demonstrate the required 
ADC sampling rate in the receiver 
for sufficient classification accu-
racy, we decimate the original raw 
data to sampling rates of 1, 2, 5, 
10, and 15 MSPS. A higher sampling 
rate indicates a higher ADC speed 
requirement and a higher ML classi-
fier input data length, which could 
preserve more RFF features from 
the signal with a cost of consuming 
more power. The bit resolution sets 
the precision of the digital domain 
representations of the analog sig-
nal and is also critical for determin-
ing the RFF features available to the 
classifier. In this case, the data are 
quantized to 6 bits, 8 bits, 10 bits, 
12 bits, 14 bits, and 16 bits to test 
their impact on the classifier accu-
racy. Because the ADC sampling 

rate and bit resolution are directly 
related to the energy consumption 
and cost of radios, achieving high 
classification accuracy at a low 
sampling rate and low bit resolu-
tion is desirable for energy-effi-
cient RFF usage.

The data normalization is done by 
linearly scaling and shifting the raw 
packets:

,
max

S i Q
abs S

S i
Qround $

=l
c ^ ^ hh m

6
6

@
@

where S  is all of the recorded signals 
in the dataset, S i6 @ is a packet in the 
recorded signal, S il6 @ is the corre-
sponding normalized packet, and 

,Q 2 1N= -  which scales and shifts 
the data to a range of ,1 1-6 @ with a 
desired quantization level of N bits 
to become the input to the CNN.

CNNs for RFF Classification
The structure of the CNN model is 
shown in Table 1. The first 1,000 
packets were selected to transmit 
from each PA configuration from the 
data recorded at the baseline SNR of 
35 dB to form the CNN dataset with 

a total size of 220,000. The packets 
from each configuration were allo-
cated with a ratio of 4:3:3 to form 
training, validation, and test sets, 
respectively. Real and imaginary 
samples are taken in by the CNN 
as separate channels. The length of 
the input vector N is 40*SPS (sam-
ples per BLE symbol), as a result of 
each packet being truncated to the 
40-symbol-long preamble/access ad-
dress sequence. The raw dataset is 
processed and normalized using the 
aforementioned bit resolutions and 
sampling rates. An Adam optimizer 
with a learning rate of 0.001 and 
binary cross-entropy loss function 
was chosen from our experimental 
trials for training the CNN model, 
with a batch size of 128. The train-
ing process was done with an Nvidia 
V100 GPU. Each training epoch took 
around 2.7–4 s, depending on the in-
put vector length. After training for 
300 epochs, the model parameters 
with the highest validation accuracy 
were selected to be tested with the 
test set, and the results are shown 
in Figure 8.

The classification accuracy approa
ches an asymptote for bit resolutions 

TABLE 1. THE CNN ARCHITECTURE. 

LAYER
OUTPUT 
DIMENSIONS

Input 2 × input size (In)

16 Ch 1 × 5 
Conv, stride = 2

16 × In/2

16 Ch 1 × 5 
Conv, stride = 2

16 × In/2

Fully connected 128

Fully connected 220 (for 220 PA 
configurations)
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FIGURE 8: The CNN model’s 220-configuration RFF classification accuracy with different 
receiver sampling rates and receiver bit resolutions.

The bit resolution sets the precision of the 
digital domain representations of the analog 
signal and is also critical for determining the 
RFF features available to the classifier.
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of larger than 8, below which the sam-
pling rate becomes more impactful on 
accuracy. An SPS of 5 and a bit reso-
lution of 10 were used for the model 

to achieve 98.53% accuracy with 220 
classes to carry on further analysis of 
the dataset for its moderate hardware 
requirements on the radio receiver.

The PA’s RFF reconfigurability de-
pends on the random process varia-
tions on the PA elements to form up to 
220 RF fingerprints, and it is expected 
that some configurations in the PA 
would exhibit similar RF fingerprints, 
thus affecting the classifier’s ability 
to distinguish among these configu-
rations. By examining the confusion 
matrix, the less-distinct configura-
tions could be identified and excluded 
from usage. Instead of attempting to 
visualize the large 220 220#  confu-
sion matrix, the distribution of the 
prediction accuracies on the datasets 
is plotted in Figure 9. This plot pro-
vides information about the quantity 
of the configurations that are exhibit-
ing more/less distinguishable RF fin-
gerprints. The trained models were 
tested with the test set using only a 
specific number of configurations, 
where the configurations are selected 
by ranking their accuracies in the vali-
dation set’s confusion matrix, and the 
results are shown in Figure 10. The re-
sults show that the RF fingerprints ex-
hibited by different PA configurations 
have varied performances. The clas-
sification accuracy can be improved 
while the number of configurations is 
reduced to keep the ones with bet-
ter distinguishability.

To verify the overhead of deploy-
ing RFF to a real system, the perfor-
mance of the CNN model was tested 
on a Raspberry Pi 3B+. The trained 
models were also processed with 
post-training quantization with Ten-
sorFlow Lite to compress the model 
and speed up the inference, and the 
specifications are shown in Table 2. 
As indicated in [13], the CNN model 
suffers from different levels of accu-
racy loss from the original model 
because of its small size. Because the 
small model is already adequately fast 
in floating point, trading off accuracy 
by fully quantizing the model may 
not be necessary, depending on the 
case. The power consumption on the 
Raspberry Pi was measured during 
idle state and inference. The dynamic 
power is used as a metric, which is 
calculated by subtracting the Rasp-
berry Pi’s idle power consumption 

TABLE 2. THE CNN PERFORMANCE ON A RASPBERRY PI 3B+.

MODEL 
TYPE ACCURACY

MODEL  
SIZE

INFERENCE 
TIME

DYNAMIC 
POWER

FP16 98.53 % 267 KB 1.32 ms 0.21 W

INT8 95.09 % 138 KB 0.38 ms 0.21 W

TABLE 3. PERFORMANCE COMPARISON.

MODEL TASK ACCURACY PLATFORM
DYNAMIC 
POWER

CNN 220-class RFF 
classification

95.09 % Raspberry Pi 0.21 W

Bayesian neural 
network [14]

Six-class RFF 
classification

89.5% Xilinx 
ZCU102

0.19 W

Feedforward neural 
network [15]

Six-class modulation 
classification

94 % Xilinx 
XCZU9EG

0.5 W
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FIGURE 9: The distribution plot of the classification accuracies of 220 configurations with  
SPS = 5 and bit resolution = 10.
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from the peak power consumption 
during inference to estimate the over-
head brought to the system by classi-
fying the RFFs. Table 3 compares the 
CNN model with other models imple-
mented on FPGAs using a Bayesian 
neural network [14] and feedforward 
neural network [15]. The presented 
model can classify more classes with 
a Raspberry Pi.

The size of the training set was 
also explored to determine how it 
affects the classification accuracy to 
consider the case where only a limited 
number of training samples is avail-
able during the device’s deployment. 
Instead of using 400 samples from 
each configuration in the training set, 
the number of training samples was 
limited to N = 20, 40, 60, 80, 100, 200, 
and 300 from each configuration to 
observe the model’s performance. The 
same validation set and test set (300 
signals from each configuration) were 
used across these experiments. After 
the validation accuracy converged, the 
models’ performance was tested on 
the test set, and the results are plotted 
in Figure 11. In general, a larger train-
ing set results in better accuracy, and 
the accuracy approaches an asymp-
tote beyond .N 100=  

Environmental Changes
To provide an example of validat-
ing the RFF classifier’s performance 
under worse noise conditions with 
the presented results, the proposed 
CNN model was tested by drawing 
the data from packets recorded at 
lower SNRs. When the original clas-
sifier model, which trained with the 
baseline 35-dB-SNR dataset, was 
tested against the 25-dB-SNR and 
15-dB-SNR noisy datasets, the clas-
sification accuracy was unsatisfac-
tory and fell under 2% for all of the 
models with noisy signals.

For the model to be adequate for 
classifying noisy data, the train-
ing set needed to include noisy 
data as well. The CNN models were 
trained with evenly mixed data 
across the three available SNR lev-
els (200 packets for each SNR from 
each configuration), and Figure 12 

shows the classification accuracy for 
the signals at each SNR. The classi-
fier showed 97.8% accuracy on the 
35-dB data set, which is slightly 
lower than the accuracy of the clas-
sifier only trained with the 35-dB 
dataset (98.5%). However, the newly 
trained classifier has an accuracy of 
92.7% and 88.4% on 25 dB and 15 dB, 
respectively, which is a much bet-
ter performance compared to that 
of the original classifier, which had 
less than 2% accuracy on the noisy 
data. The result indicates that the 
fingerprint features are kept and 
can be identified even when data are 
noisy. However, it would be more 
desirable if the trained model could 
be robust to the incoming signals 
with features from environmental 
changes that are not seen during 
the training to build a more reliable 
RFF system. Thus, in this manner a 

dataset with different SNRs could be 
used to test the adaptability of edge 
computing models by selecting dif-
ferent mixtures of noise levels for 
training and testing.

Conclusion
In this work, we presented an ML-
assisted RF fingerprint classification 
with a combinatorial PA featuring aug-
mented RF fingerprints. The recorded 
dataset includes more than 1,200 BLE 
packets for each PA configuration 
across all 220 PA configurations at a 
baseline SNR of 35 dB. Moreover, more 
than 500 packets per configuration at 
SNRs of 25 dB and 15 dB were also col-
lected to evaluate the impacts of 
environmental changes. The scheme 
of a single device with multi-RFFs is 
beneficial for IoT security with RFF 
through the multiple configurations. 
We also evaluated how a lightweight 
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FIGURE 11: Classification versus training data size. N is the number of packets the training 
set had for each PA configuration.
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FIGURE 12: The figure of classification accuracy versus SNR shows cases for choosing both 128 
and 220 configurations. The tested model was trained by data with SNRs of 15, 25, and 35 dB. 
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CNN model achieves different perfor-
mances on the data with various 
system-level considerations, includ-
ing receiver cost and noise analysis, 
which empowers the possibility of 
adding another layer of protection 
to wireless edge devices for secure 
IoT communication.
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