
ASAP: Architecture Support for Asynchronous Persistence

Ahmed Abulila∗

University of Illinois at Urbana-Champaign
Izzat El Hajj

American University of Beirut

Myoungsoo Jung
Korea Advanced Institute of Science and Technology

Nam Sung Kim
University of Illinois at Urbana-Champaign

ABSTRACT

Supporting atomic durability of updates for persistent memories is

typically achieved with Write-Ahead Logging (WAL). WAL flushes

log entries to persistent memory before making the actual data

persistent to ensure that a consistent state can be recovered if a

crash occurs. Performing WAL in hardware is attractive because

it makes most aspects of log management transparent to software,

and it completes log persist operations (LPOs) and data persist

operations (DPOs) in the background, overlapping them with the

execution of other instructions.

Prior hardware logging solutions commit atomic regions syn-

chronously. That is, once the end of a region is reached, all out-

standing persist operations required for the region to commit must

complete before instruction execution may proceed. For undo log-

ging, LPOs and DPOs are both performed synchronously to ensure

that the region commits synchronously. For redo logging, DPOs

can be performed asynchronously, but LPOs are performed syn-

chronously to ensure that the region commits synchronously. In

both cases, waiting for synchronous persist operations (LPO or

DPO) at the end of an atomic region causes atomic regions to incur

high latency.

To tackle this limitation, we propose ASAP , a hardware logging

solution that allows atomic regions to commit asynchronously. That

is, once the end of an atomic region is reached, instruction execution

may proceed without waiting for outstanding persist operations to

complete. As such, both LPOs and DPOs can be performed asyn-

chronously. The challenge with allowing atomic regions to commit

asynchronously is that it can lead to control and data dependence

violations in the commit order of the atomic regions, leaving data

in an unrecoverable state in case of a crash. To address this issue,

ASAP tracks and enforces control and data dependencies between

atomic regions in hardware to ensure that the regions commit in

the proper order.

Our evaluation shows that ASAP outperforms the state-of-the-

art hardware undo and redo logging techniques by 1.41× and 1.53×,

respectively, while achieving 0.96× the ideal performance when

no persistence is enforced, at a small hardware cost (< 3%). ASAP

also reduces memory traffic to persistent memory by 38% and 48%,

∗Ahmed Abulila is currently affiliated with Microsoft Corporation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’22, June 18–22, 2022, New York, NY, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527399

compared with the state-of-the-art hardware undo and redo log-

ging techniques, respectively. ASAP is robust against increasing

persistent memory latency, making it suitable for both fast and

slow persistent memory technologies.

CCS CONCEPTS

• Computer systems organization→ Architectures; Proces-

sors and memory architectures; • Hardware → Non-volatile

memory; Memory and dense storage.

KEYWORDS

Non-volatile memory, memory persistency, hardware logging

ACM Reference Format:

Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim. 2022.

ASAP: Architecture Support for Asynchronous Persistence. In The 49th

Annual International Symposium on Computer Architecture (ISCA ’22), June

18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3470496.3527399

1 INTRODUCTION

Persistent memory such as Intel Optane DC Persistent DIMM has

blurred the boundary betweenmainmemory and storage, providing

not only the byte-addressability and latency of DRAM but also the

persistency of storage devices [30, 38, 42, 51]. The integration of

persistent memory in systems enables programmers to manipulate

persistent data structures at a smaller granularity than what is

possible with traditional block-based devices [72]. Such desirable

properties with much lower bit per cost than DRAM has driven the

adoption by datacenters including Microsoft Azure [9].

Programming for a system with persistent memory typically

involves grouping related write operations together in an atomic

region with atomic durability semantics. To guarantee the atomic

durability of atomic regions, Write-Ahead Logging (WAL) has been

commonly used [25]. WAL consists of two key persist operations:

log persist operations (LPOs) and data persist operations (DPOs) [52].

LPOs flush log entries to persistent memory before making the data

persistent. The log entries ensure that a consistent state can be

recovered if a crash occurs before all the data written in an atomic

region has persisted. On the other hand, DPOs write back the actual

data modified in the atomic region to persistent memory.

To support WAL for persistent memory, software only solu-

tions [13, 16, 27, 40, 64] as well as hardware-assisted solutions [20,

33, 36, 54, 61] have been proposed. The disadvantages of the software-

only solutions are that they offload the complexity of correctly

managing logs to the software and place persist operations on

the critical path of execution [13, 24, 41, 57, 64]. In contrast, the

hardware-assisted solutions can initiate persist operations in a man-

ner that is transparent to the software, and they can complete these

306

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3527399&domain=pdf&date_stamp=2022-06-11

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

operations in the background, overlapping them with the execution

of other instructions. These advantages make hardware logging

solutions attractive.

Prior hardware logging solutions commit atomic regions syn-

chronously. That is, although persist operations are overlapped

with execution of instructions within an atomic region, once the

end of the region is reached, all outstanding persist operations re-

quired for the region to commit must complete before instruction

execution may proceed past the region. For undo logging [36, 61],

a region commits when all LPOs and DPOs complete. Therefore, all

LPOs and DPOs are performed synchronously to ensure that the

region commits synchronously. For redo logging [33], a region com-

mits when all LPOs complete. Therefore, DPOs can be performed

asynchronously, but LPOs are performed synchronously to ensure

that the region commits synchronously. In both cases, waiting for

synchronous persist operations (LPO or DPO) at the end of an

atomic region causes atomic regions to incur high latency. Such

high latency is undesirable especially for datacenter applications

where tail latency of services is of increasing concern [4].

There is a key reason why hardware-assisted solutions commit

atomic regions synchronously. If atomic regions are allowed to

commit asynchronously, i.e., if instruction execution is allowed to

proceed past the end of an atomic region before the region has

committed, it may result in violations of control and data depen-

dencies between atomic regions. Hence, it runs the risk of a later

region committing before an earlier one does, or, in amulti-threaded

context, a consumer region committing before the corresponding

producer does. Such cases leave the data in an unrecoverable state

in case of a crash.

To address such limitations, we propose Architecture Support

for Asynchronous Persistence (ASAP). ASAP is a hardware log-

ging solution for persistent memory that allows atomic regions to

commit asynchronously. To prevent violations of control and data

dependencies between atomic regions, ASAP tracks and enforces

control and data dependencies between atomic regions in hardware

to ensure that the regions commit in the proper order. By allowing

atomic regions to commit asynchronously, ASAP does not need

to wait at the end of an atomic region for outstanding LPOs or

DPOs to complete, which reduces the latency of atomic regions. As

such, both LPOs and DPOs are performed asynchronously. ASAP

is based on undo logging, but the principles underlying ASAP can

also by applied to enable asynchronous commit for redo logging.

In addition to reducing the latency of atomic regions, ASAP pro-

vides various optimizations for reducing persistent memory traffic

that are particularly effective in combination with asynchronous

persist operations. ASAP also provides a mechanism for achieving

synchronous persistence if it is needed, such as if an I/O operation

depends on an atomic region committing.

Our evaluation shows that ASAP outperforms the state-of-the-

art hardware undo and redo logging techniques by 1.41× and 1.53×,

respectively, while achieving 0.96× the ideal performance when no

persistence is enforced. The size of hardware structures needed to

support ASAP is less than 3% of typical CPU chip size, and ASAP

does not require any major hardware changes, such as to the co-

herence protocol or the cache replacement policy. ASAP reduces

memory traffic to persistent memory by 38% and 48%, compared

with the state-of-the-art hardware undo and redo logging tech-

niques, respectively. Although reducing persistent memory traffic

does not significantly improve performance of a single application

because the persist operations are asynchronous, it still benefits

other metrics such as the lifetime of the persistent memory or

throughput of multiple co-running memory-intensive applications.

Finally, ASAP is robust against increasing persistent memory la-

tency, which makes it is suitable for both fast and slow persistent

memory technologies.

2 BACKGROUND

2.1 Write-Ahead Logging

Write-Ahead Logging (WAL) has been widely used to support

atomic durability of updates to persistent memory. We refer to

a code region containing a group of writes that need to be atomi-

cally durable as an atomic region. WAL maintains a log in persistent

memory that stores the information needed to recover the data to

a consistent state in case a crash occurs in the middle of an atomic

region’s execution [25]. Although WAL guarantees atomicity and

durability, it does not guarantee isolation in the presence of multiple

threads. Since each application has different isolation requirements,

isolation is typically managed by software. The software can en-

force isolation by nesting atomic regions inside critical sections

guarded by locks. That is, high latency atomic regions translate

into high latency critical sections and consequently more lock con-

tention. The latency overhead of persist operations is therefore

harmful for concurrency.

2.2 Software vs. Hardware Logging

Software-only solutions for WAL require software to manage logs

by including persist instructions in the code such as flush/writeback

instructions and memory fences. They place expensive persist oper-

ations on the critical path of execution, incurring a significant per-

formance penalty. To address these limitations, hardware-assisted

solutions for WAL [20, 33, 36, 54, 61] perform the persist oper-

ations in the background, overlapping them with the execution

of subsequent instructions. Figure 1 evaluates the impact of per-

sist operations on throughput in the software-only approach (see

Section 6.5 for methodology). The results show that compared to

when no persistence is enforced (NP), DPOs (“DPO Only”) reduce

throughput to 0.58× (geomean), and LPOs (“LPO & DPO”) further

reduce throughput to 0.31× (geomean). These results motivate the

use of hardware-assisted solutions to overlap persist operations

with subsequent instructions.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

BinaryTree B-Tree C-Tree Echo HashMap Queue RBTree StringSwap GeoMean

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

NP DPO Only LPO & DPO

Figure 1: Overhead of LPOs and DPOs in a software approach

307

ASAP: Architecture Support for Asynchronous Persistence ISCA ’22, June 18–22, 2022, New York, NY, USA

Atomic
region

LPO

DPO

Free log
entry

X = …

Y = X+1

Crash!

Thread 1 Thread 2
timeline

(ii) Multiple threads

X = …

Y = …

Crash!

timeline

(i) Single thread

X = …

Y = …

Crash!

timeline

(i) Single thread
(a) Asynchronous commit without

dependence enforcement
(b) Asynchronous commit with dependence

enforcement for undo logging

X = …

Y = X+1

Crash!

Thread 1 Thread 2
timeline

(ii) Multiple threads

X = …

Y = …

Crash!

timeline

(i) Single thread
(c) Asynchronous commit with dependence

enforcement for redo logging

X = …

Y = X+1

Crash!

Thread 1 Thread 2
timeline

(ii) Multiple threads

Figure 2: Examples demonstrating asynchronous commit with and without dependence enforcement

2.3 Synchronous Commit

Prior hardware logging solutions [33, 36, 54, 61] commit atomic

regions synchronously. With undo logging [36, 61], when persis-

tent data is modified, LPOs are initiated to log the old values of the

modified data. Once an LPO completes, the corresponding DPO is

initiated to make the new value of the data persistent in place. An

atomic region is considered committed when all its DPOs complete.

If a crash occurs before all the DPOs complete, then the old val-

ues are restored from the log upon recovery. Since all the DPOs

must complete for the atomic region to commit, committing the

region synchronously requires all LPOs and DPOs to be performed

synchronously with respect to the end of the region.

In contrast, with redo logging [33], when persistent data is mod-

ified, LPOs are initiated to log the new values of the modified data,

while the data itself retains the old value. Subsequent reads to the

modified data are redirected to the log. Once the atomic region

ends and all its LPOs have completed, the DPOs are initiated to

update all the atomic region’s modified data with the new values

from the log. An atomic region is considered committed when all

its LPOs complete. If a crash occurs before all the LPOs complete,

the log is simply discarded and the old data values are retained. If a

crash occurs after all the LPOs complete but before all the DPOs

complete, the DPOs can be re-initiated from the log upon recovery.

Since only the LPOs must complete for the atomic region to commit,

committing the region synchronously requires only the LPOs to

be performed synchronously with respect to the end of the region.

The DPOs can be performed asynchronously.

Synchronous persist operations, whether LPOs and DPOs for

undo logging or just LPOs for redo logging, force instruction exe-

cution to wait at the end of an atomic region which causes atomic

regions to incur high latency. In a multi-threaded context, if the

atomic regions are nested inside of critical sections, this high latency

can also be harmful for concurrency. To eliminate this latency, we

propose to make both LPOs and DPOs asynchronous by allowing

the atomic regions to commit asynchronously.

3 ASYNCHRONOUS COMMIT

We propose a hardware-assisted logging solution that allows atomic

regions to commit asynchronously in order to allow both LPOs and

DPOs to be asynchronous. The challenge with committing atomic

regions asynchronously is that it may result in violations of control

and data dependencies between atomic regions which would leave

the data in an unrecoverable state in case of a crash [2]. We address

this challenge by tracking and enforcing dependencies between

atomic regions in hardware. We demonstrate this challenge and

how it is addressed via examples illustrated in Figure 2.

Figure 2a illustrates two examples where atomic regions are com-

mitted asynchronously (LPOs and DPOs are both asynchronous)

without dependences being tracked and enforced. Figure 2a-i fea-

tures a single thread, where the atomic region writing Y is control

dependent on the atomic region writing X. Figure 2a-ii features

multiple threads, where the atomic region writing Y is data depen-

dent on the atomic region writing X. In both examples, the atomic

region writing X initiates an LPO and does not wait for it. The

LPO is performed asynchronously. Subsequently, the atomic region

writing Y initiates an LPO which is performed asynchronously

and completes, followed by a DPO which is also performed asyn-

chronously and completes. A crash then occurs before the LPO of

X completes. With both undo logging and redo logging, the data is

left in an inconsistent state because X’s new value has not persisted

and is lost, whereas Y’s new value has persisted and its old value

cannot be restored. This example demonstrates how committing

atomic regions asynchronously could lead to violations of control

and data dependences between them.

To avoid the problem demonstrated in the previous example, we

must ensure that Y’s old value is not lost until X’s new value has

persisted. In general, if an atomic region is control or data dependent

on an earlier atomic region, we must ensure that the later region’s

old values are not lost until the earlier region’s new values have

persisted. For undo logging, as illustrated in Figure 2b, we can

ensure that the later region’s old values are not lost by delaying

freeing the later region’s log entries until the earlier region’s DPOs

have completed. For redo logging, as illustrated in Figure 2c, we can

ensure that the later region’s old values are not lost by delaying the

later region’s DPOs until the earlier region’s LPOs have completed.

In this paper, we choose to support asynchronous commit using

undo logging. In prior works which rely on synchronous commit,

the main advantage of redo logging over undo logging is that it

supports asynchronous DPOs, whereas undo logging requires syn-

chronous DPOs. With asynchronous commit, this advantage is no

longer relevant because all persist operations are asynchronous.

However, undo logging still has the advantages of performing DPOs

more eagerly and not requiring reads to modified evicted data to

be redirected to the log. We choose undo logging because of these

advantages, however, the principles underlying our design can also

by applied to enable asynchronous commit for redo logging.

308

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

While some of the techniques and insights from ASAP may

resemble those from relaxed persistency models and from hard-

ware transactional memory, ASAP’s contribution is orthogonal. We

discuss how ASAP differs from relaxed persistency models and

hardware transactional memory in Section 8.

4 ASAP DESIGN

This section describes the key design components of ASAP . Sec-

tion 5 includes more details and discussion.

4.1 Hardware Assumptions

We target a multi-core processor sharing access to multiple memory

controllers and unified LLCs. The memory organization is heteroge-

neous with each memory controller that can be connected to both

DRAM and persistent memory modules [55]. The Write Pending

Queue (WPQ) of each memory controller is considered part of the

persistence domain while DRAM and caches are not. Including the

WPQ in the persistence domain is consistent with modern systems

where Asynchronous DRAM Refresh (ADR) [28, 59] is used to en-

sure that pendingWPQ entries are made persistent on power failure.

Accordingly, a persist operation is considered complete when it is

accepted by the WPQ [66].

4.2 Software Interface

Like prior hardware-assisted solutions [20, 33, 36, 54, 61], ASAP

provides a software interface. The interface is simple, only requiring

programmers to indicate the beginning and end of atomic regions.

Both LPOs and DPOs are initiated automatically, freeing the pro-

grammer from this burden.

The software interface forASAP is shown in Table 1. asap_init()
initializes ASAP’s metadata at thread entry. asap_malloc() and

asap_free() allocate and deallocate persistent data, respectively [27,
64]. asap_begin() and asap_end() begin and end an atomic re-

gion, respectively. Nested atomic regions are permitted and are

flattened by the hardware.

Table 1: ASAP’s software interface

API/Primitive Description

asap_init() ASAP initialization

asap_malloc() Allocate persistent data

asap_free() Deallocate persistent data

asap_begin() Begin a new atomic region

asap_end() End the current atomic region

ASAP’s atomic regions guarantee atomic durability, but not iso-

lation. For multi-threaded programs, programmers are required to

nest conflicting atomic regions in critical sections guarded by locks.

This requirement is similar to prior hardware-assisted logging ap-

proaches.

The programming burden imposed by ASAP is light because

the functions in Table 1 are standard operations performed in any

persistent memory programming interface. Moreover, wrapper li-

braries or simple code-generation could assist with porting legacy

…

L1 L1 L1…

LLC

PBit LockBit OwnerRID

❷ Cache Line Tag Extensions

RID State CLPtr0 CLPtrn…

❸Modified Cache Line List

Depm…

❹ Dependence List

Core1 CoreM

DRAM PM

Persistence
domain

ASAP
HW support

Core0

CPU

WPQ
LH-WPQ

RID State

Memory
Controller

Dep0

LogAddress LogSize

LogHead LogTail

NestDepth CurRID

❶ Thread State Registers

Figure 3: ASAP hardware extensions

applications. Some prior works [36, 61] impose a heavier program-

ming burden by requiring programmers to explicitly initiate some

persist operations and enforce ordering.

4.3 Hardware Extensions

ASAP requires small hardware changes to carry out the logging

and dependence tracking activities. These changes are depicted in

Figure 3. ASAP does not require any changes to major hardware

components, such as the cache replacement mechanism [33] or the

coherence protocol [61]. The hardware changes required by ASAP

are described at a high level in this subsection, and in more detail

throughout the rest of the section.

Thread State Registers: These per-thread registers (�) assist with

log management and are described in Section 4.4.

Cache Line Tag Extensions (Tag Extensions): Cache lines are

extended with fields (�) that assist with executing persist opera-

tions on the cache line and detecting data dependences. These fields

are described in Section 4.6.

Modified Cache Line List (CL List): This list (�) tracks which

cache lines have been modified by an atomic region. It helps ensure

that all the region’s persist operations complete before the region

commits. The list is part of the L1 cache.

Dependence List (Dependence List): This list (�) tracks which

atomic regions are still active and the atomic regions that they

depend on. It helps ensure that all an atomic region’s dependencies

have been resolved before its log is freed. The list is part of the

memory controller and part of the persistence domain because

it is needed during recovery (see Section 5.5). The CL List and

Dependence List together comprise an atomic region’s state. The

different states that an atomic region goes through are illustrated

in Figure 4, with more details described throughout the section.

309

ASAP: Architecture Support for Asynchronous Persistence ISCA ’22, June 18–22, 2022, New York, NY, USA

① asap_begin()

③ All CLPtr slots cleared
(all DPs complete)

Clear Entry InProgress

Done@L1Done@MC

②
asap_end()

④ All Dep slots cleared
(all dependencies met)

StateL1 = InProgress
StateMC = InProgress

StateL1 = Done
StateMC = InProgress

StateL1 = Done
StateMC = Done

Figure 4: Atomic region state diagram

Log Header Write Pending Queue (LH-WPQ): The LH-WPQ is

like the WPQ, but for the metadata of LPOs. Like the WPQ, it is part

of the persistence domain. Its function is described in Section 5.5.

4.4 Initializing the Thread State Registers

ASAP uses a per thread log buffer to enhance scalability [52]. In-

voking asap_init() at thread entry allocates a log buffer for the

thread and initializes the thread state registers:

• LogAddress: the address of the thread’s log buffer

• LogSize: the size of the log buffer

• LogHead: the index of the head of the log

• LogTail: the index of the tail of the log
• CurRID: the id of the currently active atomic region, or the

latest active if no atomic region is currently active

• NestDepth: the nesting depth of the atomic regions (used

for flattening atomic regions)

ASAP treats the allocated log buffer in memory as a circular buffer.

If the log overflows, the hardware signals an exception, which is

handled by allocating more log space. The programmer can also

specify an initial buffer size by passing an optional parameter to

asap_init().

4.5 Beginning an Atomic Region

When asap_begin() is invoked, the hardware increments NestDepth
and checks if the atomic region is a top-level region (NestDepth=1)
or a nested one (NestDepth>1). If the atomic region is top-level,

the hardware does the following:

• Increments the thread’s CurRID
• Creates an entry for the atomic region in the CL List, initial-

izing State to InProgress (�)

• Creates an entry for the atomic region in the Dependence

List, initializing State to InProgress (�)

• If the previous atomic region (CurRID-1) is still in the De-

pendence List, adds it to one of the current atomic region’s

Dep slots to capture the control dependence

4.6 Handling Accesses to Persistent Memory

When memory is allocated with asap_malloc(), the memory al-

locator sets a bit in the page table to mark the allocated data as

persistent. If this page table bit is set when a cache line is brought

into the cache, the cache line’s PBit is set to mark it as a persistent

cache line. Accesses to persistent cache lines are treated as follows.

4.6.1 First Write (Initiating LPOs). When an atomic region writes

to a persistent cache line for the first time (the cache line’s OwnerRID

is different from the thread’s CurRID), the hardware does the fol-
lowing:

• Sets the cache line’s LockBit
• Sets the cache line’s OwnerRID to CurRID
• Increments the thread’s LogTail to allocate a log entry for

the cache line

• Initiates an LPO to log the old cache line value
Instruction execution then proceeds after the write while the LPO

happens in the background. When the LPO completes, the cache

line’s LockBit is reset. The LockBit is used to ensure that no evic-

tion or DPO takes place until the LPO completes.

4.6.2 All Writes (Initiating DPOs). On every write to a persistent

cache line by an atomic region (including the first write), a pointer

to that cache line is added to one of the atomic region’s CLPtr slots
in its CL List entry if one does not already exist. These slots track

which DPOs still need to be performed. ASAP does not initiate

a DPO for every single write to a cache line. Instead, a DPO is

initiated either when four updates to other cache lines have been

made or when the atomic region ends, provided the LPO initiated

by the first write to the cache line has completed. Waiting for four

updates to other cache lines to be made before initiating a DPO

helps coalesce consecutive DPOs of the same cache line to reduce

persistent memory traffic, but without waiting for too long such

that all the CLPtr slots get occupied. The number four is empirically

determined, as no benefit has been observed a distance larger than

four. Once a DPO completes, the corresponding CLPtr slot is cleared.
In the rare case that all CLPtr slots are occupied and a new one is

needed, the hardware stalls until one becomes available, i.e., the

corresponding DPO completes.

4.6.3 All Reads and Writes (Tracking Dependencies). On every read

and write to a persistent cache line by an atomic region, if the cache

line is owned by another atomic region (the cache line’s OwnerRID
is different from the thread’s CurRID), the hardware adds OwnerRID
to one of the current atomic region’s Dep slots in the atomic region’s

Dependence List entry to capture the data dependence. The Dep slots
are used to track whether an atomic region’s dependencies have

been satisfied before the atomic region commits (details in Sec-

tion 4.8). If the access is a write, the current atomic region becomes

the new owner of the cache line (as mentioned in Section 4.6.1). If

all Dep slots are occupied, the hardware stalls until one becomes

available (the corresponding atomic region commits). Note that

since the OwnerRID is tracked at the cache line granularity, false

sharing of cache lines may lead to spurious dependences. Alter-

natively, one could avoid these spurious dependences by tracking

the OwnerRID at a finer granularity, however, this approach would

require more hardware overhead.

4.7 Ending an Atomic Region

When asap_end() is invoked, the hardware decrements NestDepth
and checks if the ending atomic region is a top-level atomic region

(NestDepth=0). If the atomic region is top-level, the State in the

atomic region’s CL List entry is set to Done (�). This state means

that the atomic region is not expecting any more CLPtr slots (no
more writes). The instruction execution then proceeds past the end

of the atomic region, while the remaining atomic region commit

actions happen asynchronously.

310

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

4.8 Committing the Region Asynchronously

When all CLPtr slots of an atomic region are cleared (all DPOs are

complete), the hardware checks if the State in the atomic region’s

CL List entry is set to Done (no more writes). If so, the hardware

removes the atomic region’s entry from the CL List, and sets the

atomic region’s State in its Dependence List entry to Done (�).

This state means that all the atomic region’s modified cache lines

have persisted. The remaining step is to ensure that all the atomic

region’s dependencies have been met before freeing it undo log.

When all Dep slots of an atomic region are cleared (all dependen-

cies met), the hardware checks if the State in its Dependence List

entry is set to Done (all cache lines persisted). If all dependencies are
met and all cache lines are made persistent, the hardware performs

the following actions:

• Frees the atomic region’s log entries

• Clears the region’s entry in the Dependence List ()

• Broadcasts to all other region entries in the Dependence Lists

in the memory controllers that the atomic region has com-

pleted to clear any corresponding Dep slots

The atomic region is thus considered to be committed.

5 IMPLEMENTATION DETAILS AND
DISCUSSION

This section discusses certain implementation details of the design

described in Section 4.

5.1 Optimizing Persistent Memory Traffic

ASAP applies three key optimizations to reduce persistent memory

traffic: LPO dropping, DPO coalescing, and DPO dropping. The lat-

ter two are particularly effective in combination with asynchronous

persist operations. These optimizations are not intended to improve

latency because persist operations are asynchronous, so their la-

tency is not on the critical path of execution. However, reducing

memory traffic still benefits other metrics such as the lifetime of the

persistent memory. The optimizations are described in this section

and evaluated in Section 7.2.

LPO dropping: If an atomic region’s LPO is still in the WPQ when

the atomic region commits, there is no longer a need to send the

LPO to persistent memory. Therefore, ASAP safely drops the LPO

from the WPQ, thereby reducing traffic to persistent memory. This

optimization is also applied in other works [61].

DPO coalescing: Consecutive DPOs of the same cache line in the

same atomic region are coalesced into one DPO. This optimiza-

tion is described in Section 4.6.2. This optimization is particularly

effective in combination with asynchronous DPOs. If DPOs were

synchronous, it is desirable to initiate the DPOs as soon as possible

to minimize idle time, rather than wait for potential coalescing

opportunities that may not arise.

DPO dropping: An atomic region’s DPO may still be in the WPQ

when a later region’s LPO for the same cache line arrives. In this

case, the DPO from the earlier region and the LPO from the later

region contain the same data. Therefore, ASAP safely drops the

DPO from the WPQ, thereby reducing persistent memory traffic.

The DPO can be found using the contents of the LPO, which in-

cludes the address of the DPO. This optimization is particularly

effective in combination with asynchronous DPOs. If DPOs were

synchronous, there would be more time between them and the

LPOs from subsequent atomic regions, so the opportunity for this

optimization is less likely to arise.

5.2 Interaction with Synchronous Persistence

Since ASAP commits atomic regions asynchronously, it does not

provide guarantees for when atomic regions commit, but only guar-

antees that they commit in the proper order relative to each other.

In some cases, synchronous commit may be desired for an atomic

region, such as to ensure that the region commits before an I/O

operation that depends on it. For such situations, ASAP provides a

special instruction asap_fence() that blocks until the last atomic

region executed by a thread has committed, and consequently all

prior regions that this region depends on. The programmer can

therefore call asap_fence() just before the I/O operation of inter-

est. For example, if the application needs to print a confirmation

after a batch of updates has been completed, the application can call

asap_fence() after the batch of atomic regions execute to ensure

that they all commit before printing the confirmation. On the other

hand, if the application needs to print a confirmation after every

update, then asap_fence() needs to be called after every region.

Note however that the I/O operation may come much after the

atomic region. In this case, the commit will still be asynchronous

with respect to the atomic region, but it will be synchronous with

respect to asap_fence().

5.3 Tracking Dependencies Across Evictions

In the rare case that a persistent cache line is evicted from the LLC

while the atomic region that owns it is uncommitted (the cache

line’s OwnerRID is still in the Dependence List), the cache line’s

OwnerRID is saved to be reloaded when the cache line is reloaded.

Saving and reloading the OwnerRID helps track data dependencies

across LLC evictions. The ability to track dependencies across LLC

evictions allows us not to set limits on the atomic region’s memory

footprint, and not to have to change the replacement policy.

To save the OwnerRID of persistent cache lines across LLC evic-

tions, a small buffer in DRAM is used. It is fine to allocate the buffer

in DRAM, not persistent memory, because the OwnerRID does not

need to be persistent since it is not needed for recovery. It is only

needed at execution time to track data dependencies between un-

committed atomic regions.

When a cache line is loaded from persistentmemory, thememory

controller concurrently checks if it has an associated OwnerRID
in the DRAM buffer. If so, the memory controller checks if the

OwnerRID is still in the Dependence List. If not, the OwnerRID is

discarded. Otherwise, the OwnerRID is kept with the cache line so

that future data dependencies on the atomic region can be detected.

To avoid turning every single request to persistent memory

into multiple memory requests, ASAP uses a hardware-based non-

counting bloom filter (BF) to identify if a concurrent access to

the DRAM buffer is required. The filter is updated if a cache line

is evicted while its OwnerRID is still active. The filter is cleared

whenever the Dependence List becomes empty. Since there are no

uncommitted regions at this point, dependencies on previously

311

ASAP: Architecture Support for Asynchronous Persistence ISCA ’22, June 18–22, 2022, New York, NY, USA

evicted cache lines do not need to be tracked, so clearing the filter

is safe.

5.4 Dependencies via Non-persistent Memory

ASAP tracks dependences between atomic regions by tracking the

ID of the region that last wrote to a persistent cache line. However,

if an atomic region writes to a non-persistent cache line, the region

ID is not tracked. Hence, ASAP does not capture a data dependence

between an atomic region that writes to a non-persistent memory

location and another region that accesses that same location.

The reason for not tracking dependences via non-persistent

memory, aside from it being prohibitively expensive, is that it is

not a common case. Any non-persistent data written by an atomic

region is likely to be intermediate data used within that region. On

the other hand, data that is written by an atomic region with the

intention of being read by another region is likely to be needed on

crash and recovery, and therefore it will likely be persistent data.

In the rare case that a programmer needs to write non-persistent

data in one region and read it in another, the programmer can

simply allocate that non-persistent data in persistent memory and

free it later. In all the benchmarks we used, which are taken from

prior work (see Section 6.4), we found none that needed to write

non-persistent data in one region and read it in another.

5.5 Log Structure and Management

Log Structure: ASAP uses a distributed log where each thread

maintains its own log. Using a distributed log avoids contention

on updating the log in multi-threaded applications [52]. An atomic

region’s log space is divided into multiple records. Each record has

a single metadata entry (LogHeader) and multiple data entries, as

shown in Figure 5a. The LogHeader contains the RID and State
of the current atomic region and the addresses of each data entry

in the record. The LogHeader thus occupies a single cache line.

This log structure is commonly used [33, 36] because it reduces the

number of persistent memory writes needed to make log entries

persistent. In particular, the addresses of multiple log entries are

made persistent with a single cache line write.

Adding Entries to the Log: Each uncommitted atomic region

keeps the LogHeader of its latest record in LH-WPQ along with

the LogHeaderAddr, which points to the physical address of the

LogHeader in memory (see Figure 5b). When an atomic region

performs an LPO, ASAP sends the logged value to the WPQ and the

address to the LH-WPQ in the corresponding field in the LogHeader.
Once all the log entries in a record are filled, the atomic region’s

LogHeader is moved to theWPQ to be written at the corresponding

LogHeaderAddr. A new LogHeader is created in the LH-WPQ for

the atomic region’s next log record.

Freeing the Log on Commit:When an atomic region commits,

the region’s log records are deallocated from the circular log buffer.

The deallocation happens by updating the LogHead in the Thread

State Registers to point after the atomic region’s log records. The

end of an atomic region’s log records can be inferred from the final

log record’s LogHeaderAddr in the LH-WPQ.

Crash and Recovery: In case of a crash, the WPQ, LH-WPQ, and

active entries in the Dependence List are flushed to persistent mem-

ory. To recover from the crash,ASAP uses the persistentDependence

RID

Addr1

Addr2

Addr7

LogHeader

LogEntry1

LogEntry2

LogEntry7

State

(a) Log Record

LogHeaderAddr0

LogHeader-WPQ
LogHeader0

LogHeaderAddr1 LogHeader1

LogHeaderAddrn LogHeadern

(b) Log Header-WPQ

Figure 5: ASAP log organization and the log header-WPQ

List entries to infer the order in which the uncommitted atomic

regions should be undone. The Dependence List contains the depen-

dencies of each uncommitted atomic region. These dependencies

are used to construct a directed acyclic graph of dependencies which

is traversed to extract the happens-before order of the uncommit-

ted atomic regions. ASAP then finds the log records of each of the

atomic regions and restores the old data values.

5.6 Representing the Atomic Region ID

The atom region ID (RID) consists of two parts: the ThreadID
which differentiates atomic regions from different threads, and the

LocalRIDwhich differentiates atomic regions from the same thread.

The inclusion of the ThreadID in the RID removes the need to syn-

chronize across threads when assigning atomic region IDs [23].

The RID is often used to look up the atomic region’s Dependence

List entry in the memory controller. Since there could be multiple

memory controllers, we use the LSBs of the LocalRID to decide

which memory controller to store an atomic region’s Dependence

List entry to, and to find it later on when performing a lookup.

5.7 Context Switching

On a context switch, the Thread State Registers described in Sec-

tion 4.4 are saved as part of the process state. Additionally, the entry

of the suspended thread in the Modified Cache Line List is cleared

after completing the persist operations for each CLPtr slot. Clear-
ing this entry is important because the thread may be re-scheduled

on a different core. Once the thread is rescheduled, it can safely

continue executing any remaining operations of its In Progress
atomic region.

5.8 Example

Figure 6 illustrates an example of howASAP handles two concurrent

atomic regions running on two different cores with data dependence

between them. Since both atomic regions update the location A, a
lock x is used to guarantee isolation.

In Figure 6a, atomic region R1 has already started and updates

the location A with the value A’ which initiates an LPO on the old

value of A, sets the cache line’s LockBit, and adds the cache line to
R1’s CL list entry. On the other core, atomic region R2 is initiated
by calling asap_begin() which initializes an entry in the CL list

of that core and an entry in the Dependence List in the memory

controller.

In Figure 6b, the LPO for A has already persisted and cleared the

LockBit, and an LPO for B has already been initiated. The atomic

312

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data PBit Lock Owner

R2
InProgress

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
InProgress

-
-

-
-
-

-
-
-

WPQDependence List

Memory Controller

R1
InProgress

RID
State
CLPtr0 CLPtr1

CL List

Data
A’

B
01
01

PBit
1

0

Lock
R1

0

Owner

LP[A]

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data PBit Lock Owner

R2
InProgress

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
InProgress

-
-

LP[A]
-
-

-
-
-

WPQDependence List

Memory Controller

R1
Done

RID
State
CLPtr0 CLPtr1

CL List

Data
A’
B’

01
01

PBit
0
1

Lock
R1
R1

Owner

LP[B]
DP[A’]

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data PBit Lock Owner

R2
InProgress

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
InProgress

-
-

LP[A]
-
-

-
-
-

WPQDependence List

Memory Controller

R1
Done

RID
State
CLPtr0 CLPtr1

CL List

Data
A’
B’

01
01

PBit
0
1

Lock
R1
R1

Owner

LP[B]
DP[A’]

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data
A’’ 01

PBit
1

Lock
R2

Owner

R2
InProgress

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
InProgress

-
R1

LP[A]
LP[B]
-

DP[A’]
-
-

WPQDependence List

Memory Controller

R1
Done

RID
State
CLPtr0 CLPtr1

CL List

Data
A’
B’

01
01

PBit
0
0

Lock
R1
R1

Owner

DP[B’] LP[A’]

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data
A’’ 01

PBit
0

Lock
R2

Owner

R2
InProgress

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
InProgress

-
R1

LP[A]
LP[B]
LP[A’]

DP[A’]
-
-

WPQDependence List

Memory Controller

R1
Done

RID
State
CLPtr0 CLPtr1

CL List

Data

B’ 01

PBit

0

Lock

R1

Owner

DP[B’]

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data
A’’ 01

PBit
0

Lock
R2

Owner

R2
Done

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
Done

-
R1

LP[A]
LP[B]
LP[A’]

DP[A’]
DP[A’’]

-

WPQDependence List

Memory Controller

R1
Done

RID
State
CLPtr0 CLPtr1

CL List

Data

B’ 01

PBit

0

Lock

R1

Owner

DP[B’]

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data
A’’ 01

PBit
0

Lock
R2

Owner

R2
Done

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
R1
R2

InProgress
Done

-
R1

LP[A]
LP[B]
LP[A’]

DP[A’]
DP[A’’]
DP[B’]

WPQDependence List

Memory Controller

R1
Done

RID
State
CLPtr0 CLPtr1

CL List

Data

B’ 01

PBit

0

Lock

R1

Owner

asap_begin()
x.lock()

A = A’
B = B’

x.unlock()
asap_end()
…

R1
asap_begin()
x.lock()

…
A = A’’

x.unlock()
asap_end()
…

R2

DataCache0 DataCache1

Data
A’’ 01

PBit
0

Lock
R2

Owner

R2
Done

RID
State
CLPtr0 CLPtr1

CL List

RID State Dep0
-
R2

-
Done

-
LP[A]
LP[B]
LP[A’]

DP[A’]
DP[A’’]
DP[B’]

WPQDependence List

Memory Controller

RID
State
CLPtr0 CLPtr1

CL List

Data

B’ 01

PBit

0

Lock

R1

Owner

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: An example illustrating how ASAP handles two concurrent atomic regions with data dependence between them.

region R1 executes asap_end(), which sets the State in the CL List
entry to Done and begins draining its CLPtrs by initiating DPOs.

DPO for A’ is initiated, but not for B’ because the LockBit is still
set.

In Figure 6c, execution continues past R1while the LPO for B and
the DPO for A’ are still not persistent. This scenario demonstrates

how atomic regions commit asynchronously, and LPOs and DPOs

are both asynchronous.

In Figure 6d, the LPO for B arrives, which clears the LockBit,
allowing the DPO for B’ to be initiated. The DPO for A’ also arrives.

In the meantime, R2 writes to the location A now containing A’
which initiates an LPO on A’. Additionally, since the cache line was
previously owned by R1, R1 is added to R2’s dependence list, and
the cache line’s owner is updated to R2.

In Figure 6e, the LPO for A’ arrives, which causes the DPO for

A’ to be dropped according to the DPO dropping optimization (see

Section 5.1).

In Figure 6f, R2 has already ended, and its cache lines drained.

The arrival of the last DPO operation in R2 marks it as done in the

dependence list. However, it cannot commit yet because it has a

dependence on R1, which has not completed.

In Figure 6g, the DPO on B’ arrives, causing R1 to be marked

as done in the dependence list. Since R1 has no dependencies, it

can be committed. Since its LPOs are still in the memory controller,

they can be dropped according to the LPO dropping optimization

(see Section 5.1). R1 also broadcasts its completion, which causes

the dependence in R2’s dependence list entry to be cleared.

In Figure 6h, R2 may finally commit because its dependencies

are cleared. Since its LPOs are still in the memory controller, they

can be dropped according to the LPO dropping optimization (see

Section 5.1).

In this example, a single memory controller is used for sim-

plicity. However, ASAP supports a system with multiple memory

controllers as well, where each memory controller has its own De-

pendence List. When a new atomic region begins, its Dependence

List entry is mapped to the memory controller based on the region’s

RID, as mentioned in Section 5.6.

Also, in this example, when R2 accesses data with its OwnerRID
set to R1, R1 is added as Dep of R2. However, it may have been the

case that R1 has already completed. In general, ASAP uses the LSB

of R1 to find the memory controller that hosts R1’s Dependence List
entry and checks whether this entry actually exists. If the entry

313

ASAP: Architecture Support for Asynchronous Persistence ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 2: System Configuration

Processor
OoO, 18 cores, 5-wide issue/retire, ROB: 224,

FetchQ/IssueQ/LoadQ/StoreQ: 48/64/72/56

L1 32KB/core, 8-way, 4 cycles

L2 1MB/core, 16-way, 14 cycles

L3 8MB, 16-way, 42 cycles

Memory Controller 2 MCs, 2 channels/MC, 128 WPQ entries/channel

DRAM DDR4-2400, 16GB, 2 channels

PM Battery-backed DRAM

ASAP

CL List: 4 entries/core

Dependence List: 128 entries/channel

LH-WPQ: 128 entries/channel

Bloom filter: 1KB/channel

does not exist, then R1 has already committed, so it will not be

added to the dependence list of R2.

6 METHODOLOGY

6.1 Simulation

ASAP has been implemented and evaluated on gem5 [11] using

the system-call emulation (SE) mode with the ARM ISA. The hard-

ware initiated LPO and DPO mechanisms are enabled in the cache

controller of the L1 cache with the support of CL List and Tag

Extension. The Dependence List entries and LH-WPQ have been

added to the memory controller model in gem5. The detailed sys-

tem configurations and parameters are summarized in Table 2. We

assume a heterogeneous main memory system that pairs a persis-

tent memory with the DRAM. The persistent memory is configured

as a battery-backed DRAM by default, but we evaluate sensitivity

to slower persistent memory technologies in Section 7.3. We also

evaluate sensitivity to a smaller LH-WPQ size in Section 7.4.

6.2 ASAP’s Overhead

TheCL List in each core has 4 entries, and its size is 49B (8 CLPtrs/entry,
1 B/CLPtrs, 2 bits/State, 4 B/RID). The Dependence List has 128
entries per memory channel (4 Dep/entry, 4B/Dep, 2 bits/State,
and 4B/RID). The LH-WPQ has 70B/entry (6B LogHeaderAddr, 64B/
LogHeader). In addition, ASAP has 6 state registers per thread. We

evaluate the area overhead using McPAT [44, 67]. Compared to

a baseline with no support for hardware logging, the total area

overhead is about 2.5%: 0.8% core (thread state registers, L1/L2 tag

extensions, CLList) and 1.7% uncore (L3 tag extensions, Depen-

denceList, LH-WPQ, Bloom filter). Thanks to ASAP’s simplicity,

ASAP does not add any structural latency to any component of the

memory hierarchy.

6.3 Baselines

We compare ASAP to the following four baselines.

Software Persistency (SW): This baseline uses a software-only

implementation of undo-logging to enforce persistency. We use

distributed logging for a fair comparison. We also hand-optimized

the code to coalesce different persist operations in the same atomic

region that fall on the same cache line, and to overlap persist oper-

ations when possible.

Table 3: Benchmarks used in our evaluation

Benchmark Description

BN [27, 53] Insert/update entries in a binary tree

BT [27, 53] Insert/update entries in a b-tree

CT [27, 53] Insert/update entries in a c-tree

EO [10, 53] Echo a Scalable key-value store for PM

HM [27, 53] Insert/update entries in a hash table

Q [27, 53] Insert/update entries in a queue

RB [27, 53] Insert/update entries in an red-black tree

SS [22, 41] Random swaps in an array of strings

TPCC [34, 62] New Order transaction in TPC-C

Hardware Undo-logging (HWUndo): This baseline is based on

the state-of-the-art hardware undo-logging implementation [61],

which performs synchronous commit. This baseline only initiates

LPOs automatically and transparently to the programmer. The

programmer is responsible for initiating the DPOs manually [61].

Therefore, the DPOs are inserted manually for this baseline. DPOs

in the same atomic region that fall on the same cache line are

coalesced, as with the SW baseline.

Hardware Redo-logging (HWRedo): This baseline is based on

the state-of-the-art hardware redo-logging implementation [33],

which performs synchronous commit. HWRedo performs LPOs

synchronously and DPOs asynchronously.

No Persistency (NP): In this baseline, data is read from andwritten

to persistent memory, but no atomic durability is guaranteed. In

other words, no LPOs or DPOs are performed. NP is intended to

show the upper limit on the performance that can be achieved.

For a fair comparison, all the baselines use the same size WPQ.

Additionally, the hardware logging baselines (HWUndo andHWRedo)

use on-chip persistence resources of similar size toASAP’s LH-WPQ

to store their logging metadata.

6.4 Benchmarks

Table 3 describes the benchmarks that are used in the evaluation.

These benchmarks are selected due to their nature of stressing

persistent memory update performance and are adapted from or

implemented similar to the benchmarks used in prior work [1, 10,

16, 22, 33, 35, 36, 41, 53, 56, 61]. All benchmarks are thread-safe

with the dataset accessible to all threads. Thread-safe benchmarks

allow evaluating the interaction between persistence overhead and

concurrency. The benchmarks do not use asap_fence in between

regions because the focus of our evaluation is asynchronous persis-

tence. If asap_fence is used, then ASAP degenerates to HWUndo.

6.5 Motivational Experiment

The motivational experiment in Figure 1 is conducted using a server

with four sockets, each equipped with an Intel Xeon Gold 6140

processor and 512GB of DDR4 memory. The experiment uses the

same workloads as in Table 3. clwb and mfence are used to perform
persist operations.

314

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

0

0.5

1

1.5

2

2.5

3

3.5

64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB
BN BT CT EO HM Q RB SS TPCC GeoMean

Sp
ee

du
p

(o
ve

r S
W

)

SW HWRedo HWUndo ASAP NP

Figure 7: Performance comparison (higher is better)

0
0.5

1
1.5

2
2.5

3
3.5

4

64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB 64B 2KB
BN BT CT EO HM Q RB SS TPCC GeoMean

C
yc

le
s p

er
 a

to
m

ic
 re

gi
on

(n
or

m
al

iz
ed

 to
 N

P)

SW HWRedo HWUndo ASAP NP

Figure 8: Normalized average number of cycles per atomic region (lower is better)

0

0.5

1

1.5

2

2.5

3

3.5

BN BT CT EO HM Q RB SS TPCC GeoMean

Pe
rs

is
te

nt
 m

em
or

y
w

rit
e

tra
ffi

c
(n

or
m

al
iz

ed
 to

 A
SA

P)

ASAP-No-Opt ASAP+C ASAP+C+LP ASAP

0
0.5

1
1.5

2
2.5

3
3.5

4

BN BT CT EO HM Q RB SS TPCC GeoMean

Pe
rs

is
te

nt
 m

em
or

y
w

rit
e

tra
ffi

c
(n

or
m

al
iz

ed
 to

 A
SA

P)
SW HWRedo HWUndo ASAP

(a) Incremental improvement of ASAP’s memory traffic optimizations (b) Comparison of ASAP’s memory traffic with other approaches

Figure 9: Persistent memory write traffic (lower is better)

7 EVALUATION

7.1 Performance

Figure 7 evaluates the speedup of HWRedo, HWUndo, and ASAP

over SW for all benchmarks, with 64B and 2KB data sizes per atomic

region. NP represents the upper bound on performance. Compared

to SW, HWRedo and HWUndo improve performance by 1.49× and

1.60×, respectively. HWRedo and HWUndo are more capable than

SW of overlapping LPOs with the execution of other instructions

within the same atomic region. The gap between SW and HW

approaches increases for larger atomic region sizes because SW has

to wait on more persist operations to complete which hardware

approaches can perform in the background. We note that while

HWUndo outperforms HWRedo in this experiment, we show in

Section 7.3 that HWRedo outperforms HWUndo for persistent

memories with higher latency.

Although HWRedo and HWUndo outperform SW, there is still a

considerable performance gap between them and NP, where NP is

1.56× and 1.48× faster, respectively. Since these approaches commit

atomic regions synchronously, HWUndo must wait at the end of

the region for LPOs and DPOs to complete, whereas HWRedo must

wait for LPOs to complete. As a result, the average number of cycles

per atomic region for HWRedo and HWUndo is larger than that of

NP by 1.69× and 1.61×, respectively, as shown in Figure 8.

In comparison,ASAP achieves a speedup of 2.25× over SW, 1.52×

over HWRedo, and 1.41× over HWUndo, coming very close to

NP performance. NP is only 1.04× faster than ASAP on average.

Unlike both HWUndo and HWRedo which commit atomic regions

synchronously, ASAP commits atomic regions asynchronously, so

it is capable of executing past the end of the atomic region without

waiting for the LPOs and/or DPOs to complete. Therefore, the

average number of cycles per atomic region of ASAP is only 8%

higher than that of NP, as shown in Figure 8.

7.2 Memory Traffic

Recall from Section 5.1 that ASAP applies multiple optimizations to

reduce persistent memory traffic. We evaluated the impact of these

optimizations on performance and found it to be negligible because

ASAP performs persist operations asynchronously. Nevertheless,

reducing memory traffic has other benefits so this section shows

traffic reduction results.

Figure 9a shows the incremental benefit of each of ASAP’s mem-

ory traffic optimizations. ASAP-No-Opt does not apply any opti-

mizations.ASAP+C applies DPO coalescing, reducing traffic by ∼8%.

ASAP+C+LP additionally applies LPO dropping, further reducing

315

ASAP: Architecture Support for Asynchronous Persistence ISCA ’22, June 18–22, 2022, New York, NY, USA

traffic by ∼33%. ASAP additionally applies DPO dropping, further

reducing traffic by ∼31%.

Figure 9b compares thememory traffic of SW,HWRedo, HWUndo,

and ASAP . HWRedo and HWUndo generate 0.63× and 0.74× the

memory traffic compared with SW, respectively. HWUndo reduces

the memory traffic to persistent memory by dropping LPOs from

the WPQ for an atomic region that commits (see LPO dropping in

Section 5.1). HWRedo takes advantage of using DRAM on commit

to filter out any unnecessary DPOs to persistent memory.

In comparison, ASAP generates 0.62×, 0.52×, and 0.39× the

memory traffic to persistent memory compared with HWRedo,

HWUndo, and SW, respectively. ASAP further reduces the memory

traffic to persistent memory via the DPO coalescing and DPO drop-

ping optimizations, which are particularly effective in combination

with asynchronous persist operations as discussed in Section 5.1.

The benchmark with the most significant memory traffic reduc-

tion compared to HWUndo is Q, as shown in Figure 9b. The Q

benchmark exhibits a high amount of data dependencies across

atomic regions compared to other benchmarks. Consequently, the

probability of an LPO targeting the same memory location as a

prior DPO is higher than other benchmarks. Hence, DPO dropping

is particularly effective for this benchmark, as shown in Figure 9a.

7.3 Sensitivity to Slower Memory

Persistent memory refers to a variety of different memory tech-

nologies, ranging from fast battery-backed DRAM to other slower

non-volatile memory technologies [3, 30, 38, 42, 51]. To study the

impact of the latency of the persistent memory technology on our

design, we vary the latency of access to persistent memory from

1× to 16× that of battery-backed DRAM. The results are shown in

Figure 10.

We observe that HWRedo has lower sensitivity to the persis-

tent memory access latency than HWUndo. The throughput of

HWUndo degrades with slower memories because slow synchro-

nous persist operations extend the critical path of atomic regions.

In contrast, HWRedo asynchronously performs DPOs to the persis-

tent memory causing it to have lower sensitivity than HWUndo to

slower technologies.

In comparison,ASAP has a higher throughput than bothHWRedo

and HWUndo across different persistent memory technologies be-

cause ASAP does not perform any persist operations in the critical

path of execution. The sensitivity of ASAP is closer to that of NP

than HWRedo and HWUndo. Therefore, ASAP is robust against

increasing persistent memory latency, which makes it suitable for

both fast and slow persistent memory technologies.

ASAP’s low sensitivity to the latency of persist operations also

makes it suitable for NUMA systems where the latency of persist

operations may vary. ASAP already supports multiple memory

controllers per chip, so it can scale to multiple NUMA nodes. In a

NUMA system, the Dependence List’s entries can be extended to

include information about whether an RID exits as a dependence
in a remote Dependence List or not, which makes broadcasting the

completion of an atomic region more efficient.

7.4 Sensitivity to LH-WPQ Size

Recall that ASAP is evaluated with an LH-WPQ size of 128 en-

tries/channel, and that HWUndo and HWRedo use structures of

comparable size to store their logging metadata. We also evaluate

ASAP with an LH-WPQ size of 16 entries/channel, and find that it

performs 0.78× slower. Hence ASAP with 16 entries/channel still

outperforms HWRedo and HWUndo with 128 entries/channel by

1.18× and 1.10×, respectively. Therefore, ASAP can outperform the

hardware baselines that rely on synchronous persistence, while

also using fewer resources for managing the logging metadata.

8 RELATED WORK

Persistency models: Several persistency models [21, 35, 39, 41,

53, 56, 60] have been defined to reason about ordering updates to

persistent memory. Relaxed persistency models relax the order of

updates to persistent memory at the semantic level. In contrast,

our work relaxes the order of updates only at the implementation

level. Semantically, writes to persistent memory in ASAP happen

atomically within atomic regions and in-order across regions. These

semantics are enforced by the logging and dependence tracking

mechanisms. Hypothetically, ASAP could be designed to enforce a

more relaxed persistency model between different atomic regions,

which would change the way dependecies are tracked and enforced.

Hence, persistency models and atomic durability are orthogonal

concepts. Our work targets the latter.

Software Support for Atomic Durability:Managing persistent

memory using a file system is an intuitive approach to exploit persis-

tent memory features while assuring crash-consistency [17, 18, 37,

48, 63, 68, 69, 73]. To reduce performance overhead, others works

provide libraries to enable fast user-mode access to in-memory data

sets while guaranteeing crash-consistency [13, 14, 16, 24, 26, 31, 45,

50, 58, 64]. Section 2.2 motivates the use of hardware-assisted solu-

tions to improve on software-only solutions. With a well-defined

interface software approach, the programmer effort to adapt an

application to utilize the persistent memory benefits is expected

to be reasonable. On the other hand, these techniques suffer from

unnecessary execution stalls because of the expected minimal hard-

ware support [41]. In addition, the number of executed instructions

dramatically increases to guarantee crash-consistency in such sys-

tems [49].

On-Chip Data Versioning: Several works use on-chip resources

to contain partial updates on-chip until an atomic region com-

pletes [1, 6, 7, 23, 31, 43, 74], after which the updates are syn-

chronously committed to persistent memory before proceeding

past the end of the atomic region. For example, Kiln [74] has a non-

volatile last-level cache to preserve partially updated data. Lai et

al. [43] adds a separate non-volatile on-chip structure to avoid com-

plex modifications to the cache hierarchy. LAD [23] avoids adding

a new on-chip structure by exploiting the WPQ in the memory con-

troller which is considered part of the persistence domain. BBB [5]

has proposed a battery-backed buffers in the CPU to bring the

point of persistency closer to the CPU. Intel eADR [29] can make

caches part of the persistence domain, which overcomes the latency

of persist operations. However, it still requires a WAL technique

to provide failure-atomicity. While eADR can simplify hardware-

based WAL, eADR also requires a large battery, consuming high

316

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x 1x 2x 4x 16x
BN BT CT EO HM Q RB SS TPCC

Th
ro

ug
hp

ut
(n

or
m

al
iz

ed
 to

 N
P)

NP ASAP HWUndo HWRedo

Figure 10: Sensitivity of throughput (higher is better) to memory latency

power [5, 19]. In contrast, ASAP can overcome the latency of persist

operations and achieve near-non-persistence performance without

this requirement.

Hardware Transactional Memory (HTM): Although the track-

ing of modified data done by ASAP may seem similar to HTM, they

are different. HTM tracks modified data to detect conflicts between

concurrent transactions. ASAP tracks modified data to detect de-

pendencies between atomic regions that may run at different points

in time. HTM is designed to enforce isolation, which is orthogonal

to what ASAP does. In our work, we use locks to enforce isolation.

However, one could imagine a hypothetical approach where ASAP

regions are isolated with HTM transactions. In this case, a transac-

tion may commit (guaranteeing isolation), but the region it isolates

may commit later asynchronously (guaranteeing atomic durability).

Hence, two forms of tracking would be needed. One would need

to track modified data before the transaction commits to detect

conflicts with concurrent transactions. One would also need to

keep tracking modified data after the transaction commits to detect

dependencies by later regions. Various works extend HTM with

enhancements to enable crash-consistency [1, 6, 7, 32]. These works

commit a transaction’s atomic updates synchronously with respect

to the end of the transaction. Our work commits atomic updates

asynchronously with respect to the end of a critical section.

Hardware-Assisted Data Versioning in Persistent Memory:

Various works have proposed hardware-assisted data versioning

that versions data in persistent memory instead of on chip [12, 20,

33, 36, 49, 54, 61, 65]. These works can be classified into approaches

that use redo logging [33], undo logging [36, 61], or the combination

of the two [54, 65]. We discuss the difference between our work and

these approaches in Section 2.3. The key distinction is that our work

commits atomic regions asynchronously which enables both LPOs

and DPOs to be performed asynchronously with respect to the end

of the atomic region. LOC [49] performs asynchronous commit

similar to ASAP , but focuses on single-threaded applications and

uses redo logging. ASAP performs asynchronous commit for multi-

threaded applications, which requires tracking data dependencies

across atomic regions in different threads. ASAP uses undo logging,

which enables more eager DPOs.

Secure Persistent Memory: The durability of data in persistent

memory allows data to survive system reboots or failures, which

makes persistent memory at risk of malicious attacks [15, 77]. Data

encryption can provide data confidentiality and protect against

probing the data out of persistent memory. Several hardware en-

cryption mechanisms have been proposed to enable efficient and

secure persistentmemory systems [8, 15, 46, 47, 70, 71, 75, 76, 76, 77].

In addition, Liu et al. [46] have introduced a hardware mechanism

to support selective-counter atomicity that optimizes the encryption

memory traffic to persistent memory. These proposals do not alter

the processor design nor the cache hierarchy and reside in the mem-

ory controller. Securing persistent memory is an orthogonal topic to

this paper. ASAP can be efficiently applied on top of a hardware en-

cryption mechanism to enable a secure persistent memory system.

Moreover, ASAP can employ a similar technique as Janus [47] to

overlap the persist operations with encryption. For example, ASAP

can be integrated with DeWrite [76] while following an approach

similar to the selective-counter atomicity [46] technique to enable

an efficient persistent memory system.

9 CONCLUSION

This paper presents ASAP , a hardware logging scheme that allows

atomic regions to commit asynchronously. Committing atomic re-

gions asynchronously removes the need to wait for log persist

and/or data persist operations at the end of atomic regions, which

reduces the latency of these regions. To ensure that the atomic re-

gions commit in the proper order, ASAP tracks and enforces control

and data dependencies between atomic regions in hardware. Our

evaluation shows that ASAP outperforms state-of-the-art hardware

undo and redo logging techniques, which commit atomic regions

synchronously. It also reduces persistent memory traffic, and is

suitable for both fast and slow persistent memory technologies.

ACKNOWLEDGMENTS

This work was supported in part by National Science Founda-

tion (CNS-1705047) and National Research Foundation of Korea

(2021R1A2C4001773). Nam Sung Kim has a financial interest in

Samsung Electronics and NeuroRealityVision Corporation.

REFERENCES
[1] A. Joshi and V. Nagarajan andM. Cintra and S. Viglas, “DHTM: Durable Hardware

Transactional Memory,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 452–465.

[2] A. Abulila, “Efficient design and optimized crash-consistency support for hybrid
memory systems,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
Champaign, IL, 2020, http://hdl.handle.net/2142/108559.

[3] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong, and W.-m.
Hwu, “FlatFlash: Exploiting the Byte-Accessibility of SSDs Within a Unified
Memory-Storage Hierarchy,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. New York, NY, USA: ACM, 2019, pp. 971–985.
[Online]. Available: http://doi.acm.org/10.1145/3297858.3304061

[4] S. Akram, “Exploiting intel optane persistent memory for full text search,”
in Proceedings of the 2021 ACM SIGPLAN International Symposium on
Memory Management, ser. ISMM 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 80–93. [Online]. Available: https:
//doi.org/10.1145/3459898.3463906

317

ASAP: Architecture Support for Asynchronous Persistence ISCA ’22, June 18–22, 2022, New York, NY, USA

[5] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “Bbb: Simplifying
persistent programming using battery-backed buffers,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021, pp. 111–
124.

[6] H. Avni and T. Brown, “PHyTM: Persistent Hybrid Transactional Memory,”
Proc. VLDB Endow., vol. 10, no. 4, pp. 409–420, Nov. 2016. [Online]. Available:
https://doi.org/10.14778/3025111.3025122

[7] H. Avni, E. Levy, and A. Mendelson, “Hardware Transactions in Nonvolatile
Memory,” in Proceedings of the 29th International Symposium on Distributed
Computing - Volume 9363, ser. DISC 2015. Berlin, Heidelberg: Springer-Verlag,
2015, pp. 617–630. [Online]. Available: https://doi.org/10.1007/978-3-662-48653-
5_41

[8] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-NVM: Persistency
for Integrity-protected and Encrypted Non-volatile Memories,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser. ISCA
’19. New York, NY, USA: ACM, 2019, pp. 104–115. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322250

[9] “Next Generation SAP HANA Large Instances with Intel® Optane™ drive lower
TCO,” https://azure.microsoft.com/en-us/blog/next-generation-sap-hana-large-
instances-with-intel-optane-drive-lower-tco/.

[10] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy, “Exploring
Storage Class Memory with Key Value Stores,” in Proceedings of the 1st Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads, ser.
INFLOW ’13. New York, NY, USA: Association for Computing Machinery, 2013.
[Online]. Available: https://doi.org/10.1145/2527792.2527799

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[12] M. Cai, C. Coats, and J. Huang, “HOOP: Efficient hardware-assisted out-of-place
update for non-volatile memory,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), 2020, pp. 584–596.

[13] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging Locks for
Non-volatile Memory Consistency,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications,
ser. OOPSLA ’14. New York, NY, USA: ACM, 2014, pp. 433–452. [Online].
Available: http://doi.acm.org/10.1145/2660193.2660224

[14] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “REWIND: Recovery
Write-Ahead System for In-Memory Non-Volatile Data-Structures,” Proc.
VLDB Endow., vol. 8, no. 5, pp. 497–508, Jan. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2735479.2735483

[15] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main memory system
with incremental encryption,” in 2011 38th Annual International Symposium on
Computer Architecture (ISCA), June 2011, pp. 177–188.

[16] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swan-
son, “NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation,
Non-volatile Memories,” in Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS XVI, Newport Beach, CA, 2011, pp. 105–118.

[17] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better I/O Through Byte-addressable, Persistent Memory,” in Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser. SOSP ’09, Big
Sky, MT, 2009, pp. 133–146.

[18] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson, “System Software for Persistent Memory,” in Proceedings of the 9th
European Conference on Computer Systems, ser. EuroSys ’14, Amsterdam, The
Netherlands, 2014, pp. 15:1–15:15.

[19] “From FLOPS to IOPS: The New Bottlenecks of Scientific Computing,”
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-
scientific-computing/, Jan. 2020.

[20] E. Giles, K. Doshi, and P. Varman, “Bridging the Programming Gap
Between Persistent and Volatile Memory Using WrAP,” in Proceedings
of the ACM International Conference on Computing Frontiers, ser. CF ’13.
New York, NY, USA: ACM, 2013, pp. 30:1–30:10. [Online]. Available:
http://doi.acm.org/10.1145/2482767.2482806

[21] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and T. F.
Wenisch, “Relaxed persist ordering using strand persistency,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), 2020, pp.
652–665.

[22] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and T. F.
Wenisch, “Persistency for synchronization-free regions,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI 2018. New York, NY, USA: Association for Computing Machinery,
2018, p. 46–61. [Online]. Available: https://doi.org/10.1145/3192366.3192367

[23] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic durability with
persistent memory,” in Proceedings of the 52Nd Annual IEEE/ACM International
Symposium onMicroarchitecture, ser. MICRO ’52. NewYork, NY, USA: ACM, 2019,

pp. 466–478. [Online]. Available: http://doi.acm.org/10.1145/3352460.3358321
[24] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster, “NVthreads:

Practical Persistence for Multi-threaded Applications,” in Proceedings of
the Twelfth European Conference on Computer Systems, ser. EuroSys ’17.
New York, NY, USA: ACM, 2017, pp. 468–482. [Online]. Available: http:
//doi.acm.org/10.1145/3064176.3064204

[25] Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda, “Log-Structured Non-Volatile
Main Memory,” in 2017 USENIX Annual Technical Conference (USENIX ATC 17).
Santa Clara, CA: USENIX Association, 2017, pp. 703–717. [Online]. Available:
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu

[26] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware logging in transaction
systems,” in Proceedings of the 41th International Conference on Very Large Data
Bases (VLDB’15), 2015.

[27] Intel, “Persistent Memory Development Kit,” http://pmem.io/pmdk/, 2017.
[28] Intel Corporation, Intel® Architecture Instruction Set Extensions Programming

Reference, Sep. 2016, 319433-025.
[29] “Micron and Intel Announce Update to 3D XPoint Joint Development Pro-

gram,” https://www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html, Jan. 2021.

[30] “Micron and Intel Announce Update to 3D XPoint Joint Development
Program,” https://newsroom.intel.com/news-releases/micron-intel-announce-
update-3d-xpoint-joint-development-program/, Jul. 2018.

[31] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-Atomic Persistent Memory Updates
via JUSTDO Logging,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’16. New York, NY, USA: ACM, 2016, pp. 427–442. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872410

[32] J. Jeong, J. Hong, S. Maeng, C. Jung, and Y. Kwon, “Unbounded hardware trans-
actional memory for a hybrid dram/nvm memory system,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp. 525–
538.

[33] J. Jeong, C. H. Park, J. Huh, and S. R. Maeng, “Efficient Hardware-Assisted Logging
with Asynchronous and Direct-Update for Persistent Memory,” in 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Oct
2018, pp. 520–532.

[34] E. Jones, “In-memory TPC-C Implementation,” https://github.com/evanj/
tpccbench, Apr. 2011.

[35] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient Persist Barriers for Mul-
ticores,” in Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: ACM, 2015, pp. 660–671.

[36] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: Atomic Durability in
Non-volatile Memory through Hardware Logging,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb 2017, pp.
361–372.

[37] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, and V. Chidambaram, “SplitFS: A File
System thatMinimizes Software Overhead in File Systems for PersistentMemory,”
in Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP
’19), Ontario, Canada, October 2019.

[38] R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger, “Viyojit: Decoupling
Battery and DRAM Capacities for Battery-Backed DRAM,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture, ser.
ISCA ’17. New York, NY, USA: ACM, 2017, pp. 613–626. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080236

[39] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen, S. Narayanasamy,
and T. F. Wenisch, “Language-level Persistency,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, ser. ISCA
’17. New York, NY, USA: ACM, 2017, pp. 481–493. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080229

[40] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-Performance
Transactions for Persistent Memories,” in Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16, Atlanta, GA, 2016, pp. 399–411.

[41] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated Persist Ordering,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-49.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 58:1–58:13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3195638.3195709

[42] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an energy-efficient main memory alternative,” in 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), 2013, pp.
256–267.

[43] C.-H. Lai, J. Zhao, and C.-L. Yang, “Leave the CacheHierarchyOperationAs It Is: A
New PersistentMemory Accelerating Approach,” in Proceedings of the 54th Annual
Design Automation Conference 2017, ser. DAC ’17. New York, NY, USA: ACM,
2017, pp. 5:1–5:6. [Online]. Available: http://doi.acm.org/10.1145/3061639.3062272

[44] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Proceedings of the 42nd Annual

318

ISCA ’22, June 18–22, 2022, New York, NY, USA Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: Association for Computing Machinery, 2009, p. 469–480. [Online].
Available: https://doi.org/10.1145/1669112.1669172

[45] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren, “DudeTM:
Building Durable Transactions with Decoupling for Persistent Memory,” in
Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’17. New York, NY, USA: ACM, 2017, pp. 329–343. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037714

[46] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash Consistency in Encrypted Non-
volatile Main Memory Systems,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Feb 2018, pp. 310–323.

[47] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus: Optimizing
Memory and Storage Support for Non-volatile Memory Systems,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser. ISCA
’19. New York, NY, USA: ACM, 2019, pp. 143–156. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322206

[48] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an RDMA-enabled Distributed
Persistent Memory File System,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17). Santa Clara, CA: USENIX Association, 2017, pp. 773–
785. [Online]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/lu

[49] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-Ordering Consistency for persistent
memory,” in 2014 IEEE 32nd International Conference on Computer Design (ICCD),
Oct 2014, pp. 216–223.

[50] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan, K. Strauss,
and S. Swanson, “Atomic In-place Updates for Non-volatile Main Memories with
Kamino-Tx,” in Proceedings of the Twelfth European Conference on Computer
Systems, ser. EuroSys ’17. New York, NY, USA: ACM, 2017, pp. 499–512.
[Online]. Available: http://doi.acm.org/10.1145/3064176.3064215

[51] “Micron NVDIMMs: PersistentMemory Performance,” https://www.micron.com/-
/media/client/global/documents/products/product-flyer/nvdimm_flyer.pdf, 2016.

[52] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “ARIES: A Transac-
tion Recovery Method Supporting Fine-granularity Locking and Partial Rollbacks
Using Write-ahead Logging,” ACM Trans. Database Syst., vol. 17, no. 1, pp. 94–162,
Mar. 1992.

[53] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An Analysis
of Persistent Memory Use with WHISPER,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’17. New York, NY, USA: ACM, 2017, pp.
135–148. [Online]. Available: http://doi.acm.org/10.1145/3037697.3037730

[54] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but No Force: Efficient Hardware
Undo+Redo Logging for Persistent Memory Systems,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb 2018, pp.
336–349.

[55] “Intel Optane Persistent Memory Product Brief,” https://www.intel.com/
content/www/us/en/products/docs/memory-storage/optane-persistent-
memory/optane-dc-persistent-memory-brief.html, 2019.

[56] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory Persistency,” in Proceeding of
the 41st Annual International Symposium on Computer Architecuture, ser. ISCA
’14, Minneapolis, MN, 2014, pp. 265–276.

[57] J. Ren, Q. Hu, S. Khan, and T. Moscibroda, “Programming for Non-Volatile Main
Memory Is Hard,” in Proceedings of the 8th Asia-Pacific Workshop on Systems, ser.
APSys ’17. New York, NY, USA: ACM, 2017, pp. 13:1–13:8. [Online]. Available:
http://doi.acm.org/10.1145/3124680.3124729

[58] A. Rudoff, “Persistent memory programming,” https://www.usenix.org/system/
files/login/articles/login_summer17_07_rudoff.pdf, pp. 34–40, Sep. 2017.

[59] A. M. Rudoff, “Deprecating the PCOMMIT Instruction,” https://software.intel.
com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction, Sep. 2016.

[60] S. M. Shahri, S. Armin Vakil Ghahani, and A. Kolli, “(almost) fence-less persist
ordering,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2020, pp. 539–554.

[61] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A Flexible and
Fast Software Supported Hardware Logging Approach for NVM,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,

ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 178–190. [Online].
Available: http://doi.acm.org/10.1145/3123939.3124539

[62] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland, “The End of an Architectural Era: (It’s Time for a Complete Rewrite),”
in Proceedings of the 33rd International Conference on Very Large Data Bases,
ser. VLDB ’07. VLDB Endowment, 2007, pp. 1150–1160. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1325851.1325981

[63] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and M. M.
Swift, “Aerie: Flexible File-system Interfaces to Storage-class Memory,” in
Proceedings of the Ninth European Conference on Computer Systems, ser. EuroSys
’14, Amsterdam, The Netherlands, 2014, pp. 14:1–14:14. [Online]. Available:
http://doi.acm.org/10.1145/2592798.2592810

[64] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight Persistent
Memory,” in Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS XVI,
Newport Beach, CA, 2011, pp. 91–104.

[65] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable hardware logging
for atomic persistence in non-volatile main memory,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA), 2020, pp. 610–
623.

[66] D. Williams, “Replace pcommit with ADR or directed flushing,” https://lwn.net/
Articles/694134/, Jul. 2016.

[67] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying sources of
error in McPAT and potential impacts on architectural studies,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA),
2015, pp. 577–589.

[68] J. Xu and S. Swanson, “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories.” in FAST, 2016, pp. 323–338.

[69] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B. Da Silva,
S. Swanson, and A. Rudoff, “NOVA-Fortis: A Fault-Tolerant Non-Volatile Main
Memory File System,” in Proceedings of the 26th Symposium on Operating Systems
Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017, pp. 478–496. [Online].
Available: http://doi.acm.org/10.1145/3132747.3132761

[70] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to enable restora-
tion of secure non-volatile memories,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2018, pp. 403–415.

[71] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-Efficient Encryption for
Non-Volatile Memories,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: ACM, 2015, pp. 33–44. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694387

[72] M. Zhang, K. T. Lam, X. Yao, and C.-L. Wang, “SIMPO: A Scalable In-Memory
Persistent Object Framework Using NVRAM for Reliable Big Data Computing,”
ACM Trans. Archit. Code Optim., vol. 15, no. 1, pp. 7:1–7:28, Mar. 2018. [Online].
Available: http://doi.acm.org/10.1145/3167972

[73] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A Reliable and
Highly-Available Non-Volatile Memory System,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’15. New York, NY, USA: ACM, 2015, pp.
3–18. [Online]. Available: http://doi.acm.org/10.1145/2694344.2694370

[74] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the Performance
Gap Between Systems with and Without Persistence Support,” in Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-46, Davis, CA, 2013, pp. 421–432.

[75] K. A. Zubair and A. Awad, “Anubis: Ultra-low Overhead and Recovery Time for
Secure Non-volatile Memories,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA: ACM, 2019, pp.
157–168. [Online]. Available: http://doi.acm.org/10.1145/3307650.3322252

[76] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the Performance
and Endurance of Encrypted Non-Volatile Main Memory through Deduplicating
Writes,” in 2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct 2018, pp. 442–454.

[77] P. Zuo and Y. Hua, “SecPM: a Secure and Persistent Memory System for
Non-volatile Memory,” in 10th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 18). Boston, MA: USENIX Association, Jul. 2018. [Online].
Available: https://www.usenix.org/conference/hotstorage18/presentation/zuo

319

