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Community science image libraries offer a massive, but largely untapped, source of
observational data for phenological research. The iNaturalist platform offers a particularly
rich archive, containing more than 49 million verifiable, georeferenced, open access
images, encompassing seven continents and over 278,000 species. A critical limitation
preventing scientists from taking full advantage of this rich data source is labor. Each
image must be manually inspected and categorized by phenophase, which is both time-
intensive and costly. Consequently, researchers may only be able to use a subset of the
total number of images available in the database. While iNaturalist has the potential
to yield enough data for high-resolution and spatially extensive studies, it requires
more efficient tools for phenological data extraction. A promising solution is automation
of the image annotation process using deep learning. Recent innovations in deep
learning have made these open-source tools accessible to a general research audience.
However, it is unknown whether deep learning tools can accurately and efficiently
annotate phenophases in community science images. Here, we train a convolutional
neural network (CNN) to annotate images of Alliaria petiolata into distinct phenophases
from iNaturalist and compare the performance of the model with non-expert human
annotators. We demonstrate that researchers can successfully employ deep learning
techniques to extract phenological information from community science images. A CNN
classified two-stage phenology (flowering and non-flowering) with 95.9% accuracy and
classified four-stage phenology (vegetative, budding, flowering, and fruiting) with 86.4%
accuracy. The overall accuracy of the CNN did not differ from humans (p = 0.383),
although performance varied across phenophases. We found that a primary challenge
of using deep learning for image annotation was not related to the model itself, but
instead in the quality of the community science images. Up to 4% of A. petiolata images
in iNaturalist were taken from an improper distance, were physically manipulated, or
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were digitally altered, which limited both human and machine annotators in accurately
classifying phenology. Thus, we provide a list of photography guidelines that could be
included in community science platforms to inform community scientists in the best
practices for creating images that facilitate phenological analysis.

Keywords: phenology, deep learning, citizen science, iNaturalist, Alliaria petiolata (garlic mustard), convolutional
neural network

INTRODUCTION

The study of phenology, or the timing of life cycle events,
provides researchers with key insights into the role of
time, as an axis, in ecological communities. Studies that
monitor shifts in phenology are important for predicting the
e�ects of environmental drivers, such as climate change, on
species’ fitness, ecological interactions, ecosystem processes, and
evolution (Forrest and Miller-Rushing, 2010). New frontiers
in phenological research seek to assess the e�ects of large-
scale environmental drivers on phenology and must be able to
evaluate across multiple temporal and spatial scales (Cleland
et al., 2007; Gallinat et al., 2021). This endeavor requires access
to sources of phenological data that are both temporally and
spatially extensive. However, owing to the high data requirement
of phenological studies, previous researchers have been limited in
their ability to assess phenological questions which are spatially
and temporally explicit in tandem (Wolkovich et al., 2014).
Studies that assess a large temporal period of phenology, such
as those that utilize historic herbarium records of phenology, are
typically spatially limited to the local-scale or to a defined number
of sites across a larger region (Primack et al., 2004; Cook et al.,
2012; Hart et al., 2014; Park and Schwartz, 2015; Reeb et al., 2020).
By contrast, studies that assess a large spatial area (such as at
continental scales), are typically restricted to a short frame in time
or phenological observations are aggregated across years (Li et al.,
2019, but see Templ et al., 2018).

Up to this point, such sources of phenological data have not
been easily available (Tang et al., 2016). However, community
science platforms designed to document species diversity, such
as iNaturalist, or eBird, provide a rich source of spatially and
temporally extensive phenology data (Sullivan et al., 2009; Barve
et al., 2020; Li et al., 2021). In 2020 alone, iNaturalist users logged
12.6 million research-grade observations and eBird users logged
169 million observations (eBird, 2021; iNaturalist, 2021)1,2.
However, because these biodiversity-focused community science
programs are not designed to track species’ phenology, images in
biodiversity-focused databases must be manually annotated for
phenology. Though images from community science platforms
have been powerfully leveraged in phenology research (Barve
et al., 2020; Li et al., 2021), it requires much e�ort to
visually score many thousands of images. Currently, the most
common practice for rapidly annotating large numbers of images
is by employing non-expert scorers, such as undergraduate
students and volunteers, or through crowdsourcing platforms

1https://www.inaturalist.org/stats/2020
2https://ebird.org/news/2020-year-in-review

like Mechanical Turk (Willis et al., 2017). Not all researchers are
able to utilize this method, as it can be costly or require access
to a skilled labor pool (McDonough MacKenzie et al., 2020).
The e�ort and costs associated with sorting and categorizing
images into phenological stages means these community science
biodiversity databases are underutilized in phenological research.
A low-cost, precise, and e�cient method for categorizing images
in community science biodiversity databases would complement
data available in other community science datasets that are
specifically generated for phenological research, such as the
National Phenology Network’s Nature’s Notebook, which are
more limited in their spatial coverage (2.8 million observations
in 2020) (Crimmins, 2021), as well as initiatives combining
disparate phenological datasets (e.g., Brenskelle et al., 2019)3.

A promising solution to accessing the copious phenological
data embedded in community science biodiversity datasets lies in
automated image classification. Convolutional neural networks
(CNNs) are a widely used machine learning technique for image
classification (A�onso et al., 2017; Wäldchen and Mäder, 2018;
Christin et al., 2019). These neural networks extract important
features like lines, shapes, and colors and uses these features
to classify an image into pre-designated categories (Rawat and
Wang, 2017). Researchers can train CNNs to classify novel image
sets by providing a training data set of pre-classified images.
The CNN network then learns by iteratively predicting the
classification labels of samples, comparing its classification labels
to the true labels, and updating parameters within the network
accordingly (Rawat and Wang, 2017). Once trained, CNNs
can classify novel images rapidly and accurately. Researchers
have employed CNNs to classify large image datasets including
identifying animal species in wildlife camera trapping images
(Tabak et al., 2019) or quantifying herbivory damage and leaf
area on herbarium specimens (Meineke et al., 2020; Weaver et al.,
2020).

Recently, immense progress has been made in applying
deep learning models to phenological studies using herbarium
specimens (Pearson et al., 2020) and aerial images (Pearse
et al., 2021). Pearse et al. (2021) utilized a CNN approach to
classify tree species from aerial images and found that tree
phenology substantially influenced model accuracy. Lorieul et al.
(2019) utilized a CNN approach to classify images of herbarium
specimens into specific phenophases, while Davis et al. (2020) and
Goëau et al. (2020) utilized a mask R-CNN approach to detect
and count the number of reproductive structures on herbarium
specimens. In these applications, researchers demonstrated that
deep learning models are highly useful and with accuracy rates

3plantphenology.org
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that rival manual (human) annotation (Lorieul et al., 2019).
However, the classification of plant phenology in community
science images presents a new challenge for CNNs. Unlike
images of herbarium records that aremounted and photographed
in a standardized fashion, images of plants in the field vary
widely in the background environment, the distance of a
plant to the camera, the resolution of an image, and light
conditions (Barve et al., 2020). Increased image variability
could reduce the accuracy, and thus utility, of using deep
neural networks to classify plant phenology. Additionally, high
image variability might inflate the required size of the training
dataset to an unreasonably large number of images (Willi et al.,
2019). Thus, it remains to be seen what the true threshold of
neural network performance is when annotating phenology in
community science images.

Here, we evaluate the potential use of deep neural networks
to automatically classify the phenology of community science
images uploaded to the iNaturalist platform.We focus onAlliaria
petiolata (Brassicaceae; garlic mustard), a biennial herb that is
common in Europe, western Asia, and widely naturalized in
forests of eastern North America. In its first year, A. petiolata
is a low-growing rosette of leaves and reproduces in mid-
spring of its second year (Anderson et al., 1996). We selected
A. petiolata because it is the fourth-most observed plant
species on iNaturalist (over 40,000 research-grade observations
between 1995 and 2020) and has distinct reproductive structures
that can be identified from images. We ask the following
questions: (1) How e�ective are CNNs in identifying phenology
in a 2-phase and a 4-phase classification scheme? (2) How
does CNN performance compare against the current best-
practice, non-expert human scoring? Finally, based upon CNN
performance, we recommend “best practices” for community
scientists uploading images into community science platforms to
enhance future phenology research.

MATERIALS AND METHODS

Creating a Training and Validation Image
Set
We downloaded 40,761 research-grade observations of
A. petiolata from iNaturalist, ranging from 1995 to 2020.
Observations on the iNaturalist platform are considered
“research-grade if the observation is verifiable (includes image),
includes the date and location observed, is growing wild (i.e., not
cultivated), and at least two-thirds of community users agree on
the species identification. From this dataset, we used a subset of
images for model training. The total number of observations in
the iNaturalist dataset are heavily skewed toward more recent
years. Less than 5% of the images we downloaded (n = 1,790)
were uploaded between 1995 and 2016, while over 50% of the
images were uploaded in 2020. To mitigate temporal bias, we
used all available images between the years 1995 and 2016 and
we randomly selected images uploaded between 2017 and 2020.
We restricted the number of randomly selected images in 2020
by capping the number of 2020 images to approximately the
number of 2019 observations in the training set. The annotated

observation records are available in the Supplementary Data
Sheet 1. The majority of the unprocessed records (those which
hold a CC-BY-NC license) are also available on GBIF.org (2021).

One of us (RR) annotated the phenology of training and
validation set images using two di�erent classification schemes:
two-stage (non-flowering, flowering) and four-stage (vegetative,
budding, flowering, and fruiting). For the two-stage scheme, we
classified 12,277 images and designated images as “flowering” if
there was one or more open flowers on the plant. All other images
were classified as non-flowering. For the four-stage scheme, we
classified 12,758 images. We classified images as “vegetative”
if no reproductive parts were present, “budding” if one or
more unopened flower buds were present, “flowering” if at least
one opened flower was present, and “fruiting” if at least one
fully-formed fruit was present (with no remaining flower petals
attached at the base). Phenology categories were discrete; if there
was more than one type of reproductive organ on the plant,
the image was labeled based on the latest phenophase (e.g., if
both flowers and fruits were present, the image was classified as
fruiting).

For both classification schemes, we only included images in
the model training and validation dataset if the image contained
one or more plants with clearly visible reproductive parts were
clear and we could exclude the possibility of a later phenophase.
We removed 1.6% of images from the two-stage dataset that
did not meet this requirement, leaving us with a total of 12,077
images, and 4.0% of the images from the four-stage leaving us
with a total of 12,237 images. We then split the two-stage and
four-stage datasets into a model training dataset (80% of each
dataset) and a validation dataset (20% of each dataset).

Training a Two-Stage and Four-Stage
Convolutional Neural Network
We adapted techniques from studies applying machine learning
to herbarium specimens for use with community science images
(Lorieul et al., 2019; Pearson et al., 2020). We used transfer
learning to speed up training of the model and reduce the size
requirements for our labeled dataset. This approach uses a model
that has been pre-trained using a large dataset and so is already
competent at basic tasks such as detecting lines and shapes in
images. We trained a neural network (ResNet-18) using the
PyTorch machine learning library (Paszke et al., 2019) within
Python. We chose the ResNet-18 neural network because it had
fewer convolutional layers and thus was less computationally
intensive than pre-trained neural networks with more layers.
In early testing we reached desired accuracy with the two-stage
model using ResNet-18. ResNet-18 was pre-trained using the
ImageNet dataset, which has 1,281,167 images for training (Deng
et al., 2009). We utilized default parameters for batch size (4),
learning rate (0.001), optimizer (stochastic gradient descent), and
loss function (cross entropy loss). Because this led to satisfactory
performance, we did not further investigate hyperparameters.

Because the ImageNet dataset has 1,000 classes while our
data was labeled with either 2 or 4 classes, we replaced the final
fully-connected layer of the ResNet-18 architecture with fully-
connected layers containing an output size of 2 for the 2-class
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problem and 4 for the 4-class problem. We resized and cropped
the images to fit ResNet’s input size of 224 ⇥ 224 pixels and
normalized the distribution of the RGB values in each image
to a mean of zero and a standard deviation of one, to simplify
model calculations. During training, the CNNmakes predictions
on the labeled data from the training set and calculates a loss
parameter that quantifies the model’s inaccuracy. The slope of
the loss in relation to model parameters is found and then the
model parameters are updated to minimize the loss value. After
this training step, model performance is estimated by making
predictions on the validation dataset. The model is not updated
during this process, so that the validation data remains “unseen”
by the model (Alexander et al., 1995; Rawat and Wang, 2017).
This cycle is repeated until the desired level of accuracy is
reached. We trained our model for 25 of these cycles, or epochs.
We stopped training at 25 epochs to prevent overfitting, where
themodel becomes trained too specifically for the training images
and begins to lose accuracy on images in the validation dataset
(Alexander et al., 1995).

We evaluated model accuracy and created confusion matrices
using the model’s predictions on the labeled validation data. This
allowed us to evaluate the model’s accuracy and which specific
categories are the most di�cult for the model to distinguish.
For using the model to make phenology predictions on the full,
40,761 image dataset, we created a custom dataloader function in
PyTorch using the Custom Dataset function, which would allow
for loading images listed in a csv and passing them through the
model associated with unique image IDs.

Hardware Information
Model training was conducted using a personal laptop (Ryzen 5
3500U cpu and 8 GB of memory) and a desktop computer (Ryzen
5 3600 cpu, NVIDIA RTX 3070 GPU and 16 GB of memory).

Comparing Convolutional Neural
Network Accuracy to Human Annotation
Accuracy
We compared the accuracy of the trained CNN to the accuracy
of seven inexperienced human scorers annotating a random
subsample of 250 images from the full, 40,761 image dataset.
An expert annotator (RR, who has over a year’s experience in
annotating A. petiolata phenology) first classified the subsample
images using the four-stage phenology classification scheme
(vegetative, budding, flowering, and fruiting). Nine images could
not be classified for phenology and were removed. Next, seven
non-expert annotators classified the 241 subsample images using
an identical protocol. This group represented a variety of di�erent
levels of familiarity with A. petiolata phenology, ranging from
no research experience to extensive research experience (two
or more years working with this species). However, no one
in the group had substantial experience classifying community
science images and all were naïve to the four-stage phenology
scoring protocol. The trained CNN was also used to classify the
subsample images. We compared human annotation accuracy
in each phenophase to the accuracy of the CNN using students
t-tests. The model and human annotated subsample data can

be found in the Supplementary Data Sheet 2. This research is
exempt from University of Pittsburgh IRB approval according to
the University’s Exempt Criteria 45 CFR 46.104(d)(2).

Unclassifiable Images
Within the four-stage training and validation dataset, we
removed 4% of plant images that could not be classified into
a phenological stage. To quantitatively assess the cause of
unclassifiable images, the experienced annotator (RR) labeled
these images in one of six categories: (1) camera distance (camera
was too far or too close to the plant to classify phenology),
(2) physical manipulation (the plant was no longer rooted in
the ground), (3) digital manipulation (the image was digitally
altered or was copied from a secondary source), (4) senesced
plant (no remaining leaves), (5) misidentified species (image did
not contain A. petiolata), and 6) duplicate entry (an image had
been logged two or more times by the same user).

RESULTS

Accuracy of a Two-Stage and Four-Stage
Convolutional Neural Network
The two-stage CNN we trained to identify flowering vs. non-
flowering images was able to correctly categorize 95.9% of images
in a 2,415-image test dataset (Figure 1). The four-stage CNN we
trained to identify vegetative, budding, flowering, and fruiting

FIGURE 1 | A confusion matrix showing model predictions vs. expert
assigned labels for a CNN predicting 2-stage phenology of A. petiolata in a
validation set of 2,415 iNaturalist images. Rows represent true labels of
images, assigned by an expert annotater, columns represent label assigned
by the CNN, and the numbers in cells represent the number of images within
each category. Cells on the diagonal from the top left to bottom right
represent correct model classifications. Overall CNN accuracy was 95.9%.
The CNN was constructed using ResNet 18 and trained on 9,662 images of
A. petiolata from iNaturalist.
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images was able to identify 86.4% of images from a 2,448-
image test dataset (Figure 2). The drop in accuracy from the
two-stage CNN is largely attributable to confusion between
flowering and fruiting images. The four-stage CNN incorrectly
classified 131 fruiting images as flowering, and 81 flowering
images as fruiting. Confusion of a flowering plant for a fruiting
plant or vice versa accounted for 64% of incorrectly classified
images. All other mistaken classification happened much less
frequently, the next most common mistake being 33 budding
plants classified as vegetative.

Comparing Convolutional Neural
Network Accuracy to Human Annotation
Accuracy
To evaluate the usefulness of image classification by CNNs,
we compared the accuracy of the trained four-stage CNN in
classifying a random subsample of 241 images from the full
dataset to a group of seven non-expert human annotators.
Overall, the accuracy of the CNN did not di�er significantly
from humans (p = 0.383; Figure 3). The CNN correctly classified
81.7% of images while the non-expert group correctly classified
78.6% of images on average, with individual non-expert accuracy
ranging from 60.9 to 86.6%. Evaluating individual phenophases,
we found that the CNNwasmarginally less accurate than humans
at identifying vegetative images (8% higher human accuracy,
p = 0.053), but significantly more accurate in identifying
budding images (23% lower human accuracy, p = 0.003). For

FIGURE 2 | A confusion matrix showing model predictions vs. expert
assigned labels for a CNN predicting 4-stage phenology of A. petiolata in a
validation set of 2,448 iNaturalist images. Rows represent true labels of
images, assigned by an expert scorer, columns represent label assigned by
the CNN, and the numbers in cells represent the number of images within
each category. Cells on the diagonal from the top left to bottom right
represent correct CNN classifications. Overall CNN accuracy was 86.3%. The
neural network was constructed using ResNet 18 and trained on 9,789 test
images of A. petiolata from iNaturalist.

flowering and fruiting phenophases, we found no di�erence
in accuracy between the CNN and humans (p = 0.89 and
p = 0.23, respectively).

Fully Annotated Dataset
We finally used the trained CNN to annotate the full A. petiolata
dataset, which contained 40,761 images. This set of community
science images represented observations spanning the entire
species range, 48 countries, and 15 years (Figure 4). The vast
majority of observations (>80%) were recorded between the
months of March and June, encapsulating the reproductive
season for this species (Figure 4). The CNN classified 24.5% of
images as vegetative, 9.3% as budding, 34.0% as flowering, and
32.2% as fruiting.

Unclassifiable Images
Among unclassifiable images that were removed from the 4-stage
training and validation dataset, the majority were removed owing
to issues with the image quality for phenology use. We removed
57.1% of the images (n = 366) because the camera was too close or
too far from the plant to determine the plant’s phenology, 21.2%
(n = 136) because the photo captured a physically manipulated
plant, and 1.4% (n = 9) because the photographer digital alterated
the image. A minority of images were removed owing to other
reasons.We removed 15.6% (n = 100) of images because the plant
was senesced, 4.1% (n = 26) because the image did not contain
the correct species, and 0.6% (n = 4) because the image was a
duplicate entry.

The proportion of “unclassifiable” images has roughly
declined over time (Supplementary Figure 1), signaling an
overall improvement in image quality over time. Within the
expert-annotated training image set, the annual proportion
of unclassifiable images was 21% in 2010, 6% in 2015,
and 4% in 2020.

DISCUSSION

Community science biodiversity databases are rich with
observations of species phenology. However, a researchers’
ability to use this phenological information is limited because
it is contained within images that require manual classification,
which is a time-consuming and costly endeavor. Here, we
determine the e�ectiveness of CNNs to automatically classify
the phenology of a widespread plant, Alliaria petiolata (garlic
mustard), using images uploaded to the community science
platform iNaturalist. We find that CNNs are e�cient and
e�ective at classifying images into both a coarse two-phase
classification scheme and a finer four-phase classification
scheme. We also demonstrate that the CNN performed similarly
to annotation by non-experts, which is currently the most
popular method for large-scale phenology annotation. Thus,
we conclude that CNNs, once trained, hold immense potential
to serve as an inexpensive, rapid method of phenological data
extraction from large community science image databases
like iNaturalist.
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FIGURE 3 | Heat map comparing non-expert human accuracy to CNN accuracy in annotating a dataset of 241 A. petiolata iNaturalist images. Accuracy was
calculated as the percent of correctly annotated images in each phenophase. Each row represents the accuracy of a non-expert individual, with the exception of the
bottom row (dashed line box) which represents the accuracy of the CNN.

FIGURE 4 | A. petiolata phenology progression, by calendar week. Weekly maps depict A. petiolata phenology using the full, CNN-annotated iNaturalist image set.
Date ranges from early March (week 12) to mid-may (week 21). Observations have been combined across years (1995–2020). Color depicts phenophase: vegetative
observations are white, budding observations are blue, flowering observations are yellow, and fruiting observations are red.
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This neural network does not require an extensive background
in deep learning techniques to be utilized by researchers. It
utilizes an open-source CNN (ResNet-18) that is pre-trained
to identify images into 1000 object categories. By using a pre-
trained model, we reduced the computing power necessary
for training the algorithm to classify images of plants into
specific phenophases. By using open-source machine learning
functions from the PyTorch libraries in Python (Paszke et al.,
2019), we also reduced our coding time. PyTorch is an open-
source machine learning library, which provides functions for
model-building and evaluation as well as an extensive array of
tutorials for learning (Pytorch, 2021)4. Thus, the CNN presented
in this project could be re-trained to classify phenology for
another set of images, even for researchers with limited deep
learning knowledge or computing resources. Based on our
informal observations during model development, we found
that a coarse and simple two-stage phenology classifier (such as
flowering/non-flowering) can be trained using as few as 2,000
images and, in our experience, requires the computing power of
a modern personal laptop. Our four-stage phenology classifier
required a significantly larger training set of 12,758 images to
reach the existing level of performance (86.4% accuracy). We
did not evaluate whether the performance of the four-stage
classifier would improve with a larger training and validation
sets. In our experience, training a model of this size can be
accomplished on a standard modern desktop. The usefulness
of CNNs for phenological data extraction will depend on the
phenology classification scheme and the number of images in
the dataset. We were able to extract four-stage phenological
information from the full, 40,761 image set of A. petiolata using
a model trained o� a subsample of 12,758 images; reducing the
time for human annotation by 68.7%. Researchers who wish to
utilize a finer-scale phenology classification scheme (ex 6-stage)
will likely require a larger training image set.

The CNN’s accuracy in classifying images hinged on the
quality of the images, not the quality of the model. While some
failures in image quality are unavoidable, such as a mistaken
species identity or images taken of senesced plants, the majority
of failures can be attributed to avoidable photographer choices.
We found that iNaturalist images were highly variable in the
following three aspects: the distance between the photographer
and the plant, the level of physical manipulation of the plant,
and the degree of digital alteration of the photograph (Figure 5).
The distance from the camera to the plant varied from a few
decimeters (for example, close-up pictures of a single flower) to
several meters. At both ends of this range, a plant’s phenology
can be misidentified. For example, when photographers upload
close-up images of a single flower, other reproductive organs
may be left out of the image frame. If a plant is also developing
fruits, but those reproductive organs are not captured in an
image of flowers, the image may be incorrectly classified as
“flowering” instead of “fruiting.” Likewise, when photographers
upload images of a plant from too far away, the reproductive
organs may be too small or too blurry to accurately classify.
Some photographers remove plants and move them to a new

4https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

location (such as indoors) or press them for herbarium records.
When photographers move or manipulate plants, reproductive
organs can fall o� the plant or be missed in the image,
reducing the CNN’s accuracy of image classification. Lastly, some
photographers will upload non-original images that are either
digitally altered or are copies of pre-existing images. This can
lead to distortion of the image and di�culty in identifying
reproductive organs. Researchers are also unable to trust the
geospatial information associated with these images because
there is no way to verify where the coordinates were generated.

We were unable to manually classify the four-stage phenology
of 4.0% of A. petiolata images because they did not contain
the key features required to classify phenology. While expert
human annotators can manually remove unclassifiable images
from analysis, our trained CNN was forced to label them into
a pre-defined category. This ultimately increases the number
of incorrect classifications within the annotated dataset when
using deep neural networks. However, as long as the occurrence
rate of unclassifiable images is small, it is unlikely to introduce
substantial error within large datasets. The higher quality
the community science image, the greater the ability for the
model to annotate phenology accurately without encountering
unclassifiable images. In our analysis, we found that the
percentage of unclassifiable images has roughly decreased over
time, having declined from 21% of images in 2010 to just 4% of
images in 2020. We expect image quality to continue to improve,
owing to the widespread use of smartphones with ever-increasing
associated camera capabilities and an increasing public awareness
of proper photography techniques.

We outline a set of simple recommendations to improve the
quality of community science images for phenology research
(Figure 5). If adopted by community photographers, these
recommendations would greatly improve the accessibility of
community science images for phenological research by making
it easier for both deep neural networks and human annotators
alike to accurately annotate phenology. We hope that these
will be useful to community science platforms for informing
their educational material, or directly useful to community
scientists who wish to individually contribute their images to
research. First, the organism of interest should take up the
entire frame. Second, the image should be angled to allow the
viewer to identify all reproductive organs (ex. buds, flowers, and
fruits). Third, the image should be taken of the organism in its
original location, so as not to disturb important phenological
features and to ensure that the image’s geolocation is accurate.
Fourth, images should be uploaded in their original form; not
digitally altered nor uploaded as copies of the original photo.
Ideally, additional images are uploaded to show additional
features of interest, including detailed characters needed for
identification or otherwise worth documenting, as well as images
showing the population, community, and environmental context
of the individual plant. However, the first picture uploaded
should capture the standardized recommendations we suggest to
specifically capture the individual at the whole organism level.

Importantly, we found that a CNN performed similarly to
non-expert human annotators in their phenology classification
accuracy. Human annotators had the lowest accuracy in the
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FIGURE 5 | Description of preferred vs. non-preferred community science images for use in phenology research. Example images were sourced from iNaturalist.
Image credit (iNaturalist username): (a) szuwarek; (b) deannahunt; (c) midnight_jim; (d) pedropedreiro; (e) pleasethetrees; (f) ny_wetlander; (g) r_rogge;
(h) chuckt2007.

budding and fruiting phases (61.8 and 67.1%, respectively).While
the bright white flowers of A. petiolata are easy to identify, the
green buds and fruits are substantially easier to miss without
a trained eye, leading to an increase in error for inexperienced
human annotators. The trained CNN had equal di�culty in
identifying fruits but was substantially better at identifying
budding images than human annotators. Budding images are

uncommon among A. petiolata images (roughly 10%). We
predict that human annotators had more di�culty in identifying
buds due to an unconscious cognitive bias in searching for
common features and overlooking rare ones. The CNNmay have
been less susceptible to bias introduced by an underrepresented
class such as budding phase A. petiolata; suggesting an advantage
to using this tool.
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Furthermore, CNNs can be a substantially faster and
less-expensive method of data collection when compared to
inexperienced human annotators. In general, we found that
inexperienced humans could annotate 2–5 images per minute.
This would translate to at least 135 h of paid labor if a person
were to manually annotate the full 40,761 image dataset of
A. petiolata. By contrast, the CNN annotated the full image
dataset in under 2 h. After the initial time investment required
to annotate a training dataset and write the code for a CNN,
images can be annotated more rapidly using CNNs than with
manual annotation. While the initial time investment in the
development of a machine learning model is steep, the speed at
which a CNN can annotate a large dataset produces exponential
gains in e�ciency as dataset size increases.

It will be imperative for CNN-generated phenological
data to align with standardized phenological ontologies like
the standardized herbarium specimen digitization protocol
developed by Yost et al. (2018) and the Plant Phenology
Ontology developed by Stucky et al. (2018). This alignment
would allow researchers to compare iNaturalist, herbarium,
or in situ phenology data and promote the inclusion of
iNaturalist phenological data in larger compiled databases.
For example, the two-stage phenology scheme used in this
study provides a coarse level of phenological information,
akin to first-order scoring as described in Yost et al. (2018).
The four-stage scheme provides a finer scale of phenological
information, akin to second-order scoring (Yost et al., 2018). The
integration of standardized ontologies will allow CNN-generated
data to be ingested into larger phenology databases such as
plantphenology.org (Brenskelle et al., 2019), enabling future data
reuse and interoperability.

We successfully trained a CNN to extract phenological data
from community science images of A. petiolata. We note that
we intentionally selected A. petiolata because its reproductive
organs are visible from a distance (and can be identified in
photos) and it was abundant within the iNaturalist database.
For researchers who wish to study species that have lower
availability of images in community science databases or hard-
to-distinguish reproductive organs, they may need to find ways to
supplement the training set so that the CNN can continue to learn
phenological features. This can be achieved by pooling images
from multiple public datasets, data augmentation techniques,
or supplementation with images of related species (Christin
et al., 2019). For this reason, future endeavors could evaluate the
accuracy of CNNs trained on community science image sets that
contain multiple species.

Since its inception in 2013, the iNaturalist platform has seen
explosive growth in the number of images uploaded to the
platform. More than 12 million research-grade observations were
recorded in 2020, up from 7 million observations in 2019 and 3
million in 2018 (iNaturalist, 2019, 2020, 2021)5,6,7. These records
are extensive and allow phenology researchers to study phenology
across entire species ranges, climate regions, ecoregions, and

5https://www.inaturalist.org/stats/2020
6https://www.inaturalist.org/stats/2019
7https://www.inaturalist.org/stats/2018

more (Di Cecco et al., 2021). Community science datasets will
become even more valuable to phenology researchers over time
as new images come online and extend the temporal coverage of
the data (Mayer, 2010). However, in order to take full advantage
of community science datasets, new tools are needed to extract
phenological data inexpensively and e�ciently from images. We
have shown that CNNs can successfully extract phenological data
from iNaturalist image sets, with comparable accuracy to manual
annotation by humans, but at a lower labor cost and higher speed.
This tool o�ers a promising solution to integrate community
science datasets with cutting-edge phenological research and
expand the scope of this field.
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