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Abstract. Consider the control-flow model of transaction execution in a dis-
tributed system modeled as a communication graph where shared objects po-
sitioned at nodes of the graph are immobile but the transactions accessing the
objects send requests to the nodes where objects are located to read/write those
objects. The control-flow model offers benefits to applications in which the move-
ment of shared objects is costly due to their sizes and security purposes. In this
paper, we study the ordered scheduling problem of committing dependent trans-
actions according to their predefined priorities in this model. The considered
problem naturally arises in areas, such as loop parallelization and state-machine-
based computing, where producing executions equivalent to a priority order is
needed to satisfy certain properties. Specifically, we study ordered scheduling
considering two performance metrics fundamental to any distributed system: (i)
execution time - total time to commit all the transactions and (ii) communication
cost - the total distance traversed in accessing required shared objects. We design
scheduling algorithms that are individually or simultaneously efficient for both
the metrics and rigorously evaluate them through several benchmarks on random
and grid graphs, validating their efficiency. To our best knowledge, this is the first
study of ordered scheduling in the control-flow model of transaction execution.

1 Introduction

Concurrent processes (threads) need to synchronize to avoid introducing inconsisten-
cies while accessing shared data objects. Traditional mechanisms of locks and bar-
riers have well-known downsides, including deadlock, priority inversion, reliance on
programmer conventions, and vulnerability to failure or delay. Transactional memory
(TM) [16,37] has emerged as an attractive alternative. Using TM, program code is split
into transactions, blocks of code that appear to execute atomically. Transactions are
executed speculatively: synchronization conflicts (or failures) may cause an executing
transaction to abort: its effects are rolled back and the transaction is restarted. In the
absence of conflicts (or failures), a transaction typically commits, causing its effects to
become visible to all threads. Several commercial processors support TM, e.g., Intel’s
Haswell [22] and IBM’s Blue Gene/Q [14], zEnterprise EC12 [27], and Power8 [8].
TM has been studied extensively for multiprocessors, where processors operate on a
single shared memory and the latency to access (read/write) shared memory is the same
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(and negligible) for each processor. However, recently, the computing trend is shifting
toward distributed multiprocessors, where the memory access latency varies depending
on the processor in which the thread executes and the physical segment of memory that
stores the requested memory location. Therefore, the recent research focus is on how
to support TM in distributed multiprocessors. Some proposals in this direction include
TM?2C [13], NEMO [26], cluster-TM [3,24], GPU-TM [10], and HYFLOW [38].

TM is beneficial in distributed systems where data is spread across multiple nodes.
For example, distributed data centers can use TM to simplify the burden of distributed
synchronization and provide more reliable and efficient program execution while ac-
cessing data from remote nodes. Distributed TM (DTM) designed for such systems need
to execute transactions effectively by taking into consideration the system’s infrastruc-
ture. The network structure can play a crucial role in the DTM performance, since the
data transactions access has to be reached across the network in a timely manner.

In this paper, we study ordered scheduling (ORDS) problem in distributed multipro-
cessors. We model distributed multiprocessors as an n-node connected, undirected, and
weighted graph GG, where each node denotes a processor and each edge denotes a com-
munication link between processors. A set of w shared objects S := {51, 52,...,S}
reside on the (possibly different) nodes of G. We consider the control-flow model [33],
where objects are immobile but transactions send access requests to the nodes the re-
quired objects are located. Consider a set 7 := {T'(v1,age1),T(v2, ages),...} of
transactions mapped (arbitrarily) to the nodes of G with each T'(v;, age;) accessing
an arbitrary subset of the shared objects S(7T'(v;, age;)) C S, where age is an exter-
nally provided parameter that is unique for each transaction providing a priority order.
We say transaction T'(v;, age;) is dependent on T'(v;, age;), age; < age;, if at least
an object read/write by T'(v;, age;) is being written by T'(v;, age;). The ORDS prob-
lem is to commit the dependent transactions in the age order. For example, transaction
T (vs, age;) that depends on T'(vj, age;), age; < age;, commits only after T'(v;, age;)
has been committed. Non-dependent transactions can execute and commit in parallel.

ORDS naturally arises in applications where producing (dependent) executions
equivalent to a priority order is needed to satisfy/guarantee certain properties. Example
applications include speculative loop parallelization and distributed computation using
state machine approach [31]. In loop parallelization [32], loops designed to run sequen-
tially are parallelized by executing their operations concurrently using TM. Providing
an order matching the sequential one is fundamental to enforce equivalent semantics
for both the parallel and sequential code. Regarding state machine approach [19], many
distributed systems order tasks before executing them to guarantee that a single state
machine abstraction always evolves consistently on distinct nodes, e.g., Paxos [23].

ORDS has been studied heavily in multiprocessors [11,31] where execution time
is the only metric of interest. However, those studies focused on empirical studies and
they do not extend to distributed multiprocessors as they do not consider latency. Re-
cently, Poudel et al. [29] studied for the first time the ORDS problem in a distributed
multiprocessor. However, they considered the data-flow model where transactions are
immobile but the objects are mobile. Since the data-flow model is direct opposite of the
control-flow model, the contributions in [29] do not apply to the control-flow model.
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Contributions. In this paper, we design ORDS scheduling algorithms in the control-
flow model and establish complementary results compared to [29] . We consider the
synchronous communication model [6,7] where time is divided into discrete steps. We
optimize two performance metrics: (i) execution time — the total time to execute and
commit all the transactions, and (ii) communication cost — the total distance messages
travel to access shared objects. A transaction’s execution finishes as soon as it commits.
The presented algorithms determine the time step when each transaction executes and
commits. We measure the efficiency using a widely-studied notion of competitiveness
— the ratio of total time (communication cost) for a designed algorithm to the minimum
time ( communication cost) achievable by an optimal scheduling algorithm.

Specifically, we have the following five contributions:

1. We provide an impossibility result showing that the optimal execution time and
optimal communication cost can not be achieved simultaneously. (Section 3)

2. For the offline version, we provide two algorithms, one with optimal execution time
and another with 2-competitive on communication cost. (Section 4)

3. For the partial dynamic version with the knowledge of transactions and their priori-
ties but not the shared objects, we provide an O(log2 n)—competitive algorithm for
both execution time and communication cost. (Section 5)

4. For the fully dynamic version with transactions arriving over time, we provide
an O(D)-competitive algorithm for both execution time and communication cost,
where D is the diameter of the graph G. (Section 6)

5. We implement and rigorously evaluate the designed algorithms through micro-
benchmarks and complex STAMP benchmarks on random and grid graphs, which
validate the efficiency of the designed algorithms. (Section 7)

Techniques. For the offline version, the optimal time algorithm sends access requests in
parallel following the shortest paths in GG. The 2-competitive communication cost algo-
rithm sends (combined) access requests through a minimum Steiner tree that connects
the graph nodes containing the required objects.

In the partial dynamic version (with the knowledge of transactions and their pri-
orities but not the shared objects), the proposed algorithm exploits the concept of dis-
tributed directory protocols [17,35]. Particularly, the directory protocol technique based
on the hierarchical partitioning of the graph into clusters is used. This technique guar-
antees that the object access cost for a transaction is within an O(log®n) factor from
the cost of minimum Steiner tree for that transaction. The directory protocol technique
is then extended to the dynamic version guaranteeing O(D)-competitiveness without
knowing transactions and their priorities a priori. This bound is interesting since the
hierarchical partitioning technique used in the partial dynamic version is shown to only
provide O(D log® n)-competitive bound for the fully dynamic version. Therefore, the
dynamic algorithm uses the directory protocol running on a spanning tree.

Related Work. Gonzalez-Mesa et al. [11] introduced the ORDS problem for multi-
processors and Saad et al. [31] presented three improved algorithms and evaluated
them through empirical studies. Transaction scheduling with no predefined ordering
is widely-studied in multiprocessors providing provable upper and lower bounds, and
impossibility results [1,34], besides several other scheduling algorithms that were only



4 P. Poudel et al.

evaluated experimentally [39]. The multiprocessor ideas are not suitable for distributed
multiprocessors as they do not deal with a crucial metric, communication cost.

Many previous studies on transaction scheduling in distributed multiprocessors,
e.g., [2,4,5,6,7,35,36], considered the data-flow model. The papers [17,35,40] focused
on minimizing communication cost. Execution time minimization is considered by
Zhang et al. [40]. Busch et al. [4] considered minimizing both execution time and com-
munication cost. Busch et al. [5] considered special topologies (e.g., grid, line, clique,
star, hypercube, butterfly, and cluster) and provided offline algorithms minimizing exe-
cution time and communication cost. Recently, Busch et al. [7] provided dynamic (on-
line) algorithms. However, all these works have no predefined ordering requirement.

Some papers considered the hybrid model that combines data-flow with control-
flow. Hendler et al. [15] studied a lease based hybrid DTM which dynamically deter-
mines whether to migrate transactions to the nodes that own the leases or to demand
the acquisition of these leases by the node that originated the transaction. Palmieri et al.
[28] presented a comparative study of data-flow versus control-flow models.

2 Model and Preliminaries

Graph. We consider a distributed multiprocessor G = (V| E,w) of n nodes (repre-
senting processing nodes) V' = {v1,v9,...,v,}, edges (representing communication
links between nodes) E C V x V, and edge weight function to : £ — ZT. A
path p in G is a sequence of nodes (with respective edges between adjacent nodes)
with length(p) = >° ., w(e). We assume that G is connected and dist(u,v) de-
notes the shortest path length (distance) between two nodes u,v € G. The diameter
D := max, ye¢ dist(u,v), the maximum shortest path distance between two nodes
u,v € G. The communication links are bidirectional — messages can be sent in both di-
rections. Both the nodes and links are non-faulty and the links deliver messages in FIFO
order. There is no bandwidth restriction on the edges, i.e., the messages can be of any
size and any number of messages can traverse an edge at any time. The k-neighborhood
of anode u € G is the set of nodes which are at distance < k from u.

Communication Model. We consider the synchronous communication model where
time is divided into discrete steps such that at each time step a node receives messages,
performs a local computation, and then transmits messages to adjacent nodes [5,6,7].
For an edge e = (u, v) € E, it takes to(e) time steps to transfer a message msg from u
to v (and vice-versa); the communication cost contributed by msg is w(e).

Transactions. Let S = {57, 5s, ..., Sy} denote the w shared objects residing on nodes
of G. Each object has some value which can be read/written. The node of G where an
object S; is currently positioned is called the owner of S;, denoted as owner(S;). A
transaction T'(v;, age;) is an atomic block of code mapped at node v; which requires a
set of objects S(T'(v;, age;)) C S and has priority age;. To simplify the analysis, we
assume that each object has a single copy (for both read/write). We assume that each
node runs a single thread and issues transactions sequentially.

Control-flow Model. The model works in two steps:
i. Object Access Phase: Transaction T'(v;, age;) sends access request to the owner
node of each object S; € S(T'(v;,age;)) and the owner node of .S; replies back a
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success or failure message to v;. A success message for S; means that T'(v;, age;)
was able to read/write S;, whereas a failure message means denied access.
ii. Validation Phase: If transaction T'(v;, age;) receives success message from owner
node of each S; € S(T'(v;, age;)), then it commits. If T'(v;, age; ) receives at least
a failure message, then it either aborts or waits.
Transaction Execution and Conflicts. For an access request received for S; from
T(v;, age;), owner(S;) handles that request by allowing T'(v;, age;) to read or write
(update) S; and replies a success message back to v;. If owner(S;) receives two access
requests for object .S; at the same time and at least one of them is a write request, con-
flict is said to be occurred between transactions accessing S;. owner(.S;) handles such
type of simultaneous access requests by denying at least one request. In case owner(S;)
denies the access request, it replies a failure message back to node v;.

Performance Metrics. Let £ be an execution schedule following an algorithm A.

Definition 1 (Execution Time). For a set of transactions T, the total time for £ is the
time elapsed until the last transaction finishes its execution in £. The execution time of
algorithm A is the maximum time over all possible executions for T .

Definition 2 (Communication Cost). For a set of transactions T, the communication
cost of £ is the sum of the distances messages travel during E. The communication cost
of A is the maximum cost over all possible executions for T .

The ORDS Problem. Each transaction T'(v;, age;) is assigned age, age;, before it is
activated, and the age signifies the transaction commit order under dependencies. Fol-
lowing [11,29,31], parameter age is (i) unique — no two transactions can have the same
age, (ii) non-modifiable — it never changes once assigned, and (iii) externally determined
— it does not depend on transaction execution.

For transaction T'(v;,age;), S(T(vi,age;)) = write(S(T(vi,age;))) U
read(S(T (vi, age;))). We say T'(v;,age;) is dependent on T'(vj;,age;),age; <
age;, if (write(S(T(vi, age;))) N S(T(v;,age;)) # 0) V (read(S(T'(vi,age;))) N
write(S(T(v;,age;))) # 0). Le., at least an object read/write by T'(v;, age;) is be-
ing written by T'(vj, age;). T'(v;, age;), if dependent on T'(v;, age;), can commit only
after T'(v;, age;) commits. Formally,

Definition 3 (The ORDS problem). Given a set of transactions T — =
{T(v1,age1), T(va,ages), ...} mapped (arbitrarily) to the nodes of G, commit
dependent transactions in ‘T in the increasing order of age in the control-flow model.

3 Impossibility Result

Consider a star graph G as shown in Fig. 1 with eight rays going out from the center
node. Let there be three nodes on each ray (except the center node). Additionally, let the
end nodes of consecutive rays are connected. Suppose there are six objects a, b, ¢, d, €,
and f positioned on six consecutive end nodes, and a transaction 7" is mapped at the
center node and it requests all six objects. All edges have unit weight.

Theorem 1. There are transaction scheduling instances for which execution time and
communication cost cannot be minimized simultaneously in the control-flow model.
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@ (i)
Fig. 1: (i) Transaction T" accessing objects in parallel through blue colored paths, (ii) 7'
accessing objects sequentially again through blue colored paths.

Proof. When transaction T" sends object access requests in parallel, they can be reached
in 3 steps. In next 3 steps, 1" gets reply messages from all the object nodes, and in one
additional step, it can execute and commit. This gives optimal execution time of 7 steps.
However, total communication cost becomes 36 (3 steps to reach requests to objects
and 3 steps to receive replies back). Alternatively, let 7" sends the object access request
(combined) first to a and then to b, ¢, d, e, f in order. Moreover, the reply from « is also
sent together with the (combined) request towards b and so on with others. Thus, when
the request reaches f, the replies from a, b, ¢, d, e also reach there. Now, from f, all the
replies traverse the ray connecting f and 7'. The communication cost becomes 11 steps,
which is optimal. Total execution time becomes 11+ 1 = 12, which is sub-optimal. 0O

4 Offline Algorithms

In this section, we study the offline version of the ORDS problem. We present two al-
gorithms, one called OFFEXEC that achieves optimal execution time and another called
OFFCOMM that is 2-competitive on communication cost.

Execution Time Algorithm OFFEXEC. OFFEXEC accesses required objects for each
transaction in parallel. All transactions in 7 are initiated at time step ¢t = 0. Therefore,
at t = 0, all the transactions in 7 send requests to access the required objects to the
respective owner nodes following the shortest paths. Each owner node then replies suc-
cess message for every request (after performing the read/write operation) respecting
the age order and dependency of the transactions at corresponding owner node.

For transaction T'(v;, age;) at node v;, let S(T'(v;, age;)) C S be the set of objects
it needs. T'(v;, age;) sends corresponding access requests to owner(S;) of each object
S; € S(T'(vs, age;)) following the shortest path from v; to owner(S;). After the access
request reaches owner(S;), owner(S;) sends success message back to v; as soon as
T(v;, age;) is able to read/write that object respecting the age order. Specifically, there
can be two cases: (i) There is no T'(vk, agey), ager, < age;, in T which also wants to
access S;, then owner(S;) immediately sends success message back to v; (ii) There
is another transaction T'(vy, agey), ager, < age;, in T that conflicts with T'(v;, age;)
while accessing S;, then owner(S;) sends success message to vy, first and to v; in the
next time step. When v; receives success messages from all owner(S;), T'(v;, age;)
finishes its execution and commits.

Let tfj be the time step at which owner(S;) of object S; € S(T'(v;, age;)) replies
success message back to node v; corresponding to the request sent by 7'(v;, age;). Then,

S; S . S; 1
121 = max{tprev(T(vi,agei)) + 1, dist(v;, owner(S;))}, where boren(T(viages)) 1S the

3
time step at which owner(S;) replies to the dependent transaction of T'(v;, age;) that
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is immediately previous to T'(v;, age;) in the age order. For the lowest aged transaction
T(vy,ager), tfj = dist(v1, owner(S;)).
Let CT; be the time step at which transaction T'(v;, age;) € T commits. Then,

CT: = CTPT@U(T(’Uuagei)) +1, if t; < CTp’r'ev(T(vi,agei))
’ th+1, otherwise.

where CT e (T (v;,age;)) 18 the time at which the transaction dependent to T'(v;, age;)
that is immediately previous to T'(v;, age;) in the age order commits and
= a 57 + dist(v;, S:))).
P 5 e (M ey (B dist(vi, owner(S;)))
For the lowest aged transaction T'(vi,age;), CTy = maXg es(T(vy,age1)) 2
dist(v1, owner(S;)) + 1.

Theorem 2. OFFEXEC achieves optimal execution time.

Proof. The execution time depends on two factors. First, how long does a transaction
take to access required objects and second, when does each transaction commit? In
OFFEXEC, each transaction accesses required object using the shortest path in G which
is thus optimal. Now, we need to show that each transaction commits at the earliest
possible time. First, let there is no conflict between any transactions in 7. Then all
the transactions can access required objects in parallel and as soon as each transaction
receives success messages from the owner nodes of each required object, it can commit.
The total execution time becomes
max max 2 - dist(v;, owner(S;)) + 1}
T (vi,age;)ET | S;€S(T(v1,age1))

which is optimal.

Now, let there are conflicts between transactions in 7~ when accessing objects. Let
T = {T(v1,age1),T(va,ages), ..., T(vn,agey)} be the set of transactions. Let a
dependency graph H = (Vp, Ex) holds the dependency between the conflicting trans-
actions where the nodes V; represent transactions in 7 and the directed edges E'y rep-
resent dependencies between the transactions. The edge (T'(v;, age;), T'(v;, age;)) €
En, where age; < age;, represents a dependency between T'(v;, age;) and T'(v;, age;)
such that T'(v;, age;) can commit only after T'(v;, age;) commits. The ORDS problem
requires the dependent transactions to commit in their age order. The diameter Dy of
H provides the longest chain of dependent transactions and the total execution time of
any optimal algorithm will be the time required by all the transactions that belong to
Dy to commit. During the execution of OFFEXEC, for each transaction T'(v;, age; ), if
there is no any dependent transaction in H or all the dependent transactions in H have
already been committed, then T'(v;, age;) can commit as soon as it receives success
messages from the owner nodes of all required objects. Note that both, object access re-
quests and success messages, are sent through the shortest paths in G. When the highest
age transaction that belongs to Dy of H commits, OFFEXEC finishes. Hence, the total
execution time is optimal. a

Theorem 3. OFFEXEC is k-competitive in communication cost, where k is the maxi-
mum number of shared objects accessed by a transaction in T .
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Communication Cost Algorithm OFFCoMM. In OFFCOMM, we convert the execution
of each transaction to a Minimum Steiner Tree (MST) [20,21]. Steiner trees have been
extensively studied in the context of weighted graphs [12]. Given a graph G = (V, E)
and a subset P C V, a Steiner tree spans through P. The Steiner tree problem in our
case is to find a Steiner tree that connects all the vertices of P with the minimum possi-
ble total weight. Computing MST is known to be NP-Hard. We follow the algorithm of
Takahashi and Matsuyama [18] which provides 2(1 — 1/|P|)—approximation for MST.
The algorithm of [18] constructs a Steiner tree as follows:

— Start from a participant node in P.

— Find the next participant that is closest to the current tree.

— Join the closest participant to the closest node of the tree.

— Repeat until all nodes in P are connected.

Now, we discuss how MST is constructed for each transaction in 7. Let
S(T(v;,age;)) C S be the set of objects required by a transaction T'(v;, age;) € T.
Let P; C V contains node v; and the owner node of each object S; € S(T'(v;, age;))
(i.e., P; := (Vs,e5(T(v; ,age;)) 0wner(S;)) Uv;). Now, the problem is to find a MST that
connects the nodes in P; which is constructed by following the algorithm of [18] and is
denoted as M ST;. Then, T'(v;, age;) sends object access requests in M ST;. The total
message cost incurred by transaction T'(v;, age;) is 2.|M ST;|. That means, messages
visit each edge of M ST; exactly twice, one for sending access request and the other for
receiving reply (success or failure) message from each owner node.

Instead of sending requests individually to access the objects in S(T'(v;, age;)),
T'(v;, age;) sends them collectively in M ST;. Each neighboring node recursively sends
the request to the next neighbor in M ST; until the request reaches all the owner nodes
of the required objects. To be specific, if v,,v, € MST; be any two owner nodes of
objects which share a common path from v; up to some intermediate node v, then the
requests to v, and v, from v; are sent collectively up to v, as a single message. The
request is then divided into two at v, and they are forwarded separately towards v, and
vgq. When all the access requests reach respective owner nodes, the reply messages are
collected in the opposite direction. Here, each intermediate node which had initially
sent access requests to the neighboring nodes later collects the reply messages from
those neighboring nodes and returns them collectively to the ancestor node. When v;
receives reply messages from all the neighboring nodes in M ST;, T'(v;, age;) commits
(provided that all the reply messages are success messages).

The OFFCoOMM algorithm works as follows. It produces a conflict-free execu-
tion schedule. At time step ¢ = 0, each transaction T'(v;, age;) sends access re-
quests to required objects following its corresponding M ST;. When the access re-
quest reaches owner(S;), owner(S;) sends success message back to v; as soon as
T(v;,age;) is able to read/write that object respecting the age order of the depen-
dent transactions. Let distyrs; (v;, 'Uj) represents the distance between nodes v; and
v; following the shortest path in M ST;. Then, for each T'(v;, age;) € T, owner(S;)
of each S; € S(T'(v;,age;)) replies success message to v; at time step: tfj =
max{tfjev(T(vi’agei)) + 1,distarst, (vs, owner(S;))}, where tfﬁev(T(vi,agei)) is the
time step at which owner(S;) replies to the dependent transaction of T'(v;, age;) that
is immediately previous to T'(v;, age;) in the age order.
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The commit time step C'T; for each T'(v;, age;) is:

CTpreu(T(vi,agei)) +1, if t; < CTpreU(T(v,;,age,y))

CT; =1 .
t; + 1, otherwise.

where CT e (T(v;,age,)) 18 the time at which the transaction dependent to T(v;,age;)
that is immediately previous to T'(v;,age;) in the age order commits and ¢, =

S; .
maxsjeg(;p(%agei))(ti’ + distars, (vi, owner(S;))).
Theorem 4. OFFCOMM is 2-competitive in communication cost.
Proof. Let MST; be the minimum cost Steiner tree constructed for transaction
T (v, age;) in OFFCOMM. Let distss7, (v, vy) be the shortest path distance between

v, and v, in MST;. If dist(v,,v,) be the shortest path distance in G, then we have:
distarst, (vg,vy) < 2 - dist(vy, vy). Since OFFCOMM follows the shortest paths in

respective MSTs for accessing required objects, the communication cost Cr(y, age;)
of executing each transaction T'(v;, age;) € T is: Cr(y, age) = 2 - C’Z;)(tv“agei),

where Cg;ft”““gei) is the cost of any optimal communication algorithm for execut-
ing T'(v;, age;) that accesses required objects following the shortest paths in G. If
Ciotar and Copy be the total communication costs of OFFCOMM and any optimal al-
gorithm, respectively, such that Cy,; = ZTeT Cg;,t, then, Ciptar = ZTGT Cr =

ZT6T2'CT :2'Copt~ O

opt

Theorem 5. OFFCOMM is r-competitive in execution time, where r is the maximum
stretch of MST computed for each transaction in T which is given by:

{ distMST(vz-,owner(Sj))}
r=  max max : )
T(vi,age;)€T | S;€8(T(vi,age;))  dist(v;, owner(S;))

5 Partial Dynamic Algorithm

Here we study the partial dynamic version of the ORDS problem, where a priori knowl-
edge on transactions and their priorities is available, but not the shared objects they
access and their locations. All transactions arrive at time ¢ = 0. Thus, the following two
tasks are additional to the offline version:
i. Determine the owner nodes of all the shared objects that a transaction requests.
ii. Determine the node where the next transaction in the commit order is located and
the path to reach that node.

We present an efficient algorithm PARTDYN using distributed directory protocol
technique [2,9,17,30,35]. We compute two distributed queues, the first helps trans-
actions accessing required objects and the second helps sending commit messages to
the next dependent transaction in age order. The first is called distributed object queue
where object access tours are constructed for each transaction. The second is called dis-
tributed transaction queue that satisfies the commit order of transactions. Each trans-
action sends commit message to the next transaction in order following the path in its
respective transaction tour in the distributed transaction queue. We use the hierarchy-of-
clusters-based overlay tree (O7) (discussed next) for the computation of both queues.
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Overlay Tree O7 Construction. The well-known approaches for O7 construction are
based on either a spanning tree or a hierarchy of clusters on GG. The spanning tree was
used in directory protocols [9,2] and the hierarchy of clusters was used in directory
protocols [17,35,36].

Both approaches work, however, hierarchy-of-clusters-based overlay trees are more
suitable to control communication costs (and hence the execution time) compared to the
spanning-tree-based overlay trees. Therefore, in the following, we discuss the construc-
tion of hierarchy-of-clusters-based overlay tree O7 . In a high level, divide the graph
G into a hierarchy of clusters with H; = [log D] + 1 layers such that the clusters
sizes grow exponentially (i.e., 2t ,0 < ¢ < Hy). A cluster is a subset of nodes, and
its diameter is the maximum distance between any two nodes. The diameter of each
cluster at layer ¢, where 0 < ¢ < Hq, is no more than f(¢), for some function f, and
each node participates in no more than g(¢) clusters at layer ¢, for some other function
g. Moreover, for each node u in G, there is a cluster at layer ¢ such that the (24 —1)-
neighborhood of w is contained in that cluster.

There are known algorithms, such as a hierarchical sparse cover of G, that give a
cluster hierarchy Z of H; layers with f(¢) = O(¢logn) and g(¢) = O(logn). This
construction was used in the directory protocol, SPIRAL, by Sharma et al. [35], where
additionally, each layer ¢ is decomposed into H, = O(logn) sub-layers of clusters,
such that a node participates in all the sub-layers of a layer but in a different cluster
within each sub-layer, i.e., at each layer ¢ a node u participates in g(¢) = O(logn)
clusters. Suppose a node in each cluster is designated as the leader of the cluster. Con-
necting the leaders of the clusters in the subsequent levels gives O7.

An upward path p(u) for each node u € G is built by visiting leader nodes in all the
clusters that u belongs to starting from layer 0 (the bottom layer in Z) up to layer H;
(the top layer in Z). Within each layer, Hy sub-layers are visited by p(u) according to
the order of their sub-layer labels. The upward path p(u) visits two subsequent leaders
using shortest paths in G between them. Lets say two paths intersect if they have a
common node. Using this definition, two upward paths intersect at layer ¢ if they visit
the same leader at layer ¢. The lemmas below are satisfied in the construction of [35].

Lemma 1. The upward paths p(u) and p(v) of any two nodes u,v € G intersect at
layer min{ Hy, [log(dist(u,v))] + 1}.

Lemma 2. For any upward path p(u) for any node v € G from the bottom layer upto
layer { (and any sub-layer in layer (), length(p(u)) < O(2log® n).

Computing Distributed Transaction Queue. We denote the distributed transaction
queue by DT Queue(T). To construct DT Queue(T), each transaction T'(v;, age;)
sends a findT (T (v;,age;)) message in its upward path p(v;) in OT. The
findT (T (v;, age;)) message contains information about the required objects by
T(v;, age;) and moves upward until it meets the similar messages sent by it’s previous
and next conflicting transactions in age order. When two messages findT (T (v;, age;))
and findT (T (v;,age;)) meet at some node vy, it can easily be found that whether
T'(v;,age;) and T'(vj,age;) conflict with each other or not by looking at the in-
formation of required objects for each of them. When such meetings happen for all
findT (prev(T(v;, age;)), findT (T (v, age;)), and findT (next(T(v;, age;))), 1 <
i < n, the computation of DT Queue(T) is completed.
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objAccess((Sg(T(v;, 3)))

T(v; 3)
Fig. 2: Tllustration of computation of distributed object queue for transaction T'(vs, 3)
requiring objects (a, b, ¢). T'(vs, 3) sends obj Access(Sr(T (vs, 3))) message in its up-
ward path to cluster C ; which recursively sends it to C'5 1. Co 1 contains the owner
node of object a (i.e., v4), thus sends 0bj Access(a) message to v4. Then, after remov-
ing a from Sg(T (vs, 3)), Ca,1 sends objAccess(Sr(T(vs,3))) message to cluster Cs.
Cj5 sends the message downward until the requests reach nodes vs and vg. Later, all
three nodes vy, vs, and vg reply success messages which are combined at clusters C 3
and C? 1, and finally reach node v3. Then T'(vs, 3) commits. The edges traversed by the
messages are highlighted in red.

The upward paths p(v;) and p(v;) for the two consecutive dependent transactions
T'(v;, age;) and T'(v;, age;) intersect at some node vy, at some layer [ > 0. Transaction
T (v, age;) sends a commit message to T'(v;, age;) by first sending it upward in p(v;)
up to vy, and then sending the message downward in p(v;) from vy, up to node v;. The
following theorem follows from the hierarchy of clusters based O7 .

Theorem 6. If d is the shortest path distance between nodes v;,v; € G, then the dis-
tance between v;, v; following the upward paths p(v;) and p(v;) in OT is O(d-log® n).

Computing Distributed Object Queues. Distributed object queue for each transac-
tion T'(v;, age;) € T is denoted as DOQueue(T (v;, age;)). DOQueue(T (v, age;))
contains object tour(s) to access the object(s) requested by T'(v;, age; ).

DOQueue(T (v;,age;)) is constructed as follows. Let Sgr(T'(v;,age;)) C
S(T(v;,age;)) be the set of objects required by T'(v;, age;) that are not present on
v;. T'(vi, age;) sends obj Access(Sgr(T (vi, age;))) message in its upward path p(v;).
Let at some level [ > 0, objAccess(Sr(T'(v;, age;))) reaches a cluster with node v,
that contains an object S; € Sgr(T'(vi, age;)). Then the leader of the cluster (say v;)
forwards obj Access(S;) to the node v; downward in the path p(v;). The leader also
removes object S; from Sg(T'(v;, age;)) and forwards objAccess(Sr(T (vi, age;)))
message upward in the path p(v;) if Sgr(T (v;,age;)) is not empty. This process con-
tinues until Sg(T'(v;, age;)) becomes empty and by that time, the computation of
DOQueue(T (v;, age;)) is completed.

Later, during the execution of T'(v;,age;), when the object access request
objAccess(Sj) reaches the owner node of S, owner(S;), T'(v;, age;) performs read
or write operation on S;. After the read or write operation is completed, v; replies a
success message back following the previous path in the opposite direction (i.e., up-
ward from v, to the leader node v; in p(v;)). Each leader node when receives reply
messages from the owner nodes of objects, combines them into a single message and
sends it back downward in the path p(v;) to node v,. The leader node waits to combine
the reply message until it receives reply messages from all the paths that it has sent
previously the access requests. Fig. 2 illustrates this idea.
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Algorithm PARTDYN. PARTDYN starts with computing distributed object queues
DOQueue(T (v, age;)) for each transaction T'(v;, age;) € T and distributed trans-
action queue DT Queue(T ). DOQueue(T (v;, age;)) contains object tours to access
all the required objects in S(7T'(v;, age;)).

All the transactions that do not depend on any lower aged transactions start exe-
cution at time ¢ = 0. T(vy,agey) starts at t = 0 and sends object access requests
recursively following object tours in DOQueue(T (v1,agey)). Then, for each object
S; € S(T'(v1,ager)), objAccess(S;) reaches the owner node owner(S;). T'(v1, ager)
performs read or write operation on all S; and a success message from each owner(S;)
is replied back following the object tours in the backward direction. T'(v1, age;) com-
mits after it receives success messages from all the owner nodes of required objects
(possibly in combined form). Let T'(vq, age; ) commits at time step ¢; > 0. T'(vy, agey)
sends commit message commit(T (v1, agey)) to the next conflicting transaction in age
order next(T (vi,ager)) = T(vk,agex),ager, > age;, by following upward paths
in DT Queue(T). When T' (v, agey,) receives commit messages from all the depen-
dent transactions, T'(vg, agey,) executes and commits at time step ¢ > t; and sends
commit(T (vy, agey)) message to next(T (vg, ager)). The process continues until the
highest aged transaction T'(v,, agey,) commits at some time step .

Theorem 7. PARTDYN is O(log® n)-competitive in both execution time and communi-
cation cost.

6 Fully Dynamic Algorithm

Here, we study ORDS with no a priori knowledge on transactions, their priorities, the
shared objects they access, and their initial locations. Additionally, transactions arrive
at different nodes of G arbitrarily over time. Once a transaction arrives at some node
vj, it knows the priority (i.e., age) of that transaction and the objects needed by it.
We present an algorithm DYN that achieves O (D) competitive ratio in both execution
time and communication cost. Algorithm DYN works on top of a spanning-tree-based
overlay tree, denoted as OTs7. Let v,.40¢ be the root node of OT gr. For any node v,
the upward path p(v) in OT gr is the path obtained by connecting the parent nodes in
ST from node v up to the root v,.,,:. DYN executes in two phases:
— Phase 1 - Object Advertisement in which each node of graph G is advertised with
the locations of all the objects.
— Phase 2 - Transaction Execution in which transactions are executed and commit-
ted according to age order.

Phase 1 — Object Advertisement. The object advertisement phase makes each node
of G know the locations of all the shared objects. Later, when a transaction at node v;
needs some object S, v; can forward object access request to the owner node of that
object. The ownership of each object is advertised in the form of a hash map where
each key-value pair represents (0bjID,nodel D), where objID is the ID of an object
located at node v € V and nodel D is the ID of v.

Execution starts from leaf nodes of O7T gp. Each leaf node v; sends a hash map
(objID,nodelID). If v; contains no object, v; sends an empty hash map. Also, if v
contains more than one object, it sends a hash map with multiple key-value pairs. When



Ordered Scheduling in Control-flow Distributed Transactional Memory 13

a parent node v receives hash maps from all its child nodes, v,; merges those into
a single hash map and appends new key-val pair(s) if it contains any object(s). The
updated hash map is then sent upward to the next parent node vp2. vp2 again merges
all hash maps into a single one after receiving from all the child nodes. This process is
repeated until the current node is the 100t v-o0t. When v,.,.+ receives hash maps from all
of its child nodes, it merges them into a single hash map and replies back the updated
hash map to all the child nodes recursively. This phase ends when all the leaf nodes
receive updated hash map containing all (objI D, nodel D) pairs.

Lemma 3. Phase 1 finishes in O(D) time steps with communication cost O(n).

Phase 2 — Transaction Execution. Let H be the height of O7 g1, H < D. As soon as
transaction T'(v;, age;) is initiated, it sends an arrival message Torival (T (vi, age; ), t;)
t0 Vyo0r following the upward path p(v; ), where ¢; is the time step at which 7'(v;, age;)
arrives at node v;. Let T;(vy00t) be a list maintained by v+ Which contains the infor-
mation of pending transactions at time step ¢ sorted by arrival time. The arrival message
Torrival (T(vi, age;), t;) sent from node v; reaches v, in < H time steps. Thus, when
Uroot Teceives a transaction arrival message Ty.rivai (T (i, age;), t;) at some time step
t, > t;, it includes T'(v;, age;) in Ti(vroot) at time step t; = ¢; + H.

Let T(vg, agez) € Ti(vroot) be the lowest aged transaction in T;(vye0t) at time
t. Vroot sends startExec(T (v, age,)) message to node v, to execute T(v;,ages).
T(vs, age,) sends object access requests to the owner nodes of S(7T'(v,, age,)). When
T(v,, age,) successfully accesses all the required objects in S(T'(v,, ages)), it com-
mits and sends a commit message to vy.o0¢. After that, v,.,.¢ removes T'(v,,, age,,) from
Ti(vroot) and schedules next conflicting transaction in the age order to execute. Note
that, v, can schedule multiple transactions together which are not dependent on any
lower aged transactions or receive commit messages from all the dependent transactions
during the execution. Phase 2 finishes when all transactions in 7~ commit.

Lemma 4. In Phase 2, each transaction finishes its execution in O(D) time steps with
communication cost O(D)-competitive.

Combining Lemmas 3 and 4, we have,

Theorem 8. DYN is O(D)-competitive in both execution time and communication cost.

Proof. DYN executes in two phases, Phase 1 and Phase 2, sequentially. Phase 1 finishes
in O(D) time steps. In Phase 2, each transaction in 7 spends O( D) time steps to execute
and commit. So, for all n transactions in 7T, it takes O(n - D) time steps to execute
and commit. In total, both Phase 1 and Phase 2 of DYN end in O(D) + O(n - D) =
O(n - D) time steps. Since, transactions need to follow the age order to commit, any
optimal algorithm requires at least O(n) time steps to execute and commit. Hence,
DYN is O(D)-competitive in execution time. The same analysis works to show O(D)-
competitive in communication cost. a

7 Evaluation

We have implemented OFFEXEC, OFFCOMM, PARTDYN, and DYN and evaluated them
using a set of micro- and complex benchmarks. The experiments were performed on an
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Fig. 3: Time and communication (log scale) in micro-benchmarks on random graphs.
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Fig. 4: Time and communication (log scale) in STAMP benchmarks on grid graphs.

Intel Core i7-7700K processor with 32 GB RAM, simulating two different communi-
cation graphs, namely random and grid whose diameters range from 3 to 6 and 6 to 44,
respectively. The results presented are the average of 10 runs.

Results on micro-benchmarks: We experimented against three micro-benchmarks
bank, linked list, and skip list. Fig. 3 provides the results in random graph.

Results on STAMP benchmarks: We experimented against intruder, genome, and va-
cation benchmarks from STAMP [25]. Fig. 4 provides the results in grid graph.

Results Discussion. For both random and grid graphs, OFFEXEC has the minimum
execution time (which is optimal) in all the benchmarks. The execution time for OFF-
CoMM is higher than OFFEXEC but always within factor 2 of optimal. Similarly, in all
the benchmarks, OFFCOMM has the minimum communication cost, which is with in
factor of 2 from optimal. The experimental results in all the benchmarks show that the
execution time of PARTDYN is always within O(log® n) factor compared to OFFEXEC.
Moreover, the execution time in DYN is always within O(D) factor. The communi-
cation cost results follow the same pattern. In fact, the results are substantially better
than the theoretical bounds for both PARTDYN and DYN. In all the results, we can see
that DYN has less execution time and less communication cost than PARTDYN. This is
because of D < log® n in the experiment.
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Concluding Remarks

In this paper, we have studied the ordered scheduling problem of committing transac-
tions according to their predefined priorities in the control-flow distributed transactional
memory, minimizing execution time and communication cost. The control-flow model
is important because in many applications, the movement of data is costly due to its
size and security purposes. We have provided a range of algorithms considering this
problem in the offline and dynamic settings. As a future work, it will be interesting to
deploy the algorithms in real distributed system(s) and measure the wall clock results.

Acknowledgements This research was supported by National Science Foundation un-
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