
Flexible Scheduling of Transactional Memory on Trees

Costas Busch1, Bogdan S. Chlebus1, Maurice Herlihy2, Miroslav Popovic3, Pavan
Poudel1, and Gokarna Sharma4[0000−0002−4930−4609]

1 Augusta University, Augusta, Georgia, USA
{kbusch,bchlebus,ppoudel}@augusta.edu
2 Brown University, Providence, Rhode Island, USA

herlihy@cs.brown.edu
3 University of Novi Sad, Novi Sad, Serbia

miroslav.popovic@rt-rk.uns.ac.rs
4 Kent State University, Kent, OH, USA

gsharma2@kent.edu

Abstract. We study the efficiency of executing transactions in a distributed trans-
actional memory system. The system is modeled as a wired network with the
topology of a tree. Contrary to previous approaches, we allow the flexibility for
both transactions and their requested objects to move simultaneously among the
nodes in the tree. Given a batch of transactions and objects, the goal is to produce
a schedule of executing the transactions that minimizes the cost of moving the
transactions and the objects in the tree. We consider both techniques for access-
ing a remote object with respect to a transaction movement. In the first technique,
instead of moving, transactions send control messages to remote nodes where
the requested objects are gathered. In the second technique, the transactions mi-
grate to the remote nodes where they execute. When all the transactions use a
single object, we give an offline algorithm that produces optimal schedules for
both techniques. For the general case of multiple objects per transaction, in the
first technique, we obtain a schedule with a constant-factor approximation of op-
timal. In the second technique, with transactions migrating, we give a k factor
approximation where k is the maximum number of objects per transaction.
Keywords: Distributed system, transactional memory, shared object, network,
communication cost.

1 Introduction

Threads executed concurrently require synchronization to prevent inconsistencies while
accessing shared objects. Traditional low-level thread synchronization mechanisms
such as locks and barriers are prone to deadlock and priority inversion, among mul-
tiple vulnerabilities. The concept of transactional memory has emerged as a high-level
abstraction of the functionality of distributed systems; see Herlihy and Moss [10] and
Shavit and Touitou [25]. The idea is to designate blocks of program code as transactions
to be executed atomically. Transactions are executed speculatively, in the sense that if
a transaction aborts due to synchronization conflicts or failures then the transaction’s
execution is rolled back to be restarted later. A transaction commits if there are no con-
flicts or failures, and its effects become visible to all processes. If multiple transactions
concurrently attempt to access the same object, then this creates a conflict for access

2 C. Busch et al.

and could trigger aborting some of the involved transactions. Scheduling transactions
to minimize conflicts for access to shared objects improves the system’s performance.

The processing units of a distributed transactional memory system are the nodes of
a communication network, which is an integral part of the system. A transaction execut-
ing at a node may want to access shared memory objects residing in other nodes. This
could be implemented such that the transaction coordinates access to the needed shared
objects with the nodes hosting the objects. Such systems were studied by Herlihy and
Sun [11], Sharma and Busch [23], and Siek and Wojciechowski [26]. The efficiency of
executing a specific transaction may reflect the topology of the communication network
that is part of a distributed system. For example, the amount of communication needed
to execute a transaction interacting with some objects could be proportional to the dis-
tances in the network between all the nodes hosting the transaction and the objects.

To improve efficiency of processing transactions on shared objects, we may pre-
emptively move objects and transactions among the nodes to schedule their presence
at specific nodes at specific times. Moving transactions or program code among net-
work nodes is currently used in several real-world applications. For example, Erlang
Open Telecom Platform aids dynamic code upgrade by supporting transactional servers
with hot code swapping whose call-back modules may be changed on the fly [1]. A job
management system for a computer cluster may migrate a job to a different node, if
the target node’s load is below the migration threshold and the migration overhead is
acceptable, in order to achieve better load balancing among the nodes, see Hwang et
al. [13]. A related system that uses live virtual machine migration to support autonomic
adaptation of virtual computation environments is described by Ruth et al. [20].

Coordinating accessing objects to execute transactions may involve relocation of
objects or transactions. Efficiency of such coordination may depend on additional
model’s specification which determines the very feasibility of moving transactions and
objects across the network. In the data-flow model, transactions are static and objects
move from one node to another to reach the nodes hosting transactions that require inter-
acting with them; see Tilevich and Smaragdakis [27] and Herlihy and Sun [11]. In that
model, a transaction initially requests the objects it needs, and executes after assembling
them. After a transaction commits, it releases its objects, possibly forwarding them to
pending transactions. In the control-flow model, objects are static and transactions move
from one node to another to access the objects. Control-flow allows transactions to send
control requests, in a manner similar to remote procedure calls, to the nodes where the
required objects are located; see Arnold et al. [2] and Saad and Ravindran [22].

Contributions. We consider a flexible scheduling approach that combines the benefits
of the data-flow and control-flow models. We study the dual-flow model that allows for
both transactions and objects to move among the nodes to synchronize transactions and
objects. We consider distributed systems whose networks interpreted as graphs have tree
topologies. This represents many real-world networks. For example, the internet cloud
consists of the cloud network, representing a root, the fog network gateways and/or the
edge network gateways, as internal nodes, and the IoT devices as leaves, see Comer [8].

We study the efficiency of executing transactions by a distributed system repre-
sented as a tree in the dual-flow model. The efficiency is measured by the cost of com-
munication. Scheduling transactions is considered in a batch setting, in which all the

Flexible Scheduling of Transactional Memory on Trees 3

transactions are given at the outset, subject to the constraint that each node is assigned
at most one original transaction. The initial position of shared objects are distributed
arbitrarily among the nodes. We consider scheduling transactions in the general case of
arbitrarily many shared objects, and also in a special case of a single shared object that
needs to be accessed by all the transactions. Given a batch of transactions and objects
residing at nodes of the system, the goal is to produce a schedule of executing trans-
actions that minimizes the cost of moving transactions and objects among the nodes
and sending control messages to facilitate executing the transactions. Such a schedule
is computed by a centralized offline algorithm to be executed by the distributed system.
We develop a centralized algorithm finding an optimal schedule in the case when all
the transactions use a single object. The general case of multiple objects is studied in
two models that determine if executing a transaction may involve sending control mes-
sages. For multiple shared objects and with transactions sending control messages, we
give a centralized algorithm that finds a schedule with a constant-factor approximation
of communication cost with respect to an optimal schedule. For multiple shared objects
and with transactions migrating and not using control messages, we give a centralized
algorithm that finds a schedule approximating an optimal one by a factor k that equals
the maximum number of shared objects requested by a transaction.

Related work. Attiya et al. [3], Busch et al. [5–7], and Sharma and Busch [23, 24]
considered transaction scheduling with provable performance bounds in the data-flow
model. Saad and Ravindran [22], Palmieri et al. [17], Siek and Wojciechowski [26] stud-
ied scheduling transactions in the control-flow model. Palmieri et al. [17] also gave a
comparative study of data-flow versus control-flow models for distributed transactional
memory. A prototype distributed transactional memory system described by Saad and
Ravindran [21] supports experimentation for both data-flow and control-flow models.
Bocchino et al. [4] considered the dual-flow model by allowing programmers to either
bring the data to the code of computation (transaction) or send the code of computation
to the data. Hendler et al. [9] studied a lease based dual-flow model which dynami-
cally determines whether to migrate transactions to the nodes that own the leases or to
demand the acquisition of these leases by the node that originated the transaction.

Transaction scheduling in a distributed system with the goal of minimizing execu-
tion time was first considered by Zhang et al. [28]. Busch et al. [5] considered mini-
mizing both the execution time and communication cost simultaneously. They showed
that it is impossible to simultaneously minimize execution time and communication
cost for all the scheduling problem instances in arbitrary graphs even in the offline
setting. Specifically, Busch et al. [5] demonstrated a tradeoff between minimizing ex-
ecution time and communication cost and provided offline algorithms optimizing exe-
cution time and communication cost separately. Busch et al. [7] considered transaction
scheduling tailored to specific popular topologies and provided offline algorithms that
minimize simultaneously execution time and communication cost. In a follow-up work,
Poudel and Sharma [19] provided an evaluation framework for processing transactions
in distributed systems. Busch et al. [6] studied online algorithms to schedule trans-
actions arriving continuously. Distributed directory protocols have been designed by
Herlihy and Sun [11], Sharma and Busch [23], and Zhang et al. [28], with the goal to
optimize communication cost in scheduling transactions.

4 C. Busch et al.

Alternative approaches to distributed transactional memory systems have been pro-
posed in the literature by way of replicating transactional memory on multiple nodes
and providing means to guarantee consistency of replicas. This includes work by Hirve
et al. [12], Kim and Ravindran [14], Kobus et al. [15], Manassiev et al. [16], and Peluso
et al. [18]. In this work, we use a single copy of each object. Replicas of objects help to
improve reliability of the systems rather than decrease the communication overhead.

2 Technical Preliminaries
A distributed system can be modeled as weighted graph G = (V,E,w) which in our
case is a tree. There are n vertices in the set V , each representing a processing node.
Edges in the set E ⊆ V × V represent communication links between nodes. The func-
tion w : E → Z+ assigns a weight to each edge representing a communication delay.
We let dist(u, v) denote the shortest path distance between two vertices u and v.

The initial configuration of the distributed system consists of a set of transactions
and shared objects distributed among the nodes. Each node hosts at most one trans-
action. During executing transactions, both shared objects and transactions can move
among the nodes of a network, which we call the dual-flow model. If a transaction re-
quests access to an object, that object may move to a different node, possibly closer to
the requesting transaction. At the same time, the transaction can also migrate to the ob-
ject’s new location, or send a control message to that new location to access the object.
The combined cost of executing a transaction is measured with relation to the distances
traversed by shared objects, transaction code and control messages.

We consider the following two specializations of the dual-flow model for remote ob-
ject access: (i) Control-message technique, where a transaction sends a control message
to access the remote object. The control-message technique is motivated by a scenario
in which each transaction performs a number of updates to an object bounded by a con-
stant, with each update requiring a control message, for a total of a constant number
of such messages. (ii) Transaction-migration technique, in which a transaction moves
to the node where objects are located and no control messages are sent. This technique
is motivated by the scenarios in which a transaction may issue a variable number of
requests to an object, in which case it is advantageous to migrate the transaction to the
object location to avoid potentially unbounded communication overhead.

We parameterize the costs of transmitting messages that carry transactions, objects,
or control instructions. The cost of moving an object of size α over a unit weight edge
is denoted by α. We denote the cost of sending a control message over a unit weight
edge by β. The cost of moving a transaction over a unit weight edge is denoted by γ.

A scheduling algorithm determines a schedule to execute transactions, including
movements of objects and transactions. A centralized algorithm takes as input a config-
uration of transactions and objects in the system as arranged at the outset. We assume
that each node has this input available so that it can execute it locally. Formally, a sched-
ule of executing transactions is a sequence of actions s1, s2, . . . to be performed by the
nodes. An action si is a set of instructions to be performed by a node to facilitate pro-
cessing transaction Ti. The communication cost of executing such a schedule is the
sum of distances traversed by the shared objects, control messages, and transactions
according to the schedule, weighted by the corresponding parameters α, β, and γ.

Flexible Scheduling of Transactional Memory on Trees 5

3 A Single Object

We assume a single shared object o of size α > 1 positioned at the root node of a treeG.
We develop an optimal scheduling algorithm denoted as SINGLE-OBJECT in the dual-
flow model considering both techniques for accessing a remote object: control-message
and transaction-migration.

A general idea of the algorithm in the control-message technique is as follows. First
we find a set of intermediate nodes inG to move the object o to. These nodes are referred
to as supernodes. An intermediate node v becomes a supernode if the cost of moving o
from v to one of its children is greater than the cost of sending control messages from the
transactions contained by the sub-tree of that child to v. Each supernode contains a set
of transactions in its sub-tree which send control messages to that supernode to access
object o. These transactions are added to the local execution schedule of the supernode
following an iterative pre-order tree traversal in the sub-tree. We determine a subtree P
containing paths in G that reach the supernodes from the root of G. Starting from the
root, object o travels all the supernodes following the iterative pre-order tree traversal
of P . Any transaction that lies along the path is added to the execution schedule E as
soon as o reaches the respective node. When o reaches some supernode, the transactions
from its local execution schedule get added to E in the respective order. The execution
ends when all the transactions have been added to E . The algorithm can be modified
as follows if performed in the transaction-migration technique. Determine supernodes
with respect to transaction migration cost rather than control messages cost. Migrate
transactions to the corresponding supernodes instead of sending control messages to
access the object. These modifications result in creating an algorithm of a comparable
communication performance.

We elaborate on the details of the algorithm next. The cost of moving o over an
edge of unit length is α. Let β represents the control message cost for a transaction
to access object o at one unit away and α > β. Let T = {T1, T2, . . . Tn} be the set
of n transactions issued to the nodes of G, one at each node. The first objectives are
to determine the walk the object traverses and to find transaction execution schedule.
Intuitively, since it costs more to move the object across a link than to send a control
message through the link, we strive to move the object minimally, only when when this
pays, and this approach is captured by the concept of supernodes. The object o first
travels from the root up to a supernode. Transactions that lie along the path the object
traverses execute as soon as the object reaches the respective nodes. The remaining
transactions beyond that supernode and towards the leaves send control messages to
the supernode to access the object. Then the object moves to the next supernode and
transactions get executed following a similar approach.

The communication cost of an execution of the algorithm is determined by the lo-
cation of supernodes. The set of supernodes is selected by referring to transaction loads
and transaction counts at all nodes, which are defined as follows. A transaction load of
a node v, denoted txload(v), is the sum of distances from v to the positions of transac-
tions contained in the sub-tree of v, including v. The transaction load of v represents
the cost of sending control messages due to the transactions contained in its sub-tree,
assuming o is moved to v. A transaction count at node v, denoted txnum(v), is the total
number of transactions contained in the sub-tree of node v, including v.

6 C. Busch et al.

To identify supernodes, we start from the leaves of G and work through the an-
cestors towards the root. Let vcur be a leaf node and vnext be the parent of vcur.
During the computation of supernodes, we can assume that the object is at the par-
ent node vnext and check if it pays to move the object down to vcur, since object
moves away from the root. Let txload(vcur) denote the control message cost incurred
by the txnum(vcur) number of transactions contained in the sub-tree of vcur, including
vcur. If the object o moves to vcur, the transactions contained in the sub-tree of vcur
can access o at vcur and the cost becomes txload(vcur) + α · dist(vcur, vnext). Here,
α ·dist(vcur, vnext) is the cost incurred by the movement of object o from vnext to vcur.
Otherwise, these transactions send control messages to vnext to access o and the cost
becomes txload(vcur)+ txnum(vcur) · β · dist(vcur, vnext). Object o will move to vcur
from vnext only if the control message cost from vcur to vnext, due to the transactions
contained in the sub-tree of vcur, is more than or equal to the object movement cost
from vnext to vcur. After reaching a supernode, object o may need to move back to the
root or intermediate nodes to visit other supernodes. To account for this and simplify the
argument, we assume that the object moves over each edge twice, but this assumption
will be revisited when we optimize the algorithm. If the following inequality holds

txload(vcur)+2α·dist(vcur, vnext) ≤ txload(vcur)+txnum(vcur)·β·dist(vcur, vnext) ,

then we choose vcur as a supernode. Otherwise, if vcur is not the root, a new pair of vcur
and vnext is checked such that current vnext becomes new vcur and the parent of current
vnext becomes a new node vnext. If vcur is the root, then it becomes a supernode.

Let P denote the pruned tree, which contains only the supernodes and nodes that
need to be traversed on the way from the root to a supernode. Tree P is rooted the root
of G. Figure 1 illustrates such a tree P . The object o is originally located at the root,
from which it moves to the supernodes in a pre-order traversal manner. The transactions
are executed along the way of the object’s movement. Transactions at the nodes beyond
the pruned tree P , marked by color orange in Figure 1, either send control messages
or move to access o to their closest supernodes. When object o reaches the respective
supernode, these transactions are executed in order.

After computing the set of supernodes, the object performs a pre-order tree traversal
starting from the root to visit all the supernodes. The transaction execution schedule E
is computed as follows. First add transaction at the root to E . During the pre-order tree
traversal to visit the supernodes, if E does not contain the transaction at a visited node
v, then add it to E . If the visited node v is a supernode, add to E the transactions that
sent control messages to v from the subtree rooted at v.

Next we show how to refine this approach, which is based on the assumption that
during the computation of supernodes if the object moves from some parent node to the
child node then it will ultimately move back from that child node to the parent. When
the object reaches the last supernode, it does not move back because there is no any
other supernode remained to visit. We define a one-way path to be such a path from
vroot to the last supernode vlast, all the edges of which the object traverses only once.
This vlast must be chosen in such a way that the total communication cost is minimized.
A condition for computing a supernode is

2α · dist(vcur, vnext) > txnum(vcur) · β · dist(vcur, vnext) (1)

Flexible Scheduling of Transactional Memory on Trees 7

Fig. 1. Identification of supernodes by algorithm SINGLE-OBJECT. The tree on the left is G. The
tree on the right is the same G after determining the status of nodes. Supernodes are colored blue.
Nodes on the path from the root to a blue node are colored black. The dashed line delineates P
obtained from G by pruning G of vertices beyond the supernodes, which are colored orange.

so it accounts for the object traversing each edge twice, which is not required for vlast.
The object can move further down until the following holds

α · dist(vcur, vnext) > txnum(vcur) · β · dist(vcur, vnext) (2)

We find the last supernode vlast and the one-way path as follows. Let S be the initial
set of supernodes computed considering that the object moves twice on each edge up to
the supernode. In a one-way path, the object may move further down towards the leaf
node satisfying the condition in Inequality (2). For each node v ∈ S, if the sub-tree of
v contains multiple branches, there could be a number of possible paths for the object
to move. There will always be a unique one-way path that minimizes the total cost. In
each sub-tree of v ∈ S, we find the set of nodes D(v) that are candidates for vlast using
the condition in Inequality (2). Then the difference between the cost of selecting v as
a supernode and vj ∈ D(v) as a supernode is computed. Among these differences for
every v ∈ S, the one with the highest difference is chosen as the last supernode. Let
vref ∈ S and vk ∈ D(vref) be the set of two nodes that provided the highest difference.
Then vk becomes vlast and is added to S. The path from vroot to vlast becomes the one-
way-path and is visited at last following the pre-order tree traversal. Moreover, if a node
between vref and vlast (including vref) in the one-way-path contains transactions in its
sub-tree other than the one-way-path branch, it becomes a supernode to serve control
requests to the transactions in those branches and is added to S.

We state following three lemmas whose proofs are immediate from the discussion:

Lemma 1. If a node v does not belong to the pruned tree P , then the total number of
transactions contained in the sub-tree of v is less than 2α.

Lemma 2. If v is a descendant of vlast, then the total number of transactions contained
in the sub-tree of v is always less than α.

Lemma 3. For any transaction, the corresponding supernode for accessing the object
always lies at or above its position along the path towards the root of G.

Theorem 1. Algorithm SINGLE-OBJECT schedules transactions with the optimal com-
munication cost.

Proof. Let S be the set of supernodes found for a tree G with respect to object o. We
will show that any other selection of supernodes gives strictly higher communication
cost and hence, S provides optimal communication cost.

8 C. Busch et al.

To simplify the problem, without loss of generality, we assume that each edge of G
has weight 1, β = 1 and α > β. Let P be the pruned tree containing nodes only up
to the supernodes starting from the root of G. Let vlast ∈ S be the last supernode for
object o to visit. Let C be the total communication cost of Algorithm SINGLE-OBJECT.
Let v ∈ S be a supernode in G, vp be an ancestor of v with distance dist(vp, v) ≥ 1,
and vq be a descendant of v with dist(v, vq) ≥ 1. Based on the positions of v and vq , it
can have one of the following three cases:
Case (a): v = vlast. Then, by Lemma 2, we have that

txnum(vp) ≥ txnum(v) ≥ α > txnum(vq) (3)

Case (b): v 6= vlast, vq /∈ P , and the path from v to vq contains no other supernode, in
that v is the bottommost supernode in the current branch. Then, by Lemma 1, we have

txnum(vp) ≥ txnum(v) ≥ 2α > txnum(vq) (4)

Case (c): Either vq ∈ P or vq /∈ P and the path from v to vq contains at least one other
supernode. Let z ≥ 1 be the transactions that send control messages to v to access o.

We have following four subcases with respect to each supernode v ∈ S:
(i) Choosing an ancestor of v as a supernode instead of v increases communication:

Let Sp be the set of nodes contained between v and vp (excluding both). Suppose vp
be selected as a supernode instead of v. Then in Case (a) and Case (b), o moves only up
to vp, and in addition to the transactions issued to the sub-tree of v, all the transactions
between v and vp send control messages to vp. But, in Case (c), since the sub-tree of
v (excluding v) still contains another supernode vk ∈ S, o still moves to vk passing
through v. When v was the supernode, z ≥ 1 transactions could access o at v. Now,
since vp is selected as the supernode instead of v, all those z transactions send control
messages to vp to access o. So, the total communication cost Cvp of selecting vp as a
supernode compared to that of selecting v in each case becomes:

Cvp =



C − α · dist(vp, p) + txnum(v) · dist(vp, v)
+
∑
vk∈Sp

(txnum(vk)− txnum(v)), Case (a)
C − 2α · dist(vp, p) + txnum(v) · dist(vp, v)
+
∑
vk∈Sp

(txnum(vk)− txnum(v)), Case (b)
C + z · dist(vp, v), Case (c)

In Case (a), from Inequality (3), since txnum(v) ≥ α, Cvp > C. In Case (b), from
Inequality (4), since txnum(v) ≥ 2α, Cvp > C. Also, in case (c), Cvp > C.
(ii) Choosing a descendant of v as a supernode instead of v increases communication:

Now, we analyze the communication cost of selecting a descendant node vq as a
supernode instead of v ∈ S. Let Sq be the set of nodes contained between v and vq
(excluding both). As vq is a new supernode, object moves up to it. So, in Case (a) and
Case (b), to get the change in total communication cost compared to C, we have to
add object movement cost of o from v to vq and subtract the control message cost for
the transactions between v and vq . Moreover, the transactions in the sub-tree of vq will

Flexible Scheduling of Transactional Memory on Trees 9

also send control messages only up to vq . Thus, the total communication cost Cvq of
selecting node vq as a supernode compared to C in Case (a) and Case (b) becomes:

Cvq =


C + α · dist(v, vq)− txnum(vq) · dist(v, vq)
−
∑
vk∈Sq

(txnum(vk)− txnum(vq)), Case (a)
C + 2α · dist(v, vq)− txnum(vq) · dist(v, vq)
−
∑
vk∈Sq

(txnum(vk)− txnum(vq)), Case (b)

Let dist(v, vq) = k where k ≥ 1. In Case (a), from Inequality (3), txnum(vq) < α.
Let txnum(vq) = α − j, 1 ≤ j < α. Following Lemma 2, the nodes between v and vq
(i.e., Sq) contain at most j number of transactions. The control message cost sent to v
due to these transactions is:

∑
vk∈Sq

(txnum(vk)− txnum(vq)) < j · k. Thus,

Cvq > C + α · k − (α− j) · k − j · k > C .

In Case (b), txnum(vq) < 2α by the Inequality (4). Let txnum(vq) = 2α − l, for
1 ≤ l < 2α. By Lemma 1, there are at most l transactions between v and vq , and control
message cost sent to v due to them is:

∑
vk∈Sq

(txnum(vk)− txnum(vq)) < l · k. Thus

Cvq > C + 2α · k − (2α− l) · k − l · k > C .

Now, we analyze Case (c). Based on the position of vq , it can have two sub-cases:
Case (c.1): vq ∈ P . There is no extra movement of o and the z ≥ 1 number of trans-

actions that previously depend on v now send control messages to vq to access o. So, the
total communication cost Cvq compared to C becomes: Cvq = C+z ·dist(v, vq) > C.

Case (c.2): vq /∈ P but the path from v to vq contains at least one other supernode
in S. The node vq lies below the bottommost supernode of current branch. Let vbot ∈ S
be the bottommost supernode in the path between v and vq . When vq is selected as a
supernode, there will be extra movement of object o from vbot up to vq . If vbot = vlast,
and o moves up to vq . Otherwise, object o also needs to return back at vbot. Let M
represents the cost due to the movement of object o between vbot and vq , then, M >
α · dist(vbot, vq). Thus, the total communication cost Cvq compared to C in this case
becomes: Cvq = C + z · dist(v, vq) +M > C.
(iii) Merging multiple supernodes at some ancestor node increases communication cost:

Consider two supernodes vr, vs ∈ S have a common ancestor vy . Instead of vr and
vs, let vy be chosen as a supernode. Since vy is ancestor of both vr and vs, following
argument (i), total communication cost Cvy of selecting vy as a supernode instead of vr
and vs is more compared to C.
(iv) Splitting any supernode into multiple supernodes increases communication cost:

Consider a supernode vj ∈ S. Let vx, vz be two descendant nodes of vj at two
different sub-branches. Let vx and vz are chosen as two different supernodes instead of
vj . Since both vx and vz are descendants of vj , following argument (ii), total cost Cvxz

of selecting vx, vz as supernodes instead of vj is more compared to C.
The set of supernodes S computed in algorithm SINGLE-OBJECT is unique. If any

new node is added to S or any node in S is removed or replaced by another node, the
total communication cost increases. This means that scheduling by algorithm SINGLE-
OBJECT minimizes the communication cost. ut

10 C. Busch et al.

Next we consider the transaction-migration technique. Let γ be the cost of moving
a transaction over a unit weight edge of G. Consider algorithm SINGLE-OBJECT modi-
fied such that transactions are moved to supernodes instead of sending control messages
and the cost of moving transaction replaces the cost of sending control messages, in that
we use the parameter γ instead of β. After these modification in algorithm SINGLE-
OBJECT and its analysis, we obtain optimality similarly as stated in Theorem 1.
Theorem 2. Algorithm SINGLE-OBJECT provides 2-approximation in communication
cost without optimization.

4 Multiple Objects
We provide two scheduling algorithms for multiple shared objects, which extend
the single object algorithm above. For the control message technique, we present
the algorithm denoted as MULTIPLEOBJECTS-CTRLMSG, which provides an O(1)-
approximation. For the transaction-migration technique, our algorithm is denoted as
MULTIPLEOBJECTS-TXMIGR, which provides O(k)-approximation, where k is the
maximum number of shared objects accessed by a transaction.

We consider a set of shared objects O = {o1, o2, . . . , oδ} initially positioned at
arbitrary nodes of G. We assume that each object has size α. Each transaction in T
accesses a subset of objects in O. Let objs(Ti) ⊆ O be the set of objects accessed
by transaction Ti. We assume that each object has a single copy and home(oi) ∈ V
represents the home node at which object oi is originally positioned. The ownership of
an object is also transferred with the movement of that object. Similarly, home(Ti) ∈ V
represents the node at which transaction Ti is positioned.

The idea in the algorithms is to provide synchronized accesses to the objects with
minimum cost while executing the transactions in order. We achieve this extending the
techniques used in algorithm SINGLE-OBJECT. In particular, we compute supernodes
w.r.t. each object and the transactions requiring those objects. We then perform iterative
pre-order tree traversal to move each object to the respective supernodes and execute
transactions in order.

For brevity, let Ti be a transaction that requires objects in objs(Ti) = {ox, . . . , oz}.
Let svi(ox), . . . , svi(oz) be the respective supernodes (computed using algorithm
SINGLE-OBJECT w.r.t. each object) at which Ti can access ox, . . . , oz , respectively.
Then, one way of providing synchronised access to the required objects by Ti is to
bring each object in objs(Ti) at the respective supernode (i.e., svi(ox), . . . , svi(oz)) at
the same time so that Ti can access them by sending control messages. This approach
is used in the control-message technique. The other way is to gather all the objects in
objs(Ti) at a single node sv(Ti) (i.e., common supernode for Ti) and access them at that
node by migrating Ti. This approach is used in the transaction-migration technique.

We now describe how transactions are executed in order and the objects are moved
from one supernode to the next minimizing the communication cost. As in algorithm
SINGLE-OBJECT, this can be achieved using iterative pre-order tree traversal algorithm
in G, provided that there is a single reference point, i.e., root node. We find a virtual
root (v′root) of tree G as a single reference point.

In the control-message technique, any node of G can be selected as the virtual root
(v′root). In the transaction-migration technique, if all the objects are initially positioned

Flexible Scheduling of Transactional Memory on Trees 11

at the same node, that node is selected as the virtual root ofG. If objects are positioned at
different nodes initially, we compute the virtual root with respect to the initial positions
(home nodes) of transactions and the objects they access. The virtual root of tree G is
the node in G from which the sum of distances to home nodes of all the transactions
and the objects they access is the minimum, that is,

v′root = vi :W (vi) = min
v∈V

W (v), (5)

where W (v) =

n∑
j=1

(
dist(v, home(Tj)) +

∑
o∈objs(Tj)

dist(v, home(o))
)
.

Multiple Objects with Control Messages. The algorithm for the control-message
technique is named MULTIPLEOBJECTS-CTRLMSG. The algorithm runs in two phases.

Phase 1: We compute sets of supernodes S(oi) w.r.t. each object oi ∈ O individually
following algorithm SINGLE-OBJECT without optimization. For each oi, home(oi) is
assumed as the root of G during the computation of respective supernodes S(oi). If a
transaction Ti requires an object oj , Ti accesses oj at supernode sv(Ti(oj)) ∈ S(oj).
Phase 2: We find transaction execution schedule E and paths of movement for each
object oi ∈ O along their respective supernodes. For this, let a random node in G be
selected as the virtual root v′root of G. We perform an iterative pre-order tree traversal
in G starting from v′root. During the traversal, if there is a transaction Tj at current node
vcur, Tj is added to the schedule E and each object ok required by Tj . In notation,
ok ∈ objs(Tj)) is scheduled to move to the respective supernode svj(ok). When the
traversal of G completes, all the transactions get scheduled and the execution ends.

Lemma 4. An object o may traverse an edge along the path from home(oi) to v′root at
most three times.

Theorem 3. Algorithm MULTIPLEOBJECTS-CTRLMSG provides a 3-approximation
of communication cost.

Proof. Let S(oi) be the set of supernodes computed with respect to object oi ∈ O
following algorithm SINGLE-OBJECT without optimization. Let Pi be the pruned tree
containing nodes only up to the supernodes S(oi) starting from home(oi) inG. LetCobj
denotes the cost of moving object oi at each edge inside Pi only once and Cctrl denotes
the communication cost incurred due to the control messages sent from transactions
beyond Pi in G. By the analysis of algorithm SINGLE-OBJECT , oi visits each edge
of Pi at most twice during the execution. Theorem 1 shows that the set of supernodes
computed in algorithm SINGLE-OBJECT provides the minimum communication cost
and Theorem 2 shows that algorithm SINGLE-OBJECT without optimization provides
2-approximation. Thus, if COPT (oi) be the optimal communication cost for accessing
oi by a set of transactions T , then,

Cobj + Cctrl ≤ COPT (oi) ≤ 2(Cobj + Cctrl) (6)

and COPT =
∑
oi∈O COPT (oi).

The algorithm in MULTIPLEOBJECTS-CTRLMSG uses the same set of supernodes
S(oi) computed in algorithm SINGLE-OBJECT without optimization and object oi does
not move beyond the pruned tree Pi. So, Cctrl for MULTIPLEOBJECTS-CTRLMSG

12 C. Busch et al.

remains the same. From Lemma 4, object oi may traverse an edge inside Pi at most 3
times. Thus, if CALG(oi) represents the total communication cost for accessing oi by a
set of transactions T , then,

CALG(oi) ≤ 3Cobj + Cctrl (7)
Equations (6) and (7) imply

CALG(oi) ≤ 3 · COPT (oi) (8)
This gives the estimate

CALG =
∑
oi∈O

CALG(oi) ≤
∑
oi∈O

(3 · COPT (oi)) ≤ 3 · COPT ,

where CALG represents the total communication cost in MULTIPLEOBJECTS-
CTRLMSG for executing all the transactions accessing multiple objects and COPT rep-
resents that of any optimal algorithm. ut
Multiple Objects with Migration of Transactions. The algorithm for multiple objects
implemented in the transaction-migration technique is named MULTIPLEOBJECTS-
TXMIGR. First, we discuss the algorithm assuming all the objects are initially posi-
tioned at the same node, the virtual root v′root, of G. Later, we relax the algorithm
where objects can be positioned initially at arbitrary nodes in G.

The algorithm works in four phases. In Phase 1, we compute sets of supernodes
with respect to individual object oi ∈ O. In Phase 2, we find a common supernode for
each transaction T ∈ T where all the required objects for T can be gathered together. In
Phase 3, we finalize the set of common supernodes. Finally, in Phase 4, we perform it-
erative pre-order tree traversal on G to create transaction execution schedule and object
movement paths along the common supernodes. We describe each phase below.

Phase 1: In this phase, we compute supernodes with respect to each object oi ∈ O
using algorithm SINGLE-OBJECT without optimization where control message cost β
over an edge is replaced with the transaction migration cost γ. Let S(oi) be the set
of supernodes with respect to object oi ∈ O and sv(T (oi)) ∈ S(oi) represents the
supernode for transaction T at which T accesses oi. After this, each transaction Tj ∈
T has a set of respective supernodes sv(Tj(oi)) to access each required object oi ∈
objs(Tj). Since all the objects in objs(Tj) need to gather at a single node, a common
supernode sv(Tj) for transaction Tj is selected out of all sv(Tj(oi)) in the next phase.

Phase 2: In this phase, we find a common supernode of objects sv(T) for each trans-
action T ∈ T . The objective of selecting a common supernode for a transaction is
to allow all the required objects for that transaction to gather together at the common
supernode. After that, the transaction is also migrated at the common supernode and
all the required objects are accessed locally. For a transaction T , if all the supern-
odes sv(T (oi)), oi ∈ objs(T), computed in Phase 1 are the same, it automatically
becomes the common supernode for T . If they are different, then we select the one
among sv(T (oi)), oi ∈ objs(T), which is the closest from v′root.

Phase 3: In this phase, we compute the final set of supernodes FinalSV in G where
respective transactions and the required objects are gathered together. From Phase 2,
we have a set of common supernodes sv(T) for each transaction T ∈ T . For each
common supernode v ∈ sv(∗), following information is maintained separately:

Flexible Scheduling of Transactional Memory on Trees 13

– numtxs(v): total number of transactions that selected v as a common supernode.
– objs(v): set of objects with respect to which the node v is a supernode.
– txs(v(oi)), oi ∈ objs(v): set of transactions requiring object oi that have selected v

as the common supernode.
Let P be the pruned tree containing the nodes of G only up to the common supernodes
moving down from v′root. Starting from every leaf node of P towards v′root, we check at
each node how many transactions have selected it as a common supernode. Particularly,
if v ∈ P is a leaf node in P and is selected as a common supernode with respect to the
set of objects objs(v), then, we check if numtxs(v) · γ ≥ 2α · |objs(v)|. If the condition
is satisfied, v belongs to FinalSV with respect to all objects in objs(v). Otherwise, for
each object oi ∈ objs(v), we check how many transactions requiring the object oi have
selected v as the common supernode in Phase 2. Let txs(v(oi)) be the set of transactions
requiring object oi that have selected v as a common supernode. If |txs(v(oi))|·γ ≥ 2α,
v belongs to FinalSV. But if |txs(v(oi))| · γ < 2α, we visit its parent node parent(v),
find the set of transactions txs(parent(v)(oi)) requiring object oi that have selected
parent(v) as the common supernode. At the parent node parent(v), we again check
if (|txs(v(oi))| + |txs(parent(v)(oi))|) · γ ≥ 2α. If the condition is met, parent(v)
belongs to FinalSV and all the transactions in txs(v(oi)) that previously selected node v
as the common supernode now select parent(v) as the common supernode. Otherwise,
if the condition is not met, we repeat the same procedure by selecting the parent of
parent(v) and so on until the inequality

(|txs(v(oi))|+ |txs(parent(v)(oi))|+ . . .) · γ ≥ 2α

is satisfied or reach at v′root. We apply this approach recursively until at each leaf node
v ∈ P , numtxs(v) · γ ≥ 2α where P is the pruned tree containing nodes only up to
final set of common supernodes FinalSV starting from v′root.

Phase 4: In this phase, we find the transaction execution schedule E and the paths
of movement for each object oi ∈ O along their respective supernodes. We find the
pruned tree P containing the nodes up to the common supernodes in FinalSV starting
from v′root. Then we perform iterative pre-order traversal on P starting from v′root.
At each current visited node v, if v ∈ FinalSV, then all the transactions which have
selected v as their common supernode (i.e., sv(T∗) = v) are added to the execution
schedule E . Additionally, the objects in O for which v is a common supernode (i.e.,
objs(v)) are scheduled to move at v. An object ok ∈ objs(v) remains at v until all
the transactions that require ok finish their executions. After all the transactions that
require object ok ∈ objs(v) finish their executions, ok can move to the next common
supernode in the order where other transactions are waiting for it. When the traversal of
P completes, all the transactions get scheduled and the algorithm ends.

Theorem 4. Algorithm MULTIPLEOBJECTS-TXMIGR provides k-approximation in
communication cost, where k is the maximum number of objects a transaction accesses.

Proof. After computing the final set of common supernodes FinalSV, at the bottommost
common super v ∈ FinalSV in each branch ofG, the number of transactions that require
object o are at least 2α. These 2α number of transactions in the sub-tree of v may require

14 C. Busch et al.

k ≤ δ number of objects in O. Thus node v can be a common supernode for all those
2α transactions with respect to k ≤ δ objects. During the execution, these k objects are
moved from v′root to v and the cost is k · 2α · dist(v′root, v). Instead, if we move those
2α transactions up towards some closest common supernode vj that contains at least
k · 2α number of transactions, then the cost due to transaction migration increases by
2α · dist(vj , v) reducing the object movement cost by k · 2α · dist(vj , v). That means
the total cost may increase by at most a k factor from optimal. ut
Arbitrary Initial Positions of Objects. We discuss algorithm MULTIPLEOBJECTS-
TXMIGR with the relaxed setting where objects are located at arbitrary nodes of G
initially. In this case, before Phase 1, we compute the virtual root v′root of G using
Equation 5. All the objects inO are then moved to v′root. After this, algorithm continues
with Phase 1 to Phase 4 as it is. There is an extra cost incurred before Phase 1 due to the
movements of objects from their home nodes to the virtual root. Let Cextra represents
this cost due to the movements of objects from their home nodes to vroot which is:

Cextra =
∑
oi∈O

α · dist(home(oi), v′root) (9)

Let FinalSV be the finalized set of common supernodes computed in Phase 3 of algo-
rithm MULTIPLEOBJECTS-TXMIGR after moving all objects in O to v′root. Let Cmov
be the total cost due to the movements of objects from v′root to their respective common
supernodes in FinalSV following the iterative pre-order tree traversal. Now, let S(oi)
be the sets of supernodes computed with respect to each object oi ∈ O positioned at
the respective home node and using algorithm SINGLE-OBJECT without optimization.
Let Copt−mov denotes the total cost due to the movements of objects in their respective
supernodes in S(o∗) following iterative pre-order tree traversal. By Theorem 2, we have
that Copt−mov is asymptotically optimal with respect to the objects movement cost.

If Cextra + Cmov ≤ k · Copt−mov , then algorithm MULTIPLEOBJECTS-TXMIGR
has performance as in Theorem 4 in the relaxed setting as well. Otherwise, by Equa-
tion 5, it providesO(α·k ·D)-approximation in the relaxed setting because of the bound
dist(home(o), v′root) ≤ D, where D is the diameter of tree G.

Acknowledgements G. Sharma was supported by National Science Foundation under
Grant No. CAREER CNS-2045597.

References

1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf
(2007)

2. Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B., Wollrath, A.: Jini Specification. Addison-
Wesley Longman Publishing (1999)

3. Attiya, H., Gramoli, V., Milani, A.: Directory protocols for distributed transactional memory.
In: Transactional Memory. Foundations, Algorithms, Tools, and Applications, Lecture Notes
in Computer Science, vol. 8913, pp. 367–391. Springer (2015)

4. Bocchino Jr., R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large
scale clusters. In: PPOPP. pp. 247–258. ACM (2008)

5. Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Time-communication impossibility results
for distributed transactional memory. Distributed Computing 31(6), 471–487 (2018)

Flexible Scheduling of Transactional Memory on Trees 15

6. Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Dynamic scheduling in distributed trans-
actional memory. In: IPDPS. pp. 874–883. IEEE (2020)

7. Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Fast scheduling in distributed transactional
memory. Theory of Computing Systems 65(2), 296–322 (2021)

8. Comer, D.E.: The Cloud Computing Book: The Future of Computing Explained. Chapman
and Hall/CRC (2021)

9. Hendler, D., Naiman, A., Peluso, S., Quaglia, F., Romano, P., Suissa, A.: Exploiting locality
in lease-based replicated transactional memory via task migration. In: DISC. Lecture Notes
in Computer Science, vol. 8205, pp. 121–133. Springer (2013)

10. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. In: ISCA. pp. 289–300. ACM (1993)

11. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Dis-
tributed Computing 20(3), 195–208 (2007)

12. Hirve, S., Palmieri, R., Ravindran, B.: Hipertm: High performance, fault-tolerant transac-
tional memory. Theoretical Computer Science 688, 86–102 (2017)

13. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Pro-
cessing to the Internet of Things. Morgan Kaufmann Publishers (2011)

14. Kim, J., Ravindran, B.: Scheduling transactions in replicated distributed software transac-
tional memory. In: CCGrid. pp. 227–234. IEEE Computer Society (2013)

15. Kobus, T., Kokocinski, M., Wojciechowski, P.T.: Hybrid replication: State-machine-based
and deferred-update replication schemes combined. In: ICDCS. pp. 286–296. IEEE Com-
puter Society (2013)

16. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concurrency in a
transactional memory cluster. In: PPOPP. pp. 198–208. ACM (2006)

17. Palmieri, R., Peluso, S., Ravindran, B.: Transaction execution models in partially replicated
transactional memory: The case for data-flow and control-flow. In: Transactional Memory.
Foundations, Algorithms, Tools, and Applications, vol. 8913, pp. 341–366. Springer (2015)

18. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.E.T.: When scalability meets
consistency: Genuine multiversion update-serializable partial data replication. In: ICDCS.
pp. 455–465. IEEE Computer Society (2012)

19. Poudel, P., Sharma, G.: GraphTM: An efficient framework for supporting transactional mem-
ory in a distributed environment. In: ICDCN. pp. 11:1–11:10. ACM (2020)

20. Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic live adaptation of virtual
computational environments in a multi-domain infrastructure. In: ICAC. pp. 5–14. IEEE
Computer Society (2006)

21. Saad, M.M., Ravindran, B.: HyFlow: a high performance distributed software transactional
memory framework. In: HPDC. pp. 265–266. ACM (2011)

22. Saad, M.M., Ravindran, B.: Snake: Control flow distributed software transactional memory.
In: SSS. Lecture Notes in Computer Science, vol. 6976, pp. 238–252. Springer (2011)

23. Sharma, G., Busch, C.: Distributed transactional memory for general networks. Distributed
Computing 27(5), 329–362 (2014)

24. Sharma, G., Busch, C.: A load balanced directory for distributed shared memory objects.
Journal of Parallel and Distributed Computing 78, 6–24 (2015)

25. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10(2), 99–
116 (1997)

26. Siek, K., Wojciechowski, P.T.: Atomic RMI: A distributed transactional memory framework.
International Journal of Parallel Programming 44(3), 598–619 (2016)

27. Tilevich, E., Smaragdakis, Y.: J-Orchestra: Automatic java application partitioning. In:
ECOOP. Lecture Notes in Computer Science, vol. 2374, pp. 178–204. Springer (2002)

28. Zhang, B., Ravindran, B., Palmieri, R.: Distributed transactional contention management as
the traveling salesman problem. In: SIROCCO. vol. 8576, pp. 54–67. Springer (2014)

