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ABSTRACT

Deep brain stimulation (DBS) is an effective procedure to treat mo-
tor symptoms caused by nervous system disorders such as Parkin-
son’s disease (PD). Although existing implantable DBS devices can
suppress PD symptoms by delivering fixed periodic stimuli to the
Basal Ganglia (BG) region of the brain, they are considered inef-
ficient in terms of energy and could cause side-effects. Recently,
reinforcement learning (RL)-based DBS controllers have been de-
veloped to achieve both stimulation efficacy and energy efficiency,
by adapting stimulation parameters (e.g., pattern and frequency of
stimulation pulses) to the changes in neuronal activity. However,
RL methods usually provide limited safety and performance guaran-
tees, and directly deploying them on patients may be hindered due
to clinical regulations. Thus, in this work, we introduce a model-
based offline policy evaluation (OPE) methodology to estimate the
performance of RL policies using historical data. As a first step, the
BG region of the brain is modeled as a Markov decision process
(MDP). Then, a deep latent MDP (DL-MDP) model is learned using
variational inference and previously collected control trajectories.
The performance of RL controllers is then evaluated on the DL-
MDP models instead of patients directly, ensuring safety of the
evaluation process. Further, we show that our method can be inte-
grated into offline RL frameworks, improving control performance
when limited training data are available. We illustrate the use of our
methodology on a computational Basal Ganglia model (BGM); we
show that it accurately estimates the expected returns of controllers
trained following state-of-the-art RL frameworks, outperforming
existing OPE methods designed for general applications.
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1 INTRODUCTION

Millions of individuals in the US are affected by nervous system
disorders, such as Parkinson’s disease (PD) [34] and epilepsy [14].
Deep brain stimulation (DBS) is effective in treating such disorders
by delivering electric pulses to the basal ganglia (BG) region of the
brain through an implantable device [4, 12, 13, 37], as illustrated
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in Fig. 1. Existing commercial DBS devices can be programmed to
provide stimuli with fixed parameters (e.g., pulse frequency and
amplitude) and switch on/off following pre-defined protocols —
i.e., switching on predefined thresholds for certain physiological
biomarkers.! The programming of the implantable pulse genera-
tor is patient-specific and the detailed configurations are obtained
by leveraging the physician’s domain expertise, as well as trial-
and-error for fine-tuning [39]. However, the configuration process
(sometimes referred as device programming) is time-consuming,
and stimulating with constant high frequency and amplitude sig-
nificantly shortens the battery life of the implantable device and
can result in serious side effects, such as induced dyskinesia [6].

Consequently, there has been significant recent interest in closed-
loop DBS; the main focus has been on developing adaptive DBS
(aDBS) methods that can turn on/off stimulation or adjust the in-
tensity using very simple adaptation methods (e.g., ramp-based
increase) when specific biomarker signals cross predefined thresh-
olds [2, 3, 6, 30, 31]. Specifically, various neurosignals such as BG
local field potentials (LFPs) and internal electroencephalography
(iEEG), as well as measurements from external wearable devices
(e.g., accelerometer readings and electromyography) have been
used as feedback signals, with the thresholds manually obtained by
physicians looking over data collected from trials. Although still
in early development, such approaches have shown potential to
reduce energy consumption and side effects of stimulation [19, 31];
however, currently aDBS still requires substantial efforts to config-
ure the devices such that desirable stimulation efficacy and energy
efficiency are jointly attained.

Reinforcement learning (RL) has demonstrated its strengths in
solving sophisticated control problems from various cyber-physical
system (CPS) domains including robotics, smart transportation,
etc [7, 9, 17, 35, 41]. Several recent works leverage RL to derive
closed-loop controllers for DBS [16, 18, 36, 39]. Specifically, [18, 36,
39] propose the use of EEG and LFP signals to define the state space
of the RL environment, followed by temporal difference or fitted
Q-iteration algorithms to learn RL control policies that can select
appropriate stimulation frequencies to reduce energy consump-
tion. Although these methods can improve energy efficiency, the
resulting controllers are patient-agnostic since periodic stimuli are
still used across different patients. On the other hand, in [16], deep

'The use of ON/OFF switching for DBS devices has not been FDA approved;
currently, only research devices, with specific research study protocols, can do this.
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actor-critic RL is used to design optimal stimuli patterns specific
to each patient. The approach not only enables the controller to
jointly achieve better stimulation efficacy and energy efficiency, but
also to adapt to neurological changes over time (e.g., changes in the
severity of PD symptoms, taking medications such as levodopa).

However, evaluating the performance of RL controllers for phys-
iological control implemented by medical devices (either the final
or a control policy active in a specific learning iteration) remains a
significant challenge. Unlike testing in benchmark environments
(e.g., [8], robotics or video games simulators), where a trained RL
controller can be directly deployed (and potentially subsequently
updated), the procedures of evaluating new controllers on patients
are highly scrutinized, where the controller’s effectiveness and
safety need to be demonstrated even before experiments start [38].
Consequently, it is imperative to develop frameworks that can eval-
uate the performance of RL controllers in an offline manner (i.e.,
without direct testing on patients).

In this paper, we introduce a model-based offline policy evalua-
tion (OPE) methodology to accurately estimate the performance of
RL-based DBS controllers without the need of deploying them in
vivo, which ensures safety of the evaluation process. More impor-
tantly, we also demonstrate that the OPE module can be integrated
into offline RL training frameworks, resulting in better-performing
DBS policies even with limited training data. Our methodology
starts by modeling the neuronal activity in the BG region as a
Markov decision process (MDP). Then, we design a probabilistic
machine learning model using variational inference [25], which we
refer to as the deep latent Markov decision process (DL-MDP); using
historical interactions, the model enables capturing the activity
of BG neurons, as well as the transitions in the MDP, in response
to DBS stimuli. Finally, the DL-MDP is used to interact with the
RL controllers that are to be evaluated, and we show how the ex-
pected return (i.e., control performance) of each controller can be
extrapolated from the resulting trajectories.

The problem of evaluating RL controllers offline has attracted
significant attention in general, and some existing OPE methods [10,
15, 21, 32, 40, 47, 48, 50, 51] could be adapted to the DBS scenarios
considered in this work. However, these methods mostly adopt the
idea of importance sampling (IS) where the importance weights
are shown to result in high variance in estimating the expected
returns of RL policies, especially when the system has a long hori-
zon [10, 32], as is the case for DBS. For example, in [40], a self-
normalized step-wise IS method is developed to reduce the scale of
importance weights, which is capable of decreasing the variance. In
addition, [21, 48] propose the use of additional value estimators for
variance reduction. On the other hand, [10, 32, 50, 51] introduce a
distribution correction estimation family of OPE methods, which
estimate the correction ratio of the stationary distribution used
for generating importance weights; thus, the results are expected
to be associated with lower variance. However, such methods are
shown to introduce bias in estimations while compensating for
high variance [47]. As a result, these methods may not be suitable
for the medical scenarios considered in this work, as it is crucial to
devise an accurate OPE method for DBS controllers.

To evaluate our methodology for DBS controllers, we adopt a
commonly used computational Basal Ganglia Model (BGM) [44] as
the testbed; the BGM facilitates the use of various DBS research
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Figure 1: Deep brain stimulation (DBS): the implantable pulse
generator is placed in the patient’s chest, and multi-contact
electrodes that can record local field potentials (LFPs) and
deliver stimulation are implanted in the basal ganglia (BG).

platforms [16, 22]. Specifically, we first train two types of controllers
to change stimulation pulse patterns and frequencies, respectively,
following state-of-the-art RL frameworks (i.e., deep actor-critic [16,
29, 43] and deep Q-learning [35]). Then, the introduced OPE method
is used to estimate the expected return resulting from the use of
these RL controllers, with the errors being evaluated using the
mean squared errors (MSEs) and rank correlations. Compared to
the existing IS based OPE baselines [32, 40], our approach results
in estimations with low variances, achieving consistently better
performance in terms of both metrics. In addition, we show that the
OPE module can be integrated into offline RL frameworks, leading to
improved performance even when limited training data is available,
which is critical for medical scenarios (as described in Section 2.1.2).

The contributions of this work are three-fold: (i) to the best
of our knowledge, this is the first method to evaluate RL-based
DBS controllers in an offline manner, reducing the level of direct
interactions needed between the patient and controllers during the
evaluation and learning; (ii) our OPE approach is shown to be more
effective compared to existing OPE methods designed for general
applications; and (iii) we show that the OPE method can be easily
integrated into offline RL training frameworks, improving control
efficacy even with limited training data.

This paper is organized as follows. Section 2 briefly overviews
DBS and the computational BGM, as well as motivates the need for
OPE of DBS controllers, which is considered in this work. Section 3
describes the RL frameworks to design DBS control policies that
can adapt stimulation (i) patterns, or (ii) frequencies. In Section 4,
the OPE approach and the integration of OPE into RL training are
introduced. Our methodhodology is evaluated in Section 5, before
discussion and avenues for future work are presented in Section 6.

2 PRELIMINARIES AND MOTIVATIONS

In this section, we briefly introduce the preliminaries of DBS and
the computational Basal Ganglia model (BGM). We refer readers
to [16, 22, 29, 43, 44] for in-depth reviews.

2.1 Deep Brain Stimulation: The Need for OPE

2.1.1  Parkinson’s Disease and Deep-Brain Stimulation. PD origi-
nates from degenerative changes in the BG region and can cause var-
ious motor symptoms including bradykinesia and rigidity [11, 26].
Such symptoms can be captured by the changes in local field po-
tentials (LFPs), or electrical potentials, from the globus pallidus pars
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Figure 2: Activity of model neurons in the thalamus (TH)
and globus pallidus pars interna (GPi). Substantial patho-
physiological patterns can be found in PD brain without DBS
stimulation (middle row). Such effects are reduced signifi-
cantly using periodic stimulation at 180 Hz (bottom row).

interna (GP1i) and thalamus (TH) sub-regions in the BG. DBS devices
can record these potentials through electrodes implanted into the
BG, as shown in Fig. 1. In healthy GPi and TH, the neurons follow
sporadic spiking (i.e, neuron activations) at a stable firing rate.
However, when affected by PD, pathological neuron activations can
be found in TH and GP1i, captured by reduced triggering potentials
and clustered spiking, respectively (see Fig. 2).

Two quality of control (QoC) metrics can be used to evaluate
such abnormal neuronal activities quantitatively (e.g., [16, 22, 44]).
Error Index (EI) captures the ratio of erroneous firings in TH, while
the clustering of spikes in GPi causes increased spectral density
in the beta band (i.e., frequencies in the [13,35]Hz range). Both
metrics are defined in Section 2.2 and Appendix B.

Implantable DBS devices can also deliver stimulation pulses to
GPi or subthalamic nucleus (STN) part of the BG, to suppress PD
symptoms. Specifically, the device can continuously generate trains
of short voltage pulses at a high frequency (about 180 Hz), which ac-
tivate the BG around the electrode [28]. As shown in Fig. 2 (bottom
row), erroneous TH activations are corrected by the stimuli. How-
ever, it is worth noting that the spiking frequency in GPi increased
after DBS, compared to healthy brains. This could potentially lead to
side-effects such as speech impairment and facial contraction, espe-
cially when the stimuli are too strong [5]. Furthermore, constantly
stimulating with high frequencies significantly reduces the battery
lifetime of the DBS device. Consequently, it is important to design
DBS controllers that are not only effective but also energy-efficient.

2.1.2  The Necessity of OPE for Learning-based DBS Control. As
discussed in Introduction, several RL-based controllers have shown
promising results in balancing control efficacy and stimulation effi-
ciency by enabling adaption to changes of BG neuronal activities
on-the-fly. For example, [16] adopts deep actor-critic RL methods to
generate control policies that can adjust the time-intervals between
two consecutive stimulation spikes (i.e., pulse patterns). However,
substantial training data, obtained from extensive interactions with
the plant/environment, is usually necessary to learn suitable con-
trollers [23], especially for control of complex physiological pro-
cesses. This, on the other hand, may be intractable in real world.
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Figure 3: Typical timeline for training RL-based DBS con-
trollers in clinical studies. During trials, only limited data
can be collected for updating and evaluating the controllers,
since patients are only occasionally available and a physi-
cian’s approval is required before using each new controller.

During clinical trials/studies, patients may participate in studies
sparsely over time (e.g., once in a month). Moreover, before each
trial starts, any controller needs to be assessed by a physician [38],
which further limits the amount of time left for performance evalu-
ation and data collection for future training/improvements.

A typical timeline to train learning-based DBS controllers is sum-
marized in Fig. 3. During each trial, one is expected to focus on eval-
uating and collecting new data resulted from the use of (currently)
top-performing controllers (Phase I). In what follows, the control
policies are updated following suitable training procedures (e.g., us-
ing different sets of hyper-parameters) to improve the likelihood of
producing a better candidate to be deployed at the next trial (Phase
II). Then, a few controllers, which can potentially result in better
performance, need to be determined (Phase III). Otherwise, all of
them would have to be evaluated at the next available trial (Phase
IV). Although techniques such as offline RL [29, 35] can facilitate
Phase I, there exist a critical need to fill in the blank of Phase II1I.

OPE refers to methods that can approximate the performance of
RL-based controllers using historical data, i.e., without requiring the
patients to be presented while evaluating RL policies, which aligns
with the objectives and constraints of Phase III. However, most
existing OPE methods, such as [10, 15, 21, 32, 40, 47, 48, 50, 51], are
heavily based on importance sampling (IS) and could result in incon-
sistent estimations due to the high variance of the IS weights [10, 32].
In contrast, in this work, we introduce a model-based OPE that can
robustly and accurately learn a belief space using variational infer-
ence [25], in order to capture and reconstruct neuronal activities in
the BG. Consequently, the learned model can be used to interact
with each controller candidate extensively; thus, can evaluate their
performance thoroughly. In addition, as we introduce in Sec. 4.2, the
OPE can also be integrated into offline RL frameworks to improve
efficacy of the learned policies, even with limited training data.

2.2 Computational Basal Ganglia Model

We exploit the BGM introduced in [44], which was also adopted
in [16, 22]. The BGM models four important sub-regions in the
BG region of the brain, from which the effects of PD can be quan-
titatively captured; specifically, they are GPi, TH, STN and globus
pallidus pars externa (GPe), and the connectivity among the regions
is illustrated in Fig. 4. The system (i.e., neuronal) dynamics as well
as information transmitted among neurons can be captured by elec-
trical potentials of the neurons. Due to space constraints, details
about the BGM are provided in Appendix B.
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Figure 4: An overview of the computational BGM. The DBS
stimulation is applied to the STN, after which it is propagated
to the other sub-regions. Sensorimotor cortex (SMC) inputs
are also considered, which send activations to thalamus (TH)
and are essential for computing the error index (EI).

Two QoC metrics are used to quantify the severity of PD symp-
toms (see e.g., [16, 22, 44] and references within), EI and beta power
spectral density (Pg). Moreover, they can also be used to evaluate
the efficacy of DBS, by capturing the changes in EI and Py before
and after when the stimulation is applied.

El is defined as the portion of erroneous TH neuron activations
in response to sensorimotor cortex (SMC) inputs.? Empirically, from
Fig. 2 it can be observed that substantial erroneous TH neuron
activations exist in the PD brain without DBS, resulting in higher
EI as shown in Fig. 5. Furthermore, such effects can be mitigated by
using periodic DBS at 180 Hz (or as we show in Section 3, by e.g.,
the RL-based stimulation pattern controller with an average 45 Hz
pulse frequency).

The other metric, P/g, measures the power spectral density of GPi
neuron potentials within the beta band. It can distinguish between
the oscillations of GPi neuronal activities exhibited in healthy and
PD brains. As shown in Fig. 6, Py is exaggerated in the case of PD;
Le., Pg of the PD brain without DBS is significantly higher than
for a healthy brain. Similar to EL Py can be reduced using periodic
DBS at 180 Hz, or as we will show, RL-based controllers. Note that,
as discussed in Section 2.1.1 and Fig. 2, 180 Hz periodic DBS pulses
may reduce Pg to below the level present in healthy brains, due to
the spike overflow.

3 RLFOR DBS CONTROLLER DESIGN

We start by adopting the approach proposed in [16] to design RL
control policies that change stimulation patterns for the BGM (Sec-
tion 3.1). Furthermore, we extend this approach to allow for the
RL-based design of controllers that adapt stimulation frequencies
(Section 3.2). The performance of both types of controllers will be
evaluated by the OPE method introduced in Section 4.

3.1 DBS Pattern Control

To design RL policies that automatically adapt DBS stimuli patterns
to the changes in neuronal activities and PD symptoms, an MDP
model needs to be formulated as the environment upon which the RL
agents can be trained. Specifically, the MDP should characterize the
neuron activities in the BGM as well as their responses to DBS stim-
ulation. It is usually formulated as a 6-tuple M = (S, so, U, P, R, y),
where each of its elements is introduced as follows.

?Healthy brains could also respond to SMC, erroneously with a low probability
(< 0.1%).
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Figure 5: Error Index (EI) over time in model PD brains with-
out and with various types of stimulation, as well as model
healthy brains. The RL-based pattern controller with the av-
erage 45 Hz stimulation, RL controller that adapts frequency
of the stimulation, and (standard) periodic stimulation at
180 Hz all reduce the EI in PD brains to the levels as in healthy
(i.e., non-PD) brains.

State Space S. The states of MDP should capture the status of
neurons the BG region, characterized by the BGM. Specifically, the
state at a discrete time step t, sy, can be defined as a sequence of
EI and Pﬁ sampled at a fixed rate, m € Z*, over a window of size
T, ie.,

€(t)> €(t+m)> €(t+2m)> - - +> €(t+T\y—m) | . (1)
Bty Beemys Bieszmys -5 Bta—m) |

here, the e(.)’s and f(.)’s represent the EI and Py evaluated at
I = T,,/m number of equally-spaced intervals within the window,
respectively, Ty, € Z,1 € Z" and s; € R2X! 3 The initial state so
is determined following the initialization of the electrical poten-
tials vector of the BGM (i.e., the vector v introduced in (29) in
Appendix B) which, in addition to the SMC response, is the source
of stochasticity in the BGM [22, 44].

St =

Action Space U. We consider changing the stimulation pattern
every T,, steps, so the actions the RL agent can take at time ¢ are

ur = [U(r), U(rem)> U(rram)s - - > U(t4To—m) > 2)

where u; € {0,1}, and U(t4n-m) = 1 (or 0) means a stimulation
pulse is triggered (or not) at step t +n-mforalln € [0, - 1) C Z.

Transition Dynamics P : S X U — S. The RL agent interacts
with the MDP environment following the mechanism such that,
every time after s; is sampled, the agent applies DBS stimulation
following pattern u; (i.e., the action) and the environment responds
with the El and P readings over the next window as

€(t+Ty)> €(t+Tyy+m)> E(t+Toy+2m)> - - +> €(+4+2T,y—m) 3)
Bt+1,)> Bt+Toem)> Be+Tov2m)s - - > B(e42T,,—m)

The interactions between the RL agent and the environment over
a finite horizon T - Ty, (T € Z* and T < o0) can be summarized as
follows. After initialization, the environment provides so and the
agent chooses 1. Then, the environment responds with s;.,,, after

St+T,, =

3Without loss of generality, here we assume that T, is a multiple of .



Offline Policy Evaluation for Learning-based Deep Brain Stimulation Controllers

DBS OFF DBS ON

- . adl
—— PD Brain w/ 45 Hz Pattern DBd from RL
PD Brain w/ 45 Hz Periodic DB
—— PD Brain w/ 180 Hz Periodic D§S

Beta-Band Power (*1e+05)

10] e Healthy Brain w/o DBS 1
—— PD Brain w/o DBS 1 L,W”WM
—— PD Brain w/ Adaptive Frequendy Periodic DBS from RL
v
0 2000 8000 10000

4000 6000
Time Step (ms)

Figure 6: Beta power spectral density (Pg) over time in
model PD brains without and with various types of stimula-
tion, as well as in healthy brains. The RL pattern controller
with the average 45 Hz stimuli, RL controller that adapts
stimulation frequency, and (standard) periodic stimuli at
180 Hz all reduce Py to the levels as in model healthy brains.

which the action u T, 18 taken immediately, for all j € [1,T] c Z.
Since both the states and actions are updated every T,, steps, we
can simplify notations s;.1,, and u;.,,, to sj and uj, respectively, in
the rest of this paper.4 Furthermore, as in [16], we consider each u;
to contain the same number of pulses equivalent to stimulating at
a fixed frequency less than the maximally allowed rate, f < fiuax,
where in clinical practice fingx ~ 180 Hz (e.g., [12, 33]).

Reward Function R : S X U X & — R. An immediate reward
rj = R(sj, uj,sj+1) is received by the RL agent after taking action
u;j at s; and observing the new state sj+1. The reward function,
R, can be designed to promote the proper actions taken at each
state, as well as to penalize the ones that can cause undesirable
consequences. Specifically, we consider the reward function

re» iféji < & and ﬁ:j.,.l < &ps
o, if€je1 2 & and S < Ep;
Tbs iféj+1 < & and [ij+1 > fﬁ,
re, iféjy1 > &e and 1 2 &g

©

R(sj,uj,sj41) =

-1 -1
_ 1 R 1
here, &j11 = 7k20€<<j+1>Tw+km> and B = 7k20ﬂ<<j+1>rw+km>

are the average El and Pg over the window T., captured by the state
sj+1; £e, £p € R are the thresholds; and rq >> rj, > 0 > rc. In other
words, a large positive reward r, is given if the averages of both
El and Py are below the thresholds, & and &4 respectively, after
stimulating following the pattern in u;. Similarly, a smaller positive
reward rp, or a negative reward r, is issued by the environment if
the action u; only results in one of the QoC metric to go below the
threshold, or both metrics to go above the thresholds, respectively.

Discounting Factor y. Finally, we also consider a discounting
factor y € [0,1) C R, which is a constant essential for deriving the
learning objectives in below.

Before introducing the RL objective, we first define the control
policy 7 and accumulated return G; of an MDP.

4Here we slightly abuse notation j by considering j € [0,T] c Z.
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DEFINTTION 3.1 (CoNTROL PoLIcY OF AN MDP). A policy & of an
MDP M is a function, w : S — U that maps the set of states S to
the set of (control) actions U.

DEFINITION 3.2 (ACCUMULATED RETURN). Given an MDP M and
a policy t, the accumulated return over a finite horizon starting from
the stage j and ending at stage T, for T > j, is defined as

Gy = D gy Ve ©)
where 1, is the return at the stage j + k.

Now, given an MDP with its dynamics  remaining unknown
along with a pre-defined reward function R, the goal of RL is to
find a policy & that maximizes the expected return

J(7) = Es,u~p”,r~R [Gol, (6)

where p” = {(so,up), (51,u1),...|uj = 7m(sj)} is the sequence of
states and actions drawn from the trajectory distribution deter-
mined by 7. As a result, the optimal policy n* can be obtained as

" = argmax J (7). (7)

In [16], a deep actor-critic RL framework [29] is adapted to design
policies that map states to corresponding stimulation patterns. It is
shown effective in handling the large state and action space of the
environment, significantly reducing EI and Py over a finite horizon.
As we adapt this method, here, we briefly overview it while we refer
readers to [16] for details. We start with defining the state-action
value functions, or the Q-value functions.

DEFINITION 3.3 (STATE-ACTION VALUE FUNCTION). Given an
MDP M and policy r, the state-action value function Q” (s, u), where
s € S andu € U, is defined as the expected return for taking action
u when at state s following policy =, i.e.,

Q" (s,u) = Es,u~p”,r~R [Gols, u]. 8)

The method from [16] utilizes an actor 7y, (s) : S — U and a
critic Qg (s,u) : S X U — R, parameterized by neural networks
(NNs) with weights 6, and 6., to approximate the optimal pol-
icy 7* and Q-values 07 (-4, respectively. Unlike [29], the NN
architectures with weights 0. and 6,, are specifically designed to-
ward deriving stimulation pulse patterns in DBS. To obtain the
optimal policy in (7), the objective (6) can be re-formulated w.r.z.
the state-action value functions as

Jp(70,) = Espp [ Qo, (5.7, ()] ; )
here, f: S — U is the exploration policy that is usually obtained
by introducing disturbance to the actor 7g, to ensure sufficient ex-
ploration of the environment, and pﬁ = {(s0,u0), (s1,u1),...|uj =
B(sj)} is the state-action visitation distribution obtained over f.
Then, the parameters of the actor, 8, can be updated iteratively
following gradient ascent, i.e., for the learning rate a,

0;, — 0, + aquu]ﬁ(n'gu). (10)

To update the critic, 6, is set to minimize
2

JpO)=Es, u5,01~pPr~R [(r +yQo, (sj+1. 70, (sj+1)) = Qp, (). 45)) ]

which can be obtained using gradient descent, i.e.,

eé — 0c - acVGC]ﬁ(gc)~ (11)
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Using this RL-based approach, we obtained a control policy that
can adjust DBS pulse patterns, whose average stimulation frequency
is equivalent to 45 Hz in the periodic cases (i.e., they stimulate
the same amount of pulses within each T,,). On the other hand, as
shown in Fig. 7 (top row) this controller effectively corrects majority
of erroneous firings in both TH and GPi. Furthermore, it reduces EI
and Pg to the level as in healthy brains, as shown in Fig. 5 and 6.

3.2 DBS Frequency Control

We also investigate the use of RL to design controllers that adapt
the frequency of periodic DBS stimulation pulses, since frequency
adaptation is commonly considered to have significant potential
for aDBS [36, 39, 45, 49, 52]. Specifically, the policy is expected
to choose a stimulation frequency from a discrete set of integers
between 0-180, as 180 Hz is usually used in open-loop DBS devices
and can suppress most PD symptoms indiscriminately to different
levels of neuronal activities in the BG region [12, 33]. Therefore,
we define the action space of the MDP in this setting as 13 equally-
spaced integers sliced from [0, 180] C Z, i.e.,

uj € {0,15,30,- - , 165,180}, (12)

while the state space and transition dynamics remain the same
as defined in Section 3.1. We also modify the reward function to
account for energy consumption, such as introducing penalties
while stimulating with large frequencies, i.e.,

ra—C-uj, ife'j+1 <& and/ijﬂ <§ﬁ;
rb—C«uj, iféj+1 > & and[fﬂ.l <§ﬁ;
rp, —C-uj, iféj+1 <& andﬂjﬂ Zfﬁ;
re —C-uj, iféj+1 > & andﬁj+1 Zgﬂ;

R(sj,uj,sj1)= (13)

here, C € R is a constant balancing the scales between r’s and u j.5

Since the action space of this problem is sparse and dramatically
smaller than for the MDP for pattern adaptation from Section 3.1,
deep Q-networks (DQNs) [35] can be used to derive control policies
as they are sufficient for such (i.e., smaller) discrete action spaces.
In this case, only a critic Qo, (s, u), parameterized by an NN with
weights 04, needs to be trained to minimize

2
T5 OBy, sy rmprr| (7 + Y8, (51417, (5121)) = g, (557 |

the resulting policy defined over the critic is then
7o, (sj) = argmax Qo, (sj,u). (14)
u

Consequently, 64 can be updated following gradient descent, i.e.,
9; — Qq - aquq]/_g(Oq). (15)

Fig. 7 (bottom row) shows scenario when the obtained RL-based
controller chooses to stimulate at 75 Hz in a 4-second period, which
corrects most of the pathological activations in the two sub-regions.
As aresult, it effectively reduces El and Pg (Figs. 5 and 6). In general,
the RL controller capable of pattern adaptation outperforms the
one with periodic stimuli where only frequency can be adapted;
it achieves acceptable EI and Py levels for lower average pulse
frequency as it can both change the average stimulation frequency

>Note that in (4) we do not need the extra term since the number of pulses (i.e.,
energy consumption) across all u;’s remains the same.
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Figure 7: Activity of model neurons in TH and GPi after stim-
ulating with RL-based pattern (top) and frequency (bottom)
controllers for 4 s. The stimulation pulses are shown at the
top of each sub-plot (in red); GPi neural activity is displayed
at a reduced rate as it is originally too dense to be visualized.
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Figure 8: The architecture of the DL-MDP, capturing the prior
py(zj), encoder gy (zj|s;j) and decoder py (sj+1,7jlzj, uj).

and timing. However, unlike the frequency controller, it is currently
not supported by existing FDA-approved DBS device hardware.

4 MODEL-BASED OFFLINE POLICY
EVALUATION

In this section, we introduce a model-based approach to solve the
OPE problem. We then show how to integrate the OPE method into
offline RL training frameworks, which allows the agent to update
and evaluate the policies more efficiently during training.

In Section 3, we showed how to learn DBS controllers (i.e., con-
trol policies) that can adjust stimulation artifacts (i.e., patterns or
frequencies) responding to the changes in neuronal activities. How-
ever, as previously discussed, it is important to demonstrate the
efficacy of the RL controllers before patient trials start. We formally
define the OPE as follows.

ProOBLEM 1 (OFFLINE PoricY EVALUATION). Consider a target

policy 7, and off-policy trajectories p* = {(so, o), (51, u1), ... |uj =
u(sj)}, collected following a behavioral policy pi # r, over an MDP M
capturing the BG neuronal activities. The goal of the OPE is to estimate
the expected return of the target policy , i.e, By~ pr r~r[Go].

4.1 Deep Latent MDP Model for OPE

We introduce a model-based approach for OPE of DBS controllers.
Specifically, a deep latent MDP (DL-MDP) model is learned us-
ing variational inference [25], capturing the transition dynamics
and rewards of the MDP using trajectories obtained following a
behavioral policy y, i.e., p* = {(s0, up), (s1,u1),...|uj = p(sj)}.
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The formulation of DL-MDPs follows from the general Bayesian
inference frameworks [25] and they consist of three components,
i.e., priors, posteriors and sampling distributions. Specifically, a DL-
MDP includes: (i) a set of priors py (z;), parameterized by ¢, over
the latent variable space (LVS) Z C RY, where d € Z* is a hyper-
parameter; the priors are usually represented by the parametric
family of distributions such as multivariate Gaussian and represent
one’s belief over the latent distribution of the states, Z, before
sampling, where Z can be seen as the feature space characterizing
high-level representations over the state space S; (ii) the encoder
(or approximated posterior) gy (z;|s;), parameterized by ¢, which
maps the MDP state s; € S, obtained at stage j, to the latent variable
zj € Z; note that the true posterior py (zj|s;) cannot be obtained
due to the intractable marginal distribution (see (19)); however,
the variational inference framework allows it to be approximated
using g4 (see Theorem 4.1 as well as [25] for more details); and
(iii) a decoder (or sampling distribution) py, (sj+1, 7| zj, u;), which
enforces the transition from stage j to j + 1 in the corresponding
MDP and reconstructs the next state sj.+1 and reward r; conditioned
on the latent variable z; and action u;.

As aresult, the DL-MDP is used to interact with an RL agent via

zj ~ q¢(zjlsj), (16)
Sj+1s i1 ~ Py (Sjet, 7z, uj). (17)

Specifically, the DL-MDP first maps the state at stage j, s;, into the
latent variable z; by sampling from the distribution q4. After the
agent takes action uj, the DL-MDP responds with the next state 51
and reward r;. Fig. 8 shows the mapping flow from sj, u; to sji1,7;j.

To learn such a DL-MDP, we first enrich the trajectories that will
be used for training, by including into each tuple the rewards fol-
lowing the reward function as well as the next states; this results in

A = {(s0, uo, ro, 1), (s1, U1, 71, 82), . . - [uj = p(s;), 18)
rj =R(sj,ujsjr1)}-
Then, we learn the DL-MDP by maximizing the sum of marginal
log-likelihood

T-1 T-1
o oy = 2 1os [ [ [ [asteilen
P¢(31+1:Vj|Zj’uj)#(uj|Sj)P(5j)]dedudej: (19)

where p(s;) is the probability of ending up in state s; at stage j,
which could be estimated using Monte Carlo methods. However,
it is intractable to integrate over the latent space Z as it remains
unknown. Hence, variational inference can be used to learn a DL-
MDP by maximizing a lower bound of (19), which is referred to as
the evidence lower bound (ELBO).

The next result provides a way to derive the ELBO for DL-MDP.

THEOREM 4.1 (ELBO For DL-MDP). Consider deterministic policy
1, and assume that there exist € € (0,1) such that for each action
u € U, there always exist a set of states S.cS from which the
action u is taken following p. Furthermore, the states in Su can be
visited infinitely often, ie., exists€ s.t. 0 < € < ‘[Su p(s)ds < 1. Then,
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an ELBO for any tuple (sj, uj, sj+1,7j) ~ pH can be obtained as
log py (5j+1.77) = —KL (g (215)llpy (z))) + loge
+EZj~q¢,(Zj‘Sj)[logpw(sj-i-lsrj"zj’uj):l’ (20)
where KL(-||) is the Kullback-Leibler (KL) divergence [27].

The proof can be found in Appendix C.

In practice, it was shown that introducing a constant (i.e., hyper-
parameter) k € R to the ELBO, provides more flexibility for the
model to focus on learning disentangled latent representations (i.e.,
using smaller x) or maximizing the likelihood for s;4+1 and r; (i.e,
using larger x) [20]. Therefore, the learning objective is set to be

T-1
max £(9.4: ) = 3 = KL{ag 2115y (21)

Jj=0
FEsy gy (e lsp 1082y (sj1. 7512 47)] ). @)

Gradient descent [24] can be used to optimize (21) following the
reparameterization trick [25]. Specifically, the prior for the latent
variable is usually set to be the centered isotropic multivariate
Gaussian pl/,(z) = N(z;0,1I). For the MDP we consider, both the
encoder g4 (zj|s;) and decoder py (sj+1, 7|z, u;) can be captured
by multivariate Gaussian distributions with the mean and diagonal
covariance determined by ¢ and ¢/, respectively.

Furthermore, both ¢ and ¢ can be represented by NNs taking as
inputs the variables that the encoder and decoder are conditioned
on in (21), respectively - ie.,

¢ = o fl" = fiGs)). (22)

¥ = o) = folegup), (23)

with fi and f; captured by NNs. Then, zj, sj+1,r; can be obtained

via zj ~ N(pé, (0';)21) and [Sj+1,rj]T ~ N(p{/;, (oé)zl), with

I being the identity matrix. The reparameterization ensures the
gradients to be tractable, by replacing the sampling process with

Zj:yé+aé-e¢, (24)
[3j+1,rj]T = ;1{/'/ + 0“;/ €y (25)

with ey ~ N(0,1) and ey ~ N(0,I) that could be treated as con-
stants during training (i.e., gradient back-propagation). Specifically,
by defining z; = g1 (yé, o*(;) and [sj+1, rj]T = gz(y{//, 0{#)’ we have

[sj+1.75]7 = !]2(f2(lj> uj)) = g2 (fz(gl (fl(sj)):uj)), where the
gradients of fi, f2, g1, g2 could be obtained using the chain rule. We
refer to [25] for more details about the reparameterization.

REMARK 4.2. Note that the major difference between the DL-MDP
and the regular variational auto-encoders (VAEs) proposed in [25] is
that VAEs were originally designed to reconstruct samples to be similar
to the training inputs. As a result, there do not exist temporal corre-
lations between the inputs and outputs. Moreover, the encoder qy is
usually discarded after training since during sampling the latent vari-
able z can be obtained directly using the prior py (z). However, in the
MDP environment we consider, temporal correlations are imperative
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between two consecutive stages, following from the Markov prop-
erty [46]. Therefore, the sampling process described in (16) and (17)
enforces such correlations, and thus the ELBO specific to the setting
we consider had to be considered and derived. In addition, the encoder
q¢4(zjlsj) will not be discarded after training.

Consequently, after training, the target policy 7 can be evaluated
by interacting with the learned DL-MDP M following (16) and (17),
and by choosing u; = 7(s;) for all j. Then, the accumulated re-
turn (5) is obtained using the rewards issued from the DL-MDP.

4.2 Integrating OPE into RL Training

As described in Section 2.1.2, in the real world, access to trajectories,
that can be used to train RL policies, is usually limited. As illus-
trated in Fig. 3, new training data may only become available very
sparsely over a specific period of time (i.e., between two scheduled
patient visits). Although when a patient is not present, a few patient-
specific controller candidates can be trained leveraging offline RL
methods [29, 35, 43] using historical data, it is unclear which one
could result in better performance until they are all tested at the
next available trial. Thus, it is critical to devise efficient learning
pipelines when limited training resources are accessible.

Alg. 1 in Appendix E introduces an efficient offline RL training
framework, in the context of training DQNs, utilizing the OPE
method introduced in Section 4.1. Specifically, it takes as input the
MDP M as defined in Section 3, the DL-MDP M the set of policies
Il = {7[6(,1), ﬂé,z), ...}, each parameterized by a corresponding NN,
that will be uSdated and used to collect trajectories for training and
evaluation, a constant fpariens specifying the frequency in terms of
when the patient is available for DBS control evaluation (i.e., once
in fpatient number of training episodes), another constant fp,;
indicating the frequency the polices in IT are evaluated by OPE, and
a buffer B to store the trajectories collected during patient trials.

The algorithm starts by initializing the parameters of the DL-
MDP M, as well as all policies in IT. It also randomly assigns a policy
né') € I to the variable /i'gq which will be updated online and used

to (cI:ollect trajectories once the patient becomes available (i.e., trials).
Lines 5-15 of Alg. 1 correspond to the case when the patient is
available; thus, the policy currently stored in 77y, is updated online
by directly interacting with the patient, and the state-action tuples
(s,u,s’,r) collected are appended to the buffer 8. For simplicity,
here we only use a single tuple to update the policy; yet, it can be
extended to batch updates (see [16]). When the patient becomes
unavailable (i.e., lines 17-19), all policies in IT are updated offline,
using the data in 8. Finally, the OPE method is used to evaluate all
policies in IT every f,,,; number of episodes (lines 21-29). Specifi-
cally, the parameters of DL-MDP are first updated using the data

in B, after which it is used to interact with each policy ﬂé') eIl

to estimate the expected return over max_iter + 1 steps. Then, the
policy with the maximum estimated return is assigned to g, -
Note that, unlike (18), where the trajectory is collected following
a single policy, the buffer B contains trajectories collected following
a mixture of policies obtained at different training episodes. Also,
the algorithm could be easily extended to actor-critic RL methods,
such as deep deterministic policy gradient (DDPG) [29], by declar-
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ing two NNs at the beginning, to represent the actor and critic, and
following updates (10) and (11) in line 12 of Alg. 1.

5 NUMERICAL EXPERIMENTS

We employed the BGM to evaluated the proposed OPE methodology.
The evaluation was done from two perspectives: (i) estimating the
expected return of a target policy 7 using trajectories obtained by
a behavioral policy p, and (ii) enhancing RL training with limited
access to the controlled process (i.e., the BGM). All experimental
results were obtained using a server with 3 Nvidia RTX Quadro
6000 GPUs. The deep learning models were implemented in Python
using Tensorflow [1]. The BGM sampling window size was set to
be T, = 2 seconds in both case studies. Adam optimizer [24] was
used to calculate the gradients for (10), (11), (15), (24) and (25).

5.1 Expected Return Estimation

We first considered offline estimations of the expected returns, as
defined in (6), w.r.t. 20 target policies {71, ..., 720}, in the context
of two DBS control problems for the BGM, i.e., stimulation pulse
pattern synthesis (Section 3.1) and frequency selection (Section 3.2).

To achieve this, in both cases, the trajectories p#, obtained fol-
lowing 4 behavioral policies {1, . . ., 4}, were used to train the DL-
MDP. Specifically, p# was obtained by deploying each y;, i € [1,4],
to the BGM for 15 episodes, with horizon T = 200 steps each, and
concatenated together all the trajectories obtained. As a result, it
contained |p#| = 12,000 recorded (sj, uj, 7, sj+1) tuples. The details
for synthesizing 7’s and i’s can be found in the next subsections.

In DL-MDP, both the encoder g4 and decoder py, were modeled
by a 2-layer NN with 384 and 128 nodes each. During training, the
learning rate was set to 0.001 and the NNs were trained with 80,000
gradient descent steps. Then, the estimated return of 7;, i € [1,20],
was estimated by interacting with the DL-MDP for 50 episodes,
following (16) and (17) and choosing u; = m;(s;) at all time steps,
followed by averaging the accumulated return (5), over all episodes.

Two existing OPE methods were used as baselines, i.e., the step-
wise weighted IS from [40], and the density estimation IS (DEIS)
from [32], which uses estimated density ratio of stationary state
distributions to reduce variance in IS weights, and is considered a
state-of-the-art OPE approach (details provided in Appendix D). The
methods were evaluated using two metrics: (i) root mean squared
error (RMSE) between the estimated returns and ground-truth re-
turns, obtained by deploying each 7; to the BGM for 50 episodes and
reporting the averaged accumulated returns over all the target poli-
cies; and (i) rank correlation, captured by Spearman’s correlation
coefficient [42] between the rank of estimated and ground-truth
returns. Note that the metric (i) evaluates the estimation error made
by OPE, while (ii) inspects if the rank of estimated returns over all
target policies, is aligned with the returns that could be obtained
by directly interacting with the controlled process. To demonstrate
the robustness of each method to system stochasticity, the above
procedure was repeated 3 times for each method, and the resulting
mean and variance for all metrics are reported.

5.1.1  OPE for DBS Pattern Control. Four target policies, {r1, ..., 14},
were first obtained by training directly on the BGM for 50 episodes,
with horizon T = 200 steps each, using different combinations of
actor and critic learning rates, i.e., {(ay = 5e-5, a. = 5e-4), (ay =
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Figure 9: RMSE (left) and rank correlation (right) obtained
from the proposed OPE method versus the baselines when
evaluating the RL-based stimulation pattern controllers.
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Figure 10: RMSE (left) and rank correlation (right) obtained
from the proposed OPE method versus the baselines when
evaluating the RL-based stimulation frequency controllers.

le-5, ac = le-4), (ay = 5e-6,ac = 5e-5), (o, = le-6,ac = le-5)} as
in (10) and (11). Then, four behavioral policies, {1, . .., 4}, were
obtained by training on the BGM for 10 episodes using the same
hyper-parameters as above. To ensure the target policies could
result in a wide range of expected returns, we also considered
synthetic target policies as suggested in [21], which facilitated illus-
trating the robustness of the OPE methods to policies with various
levels of performance. Specifically, such policies were defined as

syn _ { i with prob. c, Pe[L4]. (26)

ie yi  with prob. 1 —¢,

By choosing ¢ € {.2, .4, .6, .8}, four additional target policies were
defined for each 7;. The average ground-truth return obtained
across 20 target policies, and 4 behavioral policies, were —0.51 (max
1.56, min —1.59, std 0.93) and —0.91 (max 0.83, min —1.52, std 1.0),
respectively; these were obtained using discounting factor y = 0.5.

The resulting RMSE and rank correlation obtained by our OPE
method, DEIS, and IS are shown in Fig. 9. The IS leads to the highest
estimation error and lowest rank correlations, along with the high-
est standard deviations (shown in the error bars) across different
runs of the experiments. In contrast, our approach significantly
outperforms IS in all experimental settings. Furthermore, we also
achieve lower RMSE and higher rank correlation than the state-of-
the-art DEIS; they become more significant once sufficient training
data are provided (i.e., [p#] = 9 x 10.)

5.1.2  OPE for DBS Frequency Control. Four target policies were
first obtained by training on the BGM for 50 episodes with T = 200,
using DQN with the architecture same as the critic used in Sec-
tion 5.1.1, and learning rates from ag € {1e-3, 1e-4, 5e-5, 1e-5}.
Then, four behavioral policies were obtained by training DQNs
using the learning rates above, but for 10 episodes only. Finally,
16 additional (i.e., synthetic) target policies were generated follow-
ing (26), which resulted in a total of 20 target policies subject to
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Figure 11: Per-episode (non-discounted) accumulated re-
wards obtained by OPE enriched DQN versus vanilla DQN.
Standard deviations over 4 runs are shown in the shadow.

be evaluated by OPE. The average ground-truth return obtained
across 20 target policies, and 4 behavioral policies, were 2.14 (max
3.65, min —0.78, std 1.42) and —0.37 (max 2.08, min —1.7, std 1.25),
respectively, for y = 0.5. The results are summarized in Fig. 10,
showing that our method significantly outperforms both baselines
in terms of the two considered metrics.

5.1.3 Summary. As demonstrated above, the proposed method
consistently achieves low RMSE and high rank correlations while
evaluating policies at various levels (i.e., with a wide range of
ground-truth expected returns). This shows that it can effectively
and accurately evaluate the performance of target policies in an of-
fline manner. In addition, the low standard deviations of the metrics
attained in most experiments illustrate that our method is robust
to stochasticity from the controlled physical process/environment.

5.2 Enhanced RL Training with Limited Data

In this case study, we employ Alg. 1 to learn policies that adjust stim-
ulation frequencies, with the patient represented by the BGM that is
only occasionally available for trials. We set that the total number of
training episodes max_iter = 50, the horizon max_iter = 200, BGM
comes online every fpatient = 5 episodes, and the OPE method was
called one episode before the BGM becomes available. In addition,
four policy candidates were considered (i.e., IT = {71, 72, 73, 74 }),
and each of them follows a different ag € {1e-3, 1e-4, 5e-5, le-5}.
The performance of Alg. 1 was compared to a baseline that simply
sets the policy being updated once the BGM was available, g, to
a policy randomly sampled from II. Fig. 11 shows the accumulated
rewards obtained at each episode resulting from Alg. 1-derived
policy versus the baseline. Specifically, the mean and standard
deviation over 4 different runs (i.e., following 4 random seeds) are
reported. Non-discounted returns are used since they capture the
raw performance propagated from each step. It can be observed that
the OPE-enriched RL leads to consistently higher returns, especially
at the later stage (i.e., > 25 episodes) where the mean performance
is always greater than the best one obtained by the regular DQN;
thus, showing effectiveness of our OPE-enhanced RL framework.

6 DISCUSSION AND CONCLUSION

In this work, we have developed a model-based OPE method that
can estimate the performance of RL-based DBS controllers using
historical data, which facilitate safe (i.e., no patient interactions
needed) and effective evaluations in clinical settings. Furthermore,
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we have shown how the OPE approach can be integrated into offline
RL frameworks to allow for efficient controller training.

We evaluated our approach using a computational BGM which
models the neuronal activity of the BG. The results show that
our method can estimate and rank the expected returns of the
target policies precisely, and is robust to stochasticity in the BG
(i.e., plant) and environmental disturbance, as well as target policies
with various levels of performance. Moreover, the second case
study mimics the limited data access setting as in clinical trials.
The improved efficacy of the resulting controller illustrates that
our method can also improve offline RL training of DBS controllers
even when only limited trajectories can be obtained.

As part of future work, the proposed OPE method will be im-
plemented practically in clinical studies to serve as a safe and ef-
fective approach for evaluating learning-based DBS controllers.
Moreover, the OPE framework could also be extended to other
types of more classical (e.g., non-learning) controllers. On the other
hand, although our method lays out the foundation for develop-
ing data-efficient learning-based controllers, it could be potentially
generalized to solve other clinical decision-making problems. For
example, evaluating/creating future treatment plans for PD patients
using their past electrical health records (EHRs). Here, the treatment
plans can be modeled as policies while the EHRs are analogous to
the trajectories used for updating and evaluating them.
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Offline Policy Evaluation for Learning-based Deep Brain Stimulation Controllers

A NOTATION

Here, we define the notation and terms used in the paper. For the
real number, integer and positive integer spaces, we denote them
as R, Z, and Z*, respectively. We also define 1 is the indicator
function, i.e.,

1 if condition x is satisfied,

1(x) = { o (27)

if condition x is not satisfied.
I is the identity matrix of suitable size. Moreover, x ~ p(x) means
that random variable x is sampled from distribution p(x). We also
use N (x; i, X) to denote Gaussian distributions with mean p and
covariance matrix X over variable x. For simplicity, we write x ~
N (p, 2) during sampling. The KL-divergence between distributions
p(x) and g(x) is defined as

q(x)

KL(pllg) = Ep [log m} . (28)

B COMPUTATIONAL BASAL GANGLIA
MODEL

We now provide details about the BGM introduced in [44]. Assum-
ing that there exist N neurons in each sub-region, the state of each
BGM sub-region, at time step ¢, can be represented as a vector of
potentials, i.e.,

va(t) = [of (1), ..ol (D] (29)

here, v?(-) denotes the electrical potential of the ith neuron in the
sub-region q € {STN, GPe, GPi, TH}. Note that [44] showed that
by selecting N = 10 the fidelity of BGM is very close to the ones
with N >> 10.

The activation of each neuron, at time step t, is captured by a
discrete event as a?(t) € {0, 1}, defined as

al(0) =1 ([of () > W] A [36 > 0.Ve € (0,810 (¢ — &) < h])

here, 1 is the indicator function, h? is a pre-defined threshold such

that the neuron is considered activated once the potential U?(t),
which has highly nonlinear dynamics, crosses over it.

We formally define the two QoC metrics used to quantify the
severity of PD symptoms (see e.g., [16, 22, 44] and references within),
ie, El and beta power spectral density (Pg). El is defined as the
portion of erroneous TH neuron activations in response to senso-
rimotor cortex (SMC) inputs at t = 7, i.e., SMC;. Specifically, SMC;
can change the TH neuron potentials, v/ ¥ (t), and should activate
all TH neurons exactly once within a 25ms window in healthy brains,
ie, Vi3l € [r, 7+ 25ms] s.t. aiTH(ti) = 1. However, in PD brains,
the TH neurons may not be activated or may respond with multi-
ple activations within the 25ms window following an SMC input.
Formally, El is defined as
g Zt: alTH,err(t)

i=1t=t,

EI() = =
N [smc,; |

(30)

here, aiTH’err(t) € {0,1}, and aiTH’err(t) = 1 (or 0) represents an

erroneous (or correct) TH neuron activation at time ¢, and |SMCT|§0‘
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is the cumulative number of SMC inputs received between the initial
time step to and current step t.
The other metric Py is defined as

1 N
Pp= NZ[‘:I[O

where Pl.GP I(w) is the single-sided power spectral density of the ith
neuron’s potential in the GPi sub-region.

2m-35Hz GPi
i
P (w)do, (31)
=2m-13Hz

C PROOF OF THEOREM 4.1.

Proor. We start by simplifying the KL-divergence between g4
and Py - ie.,

KL (9 G wslss i tlpy sl simn 1)) (32)

=KL (qg (251 lpy (5 wslsj1,7) (33)
=Bz ~qy (z)1s)) [log %} (34)
=Ezj~q4(zs1s)) [ log g (zjls;)

—logpy (zj, uj, sjr1,71j) +log py (sjs1, rj)] (35)
=Ez;~q,(z;ls) [log 94 (zjlsj) —log py (2, uj)

= log py (sj+1,7jlzj. uj) +10gp¢(5j+1,rj)] (36)

q¢4(zjlsj)

—logpl/,(Sj+1,rj|Zj, u_,)] +10gp1/,(3j+1,rj) > 0. (37)

Specifically, the transition between (32) and (33) follows from Bayes
rule, i.e.,

g (zjsujlsj s, Tje1) = 4 (2187 8ja1 Tyt ) g (ujls ) s, Tje)
Then, the first term can be reduced to g4 (z;s;) since z; is indepen-
dent from sj11,7j+1, uj by the DL-MDP definition. The second term
can be reduced to gy (u;lsj) which should always equals to one
since deterministic policies are considered. The transition from (33)
to (34) follows from the definition of KL-divergence. In what fol-
lows, (34) to (37) take advantage of Bayes rule and rearrange terms.
The inequality in (37) holds since the KL-divergence of any two
distributions is greater than or equal to zero. Now by rearranging
the terms we obtain that

q4(zjls;)
log py (sj+1,7)) 2 =Bz g, (z)1s)) [log m]
+Ezj~~q¢(zj~\5j) [logp¢(sj+1’rj|zj’uj):| (38)
q4(zjlsj)

) ] +log py (u))

=~ Bzjngy(zls)) [log
+E2j~q¢(lj\5j) [logpl/,(sj+1,rj|zj,uj)] (39)
>-KL (log q¢(2j|3j)||p¢(Zj)) +loge

+ Ezj~q¢(zj Is;) [logpl/,(s]q.l, rilzj, uj)] (40)
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Note that the transition between (38) and (39) follows from the fact
that z; and u; are independent; thus py (zj,uj) = py(2;)py (u)).
Then, we have py (u;) = fS Py (ujls)py (s)ds = /Su py(s)ds €
[e, 1] by the assumption. O

D EXISTING IS BASED OPE METHODS

Importance sampling (IS) refers to a statistical technique that can
calculate the expectation of function f(x) w.r.t. an unknown distri-
bution p(x) using a given distribution q(x) through re-weighting [32],
ie.,

f()p(x) ] _ )

q(x)

This technique can be applied in the context of OPE by setting
f(x) as the accumulated return Gy, p as the trajectory distribution
p” over the target policy 7, and q as the trajectory distribution p#
over the behavioral policy . Specifically, suppose that there exist a
total of n trajectories in p# and each corresponds to horizon T, ie.,

Ep[f(x)] =E

pt = {[(80,0, U0,0,70,0)s - - - (o, o, To.1) | - - -

[(sn,O) Un,0, rn,O), e (sn,T, UnT> rn,T)]

|ui,j = pu(sij), rij = R(sij, ui,j,si,j+1)}~ (42)
Then, the expected return over the unknown p” can be obtained
as
(u; Ui j1Si,j) |311)
Es-pr [Go] = GlY ’ (43)
~p” Z 1_[ (“1}'31,])

here, G(i) is the accumulated return from the i" trajectory in p#,

and H %‘lj’]; are usually referred to as the IS weights. It con-
ij

tains multlphcatlons of distributions (i.e., behavioral and target

policies) over horizon T; thus, it is considered to have high variance

across different trajectories [32, 40]. A common and intuitive way

of reducing the variance is to normalize the IS weights, i.e.,

n (l) ”(uu|5u)

E‘ G I—IO #(utj Islj)
Es~pr[Go] = — . (44)
> 7 (uijlsij)
=1 j=0 p(uijlsij)

Moreover, the weighted IS is extended to the step-wise weighted IS
in [40], which we used as a baseline in Section 5.1. Specifically, each
reward r; is weighted along a trajectory according to the likelihood
up to stage j as, i.e.,

7 (wiglsit)
=j+1 lu(ulllsll)

Es~p” [Go] = > (45)

3 %T‘f yk_lf”‘ U uilsig)

i=1 j=0 k=1 I=j+1 p(uiglsi)

which can be approximated using eligibility traces introduced in [40
46].

The state-of-the-art density estimation importance sampling
(DEIS), introduced in [32], finds that significant decrease in estima-
tion variance is possible by applying importance weighting directly

Qitong Gao, Stephen L. Schmidt, Karthik Kamaravelu, Dennis A. Turner, Warren M. Grill, and Miroslav Pajic

on the state space, instead of the trajectory space as in the IS in-
troduced above. The authors start with defining the average state
visitation distribution as

T T
Tim |3 v | [| D00 . (46)
—*\i= j=0

where dy j(-) is the distribution of state s; when executing policy
7 starting from the initial state sp. Then the expected return over
policy 7 can be calculated as

dr (s)7(uls)
Es y~d, [Gol = Egy~ [—G (47)
saunde (0] = Bsarndy | G, Gy ptals)
thus, the IS estimator for the RHS of (47) can be obtained as
j dr (sij)(aijlsiy)
j J NALIS
Zn:i g (i j)p(ai s ) N (48)
£ v A sy )7 (an yrlsi ) Ti.j>

i=1 j=0 Zl,} g d, (s/ ju(ay jrlsy jr)

with dy; (-) being the only term that is unknown. At last, the authors
introduce various techniques to approximate it such as NNs.

E ALGORITHM FOR INTEGRATING OPE INTO
RL-BASED CONTROL DESIGN

Algorithm 1 OPE enriched offline RL (DQN)

q S ﬁ)attenl feval: B

Require: M, M= {”(1)
Ensure:
1: Initialize the network parameters, Hq’s, for all ﬂ;') eIl
q

2: Initialize the parameters in the DL-MDP M.
. A ()
3: 7g, g < ngq.
4: for epi = 0 to max_epi do
5: if epi mod fpatient == 0 then > Interact with the patient
6: Collect from the patient trial EI and Pg with duration [ and form the initial state so
following (1).
7: s s
8: for j = 0to max_iter do
9: u— ﬁgq (s) > Follow the chosen policy
10: Provide control stimuli ©. In the mean time, collect from the brain EI and P/; with
duration and form s”.
11: Calculate reward r = R(s, u,s”).
12: Use tuple (s, u,7,s") to update the corresponding 6 following (15).
13: Append tuple (s, u,7,s”) to the training buffer 8.
14: s s’
15: end for
16: else > Train with historical data
17: for j = 0to max_iter do
18: Sample (s, u,7,s") ~ B and update all né; eIl
19: end for
20: end if
21: if epi mod f,,q; == 0 then > Evaluate policies using OPE
22: Initialize an empty list G = [].
23: Update parameters of M using all data in B following (21).
24: forcach 7)) € Tl do
q
25: Let 7r‘(9') interacts with M for max_iter + 1 steps.
26: Collect rewards and calculate accumulative returns following (5). Append the return
to the end of list G.
27: end for ( )
) . argmax G
28: Tog — n'gq
29: end if
30: end for

31 7 (r) « fzgq(-)
32: return
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