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Mixed-Input Bayesian Optimization Method
for Structural Damage Diagnosis

Congfang Huang, Jaesung Lee, Yang Zhang

Abstract— Structural health monitoring (SHM) is of significant
importance in the operation of engineering systems to ensure the
durability and reliability. In this article, we introduce a Bayesian
optimization method using a multioutput Gaussian process to solve
the structural fault diagnosis problem. This method utilizes a
high fidelity finite element model (FE) of the structure and the
impedance/admittance measurements from the structure to iden-
tify the location and severity of the damage. The method improves
the accuracy of the damage diagnosis by adopting a multioutput
Gaussian process as the surrogate model for the full FE model
and Thompson sampling approach is used to guide the search for
the structural damage in the Bayesian optimization. The detailed
algorithms are presented, and the convergence analysis of the
method is conducted. We apply our proposed method on simulated
synthetic functions and it achieves better performance and higher
convergence speed than the traditional mixed input optimization
methods. We then apply our method on a real world structural
damage identification problem using measured piezoelectric admit-
tance data and illustrate the effectiveness of the proposed method.

Index Terms—Structural health monitoring, system reliability,
Bayesian optimization, multiple output Gaussian process,
multiarmed bandit, black-box optimization.

1. INTRODUCTION

TRUCTURAL health monitoring (SHM) is of vital
S importance in ensuring the durability and reliability of
engineering systems. Structural damage in the systems can
cause performance degradation and even lead to catastrophic
consequences [1]-[4]. Early detection and identification of the
location and severity of structural damage is the key for mitiga-
tion such risk. To enhance the reliability of the systems, a number
of structural damage diagnosis techniques have been developed
inrecent years. Structural health monitoring is mostly facilitated
through measuring and comparing the dynamic responses of
structures [5]-[7]. Methods of SHM utilize vibration measure-
ments from which the natural frequencies and mode shapes
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are extracted to infer damage occurrence. These methods are
easy to implement, as they employ off-the-shelf sensors and the
vibration responses can be modeled in a straightforward manner.
However, typically only the lower order natural frequencies and
mode shapes can be extracted experimentally [8], [9], because
it is generally hard and even impossible to excite and measure
high-frequency vibration responses using simple experimental
setup. As such, the wavelengths involved are large, leading to
relatively low sensitivity in damage detection and identification.

Alternatively, a different class of methods utilize the wave
propagation information. As waves pass through damage sites,
their propagation pattern may exhibit changes [10]. Using trans-
ducers such as piezoelectric actuators/sensors with high band-
width, high-frequency waves can be excited and senses, leading
to high detection sensitivity. Nevertheless, the interaction be-
tween transient wave and local damage which may have arbi-
trary profile could be extremely complicated. The identification
of damage severity using transient wave propagation becomes
difficult [11].

In recent years, a new class of structural damage detection
methods, called piezoelectric impedance or admittance based
methods [12], [13], has been suggested. The approach works in
such a way that a piezoelectric transducer is bonded locally to
the host structure to be monitored. The transducer has a two-way
electromechanical coupling effect and can be used as both the
actuator and sensor simultaneously. When a harmonic voltage
excitation is applied, the piezoelectric transducer can excite the
structure and measure the electromechanical signatures. When
there is damage in the structure, it will result in impedance
change around the structural resonances. These impedance
changes can be used to monitor structural conditions. These
methods preserve the high-bandwidth nature of piezoelectric
transducers and thus lead to high detection sensitivity. When
a high-fidelity finite element (FE) model in healthy state is
available, the damage identification can be carried out to locate
and quantify the damage inversely with the electromechanical
impedance changes as input. For example, Shuai er al.[12]
applied the FE modeling, and formulated a linearization of the
impedance response through sensitivity matrix computation to
represent the relationship of the impedance changes and possible
damage. In practice, however, the number of unknowns to be
identified, i.e., the location and severity of damage, is large
while the data points of impedance response measurements
are limited. In another words, the sensitivity matrix is rank
deficient [9]. If the conventional least squares method is adopted
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to solve the underdetermined problem, it may yield untrue
solutions.

To address this limitation, the underdetermined identification
problem can be formulated as a global optimization problem
[14], [15], aiming at minimizing the difference of admittance
change between experimental measurements and model predic-
tion. Since the sensitivity matrix is rank-deficient, the underde-
termined problem has many or infinite solutions that may not
be the true damage location and severity. To address this issue,
some sparsity constraints are added to the model to remove the
undesired solutions [16], [17]. In [8], a multiobjective DIRECT
[18] algorithm to find the damage location and severity that
is closest to the observed admittance under the assumption of
sparsity is proposed.

Nevertheless, there still exists a research gap. The model
remains the linear formulation, which is accurate only when the
damage severity is small enough. In addition, even with spar-
sity constraint, these methods still provide multiple solutions
and requires manually select the most plausible solution from
them. A better algorithm is expected to be developed to find a
more accurate solution of the problem and provide deterministic
solution.

In this work, we propose a mixed-input global optimization
approach for structure damage diagnosis. In this approach, we
treat the structure FE model as a black-box function and then
we search the input to the function (i.e., damage location and
severity) that fits the obtained observations the best. Using the
full FE model, we can avoid the accuracy loss in the lineariza-
tion step. Black-box optimization has been studied extensively.
Bayesian optimization (BO) is a popular black-box function
optimization approach [19]-[22], particularly for functions that
are expensive to evaluate. It has been applied to a number of
scientific domains in recent years [23], [24]. BO uses statistical
surrogate model fitted to the data and utilizes the surrogate model
to find the next point to evaluate, so that the optimization process
can efficiently converge to the optimal solution. Benefiting from
the properties inherited from the normal distribution, Gaussian
process (GP) has been widely applied in data modeling, sim-
ulation optimization, and prediction problems [25]-[27]. The
majority of applications of BO also utilizes GP as a surrogate
model to be fitted to the data. It has been shown that BO that uses
GP as the surrogate model will converge to the global optimal
under some nonrestrictive constraints [28].

Most of the existing BO methods and applications focus
on the cases where there are only continuous variables in the
input domain of the function [20]-[22], [29]. However, for the
structure damage diagnosis problem at hand, the input variables
are of mixed types: the location of the damage is a discrete
variable while the severity of the damage is a continuous vari-
able. Optimization with both discrete and continuous inputs are
interesting topics in the optimization field. Unlike the continuous
input variables, discrete variables contain the information that
is not easy to be explored. Recently, Nguyen ef al. used multi-
armed bandit model to frame the BO problems (MAB-BO) with
discrete and continuous input variables [30].

Although MAB-BO is able to handle both discrete and con-
tinuous variables, it does not consider the correlation of the
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responses corresponding to different discrete inputs in each opti-
mization iteration. In other words, the responses corresponding
to different discrete inputs are modeled independently by sepa-
rate GP models in MAB-BO method [30]. However, in many real
world cases, the responses corresponding to different discrete
inputs often show similar patterns. Take the structure damage
diagnosis problem as an example. Intuitively, damages occurring
on close locations may show very similar patterns in the structure
dynamic response and the information from adjacent locations
may contribute to the prediction for each other. Thus, if we have
a model to simultaneously describe multiple responses corre-
sponding to multiple potential damage locations, then we will
have more accurate model to describe the underlying function,
which will lead to better performance of the BO algorithm.

In this work, we adopt a recently developed multioutput
Gaussian process (MGP) model with nonseparable covariance
functions as the surrogate model in the BO algorithm. Sim-
ilar to MAB-BO in [30], a Thompson sampling approach is
used to guide the sequential sample of the underlying function,
which can provide a good tradeoff between exploitation and
exploration of the search. A rigorous convergence analysis is
conducted to show the converging property of the proposed
method. Numerical studies based on both simulated data and
real world structure damage diagnostics problem compare the
proposed method and several other methods and demonstrate
the effectiveness of our method.

The main contributions of this work can be summarized into
three folds:

1) apply BO, a black-box function optimization method,
to the structure damage diagnosis problem, which can
directly work on the full FE model without linearization;

2) extend the existing BO method by adopting a flexible non-
separable MGP model as the statistical surrogate model in
the BO framework;

3) rigorous convergence results are obtained for the proposed
BO method.

The rest of the article is organized as follows. In Section II,
we introduce the related background of Bayesian optimization
(BO), including a brief introduction of BO and the Gaussian
process used in BO. In Section III, the multiarmed bandit multi-
output Gaussian process Bayesian Optimization (MAB-MGP-
BO) is presented and the convergence of the method is analyzed.
In Section IV, numerical simulation on two synthetic functions
is conducted. The results show that our method can achieve
a higher optimal value and a faster convergence than several
other methods including MAB-BO method in [30]. In Section V,
case study of structural damage identification based on both
simulated data and real world data are conducted. It shows that
our method can successfully detect the location and severity of
the damage. Finally, we conclude our work and have a discussion
on future work in Section VL.

II. REVIEW OF BAYESIAN OPTIMIZATION

In this section, we give a brief introduction of related back-
ground knowledge on the Bayesian optimization (BO) we will
utilize in the proposed method. Generally, BO methods consist



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: MIXED-INPUT BAYESIAN OPTIMIZATION METHOD FOR STRUCTURAL DAMAGE DIAGNOSIS 3

t=1 t=2

00 02 04

value
value

0.4
—0.4
1

@ @
< T T T T T < T T T T T

variable variable

t=3

ffffff acquisition function
------posterior mean
--posterior uncertainty
underlying function
B new observation

00 02 04
!

value
1

s | Ao ® observations
T LT~ - A acquisition max
~e . e
N

©
< T T T T T

-4 -2 0 2 4

variable
Fig. 1. Example of Bayesian optimization method.

of two parts. First, a machine learning method is utilized to
build a surrogate model of the input and the objective function.
Then, an acquisition function is designed to decide where to
take the next observation (also called “evaluation”) from the
objective function. Repeating the two steps sequentially, we
can build a surrogate model close to the underlying black-box
function and find a solution near the global optimal point. Fig. 1
is an illustration of BO method using GP as the surrogate
model and upper confidence bound [31] of prediction as the
acquisition function under noiseless condition, where ¢ is the
number of iterations, i.e., the number of evaluations we made
on the underlying black-box function f. The x-axis is the input
of the function and the y-axis is the value of function f. The
values of the acquisition function, the upper confidence bounds
with one standard deviation, are shown in dash-dotted line on
the bottom of the box at each ¢. The true underlying functions are
presented in solid lines above them. The observations we already
have are presented in by round points and the square point is
the new observation point we made in the current iteration,
which is chosen based on the acquisition function of the former
iteration. The dotted and short dotted lines are the posterior
predictions and the confidence intervals. As we can see from
the figure, the prediction is closer to the underlying function and
the uncertainty is lower through the iterations.

Formally, let f(x) be the black-box function with global opti-
mizer x* = argmax, .y f(x), where x is the vector of variables
and X is the domain of x. Assume that till the ¢th iteration, the
set of observation points Dy = {(x;,v;)|¢ =1,...,t}, where
yi = f(xi) + €, 6, ~ N(0,02). If we fit the surrogate model
to the data in each iteration and we obtain the prediction of
f(x) with mean 4;(x) and variance o2 (x). Taking the upper
confidence bound Uy (x) = p(x) + fo(x), (in Fig. 1, 8 =1)
as the acquisition function, we take x;y1 = argmax, . »U;(x)

as the next evaluation point. Then, we evaluate x;4; with the
underlying model and get the response y;+1. Finally, the tth
iteration is finished and the dataset of the (¢ + 1)th iteration is
D" = D' U {(xX¢11,ys+1)}. After a large enough number of
iterations, we can achieve the global extreme point x*.

As we mentioned above, the most frequently used surrogate
model in BO is the GP model. A GP is a generalization of
the Gaussian probability distribution and can be considered as
a Gaussian distribution prior over functional data. It has been
well established that GP model is a very flexible and expressive
model that can be used to describe a wide range of functions
[32], [33]. It is a stochastic process, which is a collection of
random variables and any finite subcollection of which follows
a multivariate normal distribution. Thus, the distribution of a
GP is the joint distribution of all those (infinitely many) random
variables.

A GP f(x) is specified by its mean function pu(x), p:
X — R and its covariance function ¢(x,x’), ¢: X x X —
R, where c(x;,%;) is the covariance between f(x;) and
f(x;). Please note that without causing confusion, we use
the same symbol f to represent the underlying function
and a GP. We denote the GP as f(x) ~ GP(u(x), c(x,x")).
Specifically, for a set of inputs X,, = [x1,Xs,...,X,]|?, the
vector of output f(X,) is Gaussian distributed with mean
w(Xn) = [u(x1), u(x2), ..., u(x,)]T and n x n covariance
matrix C(X,,, X,,) :

e(x1,x1) (1, %) (1, %n)
O(X,0.X,) = c(x2,%x1) ¢(x2,X2) c(x2,Xn)
c(Xn,%X1)  (Xn,X2) c(Xn, Xn)

(1

A common covariance function is the squared exponential ker-
nel, defined as c(x;, x;) = o2exp(—||x; — x;[3)/(2{)?, where
[ is a length scale parameter and o is the parameter dictating
the uncertainty in f(x).

When we utilize a GP in BO as used in Fig. 1, the posterior
GP with a newly observed y at iteration ¢ can be expressed as

XDy ~ N (e (x). 07 (x))
(%) = C(x, X)[C(Xp, X¢) + 021y

0 (x)=C(x,x)—C(x,X,)[C(X¢, X)) +02T LC(Xy, )2)

Another essential part of BO is the acquisition function,
which determines how the search space are explored during
the iterations. Acquisition functions are based on the posterior
distributions of the GP fitted in each iteration. There is a tradeoff
between two directions of search: exploitation and exploration.
Exploitation improves the region near the current best result,
while exploration develops more unfamiliar regions that have
higher uncertainties. Both directions are necessary to get to
the optimal point in the long run of the algorithm. Otherwise
the algorithm may stuck in a local optimum or jump around
with no sense. Most common acquisition functions includes
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Fig. 2. Illustration of MGP. Three functions are shown, which correspond to
three different categorical input values.
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upper confidence bound, expected improvement, and Thompson
sampling [34], [35]. We will provide more detailed discussion
on these acquisition functions in the next section.

III. MULTIARMED BANDIT BAYESIAN OPTIMIZATION WITH
MULTIOUTPUT GAUSSIAN PROCESS

In this section, we first introduce the detailed way to construct
covariance function of multioutput Gaussian process (MGP) in
Section III-A. Then, we introduce the proposed method multi-
armed bandit multioutput Gaussian process Bayesian optimiza-
tion (MAB-MGP-BO) in Section III-B. Finally, the convergence
analysis of the proposed method is conducted in Section III-C.

A. Convolved Process and Multioutput Gaussian Process

As we mentioned before, in many cases, not only the ob-
servations under the same categorical input value but also the
observations from different categorical input values contribute
information to the fitting of the model. A model that can con-
sider both the information within the same category and the
information across different categories is preferred. In Fig. 2, we
show three functions that correspond to the objective function
under three different categorical input values. In the multiarmed
Bandit formulation, the objective function under a categorical
input value is also regarded as an arm.

For an MGP model, we should not only specity the covariance
function for a single output (as that in the conventional univariate
output GP model), but also the cross covariance among different
outputs. Thus, the covariance function of MGP is in the form
of (i, j,x,x"), where ¢(i, j, x,x") = cov(f;(x), f;(x')) and i,
7 are output indices. The parameterization of the covariance
function c(i, j, x, x) plays a critical role in MGP model because
it characterizes the relationship between any two outputs. A
popular approach is to use a separable covariance structure,
i.e., letting c(4, j, x,x') = 7(¢,7) x cov(x, x") [36]-[38]. Other
formats combining separable covariance functions are also de-
signed in recent research [39], [40], but they still calculate the
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Fig. 3. [Illustration of the construction of MGP with shared white noise
Gaussian Processes.

covariance of continuous and categorical variables separately. In
the current state-of-the-art open source implementation of GP
model such as GPyTorch [41], the separable covariance function
isused. The separable structure is appealing due to the simplified
covariance structure, however it restricts all outputs to share the
same set of covariance parameters, i.e., the part cov (x, X') is the
same for all the outputs. However, different outputs may have
different characteristics and thus it is too restrictive to use the
same covariance function for the continuous variables across
different outputs.

To overcome the limitation of separable covariance function,
we adopt a nonseparable covariance structure that is based
on convolution processes (CP) [42]-[44]. The CP-based non-
separable covariance function is based on that a GP can be
constructed by convolving a latent Gaussian white noise process
with a smoothing kernel [45]. In more details, we can con-
struct a GP f(x) by convolving a Gaussian white noise process
W (x) with a smoothing kernel k(x) = exp(—x2/(21?)), where
cov(W(x), W(x')) = §(x — x'), lis the length scale parameter,
¢ is the Dirac delta function, defined in [46] as

[ 5(z)de = 1 ,5(35):{()0(; - 3)
such that
flx) = /7 k(x —u)W(u)du. 4)

Then, the corresponding covariance function can be expressed
as

oo
cov(f(x), f(x)) = / k(x —u)k(x' —u)du. (5)

Thus, the GP is parameterized by the parameters in the
smoothing kernel k, which is required to be square or absolutely
integrable, i.e., [~ _[k(x)[?dx < oc.

For a MGP setting, if each output is constructed in this way,
and if we share these latent Gaussian white noise process across
multiple outputs, then multiple outputs can be expressed as a
jointly distributed GP [47], [48]. For example, a nonseparable
MGP construction is shown in Fig. 3. This construction is first
proposed by [49] and is adopted in this work. In Fig. 3, we try to
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construct a surrogate MGP model for the function correspond-
ing to the rth arm, denoted as f,, while f;, i € {1,...,m}\r
correspond to the functions from other arms. Then, according to
this construction, f,.(x) can be written as

m

= k(%) * Wo(x) + ) ki p(x) x Wi(x)  (6)

i=1

fr(x)

where k; j(x) x W;(x) = [* ki j(x — u)W;(u)du and k; ; is
the kernel used in the convolutlon of the ith latent function and
the jthoutput, i, j € {1,2,...,m}.For the functions from other
arms, it is constructed as f;(x) = k; ;(x) * W;(x). Clearly, W;
is shared across f; and f,. in the construction and thus, the cross
correlation between f; and f, can be modeled.

With this construction, we can obtain the covariance matrix
of the MGP model for f, as [49]

1,1 1,r
Cn1 Xny 0”1 Xn2 0711 XMy Cnl XNy
2,2 2,r
077,2 Xny On2 Xno 0712 XMNm an XNy
Cnxn =
m,m m,r
Onanl 071an2 Onanm Cnmxn'r‘
r,1 r,2 r,m T
Cnrxvn C’ﬁ,y-an Cnrxnm Onrxnr

(N
where n; is the number of observed data points from function
fiu N=>" n;C is the covariance within function f;,

CZ:XM is the cross covariance between f,. and f;, and 0y, xp;
is the zero matrix with dimension n; x n;. Please note the
covariance matrix in (7) is a function of all the parameters of
kernel functions used in the construction, including k; ;, k; ,,
and k,. ,% = 1, ..., m. Once the covariance matrix is constructed,
we can actually view the MGP as a conventional GP model and
use the maximum likelihood estimation method to estimate the
kernel function parameters based on the observed data from the
functions of all the arms. With the fitted MGP model, we can
also make probabilistic predictions of f;. at other input locations
using the formula in (2). More technical details of the model
construction and estimation can be found in [49].

One point we want to emphasize here is that the MGP model
in Fig. 3 is to model the function f, only. If we want to model the
function from a different arm, then we need to put that function
in the place of f, in Fig. 3 and build a different MGP model. In
other words, in our proposed MAB-MGP-BO method (details
are shown in Section III-B), for each arm, we have a different
MGP surrogate model. It is possible to establish a complex CP
based MGP model to model all the function simultaneously.
However, such a model may involve a very large number of
parameters and difficult to estimate and use. The arrangement
in Fig. 3 allows us to use multiple simpler models to describe
the functions and each MGP is relatively easy to estimate.

an

B. MAB-MGP-BO Algorithm

Suppose we have a collection of black-box function
{fa(x4)}_; with both categorical variable a € {1,2,...,m}
and continuous variable x, € X C R? The goal of
the algorithm is to find the optimum point [a*,x%.] =

Algorithm 1: MAB-MGP-BO.
Input: m: number of arms/outputs, ¢: number of iterations
Output: x*: the optimal solution of f and f* = f(x*)
1: for t=1,2,...do

2: for a=1,2,...,mdo

3: Fit the Multi-output Gaussian process model to
Dt—{(auxuyz)h_l }

4 Draw a sample f,(x) f1 om the fitted model f, (x):
fa(x) ~ p(fa(x)|Dy) i

5: Find x;, = argmax, .y fa(X)

6: Let f* = fo(X3)

7:  end for R

8: at+1 = argmax1<a<mfa

9: Xt4+1 =

at+1

10:  Evaluate y; 11 = f(X¢41) + €141
11: if Yt+1 > f* then

122 f* = yt+17x* = Xt+1

13:  endif

14: Dyp1 = {(ap41, X1, Ye41) U Dy
15: end for

argmax(, xie(1,2,....m}xx,Ja(X), which can also be written as
a* = argmax,cqy 5 myf(X;) and x;, = argmax,c v f(Xa).

To solve the problem we can formulate it into a multiarmed
bandit (MAB) problem [50]. For each arm a, we use BO to
find the optimal point x;, = argmax, y_f(X,). Then, to find
the optimal arm @™ = argmax,c(q 5 . ) f (X ). In the proposed
MAB-MGP-BO, we use MGP model in each arm as the surro-
gate model for the black-box function corresponding to the arm.
The MGP model can borrow information from the black-box
functions of other arms, which could lead to more accurate sur-
rogate model and in turn lead to better optimization performance.
The detailed algorithm is presented in Algorithm 1.

Take m as the number of arms (also called number of outputs)
and ¢ as the number of iterations or evaluations. In each iteration
t, we fit the MGP to D, the total dataset at iteration t. The
fitted model is denoted by f,(x). Then, we draw a sample
function fa(x) from the posterior Gaussian distribution of the
MGP: f,(x) ~ p(fa(x)|D;). We locate X, the > optimal point
at arm a, by maximizing the sampled function f. The value of
f at X}, is denoted by f . After finding the optimal solution
for the every arm, find the best arm and data point a;4; and
x¢+1 for evaluation at the next iteration. Then, evaluate the
underlying true function f and get the new observation value
Y41 = f(X¢41) + €:41. Finally, the dataset is updated as Dy 1
by adding the new observed data point (a1, X¢4+1, Yr+1)-

We would like to mention a couple of points regarding the
above algorithm:

1) Line 5 to Line 13 of Algorithm 1 is the Thompson sam-
pling (TS) approach to determine the next input point to
evaluate. As mentioned in the introduction section, there
are many different method to sequentially select the next
point to evaluate, including the popular methods such
as the expected improvement (EI), the upper confidence
bound (UCB), and TS. El is a greedy improvement-based
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strategy that suggests the point that could improve the
expectation of the function the most over the current
evaluated point. Although EI is effective and provides
reasonable performance in the practice, it is often too
greedily focusing on the existing optimum point and col-
lecting little information about the unfamiliar regions in
the domain [51]. UCB, as we mentioned earlier, chooses
the point that maximum the upper confidence bound
Ui(x) = pe(x) + fo(x) of the posterior prediction of
the underlying function for the next iteration. This al-
gorithm can balance the exploration and exploitation of
the optimization. However, the performance of the op-
timization may depend on the confidence parameter 3
and it holds a lower regret bounds than the TS method
as an acquisition function of BO [52]. TS proposed by
[53] is a sequential sampling heuristic that can handle
the exploration—exploitation dilemma. Instead of setting
a closed form expression, this method samples a function
from the fitted Gaussian process and suggests the next iter-
ation point by the maximum value of the sampled function.
TS has desirable theoretical properties [52] with a pretty
tight regret bound and provides basis to the convergence
analysis for MAB-MGP-BO as discussed in Section III-C.

2) On Line 8 of Algorithm 1, we need to find the maximum
value from a sample (i.e., a realization) of GP from the
fitted MGP model. A straightforward grid search is often
used to solve the optimization problem on Line 8: we just
treat the MGP as a multivariate Gaussian distribution and
sample it at a large number of regularly distributed input
points (also called grid points) and then find the largest
value among the sampled values. This method is effective
and viable only when the dimension of input is low. If the
dimension of input is high, the number of grids points to
fill the input space will be overwhelming. For example,
for a problem with 10 dimensional input and 1000 grid
points for each dimension, we will have 103 grid points.
It is infeasible to sample such a large number of points
simultaneously. Instead, we need to adopt a sequential
sampling strategy when we solve the problem in Line 8:
We just sample one or a small batch of points from the
MGTP at an iteration and let a searching algorithm (such as
a gradient descent searching method) to determine what
next points to sample for the next iteration. One critical
point for the sequential sampling method is that the sam-
ples from different iterations should not be independent
samples from the MGP. Rather, the later samples depend
on the previous samples so that the samples obtained from
the sequential procedure should be the same as if they are
sampled simultaneously. We have established a sequential
sampling method as shown in Algorithm 2.

The sequential sampling algorithm from MGP is shown in
Algorithm 2.

At each iteration ¢ and for each arm a of the Bayesian
optimization model, we wrap the sampling process as a function
of the new sample point x given the set of previously sampled
points Dj. The sampled points D; are regarded as evaluated
points and the new sample value f is based on the posterior
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Algorithm 2: Sequential Sampling from MGP.

Initialize: Global Df = (): the set of sampled points from
the fitted MGP, denoted by f,(x).
1: function SAMP x
2:  Calculate the posterior Gaussian distribution of given
both the evaluated and sampled data ff |Dy, DS
3: _ Sample a new point from the posterior distribution
F ~ p(fax)|D¢, DY) )
Save the new sampled point: D} = D; [ J{(x, f)}
return f
end function
Optimize the sampling function: x;, = argmax, y,
SAMP x

AR A

distribution of not only the evaluated points D;, but also the
previously sampled points. Given the fitted MGP £, (x)|D; and
a sampled dataset D}, we can use the following lemma to obtain
the posterior MGP sample f ~ f,(x)|D;, D{. This resultis used
in Line 4 of Algorithm 2.

Lemma 1: Dy = {(x;,y;)};, is a set of the observed data
points, where y; ~ f(x) +¢€, € ~N(0,02). Suppose D; =
{(x3, fj)}?;l is the set of sampled functions from the pos-

terior distribution of the fitted MGP f(x) in the tth iter-
ation. Let X; = [x1,...,%p,,]7, Xe=1[x5,...,x3 |7, y=

W1y Ynss fise s Fo )T, Then, we have fa(x)|Dy, Df ~
N(p,, X,), where

. C(X,Xt) C(Xt,Xt) +U€21 C(Xt7XS) -
B lomXxg| | oxexy oxoxg| Y
¥, =c(x,x) — Clx Xy)

s ’ C(x,Xs)

-1

C(Xt,Xt) —|—O'62]: O(Xt,XS)

C(Xs, Xy) C(X,,X,) [C(x,Xy), C(x, X))

®

Following Algorithm 2, we can sequentially sample a MGP
while guarantee the sequentially sampled data points have the
same property as if they are sampled simultaneously from the
MGP. The proof of this property utilizes the basic properties of
conditional multivariate normal distribution and is omitted here.
With the sequential sample approach, gradient-based optimiza-
tion algorithms can be used in Line 8 of Algorithm 1 to find the
optimal point of the sampled GP from the fitted posterior MGP
directly.

C. Convergence Analysis

In this section, we present the convergence analysis of the
proposed MAB-MGP-BO method. Bayesian regret has been
used for a performance measure for the Bayesian optimization
with Thompson sampling due to its sampling scheme [52].
The Bayesian regret is defined as follows. Assume the un-
derlying function is f and x* is the optimal solution of f,
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x* = argmax f (x). Initeration ¢, the algorithm suggests x; as the
optimal solution, then r; = f(x*) — f(x;) is the instantaneous
regret of the algorithm. The Bayesian regret is the expectation of
the summation of the instantaneous regret by the T'th iteration:
BayesRegret(T) = E[Y]_, ). With the Bayesian regret, we
can assess the convergence rate of the algorithm by finding
the bound of the marginal increment of the Bayesian regret
BayesRegret(T)/T.

For the observed data in the tth iteration of the algorithm,
suppose we choose the a;th arm and the optimal point is x;,
then we have

Yo = fa (i) &, t=1,....T. (€))

We define f,(x) is the MGP for the ath arm with mean
zero and covariance function o?c(x,x’), and x,x' € X, C
R?. We denote the observed data of the ath output as
D¢ = {(ay, z¢,yt)|as = a}_; and the whole dataset by D; =
UsL Dy, where m is the number of arms.

According to our formulation, Bayesian regret of the MAB-
MGP-BO model by the T iteration is defined as the expected
difference between the underlying optimal value and the optimal
value we find by the Bayesian optimization:

T
BayesRegret(T) = E Z {far (@) = fa,(xze)}| . (10)
t=1

To find the Bayesian regret of the MAB-MGP-BO method,
we need two following assumptions. These assumptions are not
restrictive and have been used in other convergence analysis
works [31] and [30].

Assumption 1: For all a and for any sample f from GP, there
exist constants 7, s > 0 such that its partial derivatives satisfy
the following condition:

P(|0f/0z:| < L) > 1 —drexp(—L?*/s?)

VL >0 Vie{l,...,d} (11)

where d is the dimension of the model input x.

With this assumption, the partial derivatives of f is bounded
in probability. Another assumption is on the maximum infor-
mation gain of the model. The information gain is the mutual
information shared by f and the observations y, = f(x,) + €,
on x, € O C X, where ¢, ~ N(0,0?). Then, the information
gain is defined as

I(yo; f) = H(yo) — H(yo| f)-

H(y,) is the marginal entropy of the observation y, and
H (y,|f) is the conditional entropy of the observation y, given
the corresponding function value f(x,). ForaGP f ~ N (u, %),
H(N(u, X)) = log|2meX| /2. The information gain is a measure
of the reduction in uncertainty of function f after knowing
the observations g,. The maximum information gain after 7’
iterations is then defined as

12)

1 = maxocp:jo|=11 (Yo; f)- (13)

With the following Assumption 2, we can guarantee the
maximum information gain of the model within a sublinear
bound.

Assumption 2: The maximum information gain 7, about f,
in Bayesian Optimization with Gaussian process is sublinear in
T, which is the number of observations in the ath arm; there
exists an o such that vy, ~ O(T) where 0 < a < 1.

Both assumptions 1 and 2 hold for our multioutput Gaussian
process. The kernel used for the GP in this work reduced
to the form of Gaussian kernel with paired scale parameters
corresponding to each category. Assumption 1 holds for any
four-times differentiable covariance functions as stated in [31];
thus, it holds for the Gaussian kernel function. Assumption 2
holds for the Gaussian kernel function [30]. In other words, our
multioutput Gaussian process satisfies both the Assumptions 1
and 2.

Under the assumptions, the Bayesian regret of the MAB-
MGP-BO method in Algorithm 1 can be bounded as follows.
This result stated in Theorem 1 shows that the Bayesian regret
bound of the algorithm is growing sublinearly in 7" with factor
v/m. A sublinear Bayesian regret implies the solution of MAB-
MGP-BO will converge to the global optimal point.

Theorem 1:

T
BayesRegret(T) = E lz {far (") = fa, (It)}]
t=1
<0 (\/mTO¢+1 log T)

(14)

where 0 < o < 1.

We provide an outline of the proofs of the theorem. We use
Ja(x)| Dy for the posterior distribution of the MGP instead of
the posterior distribution of f,(x)|D¢, which is a conventional
univariate output GP as they used. In other words, instead of
using the dataset for specific a, we used whole dataset D,
leveraging all the information across a by using MGP. Theorem 1
can be proved after the following decomposition of the Bayesian
regret

T
BayesRegret(T) = E lz {far (x7) = fa, (xt)}]
r
=E [Z {fa*(a?*) - fat(xzt)}]
t=1

+E

T
Z {fat (xzt) - fat (xt)}‘| (15)

= Ry/4P + REC. (16)

The boundary of Bayesian regret will be obtained by having
the boundaries of RM4P and REC in Lemmas 2 and 3. For
the proofs of Lemmas 2 and 3, we state them in Appendix A.
In the MAB-MGP-BO model, the Bayesian regret consists of
two parts. One is the Bayesian regret of the multiarmed bandit
model RYAB = E[S°]_ {fu (2*) — fa,(2%,)}], which is the
expected cumulative difference between the underlying optimal
value of all the arms and the optimal value of the selected optimal
arm a; from the MAB model. We define the Gaussian process
model used for the function at the arm a as GP,. The boundary
of RYAB is presented in Lemma 2. Given the observations by
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the T'thiteration, the Bayesian regret generated from multiarmed

bandit model can be bounded by an sublinear upper bound.
Lemma 2: The Bayesian regret from multiarmed bandit

RYAB in the MAB-MGP-BO model has an upper bound of

O(y/mT>t+1l1logT)

T
RMAB _| Z{fa*(x*)_fat(zz;t)} Dr,GP1,...,GPm

t=1

< O(v/mTotlogT)

where 0 < o < 1.

Another part of the Bayesian regret (16) is the regret of the
Bayesian optimization RZ¢ = ]E[Zthl{fat (w,) = fa,(@t)}]s
which is the expected cumulative difference between the under-
lying optimal value within arm a; and the optimal value obtained
by the Bayesian optimization algorithm with arm a;. Similarly,
the boundary of R? O is presented in Lemma 3. Given the
observations by the T'th iteration, the Bayesian regret generated
from Bayesian optimization can be bounded by an sublinear
upper bound.

Lemma 3: The regret from Bayesian optimization RE© in the
MAB-MGP-BO model has an upper bound of b/mT“*! log T

7)

T
REC =E | {fa,(x},) = fa, (@)} |Di,GP1, ..., GP
t=1

m Ty

=" Elfu(@}) — fal1,)|D1, GP4) (18)
a=1t,=1

<by/mTtllogT (19)

where b is an arbitrary constant, 0 < o < 1.

Combining Lemmas 2 and 3, we have the Bayesian
regret bound in Theorem 1. Then we have limp_,
BayesRegret(T')/T = 0. The expected cumulative regret is
sublinear and the average expected regret of the proposed model
is convergent.

IV. ILLUSTRATION THROUGH BENCHMARK EXAMPLE

In this section, we present two benchmark examples to com-
pare the performance of the proposed MAB-MGP-BO method
with other three Bayesian Optimization methods.

A. Methods Considered

To show the advantage of our methods, we compared the

following four methods on the simulated functions:

1) Onehot-BO [54]: BO method using one-hot encoding
method to transform the categorical variable into addi-
tional continuous variables.

2) MAB-BO [30]: Multiarmed bandit Bayesian Optimization
method using traditional univariate output Gaussian pro-
cess in each arm.

3) MAB-SMGP-BO: This method is the same as our proposed
MAB-MGP-BO method except that a separable covari-
ance functions for the MGP is used. We adopt the separable
covariance functions developed in [38]. In this approach,
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f(a,x)
2
Il

TNYTNIAINI
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o

Fig. 4. 2-D synthetic function used in simulation.

one positive definite matrix with unit diagonal elements
(PDUDE) is constructed to measure the correlation among
the functions from different arms. A spherical coordinate
parameterization method is used to simplify the fitting
algorithm for the hyperparameters of the PDUDE matrix.
4) MAB-MGP-BO: (Our proposed model in Section III-B).

B. Simulated Function

In this simulation, we take the same synthetic functions used
in [30]. One of the function we try to maximize is a two-
dimensional (2-D) function containing one continuous variable
x and a categorical variable a. The expression of the function is
shown in (20) and Fig. 4

(=21 — 6)2)

Fllasa]) = exp(—(:1 — 2 +exp (0

1 a
25 +1 * 2
where z; = 2 + 0.05a(—1)%,z € [-2,10],a = 0,1,...,5.

We can see the set of functions follow a similar pattern and
the maximum value are obtained with similar value of x. There
are positive correlations between different functions and the
proposed algorithms can take advantage of information from
other functions to predict each function value. There are also
fluctuations in the functions which are common properties of
real world functions.

The second simulated function contains four continuous vari-
ables x and one categorical variable a. The expression of the
function is as follows:

+ (20)

4

f([a’a X]) == H Zisin(zi) + 2a

i=1

21

where z; = 7; + 2a,x € [1,10]*,a = 0,1,...,5.

Though there are five dimensions of continuous variables
and we cannot present a figure to show the similarities of the
functions, we can see from the expression they share similar
patterns and have positive correlations. The simulations are
both validated ten times and the mean of the best function
values are shown in Fig. 5. We can see from both function
optimizations that our proposed method can not only achieve
a higher maximum value but also converge faster than the other
three methods. Among the other three methods, MAB-BO model
produces a higher optimal value, while the MAB-SMGP-BO



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: MIXED-INPUT BAYESIAN OPTIMIZATION METHOD FOR STRUCTURAL DAMAGE DIAGNOSIS 9

3.9
[}
= 38-
4 =— MAB-BO
=
837 = MAB-MGP-BO
S)
g * + MAB-SMGP-BO
3.6
2 *+ Onehot-BO
m
35
0 10 20 30 40
Iterations(function evaluations)
(a)
[0
=1
S .
> 150+ = MAB-BO
=
.S = MAB-MGP-BO
S
g * + MAB-SMGP-BO
=
7 1007 ++ Onehot-BO
m
0 20 40 60 80
Iterations(function evaluations)
(b)
Fig.5. Comparison of our proposed method and other methods.

model has a faster convergence speed in the earlier iterations.
This result may be because the MAB-SMGP-BO model has
more data information than the MAB-BO model in the earlier
iterations and the fitting and prediction of the Gaussian process
is faster at the beginning. However, as the model accumulates
enough information in the later iterations, the separable structure
of the MAB-SMGP-BO method restricts the fitting and cannot
achieve a higher optimal value than the MAB-BO method does.
The proposed MAB-MGP-BO method, on the other hand, is
not restricted by the separable covariance structure and can fit
a better Gaussian process of the underlying function and obtain
the best optimum in a faster rate.

V. APPLICATION TO STRUCTURAL DAMAGE DIAGNOSIS

In this section, we apply the proposed MAB-MGP-BO
method for a real-world structural damage identification using
piczoelectric admittance measurement [8]. We will first give the
problem description in Section V-A. Then, a simulation study is
conducted in Section V-B. Finally, the structural damage iden-
tification using real experimental data is shown in Section V-C.

A. Problem Description

As shown in Fig. 6, a piezoelectric transducer is attached to
the host structure and the dynamic response of the structure
in terms of structural admittance at different frequencies can
be measured and observed. To build a finite clement analysis
(FE) model, the host structure is divided into 11250 elements.
It is then divided into 25 segments, which are regarded as 25
locations for damage identification. With the FE model, we
can link the structural damage, which is often modeled as a
property change such as the stiffness loss at a specific element,

180 15
o 5 6.163 mm 4.76 mm
y 1 |
Host Structure PZT ‘ I 19.05 mm
561 mm
(a)
(b)

Fig.6. (a) Dimensions of the structure and PZT patch. (b) Diagram of division
of segments.

with the observed dynamic response. Now the structural damage
identification problem can also be considered as a black-box
function optimization problem with categorical and continuous
inputs, where the FE model is the black-box function, the loca-
tion (i.e., segment) of the damage is the categorical input, and
the severity of the damage is the continuous input. In structural
damage identification, we try to find the location and severity of
the damage by minimizing the difference between the FE model
prediction and the experimental measurements. As presented in
Fig. 6, the PZT segments are located consecutively in a line and
it is intuitive to assume there are correlations between adjacent
segments. If the damage locations are near to each other, the
admittance change should follow similar patterns.

We can consider the difference of the observed and the
computed admittance change || ALy, — Alrg|| as the objective
function we need to optimize. The location and severity of the
damage [/, s] is the input of the model, where [ € {1,...,m}
is the categorical variable and s € S C R is the continuous
variable. To identify the damage, we need to find

[L*,s"] = argminy_g|[Alexp — Alr(l, 5)|]- (22)

In this case study, the FE model of the host structure contains
m = 25 segments. To make comparison, we consider the same
cases of damages as that considered in [8]. In admittance-based
damage detection, the damage occurrence causes admittance
changes around resonant peaks. Without loss of generality, we
pick two frequencies, 14th (1893.58 Hz) and 21st (3704.05
Hz) natural frequencies, to conduct frequency sweeping. Two
frequency ranges around the two natural frequencies (from
1891.69 to 1895.47 Hz and from 3700.35 to 3707.75 Hz) are
used in the inverse analysis. The experimental setup is shown
in Fig. 7. The data points for the experimental measurements
contained in each frequency range are detailed in Table 1. The
voltage drop is measured across a small resistor R = 1002
which is connected in serial to the transducer. And the current
in the circuit can be obtained which then yields the admittance
information. A Dynamic signal analyzer (Agilent 35670 A) with
a source channel and the sweep sine capability is utilized. The
source channel is used to generate the sinusoidal voltage Vi,
sent to the piezoelectric transducer, and the output voltage V¢
across the resistor is recorded.

A small mass block is introduced to emulate the damage, as
shown in the Fig. 7. The damage is introduced under assumption
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TABLE I
EXPERIMENTAL CASES CONSIDERED

Experiment Case | Segment | Severity | Frequency Range (Hz) | # of Frequency Points
Case 1 12 0.0016 [1891.69,1895.47] 100
Case II 14 0.0028 [3700.35,3707.75] 85
Casel
Introduced mass block
m— to simulate damage |
5 o]
oo
&
%| ¢ Signal analyzer c; 8
(Agilent 35670A) E 7
g o
Vin [:: B
&
Vout (?‘ —
. T T T T T
[ Registor 0 50 100 150 200
Cantilever beam No. of Iterations(Evaluations)
Fig. 7. Experimental setup.
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Fig. 8. Admittance change of the health and damaged structure.

that the mass of the whole system now is unchanged, thus
resulting in equivalent stiffness reduction. In Case I, the damage
locates on the 12th segment and the severity is equivalent to a
stiffness loss of 0.16%. In Case II, the real damage locates on
the 14th segment and the severity is equivalent to a stiffness loss
of 0.28%.

B. Structural Damage Identification Using Simulated
Observations

First, we take the simulated admittance as shown in Fig. 8
from the FE model as if they were the true observed admittance.
The figures of cach case arc the absolute value, the real part
and the imaginary part of the complex admittance, respectively.
We can see there is an overlay of admittance with and without
damage in the figures. We attempt to locate the damage location
and severity of the structure based on the admittance change.

Since there is no noise and other uncertainties in the simulated
observations, we expect the proposed MAB-MGP-BO method

No. of Iterations(Evaluations)

Fig. 9. Performance on the simulated structural damage identification.

can identify the damage quickly and accurately. Indeed, as
shown in Fig. 9, MAB-MGP-BO method identifies the correct
damage location and has a very close damage severity estimation
to the underlying damage severity. The comparison with the
multi-DIRECT method proposed in [8] is shown in Table II. Our
method can achieve more accurate estimation of the damage
severity, which confirms the significance of nonlinearity in the
model.

Other three models are also applied on this simulation study,
but there are some limitations. Because all the three other
methods presented in the numerical study showed too bad perfor-
mance, we did not include the results. For the MAB-SMGP-BO
model, when the number of arms becomes large (25 in this
case), the number of hyperparameters in the correlation matrix
becomes 252 = 625 in each iteration of Gaussian process fitting.
This model takes too long time to complete, and it is not feasible
on the simulation case. For the MAB-BO model, the conver-
gence is relatively slow because the Bayesian optimization only
considers the information of the current arm. For the Onehot-BO
method, similar problem happens to the model convergence.
The transformed data are too sparse for the Gaussian process to
fit. Neither of the two methods can locate the correct damaged
location within 200 iterations.
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TABLE I

RESULTS COMPARISON OF TWO MODELS

11

True damage [location, severity]

Model

Prediction

Estimation error

[12, 0.0016]

MAB-MGP-BO

[12, 0.00159]

0.625%

Multi-DIRECT

[12, 0.0017]

6.25%

[14, 0.0028]

MAB-MGP-BO

[14, 0.00277]

1.074%

Multi-DIRECT

7.14%

[14, 0.003]
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Fig. 10.
Case II.

Experimental observations of Admittance change for Case I and

C. Structural Damage Identification Based on Real
Observations

In this section, we conduct the structural damage identifica-
tion based on real observations as shown in Fig. 10. Structural
damage identification based on real observed responses is more
challenging. First, there are always noises in the real observa-
tions. The measurement noise will not only make the damage
severity estimation less accurate, but also possibly cause alias
in the damage location. In other words, it is possible that other
damage locations have closer simulated admittance change to
the real observations. These noises may lead to the incorrect
damage identification results. Second, the FE model itself is not
perfect. There will always be modeling errors which will lead
to bias in the damage identification. As a result, we generally
cannot guarantee that the model based structural damage identi-
fication using Bayesian Optimization can always find the unique
optimal solution. To avoid these difficultics in structural damage
identification using real observations, we provide an extended
algorithm that can give a set of possible solutions instead of a
single solution. The algorithm we used to generate the group
of optimal results are shown in Algorithm 3. The basic idea is
simple: once we identify the current best solution, we remove
it from the solution space and then find the best solution in the
rest solution space. The result shows that the correct damage
locations are included in the first several solutions.

The first several best results we found using MAB-MGP-BO
for the two cases are shown in Tables Il and I'V, respectively. For

Algorithm 3: Optimal results generation.

1: ¢: number of iterations, tol: largest number of iterations
of one optimal result.
2: o;: optimal arm in iteration ¢. s}: optimal severity in
iteration ¢.
3: G: Group of optimal results.
4:fort=1,2,... do
if r == tol then
Save the optimal result. G = G | J{[o}, s}]}
Remove all the points from the temporal optimal arm
o_q.
8: r = 1. Restart the count of number of iterations with
the same optimal result.
9: endif
10:  Run the MAB-MGP-BO model and find the optimal
arm o;.
11: if of == oj_; then
12: r=r+1.
13: endif
14: end for

AN

TABLE III
OPTIMAL RESULTS: EXPERIMENTAL CASE I

Optimal results Residuals Damage [location,severity]
1 5.99337 x 1078 [23, 0.00109]
2 6.30363 x 1078 [12, 0.00181]
3 6.17052 x 10 ° [9, 0.00140]
TABLE IV

OPTIMAL RESULTS: EXPERIMENTAL CASE II

Optimal results Residuals Damage [location,severity]

1 6.57408 x 1073 [23, 0.00209]

6.593299 x 1078 [24, 0.00209]

6.96688 x 10~° [25, 0.00217]

6.593457 x 108 [9, 0.00299]

| KW

6.595832 x 10~8 [14, 0.00298]

both cases, the underlying true damage location are successfully
detected in the first several solutions. Considering the noise
of measurement and the bias of the FE model, this result is
satisfactory and we can expect to utilize the proposed model in
practical applications.

VI. CONCLUSION

In this article, we propose a multiarmed bandit method us-
ing Bayesian Optimization with multioutput Gaussian process
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to solve Structural Health Monitoring problems, especially in
complex systems. This method can be also applied to other fields
of engineering applications, such as design optimization with
complicated structures and hyperparameter tuning of surrogate
models.

The proposed method utilizes the information of the data col-
lected under all the categorical input values to make prediction of
the black-box function under a specific categorical input value.
We also presented the convergence analysis of the proposed
method and provide a Bayesian regret bound of the algorithm.
Numerical benchmark examples are conducted to show the pro-
posed model has a better performance than several other existing
Bayesian Optimization methods. We also apply our model to a
real world case study on structural damage identification. The
results show the proposed method can identify the location and
the severity of the damage with a better performance than the
existing fault diagnostics multi-DIRECT algorithm.

In addition to the diagnosis problem, the mixed input Bayesian
optimization strategy proposed in this article can also be applied
to many design problems, where both categorical inputs (e.g.,
material selection, geometry configuration selection) and con-
tinuous inputs influence the design performance. The proposed
strategy can utilize the information under different categorical
inputs and achieve the optimal design within the design space
spanned by both categorical and continuous variables.

A limitation of MAB-MGP-BO method is that the computa-
tion load is heavy when the number of categories is very large.
A MGP is fitted in each category of the data and it is hard to find
a way to simplify the computation because of the complexity
of the mathematical formulation. Though the data we fit the
MGP to for different categories are the same, the assumption and
the category of interest and the calculated covariance matrix of
fitted categories cannot be reused. Other kinds of constructions
of MGP can be explored to make the algorithm more scalable.
We will extend the algorithm in this direction and report the
findings in the near future.

Data Availability Statement: Data supporting the findings
of this study are available from the corresponding author on
request.

APPENDIX
PROOF OF CONVERGENCE

A. Lemmas Used

Following Lemmas 4 and 5 will be used to prove Lemmas 2
and 3.
Lemma 4: The Bayesian regret of the T, th iterations of the

ath arm has an upper bound of O(y/T " log T,).

Ta
BayesRegret(T,) = E lz {far(@*) = far, (z4)} ’DTal

ta=1

<0 (VanTalogT,) (23)
<0 (\/ 2t og Ta> (24)
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where 7, is the maximum information gain about f,, () after
T, iterations.

The boundary in (23) is proved by [31], [52]. Using the
assumption 2 (i.e., vy, ~ O(T2)), the boundary of (24) can
be obtained.

Bayesian simple regret is defined for the Bayesian regret
of individual function rather than summation over time. Then,
the boundary of the Bayesian simple regret can be obtained as
follows.

Lemma 5: The Bayesian regret of individual function by the

T, th iteration has an upper bound of O(,/ 1;,%—?“)

BayesSimpleRegret(T,) = E [fa* (z*) — max fa, (x4) DTG}
r, log Ta
< e To-a
log Ty,
go( IQa)' (25)

B. Proof of Lemma 2
Proof:

~

RpMP =E

S {fur (&) — fun(a3)) ]DT,gpl,...,ng
t=1

T
=E lZ{fa*(x*) — Ui(a")} ‘DT,QPl,...,ng

S {Uila)— fur (5.} \DT,gm . GP

t=1

(26)

where Uy (a) is an upper confidence bound that is a determined
function of a. a; is a random variable selected from the poste-
rior sampling. Here, our function f,(z) is a random variable,
and we do not know the true function f,(x). Therefore, we
select the a; based on the posterior samples of functions from
each arm. In particular, we select a; by max, fa(x), where
fa (x) is posterior samples given D. Because posterior sampling
fa(z)|D,GP, is precise, we can claim that the distributions
p(a*) and p(ai|D,GP1,...,GPy) are identically distributed.
This argument is fundamental in the Bayesian regret proof of
Thompson sampling used in [52]; since the Thompson sampling
at each arm precisely uses the posterior distribution to propose
a; at iteration ¢, both a; and a* are identically distributed
conditioned on Dr (26).

We select Uz (a) as follows.

logt,

tlia Dt7 gPu (27)

Ui(a) = E [?,gxfa(xf,) +a

where ¢, is the number of times that a is selected during ¢ times
of total iterations, and a is an arbitrary constant. Then, the first



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: MIXED-INPUT BAYESIAN OPTIMIZATION METHOD FOR STRUCTURAL DAMAGE DIAGNOSIS 13

term in (26) is nonpositive by the definition of (27), that is,

T
E | {fo(a") = U(a")} | Dr,GP1,...,GPm | <0.
t=1

The second term in (26)

T

E > {Uilar) = fa,(x},)}

t=1

‘DT, GP1,....GPp,

T

<E | {Uiar) — Li(ar)} ‘Dﬂ GP1,...,GPm
t=1

T(l

Y E|D {UL(a) - Ly, (@)}

a=1

’DT; gpa

a=1
m T,
ad >

a=1t,=1

a=1t,=1

< 2ay/mT*tlogT

logt,
tlfoz
a

1

IN

(28)

where L¢(a;) is defined as Li(a;) = Elmaxy<;, fo(x§)|Dy]
because L;(a;) < E[f,(2z*)|D;]. Here, again, we sum the
Bayesian regret bound obtained for each arm. Therefore, the

Bayesian regret bound of RM 4B is (17). [ |
C. Proof of Lemma 3
Proof:
rT
REO =B |3 {Jules) - fuula} P
Lt=1
fm T,
5 |Y 3 alen) — folon, )}
La=1t,=1
<E | by\/Te log T.| Dy
a=1
< by/mTo 1 log T (29)
where b is an arbitrary constant. |
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