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ABSTRACT  

Structural damage identification using piezoelectric impedance/admittance measurements of a piezoelectric transducer 
can be converted into an optimization problem that minimizes the difference between experimental measurements and 
prediction in the parametric space where damage locations and severities are treated as unknown variables. However, the 
number of unknowns is large. Meanwhile, in practical situations the location of damage occurrence is usually limited. In 
this research, we propose a multi-objective particle swarm optimization algorithm featuring a sparse population 
generation enhancement to tackle the challenge. The main idea is to design a masking procedure, so the damage location 
identified is sparse that fits the nature of damage identification. This approach is implemented to experimental testing for 
demonstration and validation. 
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1. INTRODUCTION  
Structural health monitoring (SHM) and damage identification have received much attention due to their significance 
and broad applications in civil, mechanical, and aerospace engineering communities. The electromechanical impedance 
(EMI)-based method utilizing piezoelectric transducer is promising due to its high sensitivity to small-size structural 
damage. In this approach, the host structure is integrated with a piezoelectric transducer which has two-way 
electromechanical coupling effects and serves as both the actuator and sensor. By applying a harmonic voltage sweeping, 
the piezoelectric transducer can excite the structure and, at the same time, generate electromechanical signatures. These 
signatures, known as electromechanical impedance or admittance, can be used to monitor structural conditions [1-4]. In 
the identification process, we divide the structure into a number of segments and assume that each segment is susceptible 
to damage occurrence [5-7]. The inverse analysis uses the changes of impedances/admittances as inputs. As the 
impedance changes are more pronounced only around resonant peaks, the measurement information may be limited. As 
such, the inverse analysis is usually under-determined, and direct inversion based on linearized sensitivity matrix may 
not yield satisfying result. To address this issue, inverse analysis through optimization appears to be effective. The 
optimization aims to minimize the difference between the experimental measurements and model prediction in the 
parametric space. 

There indeed exist a variety of optimization algorithms to facilitate damage identification, such as particle swarm [8], 
Jaya algorithm [9], and deterministic algorithms [3]. There are two challenges in damage identification using 
optimization formulation. First, the number of unknowns is large because damage may occur at any locations of a 
structure. Second, damage may only affect a small area of the structure, so the damage index vector is generally a sparse 
vector. While several investigations have been conducted on damage identification using the EMI information through 
single-objective optimization [4, 7] or multi-objective optimization [3], the aforementioned two challenges are not 
adequately addressed. In particular, the sparsity of damage index vector is peculiar to damage identification using 
optimization. One may actually take advantage of this feature to develop inverse identification through optimization. In 
this research, we include the sparsity as one objective function in a particle swarm multi-objective optimization and 
propose a masking technique to ensure the generation of sparse population in the solution procedure. The rest of the 
paper is organized as follows: In Section 2, EMI-based damage identification technique is introduced, and the 
optimization model is formulated for damage identification. Section 3 elaborates the sparse generation procedure 
combined with damage identification problem. In Section 4, case study is reported where the proposed algorithm is 
applied to experimental data. Concluding remarks are given in Section 5. 



 

 
 

 

 
 

2. FINITE ELEMENT MODELING OF PIEZOELECTRIC EMI AND INVERSE 
ANALYSIS FORMULATION 

2.1 Admittance signature modelling 

Here we use the piezoelectric admittance, i.e., the reciprocal of the electric impedance, as the response of interest. The 
equations of motion of the host structure integrated with piezoelectric transducer can be derived as [2-3] 
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where q is the displacement vector, ck is the inverse of the capacitance of the piezoelectric transducer; 12K is the 
electromechanical coupling vector, K, C, M are the stiffness, damping and mass matrices, respectively, and Q is the 
electrical change on the surface of piezoelectric patch. In this research, we define damage as percentage change of 
stiffness in the segment. The stiffness matrix with damage occurrence in structure, dK , can be then expressed as 
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indicating the stiffness loss of the ith segment, which is the unknow to be identified. n is the total number of segments.  
Thus, the piezoelectric admittance when damage occurs can be written as 
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where j refers to the imaginary unit. Under the assumption of linear relationship between admittance variation, we can 
use Taylor series expansion to expand the admittance in terms of the damage index, in which the higher terms are 
ignored here since small damage is assumed. The vector of admittance change can be obtained at the set of excitation 
frequencies,  1 2, , , m  ω , in matrix form as 
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where S is the sensitivity matrix. Similarly, we denote      1 , ,
Tp p p

my y y    ω  as the piezoelectric 
admittance measurements. 

2.2 Multi-objective optimization formulation 

As we divide the structure into segments to facilitate damage identification, the structural property of each segment 
remains to be identified because each segment is susceptible of fault occurrence, which yields many unknowns. On the 
other hand, structural faults generally manifest themselves around the peaks of the piezoelectric impedance/admittance 
curves only, which means the input measurement information is usually limited in practice. Moreover, it is 
mathematically difficult to select frequency points to ensure the full rank of the sensitivity matrix even if the number of 
frequency points is large. Therefore, the inverse identification formulation typically is under-determined. In this research 
we cast the inverse identification problem into an optimization framework. Certainly, we need to minimize the 
difference between the measurements and model prediction in the parametric space. In addition, a true damage scenario 
in practical situation usually affects only small number of segments. Here we introduce the sparse regularization by 
enforcing a sparse constraint. We then have the following multi-objective optimization problem: 
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where 
p

 denotes the pl  norm. Conventional regularization methods of α , such as 2l and 1l  norms, have some 

limitations. The former could spread out the error more evenly among variables and return a non-sparse with many non-
zero elements and the latter can introduce a mismatch between the goal of itself and that of 0l norm. One can refer to the 
literature for more discussion on regularization [7-8]. Here we select 0l  norm of α aiming at dealing with the sparsity of 
index vector.  

3. SPARSE GENERATION PROCEDURE 
It is worth mentioning that the damage occurrence affects a small number of segments in a finite element model of the 
structure. Mathematically, the unknown vector to be updated in damage identification is sparse, i.e., many zero values. 
Besides, small element size in the finite element model for the piezoelectric system is usually used to ensure model 
fidelity under high frequency excitation, thus resulting in a large number of unknowns to be identified. To solve the 
problems, we introduce a sparse generation algorithm inspired from literature [10-11]. The algorithm can generate sparse 
population for the population-based optimization algorithms.  

 
Figure 1. Pseudo code for sparse population initialization algorithm. 

In damage identification, if damage index has a value greater than 0, it can show severity and location simultaneously. 
For example, 1 0.10   means the damage occurs at 1st segment and its damage severity is 10% stiffness reduction. In 
fact, it also indicates the occurrence of damage. Damage occurrence is a binary concept that can be described using 0 
and 1. 0 means healthy and 1 indicates damage occurrence. As mentioned before, the damage only happens at a small 
number of segments. Hence we develop an initialization strategy to create a sparse population for the optimization 
process so that not all unknows will have values.  In this research, we split the damage index into two parts: (1) fault 
location, 1θ ; (2) a fault severity level 2θ . And then by using element-wise product, we can then have 1 2α θ θ . Note 
that 1i is a binary vector with all elements denoted as 0 or 1 to indicate if there is damage or not, and 2i is a regular 
vector with randomly generated values to indicate the damage severity. The pseudo code for the population generation 
algorithm is shown in Figure 1. The generation algorithm mainly includes two parts, lines 1-6 try to get the rank for each 
variable and the rest part is generating sparse population based on the rank obtained. Then we can obtain a sparse 
population matrix, which will be passed to the main iteration process of optimization algorithm. In this research, we use 



 

 
 

 

 
 

the sparse initialization algorithm combined with multi-objective particle warm optimization algorithm (MOPSO) [12] to 
solve the model formulated for damage identification in Section 2. 

4. CASE STUDY 
In this section, case study is investigated to verify the proposed optimization algorithm for fault identification. We 
analyze a plate-like structure, which is divided into 225 segments, as shown in Figure 2. The dimension of the plate [2] 
is specified as length 561 mm, width 19.05 mm and thickness 4.763 mm. The density and Young’s modulus are 2700 
kg/m3 and 68.9 GPa, respectively. The piezoelectric transducer is placed at 180 mm from the left end, with length 15 
mm, width 19.05 mm, and thickness 4.763 mm. The Young’s moduli of piezoelectric transducer are Y11 = 86 GPa and 
Y33 = 73 GPa, and the density is 9500 kgm-3. The piezoelectric constant and dielectric constant are 

9 1
31 1.0288 10 Vmh     and 8 1

33 1.3832 10 mF   , respectively. For verification purposes, we randomly choose two 
segments, No.5 and No.124 as examples. For Case 1, the damage is assumed to be in segment No.5 with severity of 
2.4 % stiffness reduction. For Case 2, the damage locates at segment No.124 with severity of 2.5 % stiffness reduction.  

 
Figure 2. Experimental setup (left) and segment division (right). 

0.024

0.0274

0 25 50 75 100 125 150 175 200 225
0.000

0.005

0.010

0.015

0.020

0.025

0.030

 

 

Se
ve

ri
ty

Segment Index

 True damage
 Identified damage

0.025

0.0236

0 25 50 75 100 125 150 175 200 225
0.000

0.005

0.010

0.015

0.020

0.025

 

 

Se
ve

ri
ty

Segment Index

 True damage
 Identified damage

 
Figure 3. Identified results, (left) Case 1 and (right) Case 2. 

By using sparse generation algorithm combined with MOPSO, we can finally identify the damage location and severity 
for both of cases, as shown in Figure 3. One can find that the algorithm can locate and quantify the damage with high 
precision. There is small difference between the assumed damage severity and identified severity, which is caused by 
modeling errors in finite element analysis. Besides, we use the Tylor series expansion to obtain the linear relationship 
between damage index and admittance change. This will also introduce the errors. The identified results fit the sparse 
nature of damage identification since damage usually occurs at a small amount of area of structure. The results 
demonstrate the validity of the proposed algorithm in damage identification. 

5. CONCLUSION 
In this research, a sparse generation algorithm is introduced for structural damage identification using piezoelectric 
admittance. The algorithm can switch damage occurrence based on pareto front rank for each dimension. And by 



 

 
 

 

 
 

randomly comparing the two dimensions, we can then generate a sparse population by piecewise product using binary 
and random severity matrices. The obtained sparse population will pass into the main iteration of the optimization 
algorithm. Here for verification, one of population-based algorithms, MOPSO is utilized to conduct the damage 
identification. The admittance data are used to inversely quantify and locate the damage in beam structure. The identified 
results show that the sparse initialization algorithm has a good performance in large-scale damage identification problem 
with sparsity.  
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