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ABSTRACT

Electromechanical impedance-based (EMI) techniques
using piezoelectric transducers are promising for structural
damage identification. They can be implemented in high
frequency range with small characteristic wavelengths, leading
to high detection sensitivity. The impedance measured is the
outcome of harmonic and stationary excitation, which makes it
easier to conduct inverse analysis for damage localization and
quantification. Nevertheless, the EMI data measurement points
are usually limited, thus oftentimes resulting in an under-
determined problem. To address this issue, damage identification
process can be converted into a multi-objective optimization
formulation which naturally yields multiple solutions. While this
setup fits the nature of damage identification that a number of
possibilities may exist under given observations/measurements,
existing algorithms may suffer from premature convergence and
entrapment in local extremes. Consequently, the solutions found
may not cover the true damage scenario. To tackle these
challenges, in this research, a series of local search strategies
are tailored to enhance the global searching ability and
incorporated into particle swarm-based optimization. The Q-
table is utilized to help the algorithm select proper local search
strategy based on the maximum Q-table values. Case studies are
carried out for verification, and the results show that the
proposed memetic algorithm achieves good performance in
damage identification.

Keywords: Electromechanical impedance, particle swarm
optimization, Q-table, memetic optimizer

1. INTRODUCTION

Structural Health Monitoring (SHM) provides practical
means to assess and predict the structural performance under
operational conditions. It is usually conducted by acquiring the
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measurement of the critical responses of a structure to track and
evaluate the symptoms of deterioration and damage
accumulation, etc [1-3]. The electromechanical impedance
(EMI)-based technique has shown promising aspects in SHM
due to its high sensitivity to structural damage. This technique
works by integrating the host structure with a piezoelectric
transducer, which has two-way electromechanical coupling and
serves as both the actuator and sensor. The electromechanical
impedance measured by frequency-sweeping harmonic
excitation through the piezoelectric transducer can be used to
monitor structural conditions [4-8].

In EMI-based techniques, inverse sensitivity method has
been employed to reduce the computational cost in traditional FE
model updating [9]. In such an approach, we typically divide the
structure into a number of small segments and assume that each
segment in the model is susceptible to damage occurrence [4-
5,10-11]. The inverse analysis uses the changes of
impedances/admittances as inputs, and a linearized sensitivity
matrix is derived to link the damage index vector with the
response measurement change vector. It is worth noting that
measurement information available is usually limited since the
impedance changes due to damage are noticeable only around
the resonant peaks. Consequently, an inverse sensitivity method
is oftentimes under-determined. To address this, recent
investigations have started resorting to optimization approaches
that aim at matching measurements with model prediction in the
parametric space of structural damage.

Several global optimization techniques such as stochastic
algorithms [12-13] or deterministic algorithm [5] have been
attempted in SHM. Both single objective optimization [10-11]
and multi-objective optimization [5] problems have been
formulated. When a multi-objective optimization is employed,
multi-modal objectives can be incorporated together, and we can
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generally obtain multiple solutions. Most of these algorithms
assume a very small number of unknowns in problem
formulation, i.e., a small number of segments are involved. This
may lead to relatively large sized segments in the baseline model
and the possibility of overlooking small-size damage. Besides,
the algorithms may get trapped in local minima, resulting in
'untrue' solutions or misidentified segments/elements in damage
identification. Premature convergence and lack of diversity in
multi-objective optimization solutions are other possible
limitations.

To address these challenges, in this research we formulate a
new inverse identification algorithm built upon multi-objective
particle swarm optimization (MOPSO) that is enhanced through
a suite of local search strategies. Such strategies can help the
particle jump out of the local extremes in a multi-modal function.
Moreover, the Q-Table is combined with MOPSO so that the
particle can select a proper local search strategy at each iteration
based on the maximum Q-table values. The Q-table values
reflect the performance of each local search strategy and will be
updated by the reward or penalty the particle gets for the selected
strategy. The rest of the paper is organized as follows. In Section
2, the EMI-based damage identification method is introduced,
and the multi-objective optimization problem for inverse
analysis is formulated. Section 3 elaborates the procedures of
interaction between the MOPSO algorithm and Q-table. In
Section 4, case studies with admittance/impedance data are used
to verify the proposed algorithm. Section 5 summarizes the
current research.

2. DAMAGE
FORMULATION
In this section, the first principle-based modelling of
electromechanical admittance signature in piezoelectric damage
identification is outlined first. Then, a multi-objective
optimization problem is formulated to inversely locate and
quantify the damage.

IDENTIFICATION PROBLEM

2.1 Admittance signature modelling

Without loss of generality, here we use the piezoelectric
admittance (the reciprocal of the electric impedance) as the
response of interest. The admittance signatures of a coupled
system including host structure and PZT transducer can be
derived as [4-5]
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where j is the imaginary unit, k_ is the inverse of the capacitance
of the piezoelectric transducer; K, is the electromechanical

coupling vector, and K, C, M are the stiffness, damping and mass
matrices, respectively, Q is the electrical change on the surface
of PZT patch. K, is damaged stiffness matrix which is

expressed as K, = ZK; (1-a,),i=1,...,n, K} indicates the

stiffness matrix of the ith segment or element under healthy

status. @, € [0,1] is referred to as the damage index indicating

the stiffness loss of the ith segment or element, which is the
unknown to be identified. We can use Taylor series expansion to
express the admittance expression in terms of the damage index,
in which the higher terms are ignored here since the small
damage is assumed. The vector of admittance change can be
obtained as
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where S is the sensitivity matrix. We can experimentally acquire
a set of piezoelectric measurements at the excitation frequencies
o under healthy and damaged conditions. Then the admittance

changes can be written as Ay” .

2.2 Multi-objective optimization formulation

Damage in a structure usually causes the change of
admittance curve only around the resonant frequencies, so
limited information can be used for damage identification. This
makes structural damage identification an underdetermined
problem. To solve this problem more effectively, we convert it
into an optimization problem. By minimizing the difference
between the experimental response of the structure and the
predicted data from the numerical model in the parametric space,
we can inversely identify the location and severity of the
damage. Moreover, as damage occurs only in a small region of
the structure, the damage indicator vector is generally sparse.
Therefore, we build another objective function to minimize the
number of damaged locations. The multi-objective optimization
model is expressed as

find ac E"

min -7 5
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where ||||p denotes the / , nhorm. Here we select /; norm of a

aiming at dealing with the sparsity of the damage index vector.

3. MEMETIC OPTIMIZER

Here we adopt the particle swarm optimization (PSO) as to
solve the optimization problem presented in Section 2.2. In the
case like damage identification, there are many
elements/segments to be identified, i.e., many unknowns.
Besides, the resulting multi-modal objective function has many
local extremes so that the PSO algorithm may get stuck in the
local minima, thus leading to incorrect identified solutions. To
address the challenges, a series of local search strategies are
proposed to enhance the global searching ability of PSO
algorithm in this section. Furthermore, Q-table is employed to
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select the proper strategy for the particle at each iteration to
prevent the particle from entrapment of local extreme.

3.1 Framework of proposed memetic optimizer

Particle swarm optimization (PSO) algorithm is a stochastic
optimization technique based on swarm, which was originally
proposed by Eberhard and Kennedy [14]. PSO is based on
extrinsic behavior of population. In standard PSO the particles
are manipulated by the following Equations (4) and (5). In PSO
algorithms, each solution is like a ‘bird’, and each bird ‘flies’
around in the multidimensional problem space with an
acceleration.

v, (1+1)=sv,(t)+cn (pbesti (t)-x, (’))
+a,n (gbest (t)_xi (t))
X, (t+l) =X (t)+vl. (t+1) %)

The coefficient s is the inertia weight, ¢, is coefficient for

4)

cognitive component which indicates that each particle learns
from its experiences, and ¢, is coefficient for social component

from which each particle will learn. v is velocity of particle, x is
position of particle or solution for the optimization problem, 7

and r, are random numbers, # is the current iteration, p, , is the
personal best, and g, is the global best.

PSO or Multi-objective Particle Swarm Optimization
(MOPSO) [15] algorithm often falls into entrapment of swarm
within local minima of search space. Moreover, it may achieve a
premature convergence though it has several advantages such as
its effectiveness, robustness, simplistic implementation. Besides,
proper control should be exerted for exploration and
exploitation. The algorithm may get trapped in the local minima
for the functions with multi-modal characteristics. This problem
will become more severe with the dimensional increase of the
optimization problem. For example, in damage identification
using EMI, large number of finite elements and large number of
segments are employed to ensure satisfying accuracy of the finite
element model and the capability of identifying small-sized
damage more elements in finite element analysis. To tackle these
challenges, a series of local search strategies are developed. The
strategies in this research are Exploration, Convergence,
High/Low Jump. Exploration and Convergence are two similar
updating strategies with different cognitive and social
coefficients used to achieve a dynamic updating process, in
which the search starts with exploration and converges at the end
of search process. High/Low Jumpy conducts a mutation for one
of the dimensions of personal best to make the particle take a
large/small walk to see if it can jump out of current personal best.

The suggested range for inertia weight is s €[0.4,0.9] [14]. It

is noteworthy that s must be high in the exploration and low in
convergence [16]. For coefficients ¢, and c,, they control the

balance between p, . and g, . Therefore, ¢, must be higher
than ¢, in exploration and the opposite in the convergence [16-
17]. For the ‘Exploration’, we now set coefficients in Equation

(4)as s =10.8, c1 =2.5, c2=0.5, as used in literature [18-19]. In
the ‘Convergence’ state, the algorithm will converge to the
global best quickly, therefore, the social part now is given a
larger value, so the coefficients are 0.4, 0.5, 2.5 respectively for
w, c1 and c¢;. For the High/Low Jump, one of the dimensions of
the personal best is randomly selected and perturbed using
Gaussian distribution. The only difference between High and
Low Jump is the standard deviation is larger for High Jump. Here
we use 0.9 for High Jump and 0.1 for Low Jump. The
mathematic expression can be denoted as [20]

%, =Py R (Vier = Vi) (6)

besti

where R

norm

is a random number sampled from Gaussian
distribution N ~ ( MU, 0'2) . The mean values for both High and

Low Jump are zero.

Since the particle cannot execute all local search strategies
at one time (iteration), Q-table here is combined to help particle
select the proper local strategy based on the maximum Q-table
value, as shown in Figure 1. To elaborate on the memetic
optimizer, we summarize the algorithm as the following
Step I: Initialize all the necessary parameters, such as # of
objectives, # of population, # of variables (dimension), searching
bounds, maximum iterations, etc.

Step 2: Initialize population using random number within
searching space. Initialize Q-table all zeros with dimension 4 by
4. Initialize personal best, global best. Initialize local strategy as
‘Exploration’.

Step 3: Main loop for MOPSO algorithm until maximum
iteration is reached: Executing ‘Exploration’ and using Non-
dominated Sorting algorithm to determine if the updated solution
is kept or ignored. If the newly generated solution is kept, an
immediate reward is given, or a penalty will be given. The
reward or penalty will be used to update the Q-table value (will
be discussed in following subsection). Executing other local
strategies based on maximum Q-table values until maximum
iteration is reached.

Step 4: Updating personal best if newly obtained solution is kept
or do nothing. Updating global best and Pareto solution
repository.

Step 5: Solution visualization and interpretation.

Population Q-table )
[ a, ay a,
- 1
e 9 o 5,
o
A ve ~w s
. 8
1Y o4 A ‘
e® , o ®
- &
N e
s,

4 Optimal Solution
=P I

Local Search Repository (Tdentified Results)

Local Search 2
Local Search 1

Local Search 3 Local Search 4

FIGURE 1: Q-TABLE INTERACTION WITH LOCAL
STRATEGIES
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3.2 Local search strategy selection

Local searching strategies are proposed here to help
particles jump out of local minima to achieve a global search.
However, all the strategies cannot be executed at the same time.
Thus, Q-table here is selected to achieve the dynamic selection
goal. Q-table is usually used in Q-learning, in which the learner
performs an action causing a state transition in the environment
it resides and receives a reward or penalty for the action executed
to reach a definite goal [19, 21-22]. Here the particle is regarded
as agent and the local strategies are actions.

The current state is set as Exploration because the particle is
hoped to explore more searching space at the beginning of the
algorithm. In the main iteration part, the particle will select the
action which has the maximum value in the Q-table and execute
the action. After executing the current action, the agent can get

to the new state using observing function o (s, a) which makes a

transition from current state to another. The transition here is that
current action index is the next state index. Here a diagram is
drawn to show how to switch from current state to next state. As
shown in the Fig. 2, the agent will select an action based on the
maximum table values given the current state as S, . For
example, if Action 3 (a,) has a maximum value and then the
next state will be set as S, , which has the same index to the index

of current action a, . This process can be written mathematically

as
a, = index {max(Q(s,,actions))} (7)
a “‘3 a, a4 4 a 4
= 5 i
5, .
8s ‘ -
% Sy

FIGURE 2: STATE TRANSITION PROCESS

After Action 3 is executed, the rewards obtained currently can be
passed into Equation (8) to update the entry for the current state
and current action. Then the personal best and the global best are
updated, and the external optimal repository will be updated
accordingly. All the steps in the main loop will be performed
until maximum runs are reached.

There are 4 states and their corresponding actions.
Therefore, we can create a Q-table with size 4 by 4 and initialize
all the entries as zeros. Usually, the current state is randomly
chosen from the state repository. However, here we initialize the
current state as ‘Exploration’ since we hope the algorithm starts
with exploring more searching space. Then the best action will
be selected and executed based on the maximum Q-table value
given the current state.

After executing the selected action, an immediate reward or
penalty will be obtained. Reward or penalty is determined by the

solution dominating algorithm. If the new solution dominates the
old solution, then a positive value 1 is given as a reward,
otherwise, a negative reward -1 is given as penalty. And then
observe the maximum future reward under the next state (next
state index is same to the current action index, referring to the
Fig. 2) and this reward will be passed into the updating function

to update the Q-table entry Q(S,,at) . The updating function is
Qnew (Sr > at ) = (1 - 0[) Q(St 4 at ) +a Ln+l + v m{?x Q(St+l ’ aa[l )J (8)

where, o is called the learning rate, which is defined as how
much the new value vs the old value is accepted. y is a discount

factor. It is used to balance immediate and future reward. r is the
value after completing a certain action at a given state. Max is
operation to take the maximum of the future reward and apply it
to the reward for the current state. Finally, the current state will
be updated as current state

4. CASE STUDY

In this section, we conduct case study to examine the
proposed algorithm improvements in  multi-objective
optimization for damage identification. A cantilevered
aluminum plate structure is integrated with a single piezoelectric
transducer, as shown in Figure 3. The dimension of the beam is
specified as length 561 mm, width 19.05 mm and thickness 4.763
mm. The density and Young’s modulus are 2700 kgm™ and 68.9
GPa, respectively. The piezoelectric transducer is placed at 180
mm from the left end, with length 15 mm, width 19.05 mm, and
thickness 4.763 mm. The Young’s moduli of piezoelectric
transducer are Y, = 86 GPa and Y33 = 73 GPa, and the density
is 9500 kgm. The piezoelectric constant and dielectric constant

are  h, =-1.0288x10°Vm™ and f, =1.3832x10°mF " ,
respectively.

T

Data Acquisition End

V,

in —
Dynamic Signal Analyzer

FIGURE 3: SYSTEM SETUP

Without loss of generality, admittance changes are acquired
around 14th (1893.58 Hz) and 2Ist (3704.05) natural
frequencies. Two frequency ranges are selected from 1891.69Hz
to 1895.47Hz and from 3700.35Hz to 3707.75Hz with 100
sweeping points for each range. Two damage cases are
considered. The first case is dividing the plate into 225 segments,
each corresponding to a damage index to be identified, as shown
in Figure 4 (a) and the damage is assumed at segment 75 with
13.2% stiffness reduction. For the second case, the segment is
much finer, resulting in 1125 segments (Figure 4 (b)) and the
damage is located at segment 800 with 9.5% stiffness reduction.
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TABLE 1: DAMAGE IDENTIFICATION RESULTS

Case # Solutions Obj-fun 1 Obj-fun 2
Case 1 1 8.864434¢-6 1

2 8.864416¢-6 2
Case 2 1 5.623299¢-6 2

2 2.197487e-7 2

The total number of admittance measurement data points are
200 for both cases. We can see that the damage identification for
both cases are under-determined or the information for damage
identification is limited. It should be mentioned that damage
usually occurs at a small region of the structure, thus resulting in
a sparse damage index vector. We use the sparse initialization
algorithm that can generate the sparse population [23]. Then it
will be passed into the main optimization loop. By solving the
optimization model formulated in Section 2 using the proposed
algorithms, the identified results are obtained for both cases, as
plotted in Figures 5 and 6. The figures are arranged based on the
non-zero identified segments (the second objective function.).
The obtained solutions for both cases are summarized in Table
1.

(@)

s112f

p226 | | S e H S45(|

St i cee : 5223
(b)

FIGURE 4: SEGMENT DIVISION (A) COARSE DIVISION (CASE
1); (B) FINE DIVISION (CASE 2)

For Case 1, the two optimal solutions obtained accurately
pinpoint the true damage location and severity. The two
solutions manifest the characteristic of underdetermined
problem that has multiple solutions. Though there is a
misidentified damage location in solution 2 at segment 26, as
plotted in Figure 5, the misidentified damage has a negligible
severity that reflects the modeling errors in finite element
analysis. Besides, we use the Tylor series expansion to obtain the
linear relationship between damage index and admittance
change. Since we do not know the information about the damage,
both solutions obtained, therefore, can be regarded as possible
candidates for engineering practice.

0.14 4 I True Damage
0.132 .
Identified Result
0.12 4
0.10 4
&
‘S 0.08
D
3
2 0.06
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0-00 T T T T T T T
25 50 75 100 125 150 175 200 225
Segment Index
(a)
0.14 - B True Damage
0.132 Identified Result
0.12 4
0.10 +
=
T 0.08
3
@ 0.06
0.04 1 Segment: 26,
0.02 Sever17:6.29e-9
0-00 T T T T T
0 50 100 150 200
Segment Index
(b)

FIGURE 5: IDENTIFIED RESULTS FOR CASE 1 WITH 225
SEGMENTS IN PLATE STRUCTURE

As mentioned, modeling error and linear approximation
may lead to misidentified damage locations, which is also
reflected in the two solutions of Case 2, as shown in Figure 6.
Each solution has two identified damage locations. One precisely
captures the true damage scenario, and the other is the
misclassified damage location. Within the multi-objective
optimization setup, multiple solutions can be obtained for
underdetermined problem and there is always one solution that
captures the true damage scenario. In this case, both solutions
can be regarded as possible candidate in practical problems.

In this research, case studies demonstrate the global
searching ability of proposed memetic optimizer, which
performs well in damage identification problems with
underdetermined characteristics.
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FIGURE 6: IDENTIFIED RESULTS FOR CASE 2 WITH 1125
SEGMENTS IN PLATE STRUCTURE

4. Conclusions

In this research, a memetic optimizer based on MOPSO
algorithm is presented for damage identification using
electromechanical admittance measurements. The inverse
damage identification process is converted into an optimization
problem. Given that the algorithm solving optimization model
usually falls into the local extremes and get a premature
convergence, a series of local search strategies are proposed
aiming at enhancing the global searching ability when dealing
with multi-modal objective function. The Q-table is utilized here
to help the particle to select the proper local search based on
maximum Q-table values. Case demonstrations verify the
validity of the algorithm.
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