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ABSTRACT 
Electromechanical impedance-based (EMI) techniques 

using piezoelectric transducers are promising for structural 
damage identification. They can be implemented in high 
frequency range with small characteristic wavelengths, leading 
to high detection sensitivity. The impedance measured is the 
outcome of harmonic and stationary excitation, which makes it 
easier to conduct inverse analysis for damage localization and 
quantification. Nevertheless, the EMI data measurement points 
are usually limited, thus oftentimes resulting in an under-
determined problem. To address this issue, damage identification 
process can be converted into a multi-objective optimization 
formulation which naturally yields multiple solutions. While this 
setup fits the nature of damage identification that a number of 
possibilities may exist under given observations/measurements, 
existing algorithms may suffer from premature convergence and 
entrapment in local extremes. Consequently, the solutions found 
may not cover the true damage scenario. To tackle these 
challenges, in this research, a series of local search strategies 
are tailored to enhance the global searching ability and 
incorporated into particle swarm-based optimization. The Q-
table is utilized to help the algorithm select proper local search 
strategy based on the maximum Q-table values. Case studies are 
carried out for verification, and the results show that the 
proposed memetic algorithm achieves good performance in 
damage identification. 

Keywords: Electromechanical impedance, particle swarm 
optimization, Q-table, memetic optimizer 
 
1. INTRODUCTION 

Structural Health Monitoring (SHM) provides practical 
means to assess and predict the structural performance under 
operational conditions. It is usually conducted by acquiring the 

measurement of the critical responses of a structure to track and 
evaluate the symptoms of deterioration and damage 
accumulation, etc [1-3]. The electromechanical impedance 
(EMI)-based technique has shown promising aspects in SHM 
due to its high sensitivity to structural damage. This technique 
works by integrating the host structure with a piezoelectric 
transducer, which has two-way electromechanical coupling and 
serves as both the actuator and sensor. The electromechanical 
impedance measured by frequency-sweeping harmonic 
excitation through the piezoelectric transducer can be used to 
monitor structural conditions [4-8].  

In EMI-based techniques, inverse sensitivity method has 
been employed to reduce the computational cost in traditional FE 
model updating [9]. In such an approach, we typically divide the 
structure into a number of small segments and assume that each 
segment in the model is susceptible to damage occurrence [4-
5,10-11]. The inverse analysis uses the changes of 
impedances/admittances as inputs, and a linearized sensitivity 
matrix is derived to link the damage index vector with the 
response measurement change vector. It is worth noting that 
measurement information available is usually limited since the 
impedance changes due to damage are noticeable only around 
the resonant peaks. Consequently, an inverse sensitivity method 
is oftentimes under-determined. To address this, recent 
investigations have started resorting to optimization approaches 
that aim at matching measurements with model prediction in the 
parametric space of structural damage.  

Several global optimization techniques such as stochastic 
algorithms [12-13] or deterministic algorithm [5] have been 
attempted in SHM. Both single objective optimization [10-11] 
and multi-objective optimization [5] problems have been 
formulated. When a multi-objective optimization is employed, 
multi-modal objectives can be incorporated together, and we can 
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generally obtain multiple solutions. Most of these algorithms 
assume a very small number of unknowns in problem 
formulation, i.e., a small number of segments are involved. This 
may lead to relatively large sized segments in the baseline model 
and the possibility of overlooking small-size damage. Besides, 
the algorithms may get trapped in local minima, resulting in 
'untrue' solutions or misidentified segments/elements in damage 
identification. Premature convergence and lack of diversity in 
multi-objective optimization solutions are other possible 
limitations. 

To address these challenges, in this research we formulate a 
new inverse identification algorithm built upon multi-objective 
particle swarm optimization (MOPSO) that is enhanced through 
a suite of local search strategies. Such strategies can help the 
particle jump out of the local extremes in a multi-modal function. 
Moreover, the Q-Table is combined with MOPSO so that the 
particle can select a proper local search strategy at each iteration 
based on the maximum Q-table values. The Q-table values 
reflect the performance of each local search strategy and will be 
updated by the reward or penalty the particle gets for the selected 
strategy. The rest of the paper is organized as follows. In Section 
2, the EMI-based damage identification method is introduced, 
and the multi-objective optimization problem for inverse 
analysis is formulated. Section 3 elaborates the procedures of 
interaction between the MOPSO algorithm and Q-table. In 
Section 4, case studies with admittance/impedance data are used 
to verify the proposed algorithm. Section 5 summarizes the 
current research. 

 
2. DAMAGE IDENTIFICATION PROBLEM 

FORMULATION 
In this section, the first principle-based modelling of 

electromechanical admittance signature in piezoelectric damage 
identification is outlined first. Then, a multi-objective 
optimization problem is formulated to inversely locate and 
quantify the damage. 

 
2.1 Admittance signature modelling 

Without loss of generality, here we use the piezoelectric 
admittance (the reciprocal of the electric impedance) as the 
response of interest. The admittance signatures of a coupled 
system including host structure and PZT transducer can be 
derived as [4-5] 
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where  j is the imaginary unit, ck is the inverse of the capacitance 
of the piezoelectric transducer; 12K  is the electromechanical 
coupling vector, and K, C, M are the stiffness, damping and mass 
matrices, respectively, Q is the electrical change on the surface 
of PZT patch. dK  is damaged stiffness matrix which is 

expressed as  1i
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status.  0,1i    is referred to as the damage index indicating 
the stiffness loss of the ith segment or element, which is the 
unknown to be identified.  We can use Taylor series expansion to 
express the admittance expression in terms of the damage index, 
in which the higher terms are ignored here since the small 
damage is assumed. The vector of admittance change can be 
obtained as 
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where S is the sensitivity matrix. We can experimentally acquire 
a set of piezoelectric measurements at the excitation frequencies 
ω under healthy and damaged conditions. Then the admittance 
changes can be written as py . 
 
2.2 Multi-objective optimization formulation 

Damage in a structure usually causes the change of 
admittance curve only around the resonant frequencies, so 
limited information can be used for damage identification. This 
makes structural damage identification an underdetermined 
problem. To solve this problem more effectively, we convert it 
into an optimization problem. By minimizing the difference 
between the experimental response of the structure and the 
predicted data from the numerical model in the parametric space, 
we can inversely identify the location and severity of the 
damage. Moreover, as damage occurs only in a small region of 
the structure, the damage indicator vector is generally sparse. 
Therefore, we build another objective function to minimize the 
number of damaged locations. The multi-objective optimization 
model is expressed as 
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where 
p

  denotes the pl   norm. Here we select 0l   norm of α

aiming at dealing with the sparsity of the damage index vector.  
 
3. MEMETIC OPTIMIZER 

Here we adopt the particle swarm optimization (PSO) as to 
solve the optimization problem presented in Section 2.2. In the 
case like damage identification, there are many 
elements/segments to be identified, i.e., many unknowns. 
Besides, the resulting multi-modal objective function has many 
local extremes so that the PSO algorithm may get stuck in the 
local minima, thus leading to incorrect identified solutions. To 
address the challenges, a series of local search strategies are 
proposed to enhance the global searching ability of PSO 
algorithm in this section. Furthermore, Q-table is employed to 
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select the proper strategy for the particle at each iteration to 
prevent the particle from entrapment of local extreme. 

 
3.1 Framework of proposed memetic optimizer  

Particle swarm optimization (PSO) algorithm is a stochastic 
optimization technique based on swarm, which was originally 
proposed by Eberhard and Kennedy [14]. PSO is based on 
extrinsic behavior of population. In standard PSO the particles 
are manipulated by the following Equations (4) and (5). In PSO 
algorithms, each solution is like a ‘bird’, and each bird ‘flies’ 
around in the multidimensional problem space with an 
acceleration.  
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    
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     1 1i i ix t x t v t                          (5) 
The coefficient s is the inertia weight, 1c  is coefficient for 
cognitive component which indicates that each particle learns 
from its experiences, and 2c  is coefficient for social component 
from which each particle will learn. v is velocity of particle, x is 
position of particle or solution for the optimization problem, 1r  
and 2r are random numbers, t is the current iteration, bestp is the 
personal best, and bestg is the global best.  

PSO or Multi-objective Particle Swarm Optimization 
(MOPSO) [15] algorithm often falls into entrapment of swarm 
within local minima of search space. Moreover, it may achieve a 
premature convergence though it has several advantages such as 
its effectiveness, robustness, simplistic implementation. Besides, 
proper control should be exerted for exploration and 
exploitation. The algorithm may get trapped in the local minima 
for the functions with multi-modal characteristics. This problem 
will become more severe with the dimensional increase of the 
optimization problem. For example, in damage identification 
using EMI, large number of finite elements and large number of 
segments are employed to ensure satisfying accuracy of the finite 
element model and the capability of identifying small-sized 
damage more elements in finite element analysis. To tackle these 
challenges, a series of local search strategies are developed. The 
strategies in this research are Exploration, Convergence, 
High/Low Jump. Exploration and Convergence are two similar 
updating strategies with different cognitive and social 
coefficients used to achieve a dynamic updating process, in 
which the search starts with exploration and converges at the end 
of search process. High/Low Jumpy conducts a mutation for one 
of the dimensions of personal best to make the particle take a 
large/small walk to see if it can jump out of current personal best.  
    The suggested range for inertia weight is  0.4,0.9s [14]. It 
is noteworthy that s must be high in the exploration and low in 
convergence [16]. For coefficients 1c  and 2c , they control the 
balance between bestp  and bestg . Therefore, 1c  must be higher 
than 2c  in exploration and the opposite in the convergence [16- 
17]. For the ‘Exploration’, we now set coefficients in Equation 

(4) as s = 0.8, c1 = 2.5, c2 = 0.5, as used in literature [18-19]. In 
the ‘Convergence’ state, the algorithm will converge to the 
global best quickly, therefore, the social part now is given a 
larger value, so the coefficients are 0.4, 0.5, 2.5 respectively for 
w, c1 and c2. For the High/Low Jump, one of the dimensions of 
the personal best is randomly selected and perturbed using 
Gaussian distribution. The only difference between High and 
Low Jump is the standard deviation is larger for High Jump. Here 
we use 0.9 for High Jump and 0.1 for Low Jump. The 
mathematic expression can be denoted as [20] 

 i besti norm upper lowerx P R V V               (6) 

where normR  is a random number sampled from Gaussian 

distribution  2,N   . The mean values for both High and 
Low Jump are zero. 

Since the particle cannot execute all local search strategies 
at one time (iteration), Q-table here is combined to help particle 
select the proper local strategy based on the maximum Q-table 
value, as shown in Figure 1. To elaborate on the memetic 
optimizer, we summarize the algorithm as the following 
Step 1: Initialize all the necessary parameters, such as # of 
objectives, # of population, # of variables (dimension), searching 
bounds, maximum iterations, etc. 
Step 2: Initialize population using random number within 
searching space. Initialize Q-table all zeros with dimension 4 by 
4. Initialize personal best, global best. Initialize local strategy as 
‘Exploration’. 
Step 3: Main loop for MOPSO algorithm until maximum 
iteration is reached: Executing ‘Exploration’ and using Non-
dominated Sorting algorithm to determine if the updated solution 
is kept or ignored. If the newly generated solution is kept, an 
immediate reward is given, or a penalty will be given. The 
reward or penalty will be used to update the Q-table value (will 
be discussed in following subsection). Executing other local 
strategies based on maximum Q-table values until maximum 
iteration is reached. 
Step 4: Updating personal best if newly obtained solution is kept 
or do nothing. Updating global best and Pareto solution 
repository. 
Step 5: Solution visualization and interpretation.  

 
FIGURE 1: Q-TABLE INTERACTION WITH LOCAL 
STRATEGIES 
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3.2 Local search strategy selection 
Local searching strategies are proposed here to help 

particles jump out of local minima to achieve a global search. 
However, all the strategies cannot be executed at the same time. 
Thus, Q-table here is selected to achieve the dynamic selection 
goal. Q-table is usually used in Q-learning, in which the learner 
performs an action causing a state transition in the environment 
it resides and receives a reward or penalty for the action executed 
to reach a definite goal [19, 21-22]. Here the particle is regarded 
as agent and the local strategies are actions.  

The current state is set as Exploration because the particle is 
hoped to explore more searching space at the beginning of the 
algorithm. In the main iteration part, the particle will select the 
action which has the maximum value in the Q-table and execute 
the action. After executing the current action, the agent can get 
to the new state using observing function  ,o s a which makes a 
transition from current state to another. The transition here is that 
current action index is the next state index. Here a diagram is 
drawn to show how to switch from current state to next state. As 
shown in the Fig. 2, the agent will select an action based on the 
maximum table values given the current state as 1S . For 
example, if Action 3 ( 3a ) has a maximum value and then the 
next state will be set as 3S , which has the same index to the index 
of current action 3a . This process can be written mathematically 
as 

   max ,t ta index Q s actions            (7) 

 
FIGURE 2: STATE TRANSITION PROCESS 
 
After Action 3 is executed, the rewards obtained currently can be 
passed into Equation (8) to update the entry for the current state 
and current action. Then the personal best and the global best are 
updated, and the external optimal repository will be updated 
accordingly. All the steps in the main loop will be performed 
until maximum runs are reached. 

There are 4 states and their corresponding actions. 
Therefore, we can create a Q-table with size 4 by 4 and initialize 
all the entries as zeros. Usually, the current state is randomly 
chosen from the state repository. However, here we initialize the 
current state as ‘Exploration’ since we hope the algorithm starts 
with exploring more searching space. Then the best action will 
be selected and executed based on the maximum Q-table value 
given the current state.  

After executing the selected action, an immediate reward or 
penalty will be obtained. Reward or penalty is determined by the 

solution dominating algorithm. If the new solution dominates the 
old solution, then a positive value 1 is given as a reward, 
otherwise, a negative reward -1 is given as penalty. And then 
observe the maximum future reward under the next state (next 
state index is same to the current action index, referring to the 
Fig. 2) and this reward will be passed into the updating function 
to update the Q-table entry  ,t tQ s a . The updating function is 

       1 1, 1 , max ,new t t t t t t alla
Q s a Q s a r Q s a   

    
 

(8)       

where,   is called the learning rate, which is defined as how 
much the new value vs the old value is accepted.   is a discount 
factor. It is used to balance immediate and future reward. r is the 
value after completing a certain action at a given state. Max is 
operation to take the maximum of the future reward and apply it 
to the reward for the current state. Finally, the current state will 
be updated as current state  
 
4. CASE STUDY 

In this section, we conduct case study to examine the 
proposed algorithm improvements in multi-objective 
optimization for damage identification. A cantilevered 
aluminum plate structure is integrated with a single piezoelectric 
transducer, as shown in Figure 3. The dimension of the beam is 
specified as length 561 mm, width 19.05 mm and thickness 4.763 
mm. The density and Young’s modulus are 2700 kgm-3 and 68.9 
GPa, respectively. The piezoelectric transducer is placed at 180 
mm from the left end, with length 15 mm, width 19.05 mm, and 
thickness 4.763 mm. The Young’s moduli of piezoelectric 
transducer are Y11 = 86 GPa and Y33 = 73 GPa, and the density 
is 9500 kgm-3. The piezoelectric constant and dielectric constant 
are 9 1

31 1.0288 10 Vmh     and 8 1
33 1.3832 10 mF   , 

respectively. 

 
FIGURE 3: SYSTEM SETUP 

 
Without loss of generality, admittance changes are acquired 

around 14th (1893.58 Hz) and 21st (3704.05) natural 
frequencies. Two frequency ranges are selected from 1891.69Hz 
to 1895.47Hz and from 3700.35Hz to 3707.75Hz with 100 
sweeping points for each range. Two damage cases are 
considered. The first case is dividing the plate into 225 segments, 
each corresponding to a damage index to be identified, as shown 
in Figure 4 (a) and the damage is assumed at segment 75 with 
13.2% stiffness reduction. For the second case, the segment is 
much finer, resulting in 1125 segments (Figure 4 (b)) and the 
damage is located at segment 800 with 9.5% stiffness reduction.  
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TABLE 1: DAMAGE IDENTIFICATION RESULTS 
 

Case # Solutions Obj-fun 1 Obj-fun 2 

Case 1 1 8.864434e-6 1 
2 8.864416e-6 2 

Case 2 1 5.623299e-6 2 
2 2.197487e-7 2 

 
The total number of admittance measurement data points are 

200 for both cases. We can see that the damage identification for 
both cases are under-determined or the information for damage 
identification is limited. It should be mentioned that damage 
usually occurs at a small region of the structure, thus resulting in 
a sparse damage index vector. We use the sparse initialization 
algorithm that can generate the sparse population [23]. Then it 
will be passed into the main optimization loop. By solving the 
optimization model formulated in Section 2 using the proposed 
algorithms, the identified results are obtained for both cases, as 
plotted in Figures 5 and 6. The figures are arranged based on the 
non-zero identified segments (the second objective function.). 
The obtained solutions for both cases are summarized in Table 
1. 

 
FIGURE 4: SEGMENT DIVISION (A) COARSE DIVISION (CASE 
1); (B) FINE DIVISION (CASE 2) 

 
For Case 1, the two optimal solutions obtained accurately 

pinpoint the true damage location and severity. The two 
solutions manifest the characteristic of underdetermined 
problem that has multiple solutions. Though there is a 
misidentified damage location in solution 2 at segment 26, as 
plotted in Figure 5, the misidentified damage has a negligible 
severity that reflects the modeling errors in finite element 
analysis. Besides, we use the Tylor series expansion to obtain the 
linear relationship between damage index and admittance 
change. Since we do not know the information about the damage, 
both solutions obtained, therefore, can be regarded as possible 
candidates for engineering practice.  

 

 
(a) 

 
(b) 

FIGURE 5: IDENTIFIED RESULTS FOR CASE 1 WITH 225 
SEGMENTS IN PLATE STRUCTURE 
 

As mentioned, modeling error and linear approximation 
may lead to misidentified damage locations, which is also 
reflected in the two solutions of Case 2, as shown in Figure 6. 
Each solution has two identified damage locations. One precisely 
captures the true damage scenario, and the other is the 
misclassified damage location. Within the multi-objective 
optimization setup, multiple solutions can be obtained for 
underdetermined problem and there is always one solution that 
captures the true damage scenario.  In this case, both solutions 
can be regarded as possible candidate in practical problems. 

In this research, case studies demonstrate the global 
searching ability of proposed memetic optimizer, which 
performs well in damage identification problems with 
underdetermined characteristics.   
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(a) 

 
(b) 

FIGURE 6: IDENTIFIED RESULTS FOR CASE 2 WITH 1125 
SEGMENTS IN PLATE STRUCTURE 
 
4. Conclusions 

In this research, a memetic optimizer based on MOPSO 
algorithm is presented for damage identification using 
electromechanical admittance measurements. The inverse 
damage identification process is converted into an optimization 
problem. Given that the algorithm solving optimization model 
usually falls into the local extremes and get a premature 
convergence, a series of local search strategies are proposed 
aiming at enhancing the global searching ability when dealing 
with multi-modal objective function. The Q-table is utilized here 
to help the particle to select the proper local search based on 
maximum Q-table values. Case demonstrations verify the 
validity of the algorithm. 
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