
1.  Introduction
Wildfires have increased globally in recent decades (Dennison et al., 2014; Doerr & Santín, 2016). Wildfires 
modify the land, water, and atmospheric dynamics by burning the landscape, exporting particles and nutri-
ents to distant locations by wind, and attenuating incoming solar radiation through smoke cover (McLauchlan 
et  al.,  2020). In the western United States, wildfires have increased over time because of changes in climate 
(Westerling, 2016), historic management (Dennison et al., 2014), and changes in land use (Nagy et al., 2018; 
Radeloff et al., 2018). In 2020, the most destructive wildfire year on record in the USA, a total of 9,917 fires 
burned an area of 1,723,096 ha in California alone (Cal Fire, 2020). While the impacts of wildfire on terrestrial 
systems are closely studied, the impacts of wildfire smoke, on aquatic systems, remains virtually unknown.

Aquatic ecosystems have a high risk of exposure to wildfires (McCullough et  al.,  2019). Indirect effects are 
mediated by the transport of smoke and particles from local and regional fires to nearby and distant lakes (Scordo 
et al., 2021; Williamson et al., 2016). Wildfire smoke combines gaseous pollutants, water vapor, and particulate 
matter (PM). PM is a mixture of solid particles suspended in the air with diameters between 0.1 and 10 μm. Parti-
cles ≤2.5 μm in diameter (PM2.5), represent ∼90% of total particle mass emitted from wildfire smoke (Vicente 
et al., 2013). The type and amount of PM2.5 contributed by fires depends on the size and duration of the fire, 
burning conditions and material (Jaffe et al., 2008). Most notably, smoke reduces incident radiation and deposits 
particles on lakes (Scordo et al., 2021; Williamson et al., 2016; Figure 1a). Particulates in smoke reduce incoming 
ultraviolet B radiation (UV-B) that would enter the water column, effectively increasing the ratio of photosyn-
thetically active radiation (PAR) to UV-B (Williamson et al., 2016; Figure 1a). Moreover, reductions in incident 
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smoke on lakes are unknown. We determined how photosynthetic activity and organism's respiration respond 
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solar radiation can decrease water temperatures and affect physical mixing dynamics (David et al., 2018; Scordo 
et al., 2021; Figure 1a).

Smoke particles deposited directly on lakes or transported into lakes through runoff from the watershed affect 
aquatic ecosystems by suppressing light and altering nutrient supply to algae (Goldman et  al.,  1990; Scordo 
et al., 2021; Figure 1a). The deposition of particles may contribute nutrients (Earl & Blinn, 2003) and stimulate 
pelagic primary productivity (Tang et al., 2021). In ecosystems with high water clarity, declines in incident and 
underwater PAR and UV-B may increase productivity by alleviating photoinhibition through multiple mecha-
nisms (Campbell & Serôdio, 2020; Long et al., 1994), allowing phytoplankton to photosynthesize at their maxi-
mum rate for a larger proportion of daylight hours (Falkowski & Raven, 2007; Figures 1c–1e). The combination 
of reduced UV-B radiation and increased production have several notable effects on lake structure and the behav-
ior of organisms. Under reduced UV light conditions zooplankton alter their behavior to inhabit the upper waters 
more frequently (Urmy et al., 2016), which increases grazing pressure on phytoplankton. Although these effects 
of wildfire smoke have been observed across the pelagic habitat of lakes and oceans, to our knowledge the effects 
of smoke on littoral habitats remain undocumented.

Conceptually, there is reason to believe metabolic processes in the pelagic and littoral habitats respond differ-
ently to smoke effects (Figures 1c–1e). Production in the littoral may not have a detectable response to reduced 
UV-B light exposure produced by the smoke conditions (Figure 1d). Benthic algal communities have character-
istics (e.g., taxa that can migrate into the substrate, excrete screening compounds, or develop large filamentous 
colonies) that allow them to persist under high UV conditions (Karsten & Garcia-Pichel, 1996; Vinebrooke & 
Leavitt, 1999). Additionally, littoral-benthic habitats consistently exhibit higher rates of productivity compared to 
pelagic habitats in clear lakes (Sadro, Melack, & Macintyre, 2011; Scordo et al., 2022; Figure 1e), emphasizing 
the need to understand habitat-specific responses in metabolic rates to the effects of wildfire smoke.

Addressing the effects of smoke and ash from wildfire to lake metabolism requires us to differentiate smoke 
effects from hydrologic effects (Figure 1b). In western mountain lakes of the United States, ice-out date and snow 
water equivalent (SWE) affect inter-annual productivity (Goldman et al., 1989; Figures 1b and 1e). SWE deter-
mines the duration of the ice-free period (Smits et al., 2021) and inflow during the spring (Sadro et al., 2019), 
which sets the conditions for summer production and phytoplankton biomass accumulation (Sadro et al., 2018; 
Figures 1b and 1e). Ice-out timing determines heat content in the water column and the seasonal timing of maxi-
mum primary producers' biomass (Park et al., 2004). Littoral-benthic habitats have short retention times of water 
and nutrients, making them sensitive to changes in ice out and SWE (Scordo et al., 2022; Figures 1b and 1e). In 
this study, we examined three non-smoke years with differing hydrological climates to account for changes in ice 
out and SWE when examining the influence of smoke effects alone.

We examined the influence of wildfire smoke on gross primary production (GPP), ecosystem respiration (ER), 
and net ecosystem production (NEP) for both epi-pelagic and littoral lake habitats in a year with heavy smoke 
cover (2018) and years without smoke (2015, 2016, 2019). We (a) determine if the metabolic response to wildfire 
smoke differs between epi-pelagic and littoral habitats and (b) use these observations to provide a conceptual 
framework to understand how smoke alters littoral and epi-pelagic processes in a mesotrophic, subalpine lake. 
We expect the metabolic rates in the epi-pelagic habitat to be higher in 2018 than in non-smoke years, owing to 
wildfire smoke's suppression of UV-B light (Figure 1e). We expect littoral productivity to fall within the range 
of variability of non-smoke years because benthic algae productivity is less sensitive to UV-B light suppression.

2.  Material and Methods
2.1.  Study Site and Data Collection

Castle Lake is a meso-oligotrophic, dimictic, subalpine lake (1,646 m. a.s.l., surface area of 0.2 km 2, zmax = 35 m, 
and zmean = 11.4 m) located in California, USA (Figures 2a and 2b). Snow and ice cover the lake typically from 
the end of November until April. The ice-free summer season averages ∼135 days. We analyzed how a smoky 
year (2018) affected the metabolism rates in late summer (August and September) in two locations of the littoral 
habitat and one location in the deepest point of the pelagic habitat (Figures 2c–2e). Since the littoral habitat of 
Castle Lake is variable due to the adjacent landscapes and sediment compositions, we calculate metabolism 
in two different littoral sites (“Littoral 1” and “Littoral 2”; Figure 2e). Littoral 1 is dominated by fine-organic 
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sediments, regular terrestrial leaf inputs, and inputs from groundwater seepage. Littoral 2 is dominated by coarser 
sediments with no spring influences and less immediate connections to terrestrial leaf inputs.

We compared the smoke year of 2018 with multiple years (2015, 2016, and 2019) that encapsulated the total 
observed variability in SWE (4–1,047 mm) and ice out date (February 20th to June 1st) from the last 60 years 
of observation. This approach suggests that any novel patterns that we detected in 2018, relative to previously 
observed variability, are likely not related to unusual ice-out timing or snowpack that year but rather to the 
unusual smoke conditions. The year 2018 was an average year in terms of ice out date (April 7th), and dry in 
terms of SWE (135 mm; https://nsidc.org/data/g02158).

We defined the degree of ‘smokiness’ in all years by quantifying atmospheric particulate loads and using two 
game cameras overlooking the lake that took daily, midday photos. Fine particulate matter (PM2.5 ≤ 2.5 μm diam-
eter) in concentrations >20 μg m −3 indicates the presence of smoke in fire prone areas (Liu et al., 2017). The 
PM2.5 data obtained from a nearby monitoring station in Yreka (https://www.epa.gov/outdoor-air-quality-data/
download-daily-data), confirms the visible evidence from the cameras that the hazy images resulted from wildfire 
smoke plumes.

Figure 1.  Conceptual framework to understand how smoke alters littoral and pelagic processes in a lake. Wildfire smoke 
reduces light regimes, lake heat content, and contributes nutrients to lakes (a). When the SWE accumulated by the start 
of ice-break melts, nutrients from the watershed start flowing into the lake. By mid-summer (July to August), the lake 
productivity cannot keep growing as it is nutrient-limited and light inhibited during a large part of the day (UV-B and PAR) 
(c and d). Productivity starts declining by the end of the summer when light and temperature decrease. If smoke covers the 
study lake when productivity is light inhibited, then reduced UV-B light due to smoke presence can produce an increase in 
epi-pelagic metabolic rates (e). Littoral benthic algal communities have different mechanisms to adapt to high solar UV-B 
radiation. Therefore, reduced UV-B light may not produce a change in littoral metabolic rates (d and e). The influence 
of smoke likely depends on the distance between the lake and the wildfire, wind conditions, type of material combusted, 
duration of smoke, and lake type.
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We evaluated how smoke altered the underwater intensity of light (UV-B and PAR) and water temperature. We 
measured the midday (1 p.m.) intensity of incident UV-B and PAR at the surface of the lake and the extinction 
coefficient of both wavelengths using a Biospherical Instruments 2104P radiometer once per week.

We made high-frequency in situ measurements of water temperature and dissolved oxygen (DO) at 10-min inter-
vals (PME miniDOT) in pelagic and littoral habitats. The pelagic sensor was deployed 3 m below the surface 
within the pooled mixed layer, each of two littoral sensors were deployed 0.1 m above lake sediments where total 
depth was 3 m (Figure 2e).

We estimated metabolic rates using a modeling approach based on Phillips (2020) and Lottig et al. (2021). This 
model requires high-frequency measurements of DO concentration (mg L −1), water temperature (°C), PAR (μmol 
m −2 s −1), wind speed (m s −1), and barometric pressure (mbar). The model generates daily estimates (mmol O2 
m −2 d −1) of GPP, R, and NEP (NEP = GPP - R). A detailed description of the model can be found in the Text S1 
of Supporting Information S1 and Lottig et al. (2021). Metabolism estimates were calculated from August 1st to 
September 17th for the Littoral 1 and the epi-pelagic sites, while for the Littoral 2 site, data was available from 
August 13th to September 17th.

To estimate habitat specific metabolic rate contributions to whole-lake productivity within the epilimnion, we 
partitioned the lake into littoral and pelagic zones based on area-volume information obtained from the bathyme-
tric map of Castle Lake. We defined the littoral zone as areas with depth ≤6 m and epi-pelagic zone as areas with 
depth >6 m, each of which comprise 50% of the total 107,000 m 2 lake area (Vander Zanden et al., 2007). The 
mixed layer depth was used to define the lower boundary for littoral and epi-pelagic habitats, and a hypsographic 
curve was used to determine the total water volume for each. The daily volumetric rates (mmol O2 m −3 d −1) 
obtained from the model at the littoral (average of the Littoral 1 and Littoral 2) and the epi-pelagic sites were 
multiplied by the total volume (m 3) of each habitat to obtain habitat specific metabolism. We present the propor-
tion of total GPP, R, and NEP contributed by each habitat during the study period by summing the daily values of 
total littoral and epi-pelagic metabolism for the period August 13th to September 17th.

2.2.  Statistical Analyses

We tested the proportion of days with PM2.5 higher than 20 μg m −3 using a binomial generalized linear model 
(GLM) with “logit” as a link function. The year acted as a fixed effect in the model, using the “glm” function in 

Figure 2.  (a) Location of the study area in California (USA). (b and d) Photo of the smoke plume of Carr Fire (9 August 
2018) covering Castle Lake. (c) Photo of Castle Lake without smoke cover on 9 August 2016. (e) Site location where 
metabolism was determined.
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the R “stats” package (R Core Team, 2020). We used linear mixed-effects models (LMM) to test for significant 
differences in GPP, NEP, and R among sites (epi-pelagic, Littoral 1, and Littoral 2) with site as a fixed effect. 
The model was built using the “gls” function in R's “nlme” package (Pinheiro et al., 2020). Similarly, we used 
LMM to test our hypotheses regarding differences among PAR, UV-B, GPP, NEP, and R with smoke condition 
as a fixed effect. We used the Wald statistic to test the significance of the fixed effects in each of the models 
(Zuur et al., 2009), using the “gls” function in the “nlme” package (Pinheiro et al., 2020). We compared the fixed 
effects of the model with Tukey's HSD post hoc test (Lenth, 2021). We considered the specific variance-covar-
iance structure for repeated-measures data in each model, and when residuals did not meet the assumption of 
homoscedasticity, we modeled the variance.

For each variable analyzed in this study (water temperature, PAR, UV-B, GPP, NEP, and R), we calculated the 
mean, standard error, and 95% confidence interval for non-smoke years. Next, we determined if the data from 
the smoke-impacted year of 2018 fell within the 95% confidence interval of the non-smoke years. To calculate 
the 95% confidence interval, we used a Student's t-distribution. All the analyses were performed in the statistical 
software R version 4.0.2 (R Core Team, 2020). Data and metadata are available in Scordo and Chandra (2022).

3.  Results
3.1.  Extent of Smoke

The period between July 15th and 30 September 2018 had a significantly (p < 0.01) higher number of days with 
smoke (60%) than the other three years, which combined had only 6% of days with smoke cover (Figure 3a). Also, 
the year 2018 had the highest mean (51 ± 5 μg m −3) and maximum (143 μg m −3) value of PM2.5 when smoke 
was present (Figure 3a). During 2018, our study period began on August 1st, 13 days after the smoke conditions 
started (Scordo et  al.,  2021). Within our study period, smoke cover occurred between August 1–19, August 
21–25, August 29–30, and September 5–10. Field notes and camera images corroborate the PM2.5 data; smoke 
was present on the same days PM2.5 increased (Figure 2c).

3.2.  Effects of Smoke on Light and Temperature Within the Lake

During smoke cover periods of 2018, we found a significant decrease in incident light intensity and increases in 
the extinction coefficient of UV-B and PAR. Incident PAR and UV-B light intensity decreased 28% and 53%, 
respectively, by the end of the smoke period compared to pre-smoke conditions (Figures 3c and 3d). PAR and 
UV-B values by August 1st and during the remaining smoke period of 2018 were significantly lower (p < 0.01) 
and outside the confidence interval of light values for years without smoke. The extinction coefficient of UV-B 
and PAR increased 20% and 18% respectively, by the end of the smoke period of 2018 compared to pre-smoke 
conditions. The extinction coefficient of UV-B (starting on August 9th) and PAR (starting on 15 th) by mid-August 
and during the remaining smoke period of 2018 were significantly higher (p < 0.01) and outside the confidence 
interval for years without smoke. The observed differences in extinction coefficients between the smoke and 
non-smoke years continued beyond the smoke conditions, which ceased on September 10th. During smoke cover 
periods of 2018, we observed no change in water temperature at all sites (p < 0.93; Figure 3b).

3.3.  Metabolism Habitat Variability

Volumetric rates of GPP, R, and NEP from littoral sites during the smoke period in 2018 did not differ statis-
tically from non-smoke years (p  >  0.3; Figure  4; Table S1 in Supporting Information  S1). In contrast, GPP 
and NEP from the epi-pelagic habitat were higher (p < 0.05), while R remained similar (p = 0.07) in 2018, 
compared to the non-smoke years (Figure  4; Table S1 in Supporting Information  S1). GPP and NEP in the 
epi-pelagic habitat remained high in 2018 even when the smoke ceased in late September (Figure 4). During the 
smoke year of 2018, the total magnitude of epi-pelagic GPP (15*10 7 mmol O2) was higher than non-smoke years 
(11*10 7 ± 1*10 7 mmol O2; Figure S1 in Supporting Information S1). The relative contribution of epi-pelagic to 
whole-lake epilimnetic production was 5%–14% higher during the smoke year in comparison to all but the wettest 
year (Figure S1 in Supporting Information S1), which had an exceptionally late ice-off (Scordo et al., 2022).

The Littoral 1 habitat had significantly higher GPP (p < 0.01) and R (p < 0.01) rates than the epi-pelagic (Figure 4; 
Table S2 in Supporting Information S1). The Littoral 1 site had higher GPP (p = 0.03) and R (p = 0.02) rates 
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than the Littoral 2 site (Figure 4; Table S2 in Supporting Information S1). Despite the differences in metabolism 
rates at the two littoral sites, neither of these sites presented detectable metabolism rate changes during the smoke 
period of 2018.

4.  Discussion
Wildfire smoke significantly increased epi-pelagic primary productivity but not littoral productivity in Castle 
Lake, causing the relative contribution of epi-pelagic habitats to whole-lake production to be higher in compar-
ison to the years with average or lower ice-cover. We suggest that these patterns result from reduced radiative 
inputs (specially UV-B) in the water column, alleviating photoinhibition. The higher light adaptation of littoral 
primary producers (Karsten & Garcia-Pichel, 1996; Vinebrooke & Leavitt, 1999) may reduce the stimulatory 
effect of smoke on primary producers in these habitats. In contrast, we note that in the pelagic habitat the parame-
ter of maximum production rate increased in the smoke year, reflecting a possible reduction in photoinhibition (as 
per Staehr et al., 2016; Figure S2 in Supporting Information S1). We posit that the reduction in photoinhibition 
increased the biomass-specific photosynthetic rates, as there was no change in epi-pelagic biomass (measured as 
chlorophyll-a; Scordo et al., 2021). The maximum production rate at the two littoral habitats occurred within the 
variability of non-smoke years, indicating the reduction in light did not enhance productivity in the littoral and/
or the continued influence of light saturation despite a reduction in PAR.

Figure 3.  Summer seasonal pattern of environmental variables of the 2018 year with smoke (red) and the mean (±95% 
confidence interval in blue) for non-smoke years 2015, 2016, and 2019 (blue). Concentration of PM2.5 in the air (a), water 
temperature at 3 m depth in each site (b), incident UV-B (c) and PAR (d) at the surface of the lake, and extinction coefficients 
of UV-B (e) and PAR (f). Gray background represents days with smoke in 2018.
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The increase in the GPP in the epi-pelagic habitat during the smoke period was likely due to reduced photoin-
hibition. We operationally define photoinhibition as the reduction of photosynthetic capacity induced through 
prolonged or excessive exposure to solar radiation along a continuum of wavelengths, including PAR and UV. 
Response to photoinhibition can vary with taxa, cell size, habitats, and prior exposure (Campbell & Serôdio, 2020; 
Long et  al.,  1994). Phytoplankton and algae are affected through physiological mechanisms associated with 
photosynthesis or cellular repair that have been long studied and well described (Campbell & Serôdio, 2020; 
Häder et al., 2011; Long et al., 1994; Wu et al., 2012). Previous research from Castle Lake indicates light inhibits 
production in the shallow pelagic waters (Huovinen et al., 1999); other clear lakes have similar observations, 
specifically between 11 a.m. and 2 p.m. (Staehr et al., 2016; Vadeboncoeur et al., 2014). UV-B light inhibits 
productivity down to three meters at Castle Lake (Scordo et al., 2021), and the decline in UV-B during the smoke 
period likely lessened photoinhibition and allowed primary producers to photosynthesize at their maximum rate 
for a larger proportion of daylight hours (Falkowski & Raven, 2007). Scordo et al. (2021) showed Castle Lake 
pelagic productivity at 0, 1 and 3 m depths increased after wildfire smoke reduced UV-B light in 2018. In our 

Figure 4.  Metabolism at the epi-pelagic and the littoral-benthic sites of Castle Lake in 2018 with smoke (red) and the non-smoke years of 2015, 2016, and 2019 
(mean ± 95% confidence interval in blue). Gray background represents days with smoke in 2018.
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study, even when smoke reduced PAR, the midday light intensity at depth remained between 650 and 850 μmol 
m −2 s −1; these intensities can cause photoinhibition in the epi-pelagic of clear lakes (Staehr et al., 2016; Vadebon-
coeur et al., 2014), suggesting observed differences in GPP were primarily the result of changes in UV-B.

Littoral habitat GPP did not increase despite smoke-induced UV-B light reduction. Littoral primary producers, 
through adaptation and complex habitat, are less affected by high UV-B radiation than epi-pelagic algae (Karsten 
& Garcia-Pichel, 1996; Vinebrooke & Leavitt, 1999). Vadeboncoeur et al. (2014) showed periphyton productivity 
plateaued at the highest field light intensities, and photoinhibition was never evident in seven clear North Amer-
ican lakes. Experiments from Castle Lake that removed UV radiation by 99% using filters did not find a change 
in periphyton biomass despite altered species composition (Higley et al., 2001), suggesting that changes in the 
community composition of the periphyton moderates UV-B radiation effects on productivity.

The magnitude of decrease in PAR due to smoke was not large enough to reduce productivity in either of the 
habitats. Even during the smoke periods of 2018, midday maximum PAR intensity in both the littoral and epi-pe-
lagic habitats reached values above 700 μmol m −2 s −1, values that are optima for photosynthesis in Castle Lake 
(Goldman et al., 1973), and other clear lakes (Staehr et al., 2016; Vadeboncoeur et al., 2014). However, we recog-
nize that our study only covered the epilimnetic zone of the lake, and that PAR reduction could have lessened 
productivity at greater depths or caused a shift in the depth of the euphotic zone. Scordo et al. (2021) found that 
after smoke reduced PAR at depth (12.5 m and lower) in Castle Lake, the deep chlorophyll-a and productivity 
maximum (15–20 m) did not develop. Giling et al. (2017) showed that metalimnetic contribution to whole-lake 
metabolism can be highly variable. Therefore, studies that analyzed whole water column metabolism are needed 
to understand how wildfire smoke affects the pelagic habitats of lakes.

Epi-pelagic NEP increased because GPP increased more than R during the smoke period. A lack of a corre-
sponding increase in respiration was surprising as they are coupled ecosystem processes (Sadro, Nelson, & 
Melack, 2011), but may reflect the reduced metabolic costs associated with a decrease in photoinhibition (Häder 
et al., 2011). Our results indicate that on short time scales (weeks to months), smoke can increase the assimilation 
of carbon in the ecosystem. However, further research is needed to establish the mechanisms involved and deter-
mine the fate of the net increase in carbon within the ecosystem.

Future explorations will help us understand how wildfire smoke affects the community of producers related to 
metabolic changes in lakes. We speculate based on studies that examine the influences of UV-B light on plank-
tonic community structure, that photoinhibition has a differential impact on picophytoplankton than phytoplank-
ton (Häder et al., 2011). A shift to picoplankton effectively increases productivity (Banse, 1976). Also, nutrients 
contributed by ash deposition may stimulate productivity. Scordo et al. (2021) did not find a change in macronu-
trient limitation at Castle Lake under the smoke conditions of 2018. However, ash deposition may contribute trace 
metals to waterbodies (Tang et al., 2021), which can increase productivity despite no changes in macronutrient 
concentration (Goldman et al., 1990). Indeed, deposition of smoke in the Southern Ocean fueled a phytoplankton 
bloom because of trace metal fertilization (Tang et al., 2021).

5.  Conclusions
We show differential responses in the productivity of lake habitats due to wildfire smoke, with an increase in the 
epi-pelagic GPP. These findings underscore the need to untangle our understanding of how lake processes within 
lake habitats are affected by wildfire smoke. While we present a new conceptual understanding of habitat-specific 
responses to wildfire smoke (Figure 1), there are limitations from single-site studies and many of the mechanisms 
we identified need to be tested across lake types to explore the generalities of our conceptual model.

Four broad areas of research questions may help advance our understanding of smoke effects on lakes. (a) How 
does variation within littoral-bottom habitats (rock, sand, plant) and community architecture mediate the effect 
of smoke on ecosystem metabolic rates? (b) How do responses to smoke vary across lake types (e.g., trophic 
status, morphological characteristics like depth, watershed-to-area ratios)? (c) How do the quantity and quality 
(e.g., elemental composition and bioavailability of particles) of smoke affect aquatic ecosystems? (d) What scale 
of time associated impacts from smoke will lead to changes in ecological interactions in the lake? As wildfire 
occurrences increase globally, designing monitoring programs and field experiments to understand the impacts 
of smoke will be important.
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Data Availability Statement
Data and metadata are available at Scordo, F., Chandra, S. (2022), “Particulate material in the air (PM2.5), light 
(UV-B and PAR), littoral and pelagic metabolism estimates in Castle Lake (California, USA) 2015, 2016, 2019 
and 2018”, [Dataset]. Mendeley Data, V2, https://doi.org/10.17632/7bs4htfy4b.2.
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