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ABSTRACT 17 

Rapid reconnaissance of building damage is critical for disaster response and recovery. Drones have been 18 

utilized to collect aerial images of affected areas in order to assess building damage. However, there are 19 

two challenges. First, processing many aerial images to detect and classify building damage based on a 20 

consistent standard remains laborious and complex, necessitating a new automated solution to achieve 21 

accurate building damage detection and classification. Second, drone operations during disaster response 22 

rely primarily on human operators’ experience and seldom use the obtained building damage information 23 

to optimize drone mission planning. Therefore, this study proposes a new method, which automates 24 

building damage reconnaissance with drone mission planning for disaster response operations. Specifically, 25 



 

a deep learning method is developed to detect and classify building damages using a newly labeled dataset 26 

consisting of 24,496 distinct instances of building damage. This deep learning method is validated, 27 

achieving 71.9% mean average precision. In addition, building damage information is modeled and 28 

integrated into mission planning, in order to optimize drones’ task assignments and route calculations. A 29 

tornado disaster in Tennessee is used as a case study, to quantitatively evaluate this methodology. The 30 

present study concludes that optimal drone mission planning during disaster response can be augmented 31 

using accurate building damage information acquired from deep learning methods. 32 

INTRODUCTION  33 

Natural disasters, such as earthquakes and tornadoes, lead to massive building damage, resulting in deaths, 34 

injuries, and destruction of property. According to the National Oceanic and Atmospheric Administration 35 

(NOAA), more than 20 climate-related disasters occurred in 2021 across the US (Doyle Rice 2022), 36 

claiming at least 688 deaths and leading to over $145 billion in economic losses. After the disasters, rapid 37 

and accurate assessment of building damages is crucial for both immediate and long-term urban disaster 38 

responses. First, assessing building damages provides essential information that enables first responders to 39 

prioritize search and rescue (SAR) operations and efforts to save trapped victims, protect properties, and 40 

perform emergency response logistics. First responders are the main force to respond to these disasters and 41 

to conduct SAR operations. Disasters such as earthquakes, floods, and tornadoes often lead to traffic 42 

“paralysis,” which can prevent first responders from entering damaged areas and may delay SAR operations 43 

(Chang et al. 2012), imposing significant challenges to ensuring safe and efficient SAR. Acquiring accurate 44 

damage information on the affected areas could save enormous amounts of time as first responders plan 45 

response efforts. In addition, most casualties from major disasters are associated with structural collapses 46 

(Geiß et al. 2014). For example, the extent of damage to buildings is an important indicator of an 47 

earthquake’s magnitude, which in turn provides a measure of the scale of human and property losses in that 48 

area (Lei et al. 2010). Having accurate information regarding building damages, therefore, could help first 49 

responders in prioritizing their SAR operations. Second, acquiring information on building damages at a 50 

large scale could help the community better plan for future disaster preparation, response, and mitigation. 51 



 

The information can also be utilized to improve the design of insurance programs. Despite the importance 52 

of acquiring accurate and timely building damage information for effective and efficient disaster response, 53 

mitigation, and recovery, the current manual and outmoded manual practices are unable to provide this.  54 

This study develops a new method for drone-based disaster reconnaissance to map the building 55 

damages in affected areas. Drones hold great potential for emergency reconnaissance, because they can 56 

deploy quickly, collect heterogeneous sensing data, survey areas humans cannot reach, and can identify 57 

areas with the most severe damage. There has been growing use of drones in disaster response, particularly 58 

in damage assessment, but there are two knowledge gaps that must be closed for the optimal deployment 59 

of this solution. First, the information retrieval from drone-based images and videos is superficial, providing 60 

limited information for practical applications. Although solutions based on deep learning have been 61 

developed to accelerate visually-based damage assessment, levels of building damage have seldom been 62 

accurately classified. Damage levels are usually categorized based on criteria from the Federal Emergency 63 

Management Agency (FEMA) and the National Weather Service (NWS), and accurately distinguishing the 64 

levels of tornado-induced building damage in drone-acquired aerial images is beyond the capabilities of 65 

existing methods. Second, utilizing drones for surveying disaster areas is a dynamic and evolving task, and 66 

the dynamic information obtained by drones should be actively exploited for drone mission planning. This 67 

is critical for disaster response, given the time constraints and the limited availability of resources. Current 68 

practices on drone mission planning in disaster areas focus mainly on area coverage; they are not geared 69 

toward integrating acquired damage information to optimize drone task assignments or route generation. 70 

Integrating drone-acquired information from initial surveys could also improve the planning of various 71 

subsequent drone-based tasks and missions, such as detailed assessment and package delivery. 72 

To address these technical challenges, this research proposes a deep-learning-based method for 73 

detecting and classifying different levels of building damage and then incorporating that information for 74 

drone mission planning, so as to optimize task assignments for disaster reconnaissance and response. The 75 

contribution of this study is two-fold. First, a new deep learning method based on YOLO5 is proposed to 76 

endow the drone with the intelligence to detect and classify seven distinct categories of building damage, 77 



 

thus providing refined classification information for disaster response. In addition, this research has led to 78 

a newly labeled dataset consisting of 24,496 instances of building damage after tornadoes, based on the 79 

Enhanced Fujita (EF) scale, which provides an essential basis for advancing deep learning methods for 80 

automated building damage reconnaissance after disasters. Second, the detected and classified building 81 

damages are exploited in an optimization model for drone mission planning during disaster response, 82 

considering the physical and resource constraints. By integrating building damage information into the 83 

mission planning model, the drone task assignments and route generations can be optimized, thereby further 84 

augmenting the disaster response protocol. The developed methods are validated and evaluated using real 85 

data from a tornado disaster in Tennessee, which further consolidates the potential of the proposed methods. 86 

LITERATURE REVIEW 87 

Related studies on building damage assessment  88 

Damage assessment of structures, including buildings and bridges, under natural disasters has been widely 89 

studied in the structural engineering and natural hazard engineering communities. Originally developed by 90 

the Pacific Earthquake Engineering Research Center, the performance-based earthquake engineering 91 

framework (Cornell et al. 2002) is a generally accepted and adopted risk quantification method for 92 

earthquake hazards (Baker and Cornell 2008; Du et al. 2020; Du and Padgett 2021), and has had its 93 

applications extended to other disasters such as hurricanes and tornadoes (Herbin and Barbato 2012; 94 

Roueche et al. 2017). Within this framework, one critical component is fragility modeling, which delivers 95 

a conditional probability estimate of the exceedance of a certain structural damage state and establishes the 96 

connection between natural hazard intensities and structural damage potential (Du et al. 2021). In 97 

earthquake engineering, various methods have been developed for modeling fragility functions based on 98 

analytical models (Du et al. 2021; Du and Padgett 2020; Nielson and DesRoches 2007; Padgett and 99 

DesRoches 2008), post-hazard reconnaissance (Buratti et al. 2017; Giordano et al. 2021), and expert 100 

judgment (FEMA 2012). For wind-related hazards, the Florida Public Hurricane Loss Model (Chen et al. 101 

2009; Pinelli et al. 2011) and HAZUS-MH (Vickery et al. 2009) are commonly used to estimate building 102 

damage. Despite the wide applications in performance-based building design, pre-disaster planning, and 103 



 

post-disaster response and recovery, fragility models still admit of substantial uncertainties and are more 104 

suitable for rapid regional-level post-hazard damage screening. 105 

When it comes to assessing damages done to individual structures, the post-disaster evaluation of 106 

existing buildings relies largely on professionals’ field surveys and visual observations (Xie et al. 2016; 107 

Yamazaki et al. 2005), which are time-consuming, labor-intensive, and vulnerable to subjective judgments. 108 

To address this limitation, data-driven methods have been developed to automatically analyze images from 109 

disaster sites for building damage assessment. Some methods (see, e.g., Cooner et al. (2016)) leverage 110 

traditional machine learning algorithms (e.g., random forest) to assess post-earthquake structural damage 111 

from handcrafted image features, where the performance depends heavily on feature selections. Schaefer 112 

et al. (2020) developed an automatic workflow which generates a 3D dense point cloud from images 113 

collected by a drone; the disaster damage is then quantified by comparing pre-hurricane and post-hurricane 114 

point clouds. Zhang et al. (2020) developed a remote sensing information-extraction method which uses 115 

thermal and RGB images to recognize structural damage to infrastructures caused by earthquakes. This 116 

method uses spectrum, shape, texture, space, and other characteristics of buildings to segment building 117 

damages in a 3D building model. However, these methods require extensive computational power to 118 

generate 3D models and identify damages, which is not feasible for online damage detection at disaster 119 

sites.  120 

More recently, deep learning methods have been widely used in computer vision tasks and have been 121 

demonstrated to be effective in a variety of fields, including material recognition (Chen et al. 2021; Hu and 122 

Li 2022), synthetic image augmentation (Chen et al. 2022), and affordance segmentation (Hu et al. 2020). 123 

For the task of building damage detection, Miura et al. (2020) developed a convolutional neural network 124 

(CNN)-based approach for estimating building damage based on post-disaster aerial images, where the 125 

level of building damage is divided into non-collapsed, blue-tarp-covered, and collapsed categories. This 126 

CNN method achieved high accuracy on the aerial image data collected after the 2019 Chiba typhoon. Zhu 127 

et al. (2021) developed a novel CNN-based model for building damage segmentation based on Mask R-128 

CNN architecture, by exploring hierarchical spatial relationships among different objects. Their method 129 



 

was validated using the Instance Segmentation in Building Damage Assessment (ISBDA) dataset, where 130 

building damages were classified as slight, severe, or debris-level.  131 

Despite these achievements, there remain two limitations. First, the performance of deep-learning-132 

based building damage detection is largely influenced by the quality and generalizability of training data. 133 

While there are several aerial image datasets (Pi et al. 2020; Rahnemoonfar et al. 2021; Zhu et al. 2021) 134 

which can be used for disaster assessment, very few of them focus on tornado disasters, thus limiting the 135 

application in post-tornado reconnaissance. Moreover, in most existing studies, building damages are 136 

simply classified into three coarse levels, which contrast with typical damage assessment tools (e.g., 137 

HAZUS for earthquakes, hurricanes, etc., and the EF scale for tornadoes) and hamper the integration of 138 

estimated building damages with downstream structural analyses. To overcome this limitation, this study 139 

introduces a new dataset for damaged buildings after major tornadoes across 25 different cities in the US 140 

and Canada, where building damage is classified into seven classes based on EF scale. Second, the deep 141 

learning methods developed in most studies have complex architectures and cannot achieve satisfactory 142 

accuracy. In this study, a new, lightweight deep learning network is designed by integrating spatial and 143 

channel attention mechanisms into YOLOv5 architecture, so as to ensure both accuracy and computational 144 

efficiency. 145 

Related studies on drone mission planning 146 

Equipped with different sensors, such as cameras, LiDAR, GPS, and IMU, drones can be powerful tools 147 

for disaster response; they have been deployed in real-world scenarios, including hurricane Katrina 148 

(Murphy et al. 2008), the 2013 Moore-Newcastle tornado (Grogan et al. 2021), and the 2013 Lushan 149 

earthquake (Qi et al. 2016). Studies have also been dedicated to developing methods for various drone-150 

assisted tasks, such as SAR (Chen et al. 2020; Hu et al. 2019, 2022a; b) and structural damage assessment 151 

(Kakooei and Baleghi 2017; Schaefer et al. 2020).  152 

Drone mission planning is a critical component for ensuring the efficiency of disaster reconnaissance 153 

and response. Various mission planning strategies have been devised as optimization problems, i.e., to 154 

maximize area coverage for drone surveys considering diverse constraints, such as power, maneuverability, 155 



 

distance, and data transmission quality (Gramajo and Shankar 2017; Huang et al. 2020; Li et al. 2018; Yu 156 

et al. 2020). Some research, e.g., by Nedjati et al. (2016) and Hayat et al. (2020), has focused on multi-157 

drone path-planning for optimal area coverage. In addition, Xu et al. (2021) have formulated drone path 158 

planning as a constrained multi-objective optimization problem accounting both for navigation and imaging 159 

performance, which is solved using a heuristic search method. Van Huynh et al. (2022) have proposed an 160 

optimal drone path-planning approach to minimize drones’ mission completion time and energy 161 

consumption. Their approach investigated peer-to-peer drone-IoT sensing and clustering drone-IoT sensing 162 

networks for the optimization of energy consumption.  163 

Despite drones’ great potential for disaster response, almost all existing studies have focused primarily 164 

on optimizing area coverage for drone surveys, while neglecting the importance of mission-specific 165 

priorities. In building damage reconnaissance, it is critical for drones to be able—despite limited resources, 166 

(e.g., battery life, number of drones)—to rapidly acquire large-scale information about building damages, 167 

for further structural analyses, risk assessment, and disaster response and mitigation. To ensure the 168 

efficiency of building damage reconnaissance, this study proposes a new drone-mission-planning 169 

mechanism which maximizes total surveyed degree of damage via a team-orienteering problem that 170 

accounts for operational constraints.  171 

METHODOLOGY 172 

Fig. 1 shows the overall research framework, which consists of three steps. In the first, aerial video data in 173 

the aftermath of significant tornadoes is collected from online websites and recorded by the authors. Image 174 

frames are extracted from the video, and buildings with damage are annotated using bounding boxes within 175 

the images. In the second step, a deep learning network is designed to detect and classify building damage 176 

from aerial images. The annotated image dataset is used to train the network, and performance is evaluated. 177 

The generalizability of the model is also investigated, by testing the network at new disaster sites. In the 178 

third step, the detected building damage is used to create a digital building damage map. Drone mission-179 

planning is treated and solved as an optimization problem, construed specifically as a team-orienteering 180 

problem (TOP). The objective is to maximize the total surveyed degree of damage (DOD), given 181 



 

operational constraints, such as drone battery life and the number of drones. The total surveyed DOD is the 182 

sum of the DOD for each building. Several optimization methods are investigated, and their performance 183 

under various scenarios is evaluated. The technical details of the proposed framework are explicated below.  184 

EFSBD dataset 185 

Data collection 186 

In this study, a total of 34 aerial videos were collected in the aftermath of tornadoes. Of these, 32 were 187 

obtained from online websites using a query of keywords (e.g., ‘tornado’, ‘drone’, ‘UAV’), and two videos 188 

were recorded by the authors in the aftermath of the 2020 Nashville tornado. In addition, 33 of these videos 189 

were collected in the US and one in Barrie, ON, Canada. Fig. 2 displays selected US tornadoes represented 190 

in the dataset and their associated intensities and approximate locations. The intensity of these tornadoes 191 

varies from EF2 to EF4. The tornadoes hit 25 different cities, and significant residential damages were 192 

reported in each case. 193 

Data annotation 194 

The video data was first converted to individual frames. One frame was then extracted from at least 30 195 

consecutive frames to achieve a more visually heterogeneous dataset. Note that blurry images were omitted, 196 

as were those that do not depict damaged buildings. In total, 3,045 aerial images were collected in the 197 

dataset. The level of building damage is annotated based on the EF Scale, which is used to rate the intensity 198 

of a tornado based primarily on structural damage and wind speed (Doswell et al. 2009). The EF scale has 199 

also been adopted as the standard method for rating building damages caused by tornadoes. Table 1 presents 200 

each damage level with damage indicators. The EF scale defines six levels of building damage: minor, 201 

moderate, considerable, severe, devastating, and incredible. The level of damage is determined based on 202 

damage indicators in accordance with those developed by the National Wind Science and Engineering 203 

Center (McDonald et al. 2009). Note that a building with a roof covered by roofing tarps is defined as an 204 

additional level of damage. This is because it is difficult to determine the exact damage level for a building 205 

covered by roofing tarps from aerial images. Fig. 3 presents examples of buildings with different levels of 206 

damage. 207 



 

Image annotation was conducted using the RectLabel tool, by drawing bounding boxes for damaged 208 

buildings appearing in each image. The annotators were trained to get familiar with the building damage 209 

assessment criteria for tornadoes as shown in Table 1. The images were then annotated in accord with these 210 

criteria. The annotated dataset is named the Enhanced Fujita Scale Building Damage (EFSBD). Fig. 4 211 

shows the statistics of the EFSBD dataset. The dataset consists of a total of 24,496 instances of buildings 212 

with annotated damages. Specifically, the dataset has 4,997 buildings with minor labels, 7,223 buildings 213 

with moderate damage, 5,540 buildings with considerable damage, 2,419 buildings with severe damage, 214 

832 buildings with devastating damage, 526 buildings with incredible damage, and 2,959 buildings covered 215 

by roofing tarps.  216 

Data uniqueness 217 

The EFSBD provides several unique features, compared to existing natural disaster datasets for damage 218 

assessment (see Table 2).  219 

• First, while there are several aerial image datasets for disaster assessment, very few datasets are 220 

mainly focused on tornado disasters. Among the datasets given in Table 2, ISBDA (Zhu et al. 2021) 221 

is the only image dataset that consists of tornado scenes. However, in ISBDA, the number of images 222 

collected from tornado disasters is very limited. The number of annotated building instances is also 223 

relatively small. Furthermore, ISBDA follows the “Joint Damage Scale” proposed by Gupta et al. 224 

(2019), which was developed for satellite images with low resolution. As such, this scale may not 225 

be suitable for assessing building damages based on drone images.  226 

• Second, EFSBD was developed based on the EF scale, which is used as a guideline by the NWS 227 

tornado disaster survey team. Moreover, a building covered with roofing tarp is classified as a 228 

separate category, due to the difficulties in recognizing its exact level of damage. In other existing 229 

datasets, roofing tarp is either incorporated into other categories (as per, e.g., RescueNet) or ignored 230 

(as per, e.g., Volan2018 and ISBDA).  231 

• Third, the EFSBD consists of a total of 24,496 instances of damaged buildings, which is much 232 

higher than ISBDA, FloodNet, and RescueNet. Volan2018 has more building instances, but it 233 



 

extracts 30 FPS, resulting in large overlaps between image frames. Hence, many building instances 234 

in Volan2018 may originate from the same building in neighboring frames. For example, 235 

Volan2018 collected 5,949 building instances from an 84-second video clip. This could lead to 236 

poor generalizability of the trained model to new disaster sites.   237 

Building damage recognition 238 

This section elaborates on the network for building damage detection at disaster sites. Our study adopts 239 

You Only Look Once (YOLO) architecture, which is a fast multi-object detection algorithm (Redmon et al. 240 

2016). Object detection in YOLO is done as a regression problem to estimate bounding box coordinates 241 

and class probabilities. CNN is employed to detect objects with a single forward propagation through the 242 

network, which can be trained in an end-to-end manner. The proposed deep learning method is adapted 243 

from the YOLOv5 network. YOLOv5 is the latest upgrade from YOLOv3, with significant modifications, 244 

such as the addition of mosaic augmentation and customizing backbone network with Cross Stage Partial 245 

Network (CSPNet) and Spatial Pyramid Pooling – Fast (SPPF) (Jocher et al. 2021). YOLOv5 architecture 246 

is divided into YOLOv5s (small), 5m (medium), 5l (large), and 5x (extra-large), depending on the number 247 

of learnable parameters in the network. The number of learnable parameters, in turn, is controlled by two 248 

parameters: depth multiple and width multiple. YOLOv5s is the smallest model among the four variants, 249 

with a depth multiple of 0.5 and a width multiple of 0.33. Typically, the predictive power of the family 250 

YOLOv5 models improves with increases in the size of the network. 251 

In this study, YOLOv5s architecture is selected to ensure the inference speed of the network. The fast 252 

inference speed has at least two advantages for disaster response. First, computational cost is a major 253 

constraint on the timely retrieval of building damage information from aerial images. A small network can 254 

be deployed into an embedded planform, thus enabling the detection to run on drones. Second, the network 255 

can provide disaster surveyors with timely disaster information via live stream with predicted damages. 256 

This is important, as it allows surveyors to better understand the scale of disaster damage in the field. The 257 

YOLOv5s consists of three components: backbone network, detection neck, as well as three detection heads. 258 

The architecture is detailed as follows. 259 



 

The input images are first preprocessed using the mosaic method, which is a data augmentation method 260 

which improves network performance on small objects. The backbone network is used to extract features 261 

at various levels from images; it is built based on CSPNet (Wang et al. 2020). The CSPNet integrates the 262 

gradient changes into the feature map from beginning to end. As such, the CSPNet can reduce the 263 

computation cost while maintaining the inference power of the network. Each CSPNet network consists of 264 

three convolutional layers cascaded by various bottlenecks. SPPF is included as the last-layer backbone, 265 

aiming to extract fine and coarse information by simultaneously pooling from multiple kernel sizes (5, 9, 266 

13). The detection neck is built based on the Path Aggregation Network (PANet) (Liu et al. 2018) and 267 

serves to boost information flow at different levels. PANet is an improvement of the Feature Pyramid 268 

Network (FPN) with an additional bottom-up pathway. The detection neck aims to get feature pyramids, 269 

each of which is used to identify objects in various sizes and scales. The detection neck consists of four 270 

CSPNet blocks. The three feature maps with different scales are used to predict targets of various sizes. 271 

Finally, these feature maps are divided into grids, and each grid consists of multiple anchors for predicting 272 

the bounding box for the object. Fig. 5 presents an overview of the improved YOLOv5s architecture. Two 273 

improvements were introduced: the addition of an attention mechanism and the replacement of bounding 274 

box regression loss.  275 

Adding the attention mechanism. The attention mechanism was developed by studying humans’ 276 

cognitive processes in visual perception. Specifically, humans selectively focus on particular regions of the 277 

scene while ignoring other regions (always known as backgrounds). For example, humans learn to 278 

concentrate on useful objects that appear in a scene during an image-classification task. This mechanism 279 

enables humans to quickly perceive and understand the visual context. The attention mechanism has been 280 

widely used in computer vision and has been shown to be effective (Guo et al. 2022). For CNN, every 281 

channel of a feature map may be representative of a different object (Chen et al. 2017). Based on this 282 

characteristic, a channel attention mechanism was proposed to capture channel-wise relationships, thereby 283 

improving the representational ability of the network. The Squeeze-and-Excitation Network (SENet) (Hu 284 

et al. 2017) is the pioneering work for channel-attention modeling; it recalibrates weight for the feature map 285 



 

channels. The main drawback of SENet is that it ignores positional information. Coordinate attention (Hou 286 

et al. 2021) was developed to address this limitation, by embedding positional information into channel 287 

attention. In this study, a coordinate attention mechanism is added to the detection neck, as shown in Fig. 288 

5. This attention module is lightweight and enables the YOLOv5s network to focus on important regions at 289 

the expense of a little computational cost.  290 

Fig. 6 shows the schematic flowchart of the coordinate attention module, which consists of two steps. 291 

First, two spatial extents of pooling kernels are used to encode each channel of the feature map along the 292 

horizontal and vertical directions, respectively. The output is a pair of direction-aware feature maps. Eq. 293 

(1) and Eq. (2) give the respective definitions of the two pooling operations, where X is the input feature 294 

map, and GAPh and GAPw represent vertical and horizontal directions, respectively. 295 

𝐳! = GAP!(𝐗)                                                           (1) 296 

𝐳" = GAP"(𝐗)                                                           (2) 297 

In the second step, direction-aware feature maps are first concatenated, followed by a 1 x 1 298 

convolutional operation. The output from the convolutional operation is split into two separate tensors along 299 

the spatial dimension. Then, two convolutional operations, each with kernel size 1 x 1, are applied to the 300 

two tensors, respectively. This process is represented by Eqs. (3) – (7), where 𝛿 is a non-linear activation 301 

operation, 𝜎  is the sigmoid function, F1 represents the 1 x 1 convolutional operation, and Fh and Fw 302 

represent convolutional transformations on 𝐟! and 𝐟", respectively.  303 

𝐟 = 𝛿 ,𝐹#.[𝐳! , 𝐳"]23                                                        (3) 304 

𝐟! , 𝐟" = split(𝐟)                                                            (4) 305 

𝐠! = 𝜎 ,𝐹!.𝐟!23                                                            (5) 306 

𝐠" = 𝜎.𝐹"(𝐟")2                                                            (6) 307 

𝐘 = 𝐗𝐠!𝐠"                                                                 (7) 308 

Replacing bounding box regression loss. The default bounding box regression loss function used to 309 

train YOLOv5 is Complete-IoU (CIoU), which was developed based on Distance-IoU (DIoU) by imposing 310 



 

the consistency of aspect ratio. In this study, CIoU is replaced by alpha-IoU loss (He et al. 2021) to train 311 

the network. The alpha-IoU is a family of power IoU losses designed for bounding box regression; it has 312 

been demonstrated to be effective in small datasets and noisy bounding boxes. The alpha-IoU is defined in 313 

Eq. (8), where b and bgt denote the central points of predicted bounding box B and ground-truth bounding 314 

box Bgt, respectively, ρ is the Euclidean distance, c is the diagonal length of the smallest enclosing box, β 315 

is a positive trade-off parameter, v is used to measure the consistency of aspect ratio, and α is the modulating 316 

parameters. When α is equal to 1, Lα-CIoU becomes CIoU loss function. When α > 1, Lα-CIoU has more 317 

emphasis on high-IoU objects and learns faster on these objects. In this study, α is set to 3 in order to 318 

increase the loss and gradient on high-IoU objects for accurate object localization.  319 

𝐿$%&'() = 1 − IoU$ + *!"+𝒃,𝒃#$.
/!"

+ (𝛽𝑣)$                                   (8) 320 

Drone mission planning 321 

Drones can quickly survey large disaster areas and collect disaster information to provide rapid post-disaster 322 

damage estimates. In this study, the drone survey is divided into three steps. In the first step, the drone is 323 

deployed to disaster sites and collects video data for subsequent damage assessments. In the second step, 324 

the proposed building damage detection method is used to recognize damaged buildings from the collected 325 

videos. The recognition results can be used to generate a building damage map of the area. Finally, the 326 

second stage of damage mapping is conducted to generate details of assessment for each building, such as 327 

high-resolution images and 3D models. This section elaborates on the drone mission planning of the second 328 

stage.  329 

Problem formulation 330 

Drone mission planning is formulated as a TOP (Chao et al. 1996). In the TOP, a total of n damaged 331 

buildings i is given, each with a damage index ri. The distance dij from building i to building j is calculated 332 

using Euclidean distance. The flight speed of drone k is sk. Considering the operational constraints (e.g., 333 

battery life and flight speed) of drones, not all damaged buildings can be surveyed from a single mission. 334 

The battery capacity is directly associated with the flight duration Tmax of the drone. The objective of the 335 



 

TOP is to identify the route which maximizes total surveyed DOD given the operational constraints. Each 336 

of the buildings can be visited at most once.  337 

Let G = {V, E} be a graph. V\{0} = {1, …, n} denotes the vertices of the graph, which represent 338 

damaged buildings. Each pair of vertices i ∈ V and j ∈ V forms an edge {i, j} ∈ E. K = {1, …, m} represents 339 

a set of m drones. Let the building damage indices be ri > 0 (with r0 = 0). ti is the time required to survey 340 

building i ∈ V. Let binary variable xijk be equal to 1 if path (i, j) ∈ E is traversed by drone k, and 0 otherwise. 341 

Let yik equal 1 if i ∈ V is visited by the drone k, and 0 otherwise. The mathematical formulation for the TOP 342 

can be represented by Eqs. (9) – (17). 343 

maximize	 ∑ 𝑟0 ∑ 𝑦011∈𝐊0∈𝐕                                                    (9) 344 

subject to  345 

∑ 𝑥051 = 𝑦01 					∀𝑖 ∈ 𝐕, 𝑘 ∈ 𝐊5∈𝐕                                                (10) 346 

∑ 𝑥501 = 𝑦01 					∀𝑖 ∈ 𝐕, 𝑘 ∈ 𝐊5∈𝐕                                                (11) 347 

∑ 𝑦61 ≤ 𝑚1∈𝐊                                                                             (12) 348 

∑ 𝑦01 ≤ 11∈𝐊 								𝑖 ∈ 𝐕\{0}                                                      (13) 349 

∑ 𝑥051 ≥ 𝑦71 							∀𝑆 ⊆ 𝐕\{0}, 𝑏 ∈ 𝐒, 𝑘 ∈ 𝐊(0,5)∈:%(𝐒)                 (14) 350 

∑ <&'
=(

(0,5)∈𝐄 𝑥051 + 𝑡0𝑦01 ≤ 𝑇?@A								∀𝑘 ∈ 𝐊                              (15) 351 

𝑦01 ∈ {0,1}								∀𝑖 ∈ 𝐕, 𝑘 ∈ 𝐊                                                    (16) 352 

𝑥051 ∈ {0,1}									∀(𝑖, 𝑗) ∈ 𝐄, 𝑘 ∈ 𝐊                                            (17) 353 

Eq. (9) is the objective function used to maximize the total surveyed DOD. Eqs. (10) – (17) are 354 

constraints for the optimization problem. Specifically, constraints (10) and (11) are assignment constraints 355 

which ensure that one edge enters and one edge leaves each visited vertex. Constraint (12) ensures that the 356 

deployed drone does not exceed the number of drones. Constraint (13) ensures that every building is 357 

surveyed at most once. Constraint (14) imposes that each route is connected. Constraint (15) is the time 358 

constraint. Constraints (16) and (17) are variable definitions. 359 



 

Mission planning solver 360 

The TOP is known as an NP-hard problem. Significant research efforts have been dedicated to solving the 361 

TOP, and many heuristic-based algorithms have been developed. Selecting the appropriate algorithm is 362 

critical for ensuring that time-sensitive disaster damage assessment quickly identifies an optimal drone 363 

route. Therefore, four algorithms—i.e., Genetic Algorithm (GA) (Whitley 1994), Ant Colony Optimization 364 

(ACO) (Dorigo et al. 2006), Particle Swarm Optimization (PSO) (Poli et al. 2007), and BITmask Evolution 365 

OPTimization (BITEOPT) (Vaneev 2021)—are investigated in this study. Their performance is evaluated 366 

to provide benchmarks for future drone mission planning at disaster sites. These algorithms are briefly 367 

described in the following.  368 

Genetic Algorithm. GA is a stochastic global search optimization method, inspired by natural selection 369 

theory. The algorithm transforms the process of solving a searching problem into a process similar to the 370 

crossover and mutation of chromosomes during biological evolution. It consists of five phases: initial 371 

population, fitness function, selection, crossover, and mutation. The algorithm first initializes a new 372 

population. Then, a fitness function is created, based on the total collected scores, to evaluate the solution. 373 

The selection phase selects the two pairs of best fit individuals in the population, based on the fitness score. 374 

The crossover operation is applied to those two pairs of individuals, with an exchange rate of 0.6. Finally, 375 

the output is fed into a mutation operator, in order to maintain the diversity of the population, by flipping 376 

bit at random positions with a probability of 0.005. A new offspring population is generated after mutation 377 

and crossover operations. The fitness, selection, crossover, and mutation processes repeat until the 378 

population does not change for 6,000 steps.  379 

Ant Colony Optimization. The ACO algorithm is a metaheuristic method that was inspired by the 380 

foraging behavior of ants. The algorithm can be divided into three steps. First, algorithm parameters and 381 

“pheromone trails” are initialized. Second, each drone constructs a feasible route from initialized 382 

pheromone trails using the roulette method. Third, the quality of the route is evaluated based on the sum of 383 

surveyed damage indices. The second and third steps repeat 30 times; the route with the highest reward is 384 

selected.  385 



 

Particle Swarm Optimization. PSO is a global optimization method inspired by the motion of flocks 386 

of birds. The algorithm consists of five steps. In the first step, the number of particles and iteration, the 387 

position of the particles, and the velocities of particles are initialized based on the number of drones and 388 

the number of damaged buildings. In the second step, the mutation operation is applied on the initialized 389 

particle swarm with a probability of 0.4. The proportion of particles is set to 0.5, and the mutation position 390 

of each particle is set to 0.5. In the third step, local optimization is conducted to separate small subsets of 391 

particle swarms, in order to avoid getting stuck on any local optimum. In the fourth step, the velocity of 392 

each particle position is updated based on both current and historical global optimal particle positions. The 393 

position of each particle is then updated based on its current position and the updated velocity. Finally, the 394 

total collected score is calculated, and the optimal solution is updated. The number of iterations is set to 395 

4000.  396 

BITmask Evolution OPTimization. BITEOPT is a stochastic non-linear bound-constrained 397 

derivative-free optimization algorithm for global optimization. This algorithm is a self-optimizing approach 398 

without any hyperparameters to fine-tune. In the beginning, the Gaussian sampling method is used to 399 

generate an initial solution. At the same time, several other populations are created in the proximity of the 400 

candidate solution. Depending on the quality of the candidate solution, a histogram formed by parameter 401 

values is updated. The histogram is used as a probability-state-automata to allow the algorithm to switch 402 

between algorithm flow paths. In addition, the route with the highest cost is replaced with the upper bound 403 

cost constraint. For each iteration, a new candidate solution generator is randomly selected from a list of 404 

solution generators. Note that the previous solution also serves as an independent parameter vector for the 405 

new solution generator. A total of 2,000,000 iterations are used to ensure an optimal drone mission plan.  406 

EXPERIMENT AND RESULTS 407 

Results on building damage recognition  408 

Implementation details 409 

The network is trained on a workstation running Windows 10 with an Intel Xeon Gold 5122 CPU, 64 GB 410 

of RAM, and an NVIDIA Quadro P5000 GPU. The Stochastic Gradient Descent (SGD) optimizer is used 411 



 

to train the network. The network is trained for a total of 300 epochs. The EFSBD dataset is randomly split 412 

into a training set (80%), a validation set (10%), and a testing set (10%). The images are resized to 640 x 413 

640. The confidence and IoU thresholds for Non-maximum Suppression (NMS) operation are set to 0.1 and 414 

0.4, respectively. The early stopping technique is used to avoid the overfitting problem. Specifically, the 415 

network stops training if the loss value does not decrease for 100 epochs. The model with the highest 416 

performance on the validation set is used for the evaluation on the testing set. The hyperparameters are 417 

given in Table 3.  418 

Metrics 419 

In this study, the average precision (AP) at the IoU threshold 0.5 (AP50), and mean average precision (mAP) 420 

over different IoU thresholds, are used to quantify network performance. AP is the area under the precision-421 

recall curve, defined in Eq. (18). The average of AP for all the classes is defined in Eq. (19) and expressed 422 

as AP, in order to differentiate it from mAP, where nc represents the number of classes. Since different IoU 423 

thresholds can produce different predictions, mAP was used to overcome this problem by averaging AP 424 

scores on different IoU thresholds. In this study, mAP is calculated as an average of AP over 10 IoUs, 425 

starting from 0.5 to 0.95 with a step size of 0.05, which has been used as a standard metric for evaluating 426 

object detection methods. Therefore, mAP is used as the metric to evaluate the overall performance of the 427 

model.  428 

APB = ∫ precision(recall)𝑑(recall)#
6                                       (18) 429 

AP = #
C/
∑ AP0BC/
0D#                                                     (19) 430 

Network performance 431 

Table 4 presents the model performance on the testing dataset of the EFSBD dataset for each damage level. 432 

The network achieves an AP50 of 91.3% and an mAP score of 71.9% on the testing set of the EFSBD dataset. 433 

The results of the proposed method indicate a strong variation in performance across different levels of 434 

building damage. In particular, the proposed method results in the highest performance on the considerable 435 

damage category with an mAP of 80.9%, followed by an mAP of 80.8% on the moderate category. This 436 



 

may be attributed to a relatively large number of damaged building instances rated as moderate and 437 

considerable in the EFSBD dataset. The tarp category achieves an mAP of 78.2%. The relatively good 438 

performance for this category is due to the distinct features of buildings covered with roof tarps. The 439 

devastating damage category achieves the lowest performance with an mAP of 47.1%.  440 

Fig. 7 presents the confusion matrix for the proposed method on the testing set of the EFSBD dataset. 441 

The matrix is normalized by the column, so that diagonal values represent recall for each category. Recall 442 

measures the predictive power of the network in identifying all the positive elements. The tarp category 443 

achieves the highest recall score on both validation and testing datasets. Specifically, the tarp category 444 

achieves a recall of 94% on the validation dataset and a recall of 96% on the testing dataset. The 445 

considerable damage category achieves the second-highest recall score, with a recall of 90% and 94% on 446 

the validation and testing dataset, respectively. A high recall score indicates that most positive samples for 447 

this category can be accurately detected. Note that the mAP score for the tarp is lower than those of the 448 

moderate and considerable categories, which could be attributed to a relatively smaller precision score for 449 

the tarp compared to those of the moderate and considerable categories. The incredible category has the 450 

lowest recall 76% on the validation set, and all the misclassified samples are background. Buildings rated 451 

as having incurred incredible damage each have the entire house swept away from its foundation, in which 452 

case there is no need for a detailed assessment. Therefore, misclassifying incredible damage as background 453 

will not have an impact on drone mission planning. For other levels of damages, misclassifying positive 454 

samples as background will lead to missing inspections during drone surveys. The confusion matrix also 455 

indicates that positive samples are mostly misclassified as adjacent categories, except for background. For 456 

instance, on the testing set, 4% and 1% of severely damaged buildings are misclassified as considerable 457 

and devastating, respectively. This is because the closer the damage levels are, the more similar the visual 458 

features are.  459 

Fig. 8 illustrates example results of damage detection on the testing set of the EFSBD dataset. The 460 

results indicate that the proposed method can accurately recognize damaged buildings and their levels of 461 

damage.  462 



 

Ablation study 463 

In this section, an ablation study is conducted to assess the effectiveness of the two proposed improvements 464 

on the YOLOv5s network. The YOLOv5s is used as the baseline model. The effectiveness of alpha-IoU 465 

and coordinate attention are evaluated by individually integrating them into the baseline model. Table 5 466 

presents the results on the testing set of the EFSBD dataset. The performance of the network is evaluated 467 

using mAP. The results indicate that the baseline network is mostly improved by alpha-IoU, with an 468 

improvement of 1.1%. The coordinate attention module improves on the performance of the baseline by 469 

0.2%. A combination of alpha-IoU and coordinate attention achieves the best performance, which has an 470 

improvement of 1.4%. This improvement demonstrates the effectiveness of the proposed method in 471 

detecting and classifying building damage.  472 

Model generalizability 473 

While the proposed method achieves promising results on the EFSBD dataset, images in the training and 474 

testing sets could be extracted from the same disaster site. It is anticipated that, in real practice, the annotated 475 

dataset is not likely to be available for each new disaster site. In addition, the new video data could be 476 

captured from a different angle or altitude, in different weather conditions, and using a different camera. 477 

Therefore, the generalizability of the proposed method is further evaluated on completed unseen data. 478 

Specifically, four individual disaster sites are selected in the EFSBD dataset: Chattanooga, TN, 479 

Birmingham, AL, Springdale, AR, and Oak Grove, MO. For the evaluation on each of these disaster sites, 480 

images excluding those of the evaluated place are used as training data to train the network.  481 

Table 6 shows the model performance on four unseen places. The results indicate significant 482 

performance variations across different sites. In particular, the model achieves the best performance in 483 

Birmingham, with an mAP of 47.7%. In Oak Grove, the proposed method achieves the worst performance, 484 

with an mAP of 23%. The results indicate that AP50 is greater than 40% in Chattanooga, Birmingham, and 485 

Springdale, which demonstrates the generalizability of the proposed method for unseen disaster sites.  486 



 

Results on drone mission planning  487 

To evaluate the performance of drone mission planning, a community in Chattanooga, TN, severely hit by 488 

an EF3 tornado in 2020 is selected. Fig. 9 shows the boundary of the study area. The square footage of the 489 

study area is approximately 670,000 m2. The model, trained using images from other places, is used to 490 

predict building damages in the selected area. As mentioned above, the proposed method achieves an AP50 491 

of 41% and an mAP of 25.9%, indicating its applicability in detecting and classifying building damage. In 492 

this study, the predicted building damage is used to update the digital building damage map. Note that, for 493 

some buildings, there may be two overlapped detections with different damage levels, which are typically 494 

adjacent levels of building damage. In this case, the level of damage with higher confidence is selected. 495 

Under current practices, the preliminary digital building damage map is generally created using satellite 496 

images (Khodaverdizahraee et al. 2020). However, satellite images have low resolution, and the viewing 497 

angle may not be favorable for building damage detection. Compared to satellite images, drone images have 498 

higher resolutions, and the oblique observations from a drone can provide more detailed façade and roof 499 

information. Therefore, the building damage detection results from drone images can be used to refine and 500 

update building damage maps.  501 

The damage index refers to the DOD, as adopted by the tornado damage survey. The DODs for minor, 502 

moderate, considerable, severe, devastating, and incredible are 2, 4, 6, 8, 9, and 10, respectively, according 503 

to the damage survey conducted by the Center for Severe Weather Research (Marshall et al. 2008). While 504 

incredible damage has the highest DOD of 10, it indicates that anchored homes were swept away from their 505 

foundations; in such cases, assessing damages does not require high-resolution images or detailed 506 

information. Therefore, the buildings with incredible damages are excluded at the stage of drone mission 507 

planning. As for buildings with roofing tarp, they typically suffered from either minor or moderate damage, 508 

and the fine-grained level of damage is hard to recognize; thus, the DOD is set to 3. Fig. 10 shows the 509 

building damage map. Note that some damaged buildings are not indicated on the map. This is for two 510 

reasons. First, the proposed method fails to detect some damaged buildings, due to unfavorable angles. 511 



 

Second, some of the damaged buildings are not visible from the collected video. In total, 193 damaged 512 

buildings are detected, with a total DOD of 727 in this region. 513 

In this study, the time required to survey each of the damaged buildings is assumed to be dependent on 514 

DOD. This is reasonable, as tornado damage assessment typically focuses on the hardest-hit areas to 515 

estimate the EF scale. Therefore, buildings with higher levels of damage require a more detailed inspection 516 

to help surveyors in their assessments. In addition, in the case of high-level building damage suffered from 517 

severe structural damage, structural engineers need detailed information in order to determine the 518 

mechanism of building failure and to develop tornado-resistant building standards. Specifically, the survey 519 

time is set to 5 × DOD. Table 7 shows the experimental settings for drone mission planning. Three scenarios 520 

with different operational constraints are investigated. Specifically, the low scenario replicates the situation 521 

with very limited resources, and simulates two drones, each with a flight speed of 2.1 m/s and a battery life 522 

of 10 mins. The moderate scenario simulates three drones, each with a speed of 4.6 m/s and a battery life 523 

of 20 mins. The high scenario simulates four drones, each with a flying speed of 6.1 m/s and a battery life 524 

of 30 mins. 525 

Fig. 11 shows a comparison of the GA, ACO, PSO, and BITEOPT algorithms in terms of total collected 526 

scores and processing speeds. Given the fact that these algorithms are stochastic-based methods, each of 527 

them is run 10 times for a fair comparison. The results indicate that the BITEOPT algorithm achieves the 528 

best performance under low and moderate scenarios, followed by the PSO algorithm. Under high scenarios, 529 

PSO and BITEOPT both visit all the damaged buildings. ACO has the worst performance among the four 530 

algorithms, though it has the fastest processing speed. While PSO achieves the second-best performance, 531 

its processing time is much higher than that of the other three algorithms. The processing speed of BITEOPT 532 

is the lowest, excluding ACO. It can be concluded that BITEOPT has the best performance among the 533 

investigated algorithms in solving multi-drone mission planning for building damage survey. Therefore, 534 

the authors recommend the use of BITEOPT in future drone mission planning for disaster reconnaissance. 535 

Fig. 12 shows sample optimization results for the GA, ACO, PSO, and BITEOPT algorithms.  536 



 

DISCUSSION 537 

Comparison with other state-of-the-art methods 538 

This section compares the performance of the proposed method to other state-of-the-art methods. MSNet 539 

achieved an AP50 score of 31.5% on the ISBDA dataset in detecting bounding boxes of damaged buildings 540 

(Zhu et al. 2021). The total number of parameters were around 44 million. The training images were resized 541 

to have longer sides less than or equal to 1333. The proposed method was trained on the provided train-542 

validation split. For a fair comparison, the input images are resized to 1280 x 1280. Using the provided 543 

train-validation split, the proposed method achieves significantly better performance, with an AP50 of 34.5%.  544 

Pi et al. (2020) used YOLOv2 to identify ground objects of interests, such as damaged roofs, debris, 545 

and undamaged buildings, in the aftermath of a hurricane. The highest AP50 reported on unseen testing 546 

datasets were 24.5% for drone and 13.9% for helicopter. The inference speed of YOLOv2 is approximately 547 

40 FPS. Cheng et al. (2021) developed a hybrid deep learning model in order to localize building objects 548 

and to classify the level of building damage. The model achieved an AP of 63.3% in building localization 549 

and an accuracy of 30% on building damage classification for drone data collected at a new location. 550 

Combined, the method’s accuracy in detecting and classifying building damage from images was lower 551 

than 30%. Furthermore, the inference speed for the localization model was only 2.87 FPS and 20.12 FPS 552 

for the classification model. In comparison, our method achieved a minimum AP50 of 31.6% (at Oak Grove) 553 

and a maximum AP50 of 65.5% (at Birmingham). Furthermore, our proposed method only has 7.1 million 554 

parameters, achieving an inference speed of 70 FPS. The results indicate that our method outperforms other 555 

state-of-the-art approaches. It is acknowledged that the same set of data should be used to compare all these 556 

methods and to assess their performance under varying disaster scenarios. This requires access to these 557 

datasets and algorithms, which would call for further efforts pursuant to an evaluation benchmark. 558 

Influence of image and network size 559 

This section discusses the effect of image resolution and network size in the task of assessing building 560 

damages. Table 8 shows the performance of the proposed method over various image resolutions. The 561 

results indicate that the mAP score increases with increasing image resolutions. In particular, the network 562 



 

has the largest performance increase from 416 x 416 to 640 x 640, which carries an mAP improvement of 563 

4.4%. The network performance improves by 2% when increasing image resolution from 640 x 640 to 1536 564 

x 1536. From 832 x 832 to 1536 x 1536, the network only has a slight mAP improvement of 0.9%. On the 565 

other hand, the inference time of the network also increases with increasing image resolution. The inference 566 

speed is evaluated using the NVIDIA Quadro P5000 GPU. The inference speed of 416 x 416 reaches 87 567 

FPS. When image resolution is increased to 640 x 640, the inference FPS drops to 70. The selection of 568 

image resolution is a trade-off between accuracy and speed. In this study, 640 x 640 is chosen for fast 569 

building damage detection with due accuracy.  570 

Table 9 presents a comparison of the proposed method with other networks in the family of YOLOv5 571 

with larger network sizes. The results indicate that model performance increases with the increasing size of 572 

the network from YOLOv5s to YOLOv5x. YOLOv5x exhibits an mAP improvement of 3.7%, compared 573 

to YOLOv5s. The proposed method outperforms YOLOv5m with a much smaller network. The small 574 

network has the potential to be integrated into an embedded system for building damage detection. While 575 

larger-sized networks tend to perform better, they require more storage and come with increased 576 

computation costs, which work against their deployment in mobile platforms such as drones.  577 

Sensitivity of drone mission planning 578 

The performance of drone mission planning is affected by operational constraints. In this section, the 579 

BITEOPT algorithm is selected for the sensitivity analysis, since it achieved the best performance under 580 

the low, moderate, and high scenarios. The sensitivity of the number of drones, flight speed, and battery 581 

life is analyzed. The number of drones ranges from two to five. The flight speeds of the drones are 2.1, 4.6, 582 

and 6.1 m/s. The battery lives are 10, 20, and 30 mins. The results reported are averaged over 10 runs. Fig. 583 

13 (a) presents the sensitivity of the number of drones. The drone speed is fixed at 4.6 m/s and the battery 584 

life is fixed at 20 mins. The results show an increasing trend in total collected scores with increases in the 585 

number of drones.  586 

Fig. 13 (b) shows the sensitivity of the flight speed of the drone. The number of drones is fixed at three, 587 

and the battery life is fixed at 20 mins. The results indicate that the greater the flight speed is, the higher 588 



 

the collected scores are. Fig. 13 (c) displays the score variation over battery life of the drone. In the 589 

experiment, the number of drones is fixed at three, and the flight speed is fixed at 4.6 m/s. The results 590 

indicate that the collected score is significantly improved by increased battery life. In summary, the 591 

performance of the BITEOPT algorithm is positively related to the availability of resources.  592 

Limitations and future research directions 593 

Future research is needed in several directions. First, in this study, the building damage map was manually 594 

created based on network prediction results from aerial images. The proposed network is very lightweight, 595 

which affords it the potential to be integrated into a drone’s onboard platform for online building damage 596 

detection. Under current practices, tornado damage surveyors upload damage information to an online 597 

database through the NOAA damage assessment toolkit, which is time-consuming and labor-intensive. 598 

Future research could develop methods for automatically uploading detected damaged buildings to NOAA 599 

online database according to the GPS coordinates of the buildings. In this way, survey teams can not only 600 

have timely disaster damage information, but also building damage maps to assess overall damage, which 601 

in turn would facilitate better disaster responses.  602 

Second, while our method achieves state-of-the-art performance on unseen data, there is a lot of room 603 

for further improvement. The improvement will mainly come from two research directions. One is the 604 

building damage data; the other is the building damage detection method. For data-driven methods, a large 605 

dataset is always the foundation for ensuring performance and generalizability in real-world applications. 606 

In this direction, the developed EFSBD dataset needs to be updated through the collection of more data, 607 

especially images from distinctive locations, so as to increase the model’s generalizability. On the other 608 

hand, with the advancement of deep learning architectures, the detection network can also be upgraded by 609 

integrating new architectures for more robust performance.  610 

Third, this study is limited to demonstrating the feasibility and superiority of damage-aware drone 611 

mission planning. Though the optimization algorithm is demonstrated to be suitable and effective in 612 

identifying routes for multi-drone missing planning, how such a method can improve or complement 613 

existing tornado damage surveys remains unexplored. In addition, this study assumes that the required 614 



 

survey time for buildings with different levels of damage accords with tornado damage assessment in actual 615 

practice. Finally, the rationale behind building damage detection and classification using the deep learning 616 

network remains unexplored in this study. Ideally, the deep learning network needs to follow a rationale 617 

similar to that of field assessors for building damage assessment. The development of such an approach 618 

requires close collaboration with field assessment teams, so as to better understand their rationales for 619 

building damage assessment at disaster sites. In the future, this research team will test the feasibility and 620 

applicability of its approach by collaborating with survey teams from the NWS and Tennessee Emergency 621 

Management Agency. The feedback from these professional organizations is critical to improving our 622 

methods, validating field performance, and developing off-the-shelf products that are ready for use.  623 

CONCLUSIONS  624 

This study develops a new method for automated building damage reconnaissance and drone mission 625 

planning for disaster response. The practical utility of the proposed methods is sustained by two 626 

computational innovations as well as the high performance validated using real-world data and scenarios. 627 

Most existing deep-learning-based methods only detect and classify damaged buildings and non-damaged 628 

buildings and provide limited information to first responders and decision-makers. The developed method 629 

is superior to existing solutions, as it can accurately detect and classify seven categories of damages 630 

consistently at a high frame rate. This is achieved by preparing an unprecedented dataset to achieve robust 631 

performance, as well as incorporating a new attention mechanism in the deep learning method for detection 632 

and classification. This automated building damage reconnaissance method achieved an AP50 of 91.3% and 633 

an mAP of 71.9% on the testing dataset, and the model was applied to a new location with very promising 634 

results; three of four selected disaster areas achieved an AP50 higher than 40%. The proposed method is 635 

very lightweight and achieves fast detection with an FPS of 70. Thus, the AI method can be developed in 636 

an embedded system for building damage detection while the drone is on a mission. The building damage 637 

information acquired from drones is computationally modeled in the drone mission planning optimization 638 

model, and different solution methods are utilized to identify the best suitable method. The BITEOPT 639 

optimization method exhibits the best performance and can identify optimal routes for multiple drones. The 640 



 

computational time is less than six minutes for an area of 193 damaged buildings, further demonstrating 641 

this model’s practical utility for real disaster mission planning optimization. The methods and workflow 642 

are validated using a case study of a tornado disaster, demonstrating that automating the retrieval of building 643 

damage information can significantly augment drone-based mission planning during disaster response and 644 

mitigation. 645 
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 868 
 Table 1 Description of Enhanced Fujita Scale building damage indicators 869 

Level Damage indicator 
Minor Some damage to roof covering and/or lost some of their vinyl or metal siding. 

Moderate Lost most of roof covering and/or had minor structural damage to roof such as 
displaced gable ends and/or loss of some roof decking. 

Considerable Most of roof structure was lost but the walls remain standing. 

Severe Roofs and numerous outside walls blown away from frame homes; two-story homes 
have their second floor destroyed; high-rises have many windows blown out. 

Devastating All walls went down, and a pile of debris remained on their foundation. 
Incredible Anchored homes were swept away from their foundation. 
Tarp Roof covered with a roofing tarp. 

870 



 

Table 2 Overview of existing natural disaster aerial datasets  871 

Dataset Disaster Size Building 
instances 

Image 
type Task Category 

AIDER (Kyrkou and 
Theocharides 2020) 

Fire, flood, 
collapsed 
building, … 

2,545 - Drone Classification 5 

Volan2018 (Pi et al. 
2020) Hurricane 65,580 98,010 Drone Object 

detection 6 

ISBDA (Zhu et al. 
2021) 

Hurricane, 
tornado 1,030 2,961 Aerial Semantic 

segmentation 3 

FloodNet 
(Rahnemoonfar et 
al. 2021) 

Hurricane 2,343 6,675 Drone Semantic 
segmentation 8 

RescueNet 
(Chowdhury et al. 
2022) 

Hurricane 4,494 10,903 Drone Semantic 
segmentation 11 

EFSBD (ours) Tornado 3,045 24,496 Drone Object 
detection 7 

872 



 

Table 3 Hyperparameters for model training 873 
Parameter  Value Parameter Value 
Initial learning rate 0.01 IoU training threshold 0.2 
Learning rate factor 0.01 Anchor-multiple threshold 4 
Momentum 0.937 HSV-hue augmentation 0.015 
Weight decay 0.005 HSV-saturation augmentation 0.4 
Warmup epochs 3 HSV-value augmentation 0.4 
Warmup momentum 0.8 Rotation 0.2 
Warmup learning rate 0.1 Translation 0.1 
Box loss gain 0.05 Scale 0.5 
Classification loss gain 0.5 Flip up-down 0.2 
Classification BCELoss positive weight 1 Flip left-right 0.5 
Object loss gain 1 Mosaic 1 
Object BCELoss positive weight 1 Segment copy-paste 0.2 

874 



 

Table 4 Model performance on the testing set of EFSBD dataset 875 
Class Labels AP50 (%) mAP (%) 
All 2542 91.3 71.9 
Minor 486 90.1 75.6 
Moderate 757 94.8 80.8 
Considerable 594 96.2 80.9 
Severe 275 92.1 71.9 
Devastating 90 82.2 47.1 
Incredible 45 88.5 69.0 
Tarp 295 95.3 78.2 

876 



 

Table 5 Ablation study of the proposed method on the testing set of EFSBD dataset 877 
Model mAP (%) 
YOLOv5s 70.5 
YOLOv5s + alpha-IoU 71.6 
YOLOv5s + coordinate attention 70.7 
YOLOv5s + alpha-IoU + coordinate attention (Proposed) 71.9 

878 



 

Table 6 Model performance on unseen disaster sites 879 
Place Images AP50 (%) mAP (%) 
Chattanooga, TN 369 41.0 25.9 
Birmingham, AL 145 65.5 47.7 
Springdale, AR 87 40.4 29.9 
Oak Grove, MO 67 31.6 23.0 

880 



 

Table 7 Experiment settings of drone mission planning  881 
Scenario Number of UAV Speed of UAV (m/s) Battery life (mins) 
Low 2 2.1 10 
Moderate 3 4.6 20 
High 4 6.1 30 

882 



 

Table 8 Effect of image resolution on network performance 883 
Resolution AP50 (%) mAP (%) Time (ms) 
416 x 416 89.0 67.5 11.4 
640 x 640 91.3 71.9 13.7 
832 x 832 91.5 73.0 18.9 
1280 x 1280 91.3 73.4 36.4 
1536 x 1536 91.7 73.9 49.6 

884 



 

 885 

Fig. 1. Methodology overview886 
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 887 

Fig. 2 EF scale and approximate locations of selected U.S. tornados represented in the dataset888 
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 889 

Fig. 3 Example of damaged buildings with different levels (Images by National Weather Service and 890 

National Oceanic and Atmospheric Administration)891 
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 892 

Fig. 4 EFSBD dataset statistics893 



 

 894 

Fig. 5 Architecture of the proposed network895 
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 896 

Fig. 6 Flowchart of coordinate attention mechanism897 
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 898 

Fig. 7 Confusion matrix for the proposed method on the validation and testing datasets of EFSBD dataset. 899 

(a) validation dataset; and (b) testing dataset900 

(a) (b)



 

 901 

Fig. 8 Examples of detection results on the testing set of EFSBD dataset (Images by authors)902 



 

 903 

Fig. 9 Study area in Chattanooga, TN, USA. (map data: Google, Maxar technologies)904 



 

 905 

Fig. 10 Building damage map. Note: Each marker represents a damaged building; different color 906 

represents different levels of damage (map data: Google, Maxar technologies)907 



 

 908 

Fig. 11 Performance comparison of drone mission planning algorithms. (a) total collected score; and (b) 909 

processing speed910 

(a)

(b)

(c)

GA ACO PSO BITEOPT



 

 911 

Fig. 12 Example optimization results of GA, ACO, PSO, and BITEOPT under low, moderate, and high 912 

scenarios. (a) low; (b) moderate; and (c) high. Note: gray circle represents unvisited buildings; blue circle 913 

represents visited buildings; black circle represents the starting point; the size of the circle represents the 914 

degree of damage; the edge connects two buildings represents the route of the drone; and the color of the 915 

edge represents the routes for different drones916 



 

 917 

Fig. 13 Sensitivity analysis of BITEOPT algorithm. (a) number of drones; (b) flight speed; and (c) battery 918 

life 919 

(b)(a) (c)


