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ABSTRACT

Rapid reconnaissance of building damage is critical for disaster response and recovery. Drones have been
utilized to collect aerial images of affected areas in order to assess building damage. However, there are
two challenges. First, processing many aerial images to detect and classify building damage based on a
consistent standard remains laborious and complex, necessitating a new automated solution to achieve
accurate building damage detection and classification. Second, drone operations during disaster response
rely primarily on human operators’ experience and seldom use the obtained building damage information
to optimize drone mission planning. Therefore, this study proposes a new method, which automates

building damage reconnaissance with drone mission planning for disaster response operations. Specifically,
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a deep learning method is developed to detect and classify building damages using a newly labeled dataset
consisting of 24,496 distinct instances of building damage. This deep learning method is validated,
achieving 71.9% mean average precision. In addition, building damage information is modeled and
integrated into mission planning, in order to optimize drones’ task assignments and route calculations. A
tornado disaster in Tennessee is used as a case study, to quantitatively evaluate this methodology. The
present study concludes that optimal drone mission planning during disaster response can be augmented
using accurate building damage information acquired from deep learning methods.

INTRODUCTION

Natural disasters, such as earthquakes and tornadoes, lead to massive building damage, resulting in deaths,
injuries, and destruction of property. According to the National Oceanic and Atmospheric Administration
(NOAA), more than 20 climate-related disasters occurred in 2021 across the US (Doyle Rice 2022),
claiming at least 688 deaths and leading to over $145 billion in economic losses. After the disasters, rapid
and accurate assessment of building damages is crucial for both immediate and long-term urban disaster
responses. First, assessing building damages provides essential information that enables first responders to
prioritize search and rescue (SAR) operations and efforts to save trapped victims, protect properties, and
perform emergency response logistics. First responders are the main force to respond to these disasters and
to conduct SAR operations. Disasters such as earthquakes, floods, and tornadoes often lead to traffic
“paralysis,” which can prevent first responders from entering damaged areas and may delay SAR operations
(Chang et al. 2012), imposing significant challenges to ensuring safe and efficient SAR. Acquiring accurate
damage information on the affected areas could save enormous amounts of time as first responders plan
response efforts. In addition, most casualties from major disasters are associated with structural collapses
(Geil3 et al. 2014). For example, the extent of damage to buildings is an important indicator of an
earthquake’s magnitude, which in turn provides a measure of the scale of human and property losses in that
area (Lei et al. 2010). Having accurate information regarding building damages, therefore, could help first
responders in prioritizing their SAR operations. Second, acquiring information on building damages at a

large scale could help the community better plan for future disaster preparation, response, and mitigation.
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The information can also be utilized to improve the design of insurance programs. Despite the importance
of acquiring accurate and timely building damage information for effective and efficient disaster response,
mitigation, and recovery, the current manual and outmoded manual practices are unable to provide this.

This study develops a new method for drone-based disaster reconnaissance to map the building
damages in affected areas. Drones hold great potential for emergency reconnaissance, because they can
deploy quickly, collect heterogeneous sensing data, survey areas humans cannot reach, and can identify
areas with the most severe damage. There has been growing use of drones in disaster response, particularly
in damage assessment, but there are two knowledge gaps that must be closed for the optimal deployment
of this solution. First, the information retrieval from drone-based images and videos is superficial, providing
limited information for practical applications. Although solutions based on deep learning have been
developed to accelerate visually-based damage assessment, levels of building damage have seldom been
accurately classified. Damage levels are usually categorized based on criteria from the Federal Emergency
Management Agency (FEMA) and the National Weather Service (NWS), and accurately distinguishing the
levels of tornado-induced building damage in drone-acquired aerial images is beyond the capabilities of
existing methods. Second, utilizing drones for surveying disaster areas is a dynamic and evolving task, and
the dynamic information obtained by drones should be actively exploited for drone mission planning. This
is critical for disaster response, given the time constraints and the limited availability of resources. Current
practices on drone mission planning in disaster areas focus mainly on area coverage; they are not geared
toward integrating acquired damage information to optimize drone task assignments or route generation.
Integrating drone-acquired information from initial surveys could also improve the planning of various
subsequent drone-based tasks and missions, such as detailed assessment and package delivery.

To address these technical challenges, this research proposes a deep-learning-based method for
detecting and classifying different levels of building damage and then incorporating that information for
drone mission planning, so as to optimize task assignments for disaster reconnaissance and response. The
contribution of this study is two-fold. First, a new deep learning method based on YOLOS is proposed to

endow the drone with the intelligence to detect and classify seven distinct categories of building damage,
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thus providing refined classification information for disaster response. In addition, this research has led to
a newly labeled dataset consisting of 24,496 instances of building damage after tornadoes, based on the
Enhanced Fujita (EF) scale, which provides an essential basis for advancing deep learning methods for
automated building damage reconnaissance after disasters. Second, the detected and classified building
damages are exploited in an optimization model for drone mission planning during disaster response,
considering the physical and resource constraints. By integrating building damage information into the
mission planning model, the drone task assignments and route generations can be optimized, thereby further
augmenting the disaster response protocol. The developed methods are validated and evaluated using real
data from a tornado disaster in Tennessee, which further consolidates the potential of the proposed methods.
LITERATURE REVIEW

Related studies on building damage assessment

Damage assessment of structures, including buildings and bridges, under natural disasters has been widely
studied in the structural engineering and natural hazard engineering communities. Originally developed by
the Pacific Earthquake Engineering Research Center, the performance-based earthquake engineering
framework (Cornell et al. 2002) is a generally accepted and adopted risk quantification method for
earthquake hazards (Baker and Cornell 2008; Du et al. 2020; Du and Padgett 2021), and has had its
applications extended to other disasters such as hurricanes and tornadoes (Herbin and Barbato 2012;
Roueche et al. 2017). Within this framework, one critical component is fragility modeling, which delivers
a conditional probability estimate of the exceedance of a certain structural damage state and establishes the
connection between natural hazard intensities and structural damage potential (Du et al. 2021). In
earthquake engineering, various methods have been developed for modeling fragility functions based on
analytical models (Du et al. 2021; Du and Padgett 2020; Nielson and DesRoches 2007; Padgett and
DesRoches 2008), post-hazard reconnaissance (Buratti et al. 2017; Giordano et al. 2021), and expert
judgment (FEMA 2012). For wind-related hazards, the Florida Public Hurricane Loss Model (Chen et al.
2009; Pinelli et al. 2011) and HAZUS-MH (Vickery et al. 2009) are commonly used to estimate building

damage. Despite the wide applications in performance-based building design, pre-disaster planning, and
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post-disaster response and recovery, fragility models still admit of substantial uncertainties and are more
suitable for rapid regional-level post-hazard damage screening.

When it comes to assessing damages done to individual structures, the post-disaster evaluation of
existing buildings relies largely on professionals’ field surveys and visual observations (Xie et al. 2016;
Yamazaki et al. 2005), which are time-consuming, labor-intensive, and vulnerable to subjective judgments.
To address this limitation, data-driven methods have been developed to automatically analyze images from
disaster sites for building damage assessment. Some methods (see, e.g., Cooner et al. (2016)) leverage
traditional machine learning algorithms (e.g., random forest) to assess post-earthquake structural damage
from handcrafted image features, where the performance depends heavily on feature selections. Schaefer
et al. (2020) developed an automatic workflow which generates a 3D dense point cloud from images
collected by a drone; the disaster damage is then quantified by comparing pre-hurricane and post-hurricane
point clouds. Zhang et al. (2020) developed a remote sensing information-extraction method which uses
thermal and RGB images to recognize structural damage to infrastructures caused by earthquakes. This
method uses spectrum, shape, texture, space, and other characteristics of buildings to segment building
damages in a 3D building model. However, these methods require extensive computational power to
generate 3D models and identify damages, which is not feasible for online damage detection at disaster
sites.

More recently, deep learning methods have been widely used in computer vision tasks and have been
demonstrated to be effective in a variety of fields, including material recognition (Chen et al. 2021; Hu and
Li 2022), synthetic image augmentation (Chen et al. 2022), and affordance segmentation (Hu et al. 2020).
For the task of building damage detection, Miura et al. (2020) developed a convolutional neural network
(CNN)-based approach for estimating building damage based on post-disaster aerial images, where the
level of building damage is divided into non-collapsed, blue-tarp-covered, and collapsed categories. This
CNN method achieved high accuracy on the aerial image data collected after the 2019 Chiba typhoon. Zhu
et al. (2021) developed a novel CNN-based model for building damage segmentation based on Mask R-

CNN architecture, by exploring hierarchical spatial relationships among different objects. Their method
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was validated using the Instance Segmentation in Building Damage Assessment (ISBDA) dataset, where
building damages were classified as slight, severe, or debris-level.

Despite these achievements, there remain two limitations. First, the performance of deep-learning-
based building damage detection is largely influenced by the quality and generalizability of training data.
While there are several aerial image datasets (Pi et al. 2020; Rahnemoonfar et al. 2021; Zhu et al. 2021)
which can be used for disaster assessment, very few of them focus on tornado disasters, thus limiting the
application in post-tornado reconnaissance. Moreover, in most existing studies, building damages are
simply classified into three coarse levels, which contrast with typical damage assessment tools (e.g.,
HAZUS for earthquakes, hurricanes, etc., and the EF scale for tornadoes) and hamper the integration of
estimated building damages with downstream structural analyses. To overcome this limitation, this study
introduces a new dataset for damaged buildings after major tornadoes across 25 different cities in the US
and Canada, where building damage is classified into seven classes based on EF scale. Second, the deep
learning methods developed in most studies have complex architectures and cannot achieve satisfactory
accuracy. In this study, a new, lightweight deep learning network is designed by integrating spatial and
channel attention mechanisms into YOLOVS5 architecture, so as to ensure both accuracy and computational
efficiency.

Related studies on drone mission planning

Equipped with different sensors, such as cameras, LIDAR, GPS, and IMU, drones can be powerful tools
for disaster response; they have been deployed in real-world scenarios, including hurricane Katrina
(Murphy et al. 2008), the 2013 Moore-Newcastle tornado (Grogan et al. 2021), and the 2013 Lushan
earthquake (Qi et al. 2016). Studies have also been dedicated to developing methods for various drone-
assisted tasks, such as SAR (Chen et al. 2020; Hu et al. 2019, 2022a; b) and structural damage assessment
(Kakooei and Baleghi 2017; Schaefer et al. 2020).

Drone mission planning is a critical component for ensuring the efficiency of disaster reconnaissance
and response. Various mission planning strategies have been devised as optimization problems, i.e., to

maximize area coverage for drone surveys considering diverse constraints, such as power, maneuverability,
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distance, and data transmission quality (Gramajo and Shankar 2017; Huang et al. 2020; Li et al. 2018; Yu
et al. 2020). Some research, e.g., by Nedjati et al. (2016) and Hayat et al. (2020), has focused on multi-
drone path-planning for optimal area coverage. In addition, Xu et al. (2021) have formulated drone path
planning as a constrained multi-objective optimization problem accounting both for navigation and imaging
performance, which is solved using a heuristic search method. Van Huynh et al. (2022) have proposed an
optimal drone path-planning approach to minimize drones’ mission completion time and energy
consumption. Their approach investigated peer-to-peer drone-IoT sensing and clustering drone-IoT sensing
networks for the optimization of energy consumption.

Despite drones’ great potential for disaster response, almost all existing studies have focused primarily
on optimizing area coverage for drone surveys, while neglecting the importance of mission-specific
priorities. In building damage reconnaissance, it is critical for drones to be able—despite limited resources,
(e.g., battery life, number of drones)—to rapidly acquire large-scale information about building damages,
for further structural analyses, risk assessment, and disaster response and mitigation. To ensure the
efficiency of building damage reconnaissance, this study proposes a new drone-mission-planning
mechanism which maximizes total surveyed degree of damage via a team-orienteering problem that
accounts for operational constraints.

METHODOLOGY

Fig. 1 shows the overall research framework, which consists of three steps. In the first, aerial video data in
the aftermath of significant tornadoes is collected from online websites and recorded by the authors. Image
frames are extracted from the video, and buildings with damage are annotated using bounding boxes within
the images. In the second step, a deep learning network is designed to detect and classify building damage
from aerial images. The annotated image dataset is used to train the network, and performance is evaluated.
The generalizability of the model is also investigated, by testing the network at new disaster sites. In the
third step, the detected building damage is used to create a digital building damage map. Drone mission-
planning is treated and solved as an optimization problem, construed specifically as a team-orienteering

problem (TOP). The objective is to maximize the total surveyed degree of damage (DOD), given
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operational constraints, such as drone battery life and the number of drones. The total surveyed DOD is the
sum of the DOD for each building. Several optimization methods are investigated, and their performance
under various scenarios is evaluated. The technical details of the proposed framework are explicated below.
EFSBD dataset

Data collection

In this study, a total of 34 aerial videos were collected in the aftermath of tornadoes. Of these, 32 were
obtained from online websites using a query of keywords (e.g., ‘tornado’, ‘drone’, ‘UAV’), and two videos
were recorded by the authors in the aftermath of the 2020 Nashville tornado. In addition, 33 of these videos
were collected in the US and one in Barrie, ON, Canada. Fig. 2 displays selected US tornadoes represented
in the dataset and their associated intensities and approximate locations. The intensity of these tornadoes
varies from EF2 to EF4. The tornadoes hit 25 different cities, and significant residential damages were
reported in each case.

Data annotation

The video data was first converted to individual frames. One frame was then extracted from at least 30
consecutive frames to achieve a more visually heterogeneous dataset. Note that blurry images were omitted,
as were those that do not depict damaged buildings. In total, 3,045 aerial images were collected in the
dataset. The level of building damage is annotated based on the EF Scale, which is used to rate the intensity
of a tornado based primarily on structural damage and wind speed (Doswell et al. 2009). The EF scale has
also been adopted as the standard method for rating building damages caused by tornadoes. Table 1 presents
each damage level with damage indicators. The EF scale defines six levels of building damage: minor,
moderate, considerable, severe, devastating, and incredible. The level of damage is determined based on
damage indicators in accordance with those developed by the National Wind Science and Engineering
Center (McDonald et al. 2009). Note that a building with a roof covered by roofing tarps is defined as an
additional level of damage. This is because it is difficult to determine the exact damage level for a building
covered by roofing tarps from aerial images. Fig. 3 presents examples of buildings with different levels of

damage.
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Image annotation was conducted using the RectLabel tool, by drawing bounding boxes for damaged
buildings appearing in each image. The annotators were trained to get familiar with the building damage
assessment criteria for tornadoes as shown in Table 1. The images were then annotated in accord with these
criteria. The annotated dataset is named the Enhanced Fujita Scale Building Damage (EFSBD). Fig. 4
shows the statistics of the EFSBD dataset. The dataset consists of a total of 24,496 instances of buildings
with annotated damages. Specifically, the dataset has 4,997 buildings with minor labels, 7,223 buildings
with moderate damage, 5,540 buildings with considerable damage, 2,419 buildings with severe damage,
832 buildings with devastating damage, 526 buildings with incredible damage, and 2,959 buildings covered
by roofing tarps.

Data uniqueness
The EFSBD provides several unique features, compared to existing natural disaster datasets for damage
assessment (see Table 2).

o First, while there are several aerial image datasets for disaster assessment, very few datasets are
mainly focused on tornado disasters. Among the datasets given in Table 2, ISBDA (Zhu et al. 2021)
is the only image dataset that consists of tornado scenes. However, in ISBDA, the number of images
collected from tornado disasters is very limited. The number of annotated building instances is also
relatively small. Furthermore, ISBDA follows the “Joint Damage Scale” proposed by Gupta et al.
(2019), which was developed for satellite images with low resolution. As such, this scale may not
be suitable for assessing building damages based on drone images.

e Second, EFSBD was developed based on the EF scale, which is used as a guideline by the NWS
tornado disaster survey team. Moreover, a building covered with roofing tarp is classified as a
separate category, due to the difficulties in recognizing its exact level of damage. In other existing
datasets, roofing tarp is either incorporated into other categories (as per, e.g., RescueNet) or ignored
(as per, e.g., Volan2018 and ISBDA).

o Third, the EFSBD consists of a total of 24,496 instances of damaged buildings, which is much

higher than ISBDA, FloodNet, and RescueNet. Volan2018 has more building instances, but it
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extracts 30 FPS, resulting in large overlaps between image frames. Hence, many building instances
in Volan2018 may originate from the same building in neighboring frames. For example,
Volan2018 collected 5,949 building instances from an 84-second video clip. This could lead to
poor generalizability of the trained model to new disaster sites.
Building damage recognition
This section elaborates on the network for building damage detection at disaster sites. Our study adopts
You Only Look Once (YOLO) architecture, which is a fast multi-object detection algorithm (Redmon et al.
2016). Object detection in YOLO is done as a regression problem to estimate bounding box coordinates
and class probabilities. CNN is employed to detect objects with a single forward propagation through the
network, which can be trained in an end-to-end manner. The proposed deep learning method is adapted
from the YOLOvVS network. YOLOVS is the latest upgrade from YOLOvV3, with significant modifications,
such as the addition of mosaic augmentation and customizing backbone network with Cross Stage Partial
Network (CSPNet) and Spatial Pyramid Pooling — Fast (SPPF) (Jocher et al. 2021). YOLOVS architecture
is divided into YOLOVS5s (small), Sm (medium), 51 (large), and 5x (extra-large), depending on the number
of learnable parameters in the network. The number of learnable parameters, in turn, is controlled by two
parameters: depth multiple and width multiple. YOLOvVS5s is the smallest model among the four variants,
with a depth multiple of 0.5 and a width multiple of 0.33. Typically, the predictive power of the family
YOLOVS models improves with increases in the size of the network.

In this study, YOLOVS5s architecture is selected to ensure the inference speed of the network. The fast
inference speed has at least two advantages for disaster response. First, computational cost is a major
constraint on the timely retrieval of building damage information from aerial images. A small network can
be deployed into an embedded planform, thus enabling the detection to run on drones. Second, the network
can provide disaster surveyors with timely disaster information via live stream with predicted damages.
This is important, as it allows surveyors to better understand the scale of disaster damage in the field. The
YOLOVSs consists of three components: backbone network, detection neck, as well as three detection heads.

The architecture is detailed as follows.
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The input images are first preprocessed using the mosaic method, which is a data augmentation method
which improves network performance on small objects. The backbone network is used to extract features
at various levels from images; it is built based on CSPNet (Wang et al. 2020). The CSPNet integrates the
gradient changes into the feature map from beginning to end. As such, the CSPNet can reduce the
computation cost while maintaining the inference power of the network. Each CSPNet network consists of
three convolutional layers cascaded by various bottlenecks. SPPF is included as the last-layer backbone,
aiming to extract fine and coarse information by simultaneously pooling from multiple kernel sizes (5, 9,
13). The detection neck is built based on the Path Aggregation Network (PANet) (Liu et al. 2018) and
serves to boost information flow at different levels. PANet is an improvement of the Feature Pyramid
Network (FPN) with an additional bottom-up pathway. The detection neck aims to get feature pyramids,
each of which is used to identify objects in various sizes and scales. The detection neck consists of four
CSPNet blocks. The three feature maps with different scales are used to predict targets of various sizes.
Finally, these feature maps are divided into grids, and each grid consists of multiple anchors for predicting
the bounding box for the object. Fig. 5 presents an overview of the improved YOLOvS5s architecture. Two
improvements were introduced: the addition of an attention mechanism and the replacement of bounding
box regression loss.

Adding the attention mechanism. The attention mechanism was developed by studying humans’
cognitive processes in visual perception. Specifically, humans selectively focus on particular regions of the
scene while ignoring other regions (always known as backgrounds). For example, humans learn to
concentrate on useful objects that appear in a scene during an image-classification task. This mechanism
enables humans to quickly perceive and understand the visual context. The attention mechanism has been
widely used in computer vision and has been shown to be effective (Guo et al. 2022). For CNN, every
channel of a feature map may be representative of a different object (Chen et al. 2017). Based on this
characteristic, a channel attention mechanism was proposed to capture channel-wise relationships, thereby
improving the representational ability of the network. The Squeeze-and-Excitation Network (SENet) (Hu

etal. 2017) is the pioneering work for channel-attention modeling; it recalibrates weight for the feature map
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channels. The main drawback of SENet is that it ignores positional information. Coordinate attention (Hou
et al. 2021) was developed to address this limitation, by embedding positional information into channel
attention. In this study, a coordinate attention mechanism is added to the detection neck, as shown in Fig.
5. This attention module is lightweight and enables the YOLOvVS5s network to focus on important regions at
the expense of a little computational cost.

Fig. 6 shows the schematic flowchart of the coordinate attention module, which consists of two steps.
First, two spatial extents of pooling kernels are used to encode each channel of the feature map along the
horizontal and vertical directions, respectively. The output is a pair of direction-aware feature maps. Eq.
(1) and Eq. (2) give the respective definitions of the two pooling operations, where X is the input feature
map, and GAP" and GAP" represent vertical and horizontal directions, respectively.

z" = GAP"(X) (1)
z" = GAPY (X) 2)

In the second step, direction-aware feature maps are first concatenated, followed by a 1 x 1
convolutional operation. The output from the convolutional operation is split into two separate tensors along
the spatial dimension. Then, two convolutional operations, each with kernel size 1 x 1, are applied to the
two tensors, respectively. This process is represented by Egs. (3) — (7), where 6 is a non-linear activation
operation, o is the sigmoid function, F| represents the 1 x 1 convolutional operation, and Fy and Fy

represent convolutional transformations on f and f%, respectively.

f=5 (Fl([zh,zw])) 3)
£, £ = split(f) )
g" =0 (F(f) ®)
g¥ = o(F,(f")) (6)

Y = Xg"g" )

Replacing bounding box regression loss. The default bounding box regression loss function used to

train YOLOVS is Complete-loU (CIoU), which was developed based on Distance-loU (DIoU) by imposing
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the consistency of aspect ratio. In this study, CloU is replaced by alpha-IoU loss (He et al. 2021) to train
the network. The alpha-IoU is a family of power loU losses designed for bounding box regression; it has
been demonstrated to be effective in small datasets and noisy bounding boxes. The alpha-IoU is defined in
Eq. (8), where b and b*' denote the central points of predicted bounding box B and ground-truth bounding
box B, respectively, p is the Euclidean distance, c is the diagonal length of the smallest enclosing box,
is a positive trade-off parameter, v is used to measure the consistency of aspect ratio, and o is the modulating
parameters. When o is equal to 1, Lsciou becomes CloU loss function. When o > 1, L.ciou has more
emphasis on high-IoU objects and learns faster on these objects. In this study, « is set to 3 in order to
increase the loss and gradient on high-loU objects for accurate object localization.

Lg—cloy =1 —1oU% + pzag;bgt)_ + (Bv)“ (®)
Drone mission planning
Drones can quickly survey large disaster areas and collect disaster information to provide rapid post-disaster
damage estimates. In this study, the drone survey is divided into three steps. In the first step, the drone is
deployed to disaster sites and collects video data for subsequent damage assessments. In the second step,
the proposed building damage detection method is used to recognize damaged buildings from the collected
videos. The recognition results can be used to generate a building damage map of the area. Finally, the
second stage of damage mapping is conducted to generate details of assessment for each building, such as
high-resolution images and 3D models. This section elaborates on the drone mission planning of the second
stage.
Problem formulation
Drone mission planning is formulated as a TOP (Chao et al. 1996). In the TOP, a total of n damaged
buildings i is given, each with a damage index 7. The distance dj; from building i to building j is calculated
using Euclidean distance. The flight speed of drone £ is si. Considering the operational constraints (e.g.,
battery life and flight speed) of drones, not all damaged buildings can be surveyed from a single mission.

The battery capacity is directly associated with the flight duration 7. of the drone. The objective of the
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TOP is to identify the route which maximizes total surveyed DOD given the operational constraints. Each
of the buildings can be visited at most once.

Let G = {V, E} be a graph. V\{0} = {/, ..., n} denotes the vertices of the graph, which represent
damaged buildings. Each pair of vertices i € V andj € V forms an edge {i,j} € E. K= {1, ..., m} represents
a set of m drones. Let the building damage indices be r; > 0 (with 7y = 0). ¢ is the time required to survey
building i € V. Let binary variable x;; be equal to 1 if path (7, j) € E is traversed by drone £, and 0 otherwise.
Let yix equal 1 ifi € V is visited by the drone £, and 0 otherwise. The mathematical formulation for the TOP

can be represented by Egs. (9) — (17).

maximize Yev7i Xkek Vik ©)
subject to

YjevXijk =Yie Vi€V, k€EK (10)
YjevXjik =Yik Vi€V, k€K (11)
YkeK Yok =M (12)
YkekYik <1 1 € V\{0} (13)
Z(i,j)e6+(s) Xijk = Yok VS S V\{0},b €S, k€eK (14)
Z(i,j)EEi_injk + tiVik < Tmax VK EK (15)
yik €{0,1} VieV,keK (16)
xijk €1{0,1} Vv(i,j) €E,k €K (17)

Eq. (9) is the objective function used to maximize the total surveyed DOD. Egs. (10) — (17) are
constraints for the optimization problem. Specifically, constraints (10) and (11) are assignment constraints
which ensure that one edge enters and one edge leaves each visited vertex. Constraint (12) ensures that the
deployed drone does not exceed the number of drones. Constraint (13) ensures that every building is
surveyed at most once. Constraint (14) imposes that each route is connected. Constraint (15) is the time

constraint. Constraints (16) and (17) are variable definitions.
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Mission planning solver

The TOP is known as an NP-hard problem. Significant research efforts have been dedicated to solving the
TOP, and many heuristic-based algorithms have been developed. Selecting the appropriate algorithm is
critical for ensuring that time-sensitive disaster damage assessment quickly identifies an optimal drone
route. Therefore, four algorithms—i.e., Genetic Algorithm (GA) (Whitley 1994), Ant Colony Optimization
(ACO) (Dorigo et al. 2006), Particle Swarm Optimization (PSO) (Poli et al. 2007), and BITmask Evolution
OPTimization (BITEOPT) (Vaneev 2021)—are investigated in this study. Their performance is evaluated
to provide benchmarks for future drone mission planning at disaster sites. These algorithms are briefly
described in the following.

Genetic Algorithm. GA is a stochastic global search optimization method, inspired by natural selection
theory. The algorithm transforms the process of solving a searching problem into a process similar to the
crossover and mutation of chromosomes during biological evolution. It consists of five phases: initial
population, fitness function, selection, crossover, and mutation. The algorithm first initializes a new
population. Then, a fitness function is created, based on the total collected scores, to evaluate the solution.
The selection phase selects the two pairs of best fit individuals in the population, based on the fitness score.
The crossover operation is applied to those two pairs of individuals, with an exchange rate of 0.6. Finally,
the output is fed into a mutation operator, in order to maintain the diversity of the population, by flipping
bit at random positions with a probability of 0.005. A new offspring population is generated after mutation
and crossover operations. The fitness, selection, crossover, and mutation processes repeat until the
population does not change for 6,000 steps.

Ant Colony Optimization. The ACO algorithm is a metaheuristic method that was inspired by the
foraging behavior of ants. The algorithm can be divided into three steps. First, algorithm parameters and
“pheromone trails” are initialized. Second, each drone constructs a feasible route from initialized
pheromone trails using the roulette method. Third, the quality of the route is evaluated based on the sum of
surveyed damage indices. The second and third steps repeat 30 times; the route with the highest reward is

selected.
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Particle Swarm Optimization. PSO is a global optimization method inspired by the motion of flocks
of birds. The algorithm consists of five steps. In the first step, the number of particles and iteration, the
position of the particles, and the velocities of particles are initialized based on the number of drones and
the number of damaged buildings. In the second step, the mutation operation is applied on the initialized
particle swarm with a probability of 0.4. The proportion of particles is set to 0.5, and the mutation position
of each particle is set to 0.5. In the third step, local optimization is conducted to separate small subsets of
particle swarms, in order to avoid getting stuck on any local optimum. In the fourth step, the velocity of
each particle position is updated based on both current and historical global optimal particle positions. The
position of each particle is then updated based on its current position and the updated velocity. Finally, the
total collected score is calculated, and the optimal solution is updated. The number of iterations is set to
4000.

BITmask Evolution OPTimization. BITEOPT is a stochastic non-linear bound-constrained
derivative-free optimization algorithm for global optimization. This algorithm is a self-optimizing approach
without any hyperparameters to fine-tune. In the beginning, the Gaussian sampling method is used to
generate an initial solution. At the same time, several other populations are created in the proximity of the
candidate solution. Depending on the quality of the candidate solution, a histogram formed by parameter
values is updated. The histogram is used as a probability-state-automata to allow the algorithm to switch
between algorithm flow paths. In addition, the route with the highest cost is replaced with the upper bound
cost constraint. For each iteration, a new candidate solution generator is randomly selected from a list of
solution generators. Note that the previous solution also serves as an independent parameter vector for the
new solution generator. A total of 2,000,000 iterations are used to ensure an optimal drone mission plan.
EXPERIMENT AND RESULTS
Results on building damage recognition
Implementation details
The network is trained on a workstation running Windows 10 with an Intel Xeon Gold 5122 CPU, 64 GB

of RAM, and an NVIDIA Quadro P5000 GPU. The Stochastic Gradient Descent (SGD) optimizer is used
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to train the network. The network is trained for a total of 300 epochs. The EFSBD dataset is randomly split
into a training set (80%), a validation set (10%), and a testing set (10%). The images are resized to 640 x
640. The confidence and IoU thresholds for Non-maximum Suppression (NMS) operation are set to 0.1 and
0.4, respectively. The early stopping technique is used to avoid the overfitting problem. Specifically, the
network stops training if the loss value does not decrease for 100 epochs. The model with the highest
performance on the validation set is used for the evaluation on the testing set. The hyperparameters are
given in Table 3.
Metrics
In this study, the average precision (AP) at the IoU threshold 0.5 (APso), and mean average precision (mAP)
over different IoU thresholds, are used to quantify network performance. AP is the area under the precision-
recall curve, defined in Eq. (18). The average of AP for all the classes is defined in Eq. (19) and expressed
as AP, in order to differentiate it from mAP, where nc represents the number of classes. Since different [oU
thresholds can produce different predictions, mAP was used to overcome this problem by averaging AP
scores on different [oU thresholds. In this study, mAP is calculated as an average of AP over 10 IoUs,
starting from 0.5 to 0.95 with a step size of 0.05, which has been used as a standard metric for evaluating
object detection methods. Therefore, mAP is used as the metric to evaluate the overall performance of the
model.

AP’ = fol precision(recall)d (recall) (18)

1 ’
5, AR (19)

AP =—
Network performance

Table 4 presents the model performance on the testing dataset of the EFSBD dataset for each damage level.
The network achieves an APso 0f 91.3% and an mAP score of 71.9% on the testing set of the EFSBD dataset.
The results of the proposed method indicate a strong variation in performance across different levels of

building damage. In particular, the proposed method results in the highest performance on the considerable

damage category with an mAP of 80.9%, followed by an mAP of 80.8% on the moderate category. This
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may be attributed to a relatively large number of damaged building instances rated as moderate and
considerable in the EFSBD dataset. The tarp category achieves an mAP of 78.2%. The relatively good
performance for this category is due to the distinct features of buildings covered with roof tarps. The
devastating damage category achieves the lowest performance with an mAP of 47.1%.

Fig. 7 presents the confusion matrix for the proposed method on the testing set of the EFSBD dataset.
The matrix is normalized by the column, so that diagonal values represent recall for each category. Recall
measures the predictive power of the network in identifying all the positive elements. The tarp category
achieves the highest recall score on both validation and testing datasets. Specifically, the tarp category
achieves a recall of 94% on the validation dataset and a recall of 96% on the testing dataset. The
considerable damage category achieves the second-highest recall score, with a recall of 90% and 94% on
the validation and testing dataset, respectively. A high recall score indicates that most positive samples for
this category can be accurately detected. Note that the mAP score for the tarp is lower than those of the
moderate and considerable categories, which could be attributed to a relatively smaller precision score for
the tarp compared to those of the moderate and considerable categories. The incredible category has the
lowest recall 76% on the validation set, and all the misclassified samples are background. Buildings rated
as having incurred incredible damage each have the entire house swept away from its foundation, in which
case there is no need for a detailed assessment. Therefore, misclassifying incredible damage as background
will not have an impact on drone mission planning. For other levels of damages, misclassifying positive
samples as background will lead to missing inspections during drone surveys. The confusion matrix also
indicates that positive samples are mostly misclassified as adjacent categories, except for background. For
instance, on the testing set, 4% and 1% of severely damaged buildings are misclassified as considerable
and devastating, respectively. This is because the closer the damage levels are, the more similar the visual
features are.

Fig. 8 illustrates example results of damage detection on the testing set of the EFSBD dataset. The
results indicate that the proposed method can accurately recognize damaged buildings and their levels of

damage.
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Ablation study

In this section, an ablation study is conducted to assess the effectiveness of the two proposed improvements
on the YOLOv5s network. The YOLOVSs is used as the baseline model. The effectiveness of alpha-loU
and coordinate attention are evaluated by individually integrating them into the baseline model. Table 5
presents the results on the testing set of the EFSBD dataset. The performance of the network is evaluated
using mAP. The results indicate that the baseline network is mostly improved by alpha-lIoU, with an
improvement of 1.1%. The coordinate attention module improves on the performance of the baseline by
0.2%. A combination of alpha-IoU and coordinate attention achieves the best performance, which has an
improvement of 1.4%. This improvement demonstrates the effectiveness of the proposed method in
detecting and classifying building damage.

Model generalizability

While the proposed method achieves promising results on the EFSBD dataset, images in the training and
testing sets could be extracted from the same disaster site. It is anticipated that, in real practice, the annotated
dataset is not likely to be available for each new disaster site. In addition, the new video data could be
captured from a different angle or altitude, in different weather conditions, and using a different camera.
Therefore, the generalizability of the proposed method is further evaluated on completed unseen data.
Specifically, four individual disaster sites are selected in the EFSBD dataset: Chattanooga, TN,
Birmingham, AL, Springdale, AR, and Oak Grove, MO. For the evaluation on each of these disaster sites,
images excluding those of the evaluated place are used as training data to train the network.

Table 6 shows the model performance on four unseen places. The results indicate significant
performance variations across different sites. In particular, the model achieves the best performance in
Birmingham, with an mAP of 47.7%. In Oak Grove, the proposed method achieves the worst performance,
with an mAP of 23%. The results indicate that APso is greater than 40% in Chattanooga, Birmingham, and

Springdale, which demonstrates the generalizability of the proposed method for unseen disaster sites.
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Results on drone mission planning

To evaluate the performance of drone mission planning, a community in Chattanooga, TN, severely hit by
an EF3 tornado in 2020 is selected. Fig. 9 shows the boundary of the study area. The square footage of the
study area is approximately 670,000 m®. The model, trained using images from other places, is used to
predict building damages in the selected area. As mentioned above, the proposed method achieves an APsg
of 41% and an mAP of 25.9%, indicating its applicability in detecting and classifying building damage. In
this study, the predicted building damage is used to update the digital building damage map. Note that, for
some buildings, there may be two overlapped detections with different damage levels, which are typically
adjacent levels of building damage. In this case, the level of damage with higher confidence is selected.
Under current practices, the preliminary digital building damage map is generally created using satellite
images (Khodaverdizahraee et al. 2020). However, satellite images have low resolution, and the viewing
angle may not be favorable for building damage detection. Compared to satellite images, drone images have
higher resolutions, and the oblique observations from a drone can provide more detailed facade and roof
information. Therefore, the building damage detection results from drone images can be used to refine and
update building damage maps.

The damage index refers to the DOD, as adopted by the tornado damage survey. The DODs for minor,
moderate, considerable, severe, devastating, and incredible are 2, 4, 6, 8, 9, and 10, respectively, according
to the damage survey conducted by the Center for Severe Weather Research (Marshall et al. 2008). While
incredible damage has the highest DOD of 10, it indicates that anchored homes were swept away from their
foundations; in such cases, assessing damages does not require high-resolution images or detailed
information. Therefore, the buildings with incredible damages are excluded at the stage of drone mission
planning. As for buildings with roofing tarp, they typically suffered from either minor or moderate damage,
and the fine-grained level of damage is hard to recognize; thus, the DOD is set to 3. Fig. 10 shows the
building damage map. Note that some damaged buildings are not indicated on the map. This is for two

reasons. First, the proposed method fails to detect some damaged buildings, due to unfavorable angles.
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Second, some of the damaged buildings are not visible from the collected video. In total, 193 damaged
buildings are detected, with a total DOD of 727 in this region.

In this study, the time required to survey each of the damaged buildings is assumed to be dependent on
DOD. This is reasonable, as tornado damage assessment typically focuses on the hardest-hit areas to
estimate the EF scale. Therefore, buildings with higher levels of damage require a more detailed inspection
to help surveyors in their assessments. In addition, in the case of high-level building damage suffered from
severe structural damage, structural engineers need detailed information in order to determine the
mechanism of building failure and to develop tornado-resistant building standards. Specifically, the survey
time is set to 5 x DOD. Table 7 shows the experimental settings for drone mission planning. Three scenarios
with different operational constraints are investigated. Specifically, the low scenario replicates the situation
with very limited resources, and simulates two drones, each with a flight speed of 2.1 m/s and a battery life
of 10 mins. The moderate scenario simulates three drones, each with a speed of 4.6 m/s and a battery life
of 20 mins. The high scenario simulates four drones, each with a flying speed of 6.1 m/s and a battery life
of 30 mins.

Fig. 11 shows a comparison of the GA, ACO, PSO, and BITEOPT algorithms in terms of total collected
scores and processing speeds. Given the fact that these algorithms are stochastic-based methods, each of
them is run 10 times for a fair comparison. The results indicate that the BITEOPT algorithm achieves the
best performance under low and moderate scenarios, followed by the PSO algorithm. Under high scenarios,
PSO and BITEOPT both visit all the damaged buildings. ACO has the worst performance among the four
algorithms, though it has the fastest processing speed. While PSO achieves the second-best performance,
its processing time is much higher than that of the other three algorithms. The processing speed of BITEOPT
is the lowest, excluding ACO. It can be concluded that BITEOPT has the best performance among the
investigated algorithms in solving multi-drone mission planning for building damage survey. Therefore,
the authors recommend the use of BITEOPT in future drone mission planning for disaster reconnaissance.

Fig. 12 shows sample optimization results for the GA, ACO, PSO, and BITEOPT algorithms.
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DISCUSSION
Comparison with other state-of-the-art methods
This section compares the performance of the proposed method to other state-of-the-art methods. MSNet
achieved an APsg score of 31.5% on the ISBDA dataset in detecting bounding boxes of damaged buildings
(Zhu et al. 2021). The total number of parameters were around 44 million. The training images were resized
to have longer sides less than or equal to 1333. The proposed method was trained on the provided train-
validation split. For a fair comparison, the input images are resized to 1280 x 1280. Using the provided
train-validation split, the proposed method achieves significantly better performance, with an APso of 34.5%.
Pi et al. (2020) used YOLOV?2 to identify ground objects of interests, such as damaged roofs, debris,
and undamaged buildings, in the aftermath of a hurricane. The highest APso reported on unseen testing
datasets were 24.5% for drone and 13.9% for helicopter. The inference speed of YOLOV?2 is approximately
40 FPS. Cheng et al. (2021) developed a hybrid deep learning model in order to localize building objects
and to classify the level of building damage. The model achieved an AP of 63.3% in building localization
and an accuracy of 30% on building damage classification for drone data collected at a new location.
Combined, the method’s accuracy in detecting and classifying building damage from images was lower
than 30%. Furthermore, the inference speed for the localization model was only 2.87 FPS and 20.12 FPS
for the classification model. In comparison, our method achieved a minimum APso of 31.6% (at Oak Grove)
and a maximum APsy of 65.5% (at Birmingham). Furthermore, our proposed method only has 7.1 million
parameters, achieving an inference speed of 70 FPS. The results indicate that our method outperforms other
state-of-the-art approaches. It is acknowledged that the same set of data should be used to compare all these
methods and to assess their performance under varying disaster scenarios. This requires access to these
datasets and algorithms, which would call for further efforts pursuant to an evaluation benchmark.
Influence of image and network size
This section discusses the effect of image resolution and network size in the task of assessing building
damages. Table 8 shows the performance of the proposed method over various image resolutions. The

results indicate that the mAP score increases with increasing image resolutions. In particular, the network
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has the largest performance increase from 416 x 416 to 640 x 640, which carries an mAP improvement of
4.4%. The network performance improves by 2% when increasing image resolution from 640 x 640 to 1536
x 1536. From 832 x 832 to 1536 x 1536, the network only has a slight mAP improvement of 0.9%. On the
other hand, the inference time of the network also increases with increasing image resolution. The inference
speed is evaluated using the NVIDIA Quadro P5000 GPU. The inference speed of 416 x 416 reaches 87
FPS. When image resolution is increased to 640 x 640, the inference FPS drops to 70. The selection of
image resolution is a trade-off between accuracy and speed. In this study, 640 x 640 is chosen for fast
building damage detection with due accuracy.

Table 9 presents a comparison of the proposed method with other networks in the family of YOLOvS
with larger network sizes. The results indicate that model performance increases with the increasing size of
the network from YOLOv5s to YOLOv5x. YOLOv5x exhibits an mAP improvement of 3.7%, compared
to YOLOVSs. The proposed method outperforms YOLOvSm with a much smaller network. The small
network has the potential to be integrated into an embedded system for building damage detection. While
larger-sized networks tend to perform better, they require more storage and come with increased
computation costs, which work against their deployment in mobile platforms such as drones.

Sensitivity of drone mission planning

The performance of drone mission planning is affected by operational constraints. In this section, the
BITEOPT algorithm is selected for the sensitivity analysis, since it achieved the best performance under
the low, moderate, and high scenarios. The sensitivity of the number of drones, flight speed, and battery
life is analyzed. The number of drones ranges from two to five. The flight speeds of the drones are 2.1, 4.6,
and 6.1 m/s. The battery lives are 10, 20, and 30 mins. The results reported are averaged over 10 runs. Fig.
13 (a) presents the sensitivity of the number of drones. The drone speed is fixed at 4.6 m/s and the battery
life is fixed at 20 mins. The results show an increasing trend in total collected scores with increases in the
number of drones.

Fig. 13 (b) shows the sensitivity of the flight speed of the drone. The number of drones is fixed at three,

and the battery life is fixed at 20 mins. The results indicate that the greater the flight speed is, the higher
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the collected scores are. Fig. 13 (c) displays the score variation over battery life of the drone. In the
experiment, the number of drones is fixed at three, and the flight speed is fixed at 4.6 m/s. The results
indicate that the collected score is significantly improved by increased battery life. In summary, the
performance of the BITEOPT algorithm is positively related to the availability of resources.

Limitations and future research directions

Future research is needed in several directions. First, in this study, the building damage map was manually
created based on network prediction results from aerial images. The proposed network is very lightweight,
which affords it the potential to be integrated into a drone’s onboard platform for online building damage
detection. Under current practices, tornado damage surveyors upload damage information to an online
database through the NOAA damage assessment toolkit, which is time-consuming and labor-intensive.
Future research could develop methods for automatically uploading detected damaged buildings to NOAA
online database according to the GPS coordinates of the buildings. In this way, survey teams can not only
have timely disaster damage information, but also building damage maps to assess overall damage, which
in turn would facilitate better disaster responses.

Second, while our method achieves state-of-the-art performance on unseen data, there is a lot of room
for further improvement. The improvement will mainly come from two research directions. One is the
building damage data; the other is the building damage detection method. For data-driven methods, a large
dataset is always the foundation for ensuring performance and generalizability in real-world applications.
In this direction, the developed EFSBD dataset needs to be updated through the collection of more data,
especially images from distinctive locations, so as to increase the model’s generalizability. On the other
hand, with the advancement of deep learning architectures, the detection network can also be upgraded by
integrating new architectures for more robust performance.

Third, this study is limited to demonstrating the feasibility and superiority of damage-aware drone
mission planning. Though the optimization algorithm is demonstrated to be suitable and effective in
identifying routes for multi-drone missing planning, how such a method can improve or complement

existing tornado damage surveys remains unexplored. In addition, this study assumes that the required
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survey time for buildings with different levels of damage accords with tornado damage assessment in actual
practice. Finally, the rationale behind building damage detection and classification using the deep learning
network remains unexplored in this study. Ideally, the deep learning network needs to follow a rationale
similar to that of field assessors for building damage assessment. The development of such an approach
requires close collaboration with field assessment teams, so as to better understand their rationales for
building damage assessment at disaster sites. In the future, this research team will test the feasibility and
applicability of its approach by collaborating with survey teams from the NWS and Tennessee Emergency
Management Agency. The feedback from these professional organizations is critical to improving our
methods, validating field performance, and developing off-the-shelf products that are ready for use.
CONCLUSIONS

This study develops a new method for automated building damage reconnaissance and drone mission
planning for disaster response. The practical utility of the proposed methods is sustained by two
computational innovations as well as the high performance validated using real-world data and scenarios.
Most existing deep-learning-based methods only detect and classify damaged buildings and non-damaged
buildings and provide limited information to first responders and decision-makers. The developed method
is superior to existing solutions, as it can accurately detect and classify seven categories of damages
consistently at a high frame rate. This is achieved by preparing an unprecedented dataset to achieve robust
performance, as well as incorporating a new attention mechanism in the deep learning method for detection
and classification. This automated building damage reconnaissance method achieved an APsy of 91.3% and
an mAP of 71.9% on the testing dataset, and the model was applied to a new location with very promising
results; three of four selected disaster areas achieved an APso higher than 40%. The proposed method is
very lightweight and achieves fast detection with an FPS of 70. Thus, the Al method can be developed in
an embedded system for building damage detection while the drone is on a mission. The building damage
information acquired from drones is computationally modeled in the drone mission planning optimization
model, and different solution methods are utilized to identify the best suitable method. The BITEOPT

optimization method exhibits the best performance and can identify optimal routes for multiple drones. The
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computational time is less than six minutes for an area of 193 damaged buildings, further demonstrating
this model’s practical utility for real disaster mission planning optimization. The methods and workflow
are validated using a case study of a tornado disaster, demonstrating that automating the retrieval of building
damage information can significantly augment drone-based mission planning during disaster response and
mitigation.
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Table 1 Description of Enhanced Fujita Scale building damage indicators

Level Damage indicator
Minor Some damage to roof covering and/or lost some of their vinyl or metal siding.
Lost most of roof covering and/or had minor structural damage to roof such as
Moderate . -
displaced gable ends and/or loss of some roof decking.
Considerable =~ Most of roof structure was lost but the walls remain standing.
Roofs and numerous outside walls blown away from frame homes; two-story homes
Severe . L .
have their second floor destroyed; high-rises have many windows blown out.
Devastating All walls went down, and a pile of debris remained on their foundation.
Incredible Anchored homes were swept away from their foundation.
Tarp Roof covered with a roofing tarp.




871 Table 2 Overview of existing natural disaster aerial datasets

Building Image

Dataset Disaster Size . Task Category
instances type

Fire, flood,
AIDER (Kyrkou and collapsed 2,545 - Drone Classification 5
Theocharides 2020) o

building, ...
Volan2018 (Pi et al. . Object
2020) Hurricane 65,580 98,010 Drone detection 6
ISBDA (Zhu et al. Hurricane, . Semantic
2021) tornado 1,030 2,961 Aerial segmentation 3
FloodNet Semanti
(Rahnemoonfar et Hurricane 2,343 6,675 Drone © ¢ 8
al. 2021) segmentation
RescueNet Semantic
(Chowdhury et al. Hurricane 4,494 10,903 Drone . 11
2022) segmentation
EFSBD (ours) Tornado 3,045 24496  Drone Object 7

detection
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Table 3 Hyperparameters for model training

Parameter Value Parameter Value
Initial learning rate 0.01 IoU training threshold 0.2
Learning rate factor 0.01 Anchor-multiple threshold 4
Momentum 0.937 HSV-hue augmentation 0.015
Weight decay 0.005 HSV-saturation augmentation 0.4
Warmup epochs 3 HSV-value augmentation 0.4
Warmup momentum 0.8 Rotation 0.2
Warmup learning rate 0.1 Translation 0.1
Box loss gain 0.05 Scale 0.5
Classification loss gain 0.5 Flip up-down 0.2
Classification BCELoss positive weight 1 Flip left-right 0.5
Object loss gain 1 Mosaic 1
Object BCELoss positive weight 1 Segment copy-paste 0.2




875 Table 4 Model performance on the testing set of EFSBD dataset

Class Labels APsy (%) mAP (%)
All 2542 91.3 71.9
Minor 486 90.1 75.6
Moderate 757 94.8 80.8
Considerable 594 96.2 80.9
Severe 275 92.1 71.9
Devastating 90 82.2 47.1
Incredible 45 88.5 69.0
Tarp 295 95.3 78.2
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Table 5 Ablation study of the proposed method on the testing set of EFSBD dataset

Model mAP (%)
YOLOVv5s 70.5
YOLOVSs + alpha-loU 71.6
YOLOVSs + coordinate attention 70.7
YOLOVS5s + alpha-loU + coordinate attention (Proposed) 71.9
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Table 6 Model performance on unseen disaster sites

Place Images APso (%) mAP (%)
Chattanooga, TN 369 41.0 259
Birmingham, AL 145 65.5 47.7
Springdale, AR 87 40.4 29.9
Oak Grove, MO 67 31.6 23.0
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Table 7 Experiment settings of drone mission planning

Scenario Number of UAV Speed of UAV (m/s)  Battery life (mins)
Low 2 2.1 10
Moderate 3 4.6 20
High 4 6.1 30
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Table 8 Effect of image resolution on network performance

Resolution APso (%) mAP (%) Time (ms)
416 x 416 89.0 67.5 11.4
640 x 640 91.3 71.9 13.7
832 x 832 91.5 73.0 18.9
1280 x 1280 91.3 73.4 36.4
1536 x 1536 91.7 73.9 49.6
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904 Fig. 9 Study area in Chattanooga, TN, USA. (map data: Google, Maxar technologies)



905

906 Fig. 10 Building damage map. Note: Each marker represents a damaged building; different color

907 represents different levels of damage (map data: Google, Maxar technologies)
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