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Abstract

Reactive oxygen species (ROS) serve as second messengers
in plant signaling pathways to remodel plant growth and devel-
opment. New insights into how enzymatic ROS-producing ma-
chinery is regulated by hormones or localized during
development have provided a framework for understanding the
mechanisms that control ROS accumulation patterns. Signaling-
mediated increases in ROS can then modulate the activity of
proteins through reversible oxidative modification of specific
cysteine residues. Plants also control the synthesis of antioxi-
dants, including plant-specialized metabolites, to further define
when, where, and how much ROS accumulate. The availability
of sophisticated imaging capabilities, combined with a growing
tool kit of ROS detection technologies, particularly genetically
encoded biosensors, sets the stage for improved understanding
of ROS as signaling molecules.
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Introduction
The important role of reactive oxygen species (ROS) as
signaling molecules that control plant form and function

has received growing attention in recent years. Genetic
and biochemical approaches have demonstrated that
specific enzymes produce ROS under precise develop-
mental or hormonal controls to initiate or propagate
signaling pathways. There are multiple species of ROS,
with hydrogen peroxide (H;0;), superoxide (O;), and
singlet oxygen (0y) being most tightly linked to
signaling [1]. H;O,, through the transfer of electrons,
can oxidize reactive cysteine residues on proteins to
form cysteine sulfenic acids (-SOH), which is a revers-
ible modification. Sulfenic acids may be further oxidized
to sulfinic acid (-SO;H) and then to sulfonic acid
(-SO3H) under circumstances of excess ROS. Sulfenic
acid may also react with free thiol groups (-SH) to form
intra- or intermolecular disulfides [2].

Cysteine oxidation can change the structure, activity,
and/or stability of proteins to either propagate or inhibit
signals, much like the transfer of phosphates by kinases
to specific hydroxyl groups on amino acids alters enzyme
activity [3,4]. Oxidized target proteins can be identified
by the presence of this cysteine sulfenic acid modifica-
tion, the function of which can be tested by mutating
the cysteine to a non-redox-sensitive amino acid [5].
Proteome-wide changes in cysteine oxidation in Arabi-
dopsis proteins have been identified in response to
treatment with H,O,, using specific probes that recog-
nize sulfenic acids [5,6]. These redox proteomic data-
sets provide researchers with candidate proteins that
may be the targets of ROS signaling pathways. Protein
targets of oxidation include enzymes and transcription
factors resulting in changes in their conformation, ac-
tivity, and subcellular localization, with changes in
transcription factor activity reprogramming the tran-
scriptome [7]. Additionally, apoplastic ROS can oxidize
cell wall polymers, which can either cause cell wall
loosening or stiffening (depending on the ROS and the
target polymer) to change cell growth [8,9].

This review focuses on the hormonal and developmental
pathways in which ROS acts as signals to alter plant
growth and development. We highlight plant tissues and
subcellular locations in which ROS levels are develop-
mentally or hormonally regulated and provide examples
of how chemical probes and genetically encoded redox
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Abbreviations

(ROS) Reactive Oxygen Species

(H;0;) Hydrogen Peroxide

(O;77) Superoxide

(O,)  Singlet Oxygen

(RBOH) Respiratory Burst Oxidase Homologs
(SOD) Superoxide Dismutase

(PRX) Class III peroxidase

(FER) FERONIA

(GEF) Guanine Nucleotide Exchange Factor
ROP  (Rho of Plants) GTPases

(RH) Root hair

(ARF) Auxin Response Factor

(ACC) 1-aminocyclopropane-1-carboyxlic acid

(LR) Lateral Root

(LRP) Lateral Root Primordia

(CM H2DCF-DA) CM 2,7-
dihydrodichlorofluorescein
diacetate

(DAB) 3,3-diaminobenzidine

(DHE) Dihydroethidium

(PO1) Peroxy Orangel

(GSH) Glutathione

(ABA) Abscisic Acid

(roGFP) Redox-sensitive Green Fluorescent Protein

(DCF) Dichlorofluorescein

(NBT') Nitro blue tetrazolium

sensors have revealed how ROS accumulation patterns
are regulated. Essential to these signaling responses are
enzymes that produce and scavenge ROS. Once these
enzymes are activated, the resulting changes in ROS can
lead to oxidation of transcription factors and enzymes to
remodel growth and development. These ROS-
producing enzymes are summarized here in the context
of how their functions are tied to efficient redox
signaling. These studies build on the ability to detect
accumulation of ROS, using a complement of chemical
dyes whose fluorescence increases in response to oxida-
tion or biosensors in which protein oxidation or reduction
changes the properties of fluorescent proteins. Figure 1
illustrates a number of these patterns of ROS accumu-
lation that are developmentally defined or hormonally
regulated, detected with a range of methods for moni-
toring changes in ROS accumulation. Additionally, we
highlight the development of genetically encoded bio-
sensors [10,11] that have the potential to reveal changes
in specific ROS types at subcellular levels and with
temporal dynamics not previously possible.

To maintain ROS homeostasis required for efficient
signaling, numerous mechanisms are in place to ensure
that ROS levels do not reach excess and damaging levels,
which would lead to the irreversible oxidation of proteins,
DNA, or lipids. To accomplish this, plants produce en-
zymes and specialized metabolites that function as an-
tioxidants to restore ROS homeostasis [12]. This
machinery can be turned on by the same signals that
initiate ROS synthesis but with slower kinetics to allow
transient increases in ROS. These antioxidant machin-
eries are also critical for the response to high levels of
ROS resulting from biotic and abiotic stresses [13—15].
This review does not focus on stress-induced ROS as
others have reviewed both how these stressors affect
localized ROS accumulation and long distance ROS sig-
nals [16—18]; however, we do highlight cases where ROS
synthesis and antioxidant activity are balanced to allow

for effective signaling. Although there are still many
unanswered questions about the signaling pathways that
plants employ to produce ROS; it is now clear that the
balance of localized ROS synthesis and antioxidant sys-
tems that maintain ROS homeostasis is a powerful
combination to control plant growth and development.

RBOH-dependent ROS production

Numerous ROS-producing enzymes participate in plant
signaling pathways. The best characterized family are
the respiratory burst oxidase homolog (RBOH) en-
zymes, which share sequence similarity with mammalian
RBO/NADPH oxidase (NOX) enzymes [19]. RBOHs
are located on the plasma membrane, where they
transfer electrons from nicotinamide adenine dinucleo-
tide phosphate (NADPH) to molecular oxygen to pro-
duce extracellular superoxide, as shown in Figure 2 [19].
Superoxide is highly unstable and is rapidly dismutated
to H,0,, either spontaneously or by superoxide dismu-
tases (SODs) [20]. Aquaporins localized to the plasma
membrane may then facilitate entry of extracellular
H,0; into plant cells [21—23]. The Arabidopsis genome
encodes 10 RBOH family members (RBOHA-RBOH]),
each with distinct expression patterns across plant tis-
sues (see Ref. [12], Figure 2) and with different func-
tions, which have been reviewed previously [12], and are
described below.

RBOHs may be regulated transcriptionally and at the
level of enzyme activity [24—28] to control multiple
growth and developmental responses. RBOH post-
translational modifications can occur via multiple
mechanisms, including through the binding of calcium
and phosphatidic acid or transfer of a phosphate or
nitrosyl moiety (i.e., phosphorylation or nitrosylation,
respectively) [19,26,27]. During seed germination,
RBOHB expression is regulated by abscisic acid (ABA)
to control seed after-ripening and germination [28]. In
Arabidopsis guard cells, the abundance of RBOHD and
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Figure 1
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ROS are produced during development and in response to hormone perturbation. (a) Confocal images of wild-type (WT) Arabidopsis roots treated
with IAA (adapted from Ref. [33]) or the ethylene precursor, ACC (adapted from Ref. [31], and stained with the hydrogen peroxide selective probe, peroxy
orange 1 (PO1), revealing elevated ROS in root hair forming cells. Scale bars = 200 um (b) Confocal images of WT tomato guard cells treated with ABA
and stained with the general ROS sensor, dichlorofluorescein (DCF) (in green), visualized across a 45 min time course, with chlorophyll autofluorescence
in magenta. ROS increases are observed in multiple subcellular locations with significant increases in the number and intensity of cytosolic puncta. Scale
bar = 5 um. Adapted from Ref. [82]. Copyright 2017 American Society of Plant Biologists. (¢) Confocal images of WT tomato pollen grains stained with
PO1 and the general ROS sensor DCF revealing differences in localized ROS accumulation around the pore from which pollen tubes emerge. Scale
bars = 10 um. Adapted from Ref. [51]. (d) Confocal images of Arabidopsis Col-0 and (t7-2, a mutant with a defect in quercetin synthesis, stained with the
superoxide selective stain, dihydroethidium (DHE), which is visualized as a heat map. The {t7 mutant has increased lateral root formation and elevated
DHE signal over the lateral root primordia (indicated with caret symbol). Scale bar = 50 um. Adapted from Ref. [85].

RBOHF transcripts is increased following ABA treat-  type expression patterns of these genes (see Figure 1
ment and in response to abiotic stresses [29], and 7dokdlf  in Ref. [12]).

mutants have reduced ROS accumulation in guard cells

and impaired stomatal closure [29]. In roots, transcript  Other ROS-producing enzymes activated by
abundance of the root hair (RH)-localized RBOH( gene hormone signaling

is increased by auxin treatment [30] and treatments Recent evidence has suggested that other ROS-
that elevate thylerle [31], to increase RH initiation generating enzymes play roles in hormone-induced
and/or elongatlon [31—33], RBOHF controls primary ;4 developmental ROS signaling; however, there is
root el'or'lg.atl'on [34_]’ and RBiOHD controls late.ral root less information on the function of these enzymes [37].
(LR) initiation [35,36], which corresponds with cell Cellular  organelles such as chloroplasts  and
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ROS-generating enzymes and their location within a cell. In the apoplastic space, ROS are produced by RBOHSs [19], Cu/Zn superoxide dismutases
(SOD) in cotton [41,128], the newly characterized Mn-SOD, MSD2 in Arabidopsis, as well as class Ill peroxidase (PRX) [37]. The best established
signaling circuit is RBOH produced superoxide, (using NADPH as an electron donor), which is then converted to H,O, by SOD. H,O, then enters cells via
aquaporins [21]. PRX enzymes have complex biochemistry but have been reported to scavenge hydrogen peroxide when in the resting state, but also the
resting state enzyme can be reduced by superoxide and generate hydroxyl radicals when in the presence of hydrogen peroxide. PRX also have the ability
to indirectly produce superoxide when oxidized, which can also be converted to H>O, via SOD [37]. All three isoforms of SOD are also present within the
cell found in the cytosol, chloroplasts (a), mitochondria, (b) and peroxisomes (c) [41,129]. ROS has been reported to travel from metabolic organelles to
the nucleus and calcium treatment of isolated tobacco nuclei can generate ROS although the mechanism for this ROS synthesis is unknown [130].

Created with Biorender.com.

mitochondria also produce ROS as a by-product of
electron transport to drive ATP synthesis [38], yet ROS
in those organelles may also be produced by plant
signaling pathways [39]. SOD is a ubiquitous enzyme
that catalyzes the rapid dismutation of superoxide to
hydrogen peroxide and molecular oxygen [40]. Plants
have three isoforms of SODs with different metal co-
factors: iron (Fe), manganese (Mn), or copper/zinc (Cu/
Zn), and each is localized to distinct subcellular com-
partments, [40,41], as shown in Figure 2. The Arabi-
dopsis genome has been predicted to encode three Cu/
Zn SODs (CSD1, CSD2, and CSD3), three Fe-SODs
(FSD1, FSD2, and FSD3), and was originally predic-
ted to encode one highly conserved Mn-SOD (MSD1)
[42,43]. However, a second cell wall-localized Mn-SOD
(MSD2) has recently been identified and characterized
[43]. Analysis of the MSDZ2 promoter indicated the
presence of c¢s-acting elements involved in ABA and
light responses, and MSDZ2 expression was reported to
be elevated in etiolated seedlings [43]. Historically,

SOD has been considered to have an antioxidant activity
that is induced in response to stress with the sole pur-
pose of reducing superoxide [44], yet these enzymes
also produce H,0O; as a signaling molecule. Additionally,
a study in yeast reported that the Cu/Zn superoxide
dismutase (SOD1) plays a role in a redox signaling to
regulate the stability of two plasma membrane kinases,
which integrate nutrient sensing with metabolism [45].
SODI1 does this by physically associating with the kinase
Yck1 and producing a local hydrogen peroxide flux that
stabilizes this kinase.

Class IIT peroxidase (PRX) are another group of en-
zymes that participate in ROS signaling pathways that
govern developmental processes. PRX are plant-
specific, heme-containing enzymes that have been
shown to be secreted into the apoplast [46]. In Arabi-
dopsis, it has been reported that there are at least 75
genes encoding these enzymes [46]. PRX catalyze re-
actions that can produce ROS by oxidation of NADH to
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an NAD radical to convert O; to superoxide, which can
then be dismutated into H,O;, either nonenzymatically
or via SODs. There is evidence for a secreted Cu/Zn-
SOD in cotton [128], recent evidence suggests that a
newly characterized Mn-SOD (MSD2) contains a
secretory peptide and has been shown to localize to the
cell wall [43] (Figure 2). PRX can also consume ROS as
they can be reduced by superoxide, with the reduced
PRX able to convert hydrogen peroxide to a hydroxyl
radical [37,47]. The role of select PRX in producing
ROS in response to hormonal signals to drive LR
development [48] and RH initiation and elongation has
been demonstrated using genetic approaches [30,31],
which are detailed below. Other roles of PRX and their
functions have been reviewed in detail by
others [49,50].

ROS are signaling molecules controlling
developmental and hormonal responses
Recent evidence supports the role of ROS as signaling
molecules, which accumulate with precise spatial
localization and whose levels are responsive to changes
in hormonal and environmental signals. This section
highlights examples of where ROS changes have been
examined building on the examples shown in Figure 1.
Localized ROS synthesis is an essential feature of
flowering plant reproduction. ROS accumulate in pollen
grains at the future site of pollen tube emergence (see
Figure 1c) and at the tip of the pollen tube during
polarized growth [51] to drive elongation [52]. Sperm
cells are transported inside pollen tubes and are deliv-
ered to the female gametophyte, located inside the
ovule, where a localized ROS burst is needed for
fertilization to occur [53,54]. In Arabidopsis, RBOHH
and RBOH] localize to the pollen tube tip [55] and are
regulated by locally elevated calcium [56]. Many
calcium-dependent protein kinases are expressed in
pollen [57], and calcium-dependent phosphorylation
can regulate RBOH activity [26]. Calcium also directly
binds to the EF hand domains of RBOHH and RBOH]
to induce ROS production [58]. These data suggest that
a positive feedback loop occurs in which calcium acti-
vates RBOHs, leading to ROS production and activation
of calcium channels that results in an increase in cyto-
solic calcium to drive tip growth [56].

Once the pollen tube elongates and reaches the ovule,
ROS is required for tube rupture and subsequent sperm
release [53]. The FERONIA (FER) gene encodes a
plasma membrane-localized TOR-like kinase that in-
teracts with guanine nucleotide exchange factors that
activate Rho of Plants (ROP) GTPases that act as mo-
lecular switches in signaling pathways [59,60]. FER and
RBOH activity are both required for localized ROS
production at the entrance of the female gametophyte
to facilitate pollen tube rupture and sperm release
during fertilization [53]. Consistent with this
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biochemical function, the Arabidopsis feromia (fer)
mutant has impaired fertility due to failed pollen tube
rupture, decreasing fertilization rates [61,62].

Another source of tip-localized ROS in pollen tubes is
polyamine oxidases, which use polyamines as a substrate
to produce H,0; [52,63]. Polyamine biosynthesis genes
and polyamine oxidases are expressed in pollen tubes
during pollen tube germination and elongation [63—65].
The polyamine, spermine, localizes to the pollen tube
tip and when polyamine synthesis is chemically inhibi-
ted, pollen grains fail to germinate [66]. The ABC
transporter, ABCG28, is also required for pollen tube
elongation and ROS accumulation at the pollen tube tip.
The abcgZ8 null mutant is male sterile and has pollen
tubes that have altered ROS accumulation, no tip-
focused spermine localization, and fail to elongate
[63]. Ectopic expression of ABCG28 restored polyamine
and ROS accumulation and subsequent tip growth,
supporting the hypothesis that ABCG28 facilitates ve-
sicular trafficking of polyamines to the growing pollen
tube tip [63].

Hormone signaling is a key driver of development that is
necessary for plants to adequately respond to their
changing environmental conditions. Hormones increase
ROS in precise locations in roots to modify root devel-
opment. RH are tip growing cells, like pollen tubes, but
they differentiate from the root epidermis and ROS
drives both their initiation (as shown in Figure 1a) [33]
and elongation [67]. In Arabidopsis, RH form in an
alternating pattern between hair cells, or trichoblasts,
and nonhair cells, or atrichoblasts [68]. The levels of
hydrogen peroxide are higher in the hair cells than
nonhair cells (as shown in Figure 1a) [33], and accu-
mulation at the tip of the growing hair cell is consistent
with ROS driving RH formation and elongation [69].
Like pollen tubes, trichoblasts switch from cell elonga-
tion to polarized tip growth via localization of the small
G-protein ROP to the site of RH initiation [70]. There
is a sequential accumulation of specific ROPs and gua-
nine nucleotide exchange factors at this site to drive RH
initiation and elongation [71]. RBOH-induced ROS
synthesis is required for polarized RH elongation, and
RBOHC localization to the tip is dependent on ROP
signaling [72]. The roor hair defective? (rhd2/rbokc)
mutant has impaired RH initiation [33] and forms short
bulbous RH that fail to elongate [32] due to the
decreased ROS localization at the tip of RH.

Both auxin and ethylene increase RH initiation and
clongation with recent evidence suggesting PRX and
RBOHSs participate in hormone-induced RH initiation
and elongation [30,31,33]. Elevated auxin leads to
activation of several auxin response factors and the RH-
specific transcription factor, RSLL4. RSL4 directly regu-
lates the expression of genes encoding PRX and
RBOHs, which leads to ROS synthesis and polar RH
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growth [30]. A mutant identified as 74d2-6, with a defect
in the RBOHC gene, had decreased ROS localization at
the tip of RH, and decreased H,O; synthesis after
treatments that elevate auxin, as shown in Figure 1 [32].
This mutant has both a defect in RH elongation [32]
and RH initiation [33]. Ethylene signaling has also been
shown to induce ROS accumulation and RH initiation
[31], as shown in Figure 1a. Compared to Col-0, the null
mutants prx44-2 and r4d2-6 had decreased RH initiation,
elongation, and H,;O;, accumulation when ethylene was
elevated by treatment with the ethylene precursor, 1-
aminocyclopropane-1-carboyxlic acid [31].

ROS is implicated in the differentiation of cells in the
root apex, and the subsequent developmental progres-
sion of those cells to allow root elongation [7]. Superox-
ide and hydrogen peroxide gradients can be seen
throughout the primary root, starting from the root tip
[73]. Between the meristematic and elongation zone of
the root, the transcription factor UPBEAT1 (UBP1)
regulates ROS homeostasis by repressing PRX in the
elongation zone [74]. RBOHD and RBOHF produce
ROS in response to ABA signaling, which results in
decreased auxin sensitivity and a shorter primary root
[34]. A recent study also reported impaired primary root
growth in der2-9, a mutant defective in brassinosteroid
synthesis [75]. However, this mutant showed a signifi-
cant increase in ethylene synthesis. Along with a hyper-
accumulation of ethylene, this mutant had significantly
higher superoxide accumulation. Superoxide levels in
der2-9/rbohD and det2-9/rbohD/F mutants were comparable
to det2-9, suggesting that RBOHs are not responsible for
the increased ROS seen in this mutant. However, when
broad spectrum PPX inhibitors were applied, @er9-2 root
length was significantly increased and superoxide accu-
mulation was reduced. These results suggest that bras-
sinosteroid inhibits ethylene and superoxide synthesis via
the peroxidase pathway, which leads to regulate primary
root growth [75].

ROS signaling is also involved in cell wall lignification of
endodermal cells that define the Casparian strip, which
acts as a diffusion barrier [76]. Lignin is generated by
the coupling of monolignols, which are oxidized by
apoplastic PRX [77]. RBOHF is also required for the
localized formation of lignin in the root [78]. Finally,
recent evidence has indicated that the SGNI1 kinase
regulates Casparian strip formation via phosphorylation
of RBOHs leading to a local increase in ROS [79].

The formation of LR is also defined by both ROS syn-
thesis and scavenging. LR develop from pericycle cells
within the primary root that form LR primordia (LRP),
which then elongate, resulting in a branching root
system that allows for enhanced plant stability and
maximal water and nutrient uptake [80].Using genetic
approaches one study reported that RBOHD and
RBOHF were expressed in the vascular cylinder and

LRP, and that 7bokdjf null mutants had more emerged
LR than wild type. These mutants displayed decreased
signal from the general ROS sensors, CM 2,7-dihy-
drodichlorofluorescein diacetate (CM H2DCFDA), and
3,3-diaminobenzidine (DAB) staining. In contrast, the
signal from dihydroethidium (DHE), a superoxide
sensor, increased. This study also reported that in the
rbohd/f null mutant treatment with auxin did not in-
crease, LR formation as it did in wild-type plants.
Together these results suggested that RBOHD and
RBOHF negatively modulate LR development by
inducing superoxide production in an auxin-
independent manner [36]. However, another study re-
ported a positive role of RBOHs in LLR formation [35].
This second study reported that RBOHA, RBOHC, and
RBOHE were strongly expressed in the endodermis,
cortex, and epidermal cells overlying LRP [35] and that
an overexpression construct containing RBOHD targe-
ted to the LRP promoted LR emergence. The authors
suggested that RBOH-induced ROS production facili-
tates LR formation by promoting cell wall remodel-
ing [35].

Along with RBOHs, class I11 peroxidase (PRX, which are
also abbreviated PER by some researchers) also play
roles in hormone-induced LR development and have
also been implicated in root branching. One study found
that genes encoding PRX were highly represented in an
LR-specific transcriptomic dataset [48]. Chemical ap-
proaches found that inhibition of PPX activity signifi-
cantly reduced the number of emerged LLR and found
that null mutants, per7-1 and per57-1, had significantly
reduced numbers of emerged LLR and lower LR density
[48]. However, the role of PRX activity was found to be
independent of auxin signaling, as treatment with the
auxin indole-3-acetic acid (IAA) increased LR emer-
gence in per7-1 and per57-1 and in PER7 overexpression
lines. Similarly, PRX44 is increased in expression after 1-
aminocyclopropane-1-carboyxlic acid treatment and
prx44 mutants have reduced ROS in RH and form fewer
RH than Col-0 [31].

The ability of plants to close stomata in response to ABA
is tightly regulated by ROS homeostasis within the guard
cells that flank the stomatal pore [27]. In both tomato
and Arabidopsis, ABA rapidly induces ROS production in
guard cells to facilitate stomatal closure [81—83], with
increases in H,O; visualized by the hydrogen peroxide
selective chemical probe peroxy orange 1 (PO1). ABA
signaling [82], in response to drought or other stressors,
results in increased RBOH phosphorylation followed by a
transient ROS burst, then elevated calcium influx,
leading to the subsequent loss of water and guard cell
turgor pressure [84]. ABA-induced ROS production and
stomatal closure were both impaired in 70o/f and rbokd|f
null mutants [29] as well as in plants treated with RBOH
inhibitors [82]. However, treatment with exogenous
H;0, was able to close stomata in the 7bo/kd/f double
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mutant, suggesting RBOH-dependent ROS production
is required for ABA-induced stomatal closure [29]. Guard
cell ABA response has also been shown to be dependent
on a tight balance between ROS synthesis and ROS
scavenging by cellular antioxidant machinery [82,83],
which will be discussed below.

Antioxidant systems and specialized
metabolites keep ROS in check

For ROS to precisely regulate cell signaling pathways
without resulting in deleterious side effects, cells are
equipped with systems to prevent ROS from reaching
levels sufficient to irreversibly oxidize macromolecules.
There are many small molecule and enzymatic antioxi-
dant systems that are conserved across the plant and
animal kingdoms [1], but plants have also evolved a
number of unique mechanisms to maintain ROS ho-
meostasis. The most visible of these are specialized
metabolites with potent antioxidant activity, with me-
tabolites such as the colored anthocyanins and carot-
enoid pigments protecting plants from excess ROS [85].
What is particularly striking about these specialized
metabolites is that the enzymes that synthesize them
are often highly regulated so that their biosynthetic
machinery is controlled by signaling pathways that may
also produce ROS [86] and their localization can define
the developmental positioning of ROS accumulation to
drive developmental responses [33]. Consistent with
these important roles, mutant plants deficient in these
metabolites show altered development, and defects in
signaling, as detailed below, as well as hypersensitivity to
stress induced ROS [13,51,87].

The role of small molecule antioxidants and conserved
enzymes in maintaining ROS balance has been exten-
sively studied and reviewed [16]. In a few cases, these
are tied to hormonal and developmental phenotypes.
The small molecule glutathione (GSH) is a tripeptide
that has a reactive sulfur group that can accept and
donate electrons, which is present at very high levels
(>1 mM) in most eukaryotic cells [14]. The oxidation of
GSH is facilitated by several enzymes, including gluta-
redoxins, while it can be returned to a reduced state by
glutathione reductase in order to keep the majority of
the glutathione in cells reduced and available to buffer
ROS increases [14]. There is evidence for the involve-
ment of GSH in auxin-mediated primary and LR
development [88]. Chemical and genetic approaches
showed that plants deficient in GSH synthesis had
altered ROS homeostasis and exhibited defects in pri-
mary root length, LR formation, and auxin transport
[89,90]. GSH deficiency also increased auxin sensitivity
by inhibiting ubiquitination and degradation of the Aux/
IAA proteins and therefore preventing subsequent
transcriptional activation of auxin-response genes. In
contrast, a mutant in the gene encoding glutaredoxin
(GRX27) had impaired auxin synthesis and signaling
[89,91]. This work suggests that GSH-auxin crosstalk
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plays a role in the modulation of root architecture [88].
Other heme peroxidases that are present in the plant
cell and are involved in hydrogen peroxide scavenging
include ascorbate peroxidase and catalase [41]. These
enzymes are involved in removing ROS produced by
metabolism or environmental stimuli, such as pathogen
attack [92,93], but their ties to signaling have received
limited study.

Several classes of plant-specialized metabolites have
been shown to act as antioxidants to prevent ROS from
reaching damaging levels, with important roles docu-
mented for these molecules in managing stress-induced
ROS [13], and more limited study of the function of
these metabolites in modulating signaling induced ROS
[94,95]. Specialized metabolites with antioxidants ac-
tivity include carotenoids, ascorbate, tocochromanols,
and flavonoids, with details on their structure and
function and role in protecting plants from stress were
summarized previously [12].

The role of flavonoids specialized metabolites in con-
trolling signaling and developmental responses is the
most studied. The flavonoid family contains multiple
subgroups including flavonols, flavones, flavan-3-ols,
flavanones, and anthocyanins [96]. The anthocyanin end
products are purple, magenta, or blue allowing visual
observation of their accumulation patterns, while a
specific fluorescent dye can be used to monitor patterns
of flavonol accumulation [33], allowing observation of
changes during developmental, signaling, and stress re-
sponses. The biosynthetic pathway for these molecules
is well characterized and in several species, mutants in
genes encoding each biosynthetic enzyme have allowed
dissection of the function of specific intermediates in
signaling and development [95]. Additionally, multiple
studies have demonstrated that the genes encoding the
pathway enzymes are highly regulated in response to
hormones and stresses to balance the amount of ROS
produced by these signals [86].

The role of specific flavonols in regulating ROS and root
development is well characterized in Arabidopsis. Null
mutants in the first step of flavonol biosynthesis result
in increases in both LR and RH formation [33,85]. As
the flavonol biosynthetic pathway is encoded by single
genes at each step and null mutations in these genes are
available for all enzymes, the specific flavonols that
control these developmental responses were identified.
Quercetin is the flavonol that reduces RH initiation
[33], while LR initiation is limited by synthesis of
kaempferol [85]. When the accumulation of ROS is
examined in these flavonol deficient mutants, there are
increases in ROS in RH and LRP (as shown in
Figure 1d) that are appropriately positioned to drive
development [33,85]. Using dyes that monitor flavonol
accumulation patterns and GFP fusions to pathway en-
zymes, the localization of flavonols indicates that they
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are at low levels in epidermal tissues that give rise to
RH, where ROS is at high levels, while flavonols accu-
mulate at high levels in the cortical layer below the
epidermis, where ROS is kept low [33]. This pattern is
opposite to the levels of RBOHC, which is expressed at
high levels in RH-forming cells of the epidermis to drive
ROS synthesis and at low levels in more internal tissues
[12]. Therefore, the balance of ROS synthesis and
scavenging allows ROS-dependent tip growth of RH but
limits ROS accumulation at internal tissues.

Flavonols accumulate at high levels in guard cells where
they modulate ABA-dependent ROS accumulation but
are at low levels in surrounding pavement cells [82,83].
Mutants in tomato and Arabidopsis that have impaired
flavonol biosynthesis have higher ROS in guard cells and
show enhanced ABA dependent stomatal closure
[82,83]. Signals that increase flavonol synthesis, such as
elevated levels of ethylene, reduce the ABA-dependent
ROS synthesis, and reduce stomatal closure, demon-
strating complex hormonal loops in which flavonols and
ROS can fine tune stomatal opening and gas exchange
on the surface of leaves [83].

In many species, flavonoids are essential for reproduc-
tion and modulate the levels of ROS in reproductive
tissues, which may function to prevent ROS required for
pollen tube tip growth and fertilization from reaching
damaging levels. In maize, rice, and tomato, mutations
or RNAI lines that are unable to produce flavonoids are
infertile [97—99] although mutations that abolish
flavonol synthesis in Arabidopsis have normal fertility
[100,101]. Tomato mutants that have reduced flavonol
synthesis set fewer seeds, have shorter pollen tubes, and
increased ROS accumulation [51], with rice flaonol
biosynthetic mutants exhibiting the same fertility and
ROS alterations [102]. In tomato and rice mutants with
impaired flavonols, there is also enhanced sensitivity to
heat stress with pollen germination and pollen tube
length impaired [51,102]. These data indicate that ROS
scavenging by flavonols acts as a protective mechanism
in pollen tubes with especially important roles during
acute heat stress [51].

Approaches for monitoring hormone-
induced ROS in plants

The ability to visualize changes in ROS in signaling
pathways are constantly improving due to recent ad-
vances in both chemical and genetically encoded ROS
sensors and increasing sophistication in the instrumen-
tation for measuring fluorescence changes. Changes in
ROS levels during signaling and development are most
frequently detected via chemical probes. These probes
are generally colorless or nonfluorescent, membrane
permeable compounds entering cells in their reduced
forms, with oxidation leading to changes in color or
fluorescent properties [103]. The chemical properties
and selectivity of these dyes are summarized in Table 1,

which allow them to monitor the accumulation of
different types of ROS [104,105]. CM H,;DCF-DA is
the most commonly used probe to monitor increases in
intracellular ROS accumulation, as it is oxidized by
multiple species of ROS [106]. CM H,;DCF-DA diffuses
across the plasma membrane, where it is trapped within
the cell after cleavage by cellular esterases, with oxida-
tion by intracellular ROS producing the highly fluores-
cent DCF molecule [107]. This probe has been used to
report elevated levels of ROS induced by hormonal
signals and during development including examples
described above [29,51,62,69,81,83,108,109], as shown
in Figure 1b and c. DCF’s ease of use is balanced by
limitations that include the absence of specificity for
any single ROS type, its irreversibility, and its sensitivity
to photo-oxidation during visualization [110].

The specific detection of H,O, and O3 are of particular
interest due to their crucial function in plant signal
transduction cascades and imaging of their accumulation
with fluorescent dyes and reporters visualized by
confocal microscopy can review precise patterns of
accumulation of ROS [41,111]. Colorimetric indicators
such as DAB and nitroblue tetrazolium have been used
to detect H,O; and superoxide, respectively, in response
to environmental stressors [112]. However, these his-
tochemical techniques have multiple disadvantages
including low sensitivity, limited specificity, and lengthy,
destructive protocols. These limitations have led to the
increasing use of more sensitive, less destructive
fluorescence-based methods.

Hydrogen peroxide accumulation can be detected by
PO1, which is a boronate-based probe, which becomes
fluorescent upon irreversible H,O,-dependent oxida-
tion of the boronate leaving group [113], as shown in
Figure 1a and c. PO1 has a bright fluorescent signal,
displays increased sensitivity compared to DAB and is
cell permeable to detect intracellular H,O,. Amplex red
is a noncell permeable chemical probe that reacts with
H;0;, in the presence of horseradish peroxidase, to
yield the fluorescent product resorufin [114]. This
probe is sensitive to small changes in hydrogen peroxide
and has been used to qualitatively monitor extracellular
H;0O; in plant tissues such as roots and leaves [104,115].
Superoxide in plants has been detected using DHE and
its mitochondrial-targeted version, MitoSOX, which are
cell-permeable fluorescent probes that form the fluo-
rescent  product  2-hydroxyethidium  (2-OH-E™)
following reaction with superoxide [85,109,116,117], as
shown in Figure 1d. However, DHE is also able to react
with other oxidants to form the ethidium cation, which
is also highly fluorescent [118]. These two products can
be differentiated through HPLC to quantify the
superoxide-modified DHE molecule [118].

Although the use of chemical ROS probes has provided
significant insight into ROS signaling in plants,
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Table 1

Methodologies for ROS detection in plants.

Type of detection Name Detects Limitations Subcellular localization Examples of
method use in plants
Fluorescent CM H,DCF-DA General increases in ROS Irreversible, nonspecific, potential for Intracellular [51,83,85]
chemical probe Chloromethyl 2/,7’- accumulation photooxidation [110] Nontargeted
dichlorodihydro-fluorescein
diacetate
OxyBurst Green General increases in ROS Irreversible, nonspecific, potential for Extracellular [69]
H>HFF-BSA Dihydro- accumulation photooxidation [69,110]
2',4,5,6,7,7'-hexafluoro-
fluorescein
BES H,0,-Ac 3'-O-Acetyl-6'- H>0, Irreversible, slow reactivity with HoO, [104] Intracellular [132]
O-Pentafluoro- Nontargeted
benzenesulfonyl
2'-7'-difluoro-fluorescein
Amplex red H>0o Irreversible, fluorescent product can be Extracellular [109,133]
affected by pH, sufficient HRP required,
potential for photooxidation [104]
PO1 H>0, Irreversible, low efficiency of H,O, detection Intracellular [33,82]
Peroxy orange1 [104] Nontargeted
DHE Os Irreversible, can react with multiple ROS Intracellular [85]
Dihydroethidium types, may require more analytical methods Nontargeted
for quantitation of O;~ [104,118]
MitoSOX O Irreversible, can react with multiple ROS Mitochondria [135]
DHE covalently attached to types, reaction products may diffuse to
triphenyl phosphonium nucleus [134]
Genetically Zat12p-ROS Expression of the ROS Non-selective for a particular type of ROS Intracellular [119]
encoded regulated transcription [119] Nontargeted
biosensor factor Zat12
roGFP1/2 Glutathione redox potential Not selective for a particular ROS type, Cytosolic-roGFP2 [121]
measurements of reductive shifts in Mitochondrial-roGFP2 [121]
reducing environments or oxidative shifts in Plastid-roGFP2 [137]
oxidizing environments may be unreliable Peroxisomal-roGFP1 [122]
[136] ER-roGFP2 [138]
roGFP2-Orp1 H>0o Slower reaction time compared to HyPer Cytosolic-roGFP2-Orp1 (visible [10]
probes [11] in nucleus)
Mitochondrial- roGFP2-Orp1 [10]
Plastid- roGFP2-Orp1 [139]
HyPer1/2 H>0o Fluctuations in pH can skew interpretation Cytosolic-HyPer [23]
[140] Peroxisomal-HyPer [141]
Nuclear-HyPer2 [142]
Chloroplast stroma-HyPer2 [142]
HyPer7 H>0o May lack efficient cytosolic reduction Cytosolic-HyPer7 [11]
mechanism [11]
Colorimetric DAB H>0, Irreversible, long incubation time [143] Non-targeted [144]
orobe 3, 3'-diamino benzidine
NBT 05~ Irreversible, can react with O, to form further Non-targeted [146]

Nitroblue tetrazolium

Oy [145]
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genetically encoded biosensors that exhibit oxidation-
dependent fluorescence changes in vivo have the po-
tential for measuring dynamic responses with fewer
technical limitations than chemical dyes. Genetically
encoded sensors can employ different mechanisms to
detect redox state, such as monitoring expression of a
reporter gene fused to a redox-responsive gene [119],
though this section will focus on two fluorescent protein-
based biosensors. Redox-sensitive green fluorescent
proteins (roGFP) were developed through the intro-
duction of a pair of cysteines in adjacent [-strands
proximate to the GFP chromophore [120]. Sulfenic acid
formation at one of these residues results in disulfide
formation between the two cysteines, causing a confor-
mational change that alters the optical properties of the
fluorophore. This provides a ratiometric readout that
serves as an internal control and bypasses issues of dif-
ferential dye uptake that may accompany the use of
chemical dyes in certain contexts [107]. RoGFP has been
used in a variety of plant tissues to monitor glutathione
redox potential [121—123], but its limited selectivity for
a particular ROS type and relatively slow response times
compared to other sensors have led to improvements to
this reporter. A new variant in which roGFP2 was fused to
the yeast peroxidase Orp1 (also named GPX3) [124], has
recently been transformed into Arabidopsis [10]. In the
presence of HyO,, Orpl is oxidized to rapidly form an
intramolecular disulfide bond between two adjacent

cysteine residues, which is then efficiently transferred to
roGFP2 via thiol—disulfide exchange [124], which is
shown in Figure 3.

RoGFP2-Orpl is selective for H;O;, insensitive to
changes in pH over a physiological range of pHs and can
be reduced through the glutaredoxin/glutathione/gluta-
thione reductase system, which allows for critical tem-
poral measurement of changes in redox state in response
to a stimulus [10]. Genetically encoded sensors are
limited to reporting ROS accumulation only in the sub-
cellular compartment in which they are targeted, but an
expanded set of Arabidopsis lines with roGFP2-Orpl
targeted to the cytosol, mitochondria [10], and chloro-
plasts [11] are now available, reducing that limitation.
Introduction of these sensors into genotypes with mu-
tations in hormone signaling and redox-regulating ma-
chinery will provide new insight into regulation of ROS
signaling in plants.

Another major class of ROS detecting genetically
encoded sensors is the HyPer family. HyPer sensors
consist of the H,O;-sensing domain from the bacterial
transcription factor OxyR attached to a circularly
permuted yellow fluorescent protein (cpYFP) [125].
Early HyPer variants have been used to monitor H;O; in
tissues including pollen [53], guard cells [23], and roots
[126]. However, in contrast to roGFP2, cpYFP is highly

Figure 3
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roGFP2-Orp1 is a genetically encoded ratiometric bioreporter for H,O,, (a) Schematic detailing the biochemical mechanism of roGFP2-Orp1
oxidation by H,O, and resulting changes in fluorescence [10] Created with Biorender.com.(b) Representative micrographs of guard cells from individual
excitation channels as well as ratiometric images following reduction with DTT or oxidation with H>O, to illustrate the properties of the sensor. Fully
reduced roGFP2 displays high signal intensity after excitation with the 488 nm laser line (magenta), while low-signal intensity excitation with the 405 nm
laser lines yields low signal intensity (cyan). As roGFP2-Orp1 becomes fully oxidized, excitation at 405 nm results in increased emission intensity, while
excitation with the 488 nm laser results in decreased emission intensity than when it is fully reduced. Ratiometric images were generated using the Redox
Ratio Analysis software [131] to display fluorescence ratios calculated from the GFP fluorescence images excited at 488 nm and 405 nm.
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sensitive to variations in pH [127]. The more recent
HyPer7 variant displays increased sensitivity and dy-
namic range compared to roGFP2-Orpl and exhibits a
ratiometric readout that is largely unaltered by changes
in pH although currently it is only targeted to the
cytosol [11]. These genetically encoded biosensors have
outstanding potential for monitoring the changes in
ROS in living cells with temporal and spatial dynamics
not previously possible.

Conclusions and future prospects

It is now evident that the concentrations of ROS change
across development and in response to hormone and
stress signals. Insight into the mechanisms that control
the developmental localization and hormonal regulation
of ROS-producing enzymes has enhanced our under-
standing of when ROS production can drive plant
growth and development. Insight into how localized
increases in hydrogen peroxide leads to reversible
oxidation of specific cysteines in target proteins to
change their activity is essential to understand the
mechanisms of ROS signaling in plants. The improve-
ment in genetically encoded ROS sensors that are able
to monitor changes in H,O, within distinct subcellular
compartments will allow for a more precise under-
standing of when and where ROS changes are induced
by hormonal and developmental signals. Equivalently
important to productive ROS signaling are mechanisms
to prevent ROS from reaching damaging levels,
including insight into developmental and hormonal
controls of synthesis of both small molecule, enzymatic,
and specialized metabolites that are essential for main-
taining ROS homeostasis. Together these new insights
support a central role of ROS signals in plant develop-
ment and hormonal responses.
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