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Abstract—Nonvolatile memory (NVM) technologies, such as
spin-transfer torque magnetic random access memory (STT-
MRAM) and spin-orbit torque magnetic random access memory
(SOT-MRAM), have significant advantages compared to con-
ventional SRAM due to their nonvolatility, higher cell density,
and scalability features. While previous work has investigated
several architectural implications of NVM for generic applica-
tions, in this work, we present DeepNVM++, a framework to
characterize, model, and analyze NVM-based caches in GPU
architectures for deep learning (DL) applications by combining
technology-specific circuit-level models and the actual memory
behavior of various DL workloads. We present both iso-capacity
and iso-area performance and energy analysis for systems whose
last-level caches rely on conventional SRAM and emerging STT-
MRAM and SOT-MRAM technologies. In the iso-capacity case,
STT-MRAM and SOT-MRAM provide up to 3.8x and 4.7x
energy-delay product (EDP) reduction and 2.4x and 2.8x area
reduction compared to conventional SRAM, respectively. Under
iso-area assumptions, STT-MRAM and SOT-MRAM provide up
to 2x and 2.3x EDP reduction and accommodate 2.3x and 3.3x
cache capacity when compared to SRAM, respectively. We also
perform a scalability analysis and show that STT-MRAM and
SOT-MRAM achieve orders of magnitude EDP reduction when
compared to SRAM for large cache capacities. Our comprehen-
sive cross-layer framework is demonstrated on STT-/SOT-MRAM
technologies and can be used for the characterization, modeling,
and analysis of any NVM technology for last-level caches in GPUs
for DL applications.

Index Terms—Convolutional neural networks (CNNs), deep
learning (DL), deep neural networks (DNNs), GPU architectures,
magnetic random access memory (MRAM), nonvolatile memory
(NVM), spin-orbit-torque MRAM (SOT-MRAM), spin-transfer-
torque MRAM (STT-MRAM), SRAM.
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I. INTRODUCTION

VER the last decade, the performance boost achieved
Othrough CMOS scaling has plateaued, necessitating
sophisticated computer architecture solutions to gain higher
performance in computing systems while maintaining a feasi-
ble power density. These objectives, however, are concurrently
challenged by the limitations of the performance of memory
resources [1]. In contrast to the initial insight of Dennard on
power density [2], deep CMOS scaling has exacerbated static
power consumption, causing the heat density of ICs to reach
catastrophic levels unless properly addressed [3]—[5].

As computers suffer from memory and power-related limi-
tations, the demand for data-intensive applications has been
on the rise. With the increasing data deluge and recent
improvements in GPU architectures, deep neural networks
(DNNs) have achieved remarkable success in various tasks,
such as image recognition [6], [7], object detection [8],
and chip placement [9] by utilizing inherent massive paral-
lelism of GPU platforms. However, DNN workloads continue
to have large memory footprints and significant computa-
tional requirements to achieve higher accuracy. Thus, DNN
workloads exacerbate the memory bottleneck which degrades
the overall performance of the system. To this end, while
deep learning (DL) practitioners focus on model compression
techniques [10]-[12], system architects investigate hardware
architectures to overcome the memory bottleneck problem and
improve the overall system performance [13]-[20]. We note
the current trend of GPU architectures is toward increasing
last-level cache capacity as shown in Fig. 1. Our analysis
shows that the conventional SRAM technology incurs scal-
ability problems as far as power, performance, and area (PPA)
is concerned [19], [21]-[23]. Nonvolatile memory (NVM)
technology is one of the most promising solutions to tackle
the memory bottleneck problem for data-intensive applica-
tions [24].

However, because much of emerging NVM technology is
not available for commercial use, there is an obvious need
for a framework to perform design space exploration for these
emerging NVM technologies for DL workloads.

In this work, we present DeepNVM++-, an extended and
improved framework [17] to characterize, model, and optimize
NVM-based caches in GPU architectures for DL workloads.
Without loss of generality, we demonstrate our framework
for spin-transfer torque magnetic random access memory
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Fig. 1. L2 cache capacity in recent NVIDIA GPUs [25].

(STT-MRAM) and spin-orbit torque magnetic random access
memory (SOT-MRAM), keeping in mind that it can be used
for any NVM technology, GPU platform, or DL workload.
Our cross-layer analysis framework incorporates both circuit-
level characterization aspects and the memory behavior of
various DL workloads running on an actual GPU platform.
DeepNVM++ enables the evaluation of power, performance,
and area of NVMs when used for last-level (L2) caches
in GPUs and seeks to exploit the benefits of this emerging
technology to improve the performance of DL applications.
To perform iso-capacity analysis, we carry out extensive
memory profiling of various DL workloads for both training
and inference on existing GPU platforms. For the iso-area
analysis, existing platforms cannot be used for varying cache
sizes, so we rely on architecture-level simulation of GPUs
to quantify and better understand last-level cache capacity
and off-chip memory accesses. In both cases, our framework
automatically combines resulting memory statistics with cir-
cuit and microarchitecture-level characterization and analysis
of emerging NVM technologies to gauge their impact on DL
workloads running on future GPU-based platforms.

II. RELATED WORK AND ARTICLE CONTRIBUTIONS

Although 16 nm has become a commonplace technology
for high-end customers of foundries, an intriguing inflection
point awaits the electronics community as we approach the end
of the traditional density, power, and performance benefits of
CMOS scaling. To move beyond the computing limitations
imposed by staggering CMOS scaling trends, magnetic ran-
dom access memory (MRAM) has emerged as a promising
candidate.

The enabling technology of MRAM consists of magnetic
tunnel junction (MTJ) pillars that can store data as a resistive
state. An MTJ pillar consists of a thin oxide film sandwiched
by two ferromagnetic layers. One of these ferromagnetic lay-
ers has a fixed magnetization which serves as a reference layer.
The magnetization of the other layer can be altered by chang-
ing the direction of the current that flows through the pillar.
If the magnetization of the free layer and the reference layer
is in parallel, the device is in the low resistance state. If the
magnetization of layers is in opposite directions, the device is
in the high resistance state [26].

STT bitcells [27] use an MTJ pillar as their core storage
element and an additional access transistor to enable read and
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write operations. Although STT bitcells offer nonvolatility, low
read latency, and high endurance [28], the write current is also
high [29]-[31], which increases power consumption. To this
end, SOT bitcells have been proposed to overcome the write
current challenges by isolating the read and write paths [32].
Because the read disturbance errors are much less likely in
SOT bitcells, both read and write access devices can be tuned
in accordance with the lower current requirements [33], [34].
The read and write current requirements of STT and SOT
bitcells can have a crucial impact on the eventual MRAM
characteristics because they affect the CMOS access transis-
tors, bitcell area, and peripheral logic. Thus, a comparison of
these bitcells and the traditional SRAM merits a meticulous
analysis that takes these factors into account.

Prior work has proposed effective approaches to over-
come the shortcomings of emerging NVM technologies such
as using hybrid SRAM and NVM-based caches that utilize
the complementary features of different memory technolo-
gies [35]-[38], relaxing nonvolatility properties to reduce the
high write latency and energy [39]-[42], and implementing
cache replacement policies [43]-[45] for higher level caches,
such as L1 caches and register files. However, NVM tech-
nology appears to be a better choice for lower level caches
such as L2 or L3 caches due to its long write latency and
high cell density. Higher level L1 caches are latency-sensitive
and optimized for performance, whereas last-level caches are
capacity-sensitive and optimized for a high hit rate to reduce
off-chip memory accesses. Therefore, NVM-based caches pro-
vide a better use case for replacing SRAM in last-level caches
due to their high cell density when compared to SRAM-based
caches. To this end, we evaluate the PPA of NVM technology
when used for last-level caches in GPU platforms.

While prior work has shown the potential of NVM tech-
nologies for generic applications to some extent, there is a
need for a cross-layer analysis framework to explore the poten-
tial of NVM technologies in GPU platforms, particularly for
DL workloads. The most commonly used modeling tool for
emerging NVM technologies is NVSim [46], a circuit-level
model for performance, energy, and area estimation. However,
NVSim is not sufficient to perform a detailed cross-layer anal-
ysis for NVM technologies for DL workloads since it does
not take architecture-level analysis and application-specific
memory behavior into account. To this end, prior work has
proposed cross-layer evaluation frameworks for nontraditional
architectures such as processing-in-memory-based analog and
digital architectures [47]-[49]. However, there is still a need
for a cross-layer analysis framework to perform design space
exploration of NVM technologies for GPU architectures for
DL workloads. In this article, we incorporate NVSim with our
cross-layer modeling and optimization flow including novel
architecture-level iso-capacity and iso-area analysis flow to
perform design space exploration for conventional SRAM and
emerging NVM caches for DL workloads running on GPU
architectures. We make the following contributions.

1) Circuit-Level Bitcell Characterization: We perform
detailed circuit-level characterization combining a
commercial 16-nm CMOS technology and prominent
STT [50] and SOT [51] models from the literature to
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iterate through our framework in an end-to-end manner
to demonstrate the flexibility of DeepNVM++ for future
studies.

2) Microarchitecture-Level Cache Design Exploration: We
use NVSim [46] to perform a fair comparison between
SRAM, STT-MRAM, and SOT-MRAM by incorporating
the circuit-level models developed in 1) using 16-nm
technology and choosing the best cache configuration
for each of them.

3) Iso-Capacity Analysis: To compare the efficacy of
MRAM caches to conventional SRAM caches, we per-
form our novel iso-capacity analysis based on actual
platform profiling results for the memory behavior of
various DNNs by using the Caffe framework [52] on a
high-end NVIDIA 1080 Ti GPU (implemented in 16-nm
technology) for the ImageNet dataset [53].

4) Iso-Area Analysis: Because of their different densities,
we compare SRAM and NVM caches in an iso-area
analysis to quantify the benefits of higher density of
NVM technologies on DL workloads running on GPU
platforms. Since existing platforms do not support result-
ing iso-area cache sizes, we extend the GPGPU-Sim [54]
simulator to run DL workloads and support larger cache
capacities for STT-MRAM and SOT-MRAM.

5) Scalability Analysis: Finally, we perform a thorough
scalability analysis and compare SRAM, STT-MRAM,
and SOT-MRAM in terms of PPA to project and gauge
the efficacy of NVM and SRAM-based caches for DL
workloads as cache capacity increases.

To the best of our knowledge, putting everything together,
DeepNVM++ is the first comprehensive framework for cross-
layer characterization, modeling, and analysis of emerging
NVM technologies for DL workloads running on GPU plat-
forms. Our results show that in the iso-capacity case, STT-
MRAM and SOT-MRAM achieve up to 3.8x and 4.7x
energy-delay product (EDP) reduction and 2.4x and 2.8x
area reduction compared to SRAM baseline, respectively. In
the iso-area case, STT-MRAM and SOT-MRAM achieve up
to 2x and 2.3x EDP reduction and accommodate 2.3x and
3.3x cache capacity compared to SRAM, respectively.

The remainder of this article is organized as follows. In
Section III, we describe the details of our methodology from
circuit to microarchitecture-level characterization, modeling,
and analysis to obtain SRAM, STT-MRAM, and SOT-MRAM
cache parameters. We also detail our iso-capacity and iso-area
analysis methodology. In Section IV, we show experimental
results demonstrating the efficiency of STT-MRAM and SOT-
MRAM over the conventional SRAM for iso-capacity and
iso-area cases. Furthermore, we perform a scalability analysis
and show the PPA of SRAM, STT-MRAM, and SOT-MRAM.
Next, we discuss the implications of the results shown in this
article in Section V. Finally, Section VI concludes this article
by summarizing the results.

[II. METHODOLOGY

In this section, we present our cross-layer analysis frame-
work, as shown in Fig. 2. First, we show our detailed
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circuit-level characterization analysis using CMOS, STT, and
SOT device models (Section III-A). After developing bitcell
models, we present our microarchitecture-level cache design
methodology to obtain cache area, latency, and energy results
(Section III-B). Next, we describe our iso-capacity analysis
flow in which we gather actual memory statistics through
GPU profiling (Section III-C). Finally, we detail our iso-area
analysis in which we extend GPGPU-Sim to run DL work-
loads and support larger cache capacities for STT-MRAM and
SOT-MRAM (Section III-D).

A. Circuit-Level NVM Characterization

A vast majority of work in the literature uses simple bitcell
models [33] to assess the PPA of corresponding cache designs.
Because bitcells are the core components of the memory, the
methodology to calculate the bitcell latency, energy, and area
is crucial for accurate comparisons. To this end, we use a
commercial 16-nm bitcell design as a baseline as we model
the STT and SOT bitcells. This technology node also matches
the fabrication technology of the GPU platform that we use
to gather actual memory statistics in Section III-C.

The key bitcell parameters needed for cache modeling are
read and write currents and latency values for high-to-low
and low-to-high resistive transitions. These parameters can be
optimized by tuning the size of the access transistors. While
larger access transistors enable faster reads and writes, they
increase the energy consumption and the bitcell layout size.
The optimal sizing of the access transistor and the array archi-
tecture varies based on the bitcell type. The access transistor
sizing optimization is crucial since it impacts the eventual PPA
characteristics of the bitcell and the cache. To address the array
architecture differences between STT and SOT MRAM for a
fair comparison, we performed transient simulations.

For our simulations, we used perpendicular to the plane
STT [50] and SOT [51] models and a commercial 16-nm
FinFET model that takes post-layout effects into account. To
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TABLE I
STT-MRAM AND SOT-MRAM BITCELL PARAMETERS AFTER
DEVICE-LEVEL CHARACTERIZATION

STT-MRAM SOT-MRAM
Sense Latency (ps) 650 650
Sense Energy (pJ) 0.076 0.020

Write Latency (ps)
Write Energy (pJ)
Fin Counts

Area (normalized)

8400 (set) / 7780 (reset)
1.1 (set) / 2.2 (reset)

313 (set) / 243 (reset)

0.08 (set) / 0.08 (reset)

4 (read/write) 3 (write) + 1 (read)
0.34%* 0.29%*

*: Area is normalized with respect to the foundry SRAM bitcell

find the latency and energy parameters, we used parametrized
SPICE netlists wherein the read/write pulse widths were mod-
ulated to the point of failure. Furthermore, we swept a range
of fin counts for the access devices to find the optimal balance
between the latency, energy, and area. For the transient SPICE
simulations, we picked the FinFET models corresponding to
the worst delay and power scenarios. To calculate the bitcell
area for the 16-nm layout design rules, we used the bitcell
area formulations provided in prior work [55].

We summarize the obtained bitcell parameters in Table I.
The sensing delay is measured from wordline activation to
the point where the bitline voltage difference reaches 25 mV.
The sense energy is the integration of the power consumed
over the sensing time window. For both magnetic flavors, the
sense delay is similar; however, SOT-MRAM is more energy
efficient in terms of read operation owing to the separation
of the read/write terminals. The write latency in this context
refers to the time between the arrival of the write enable signal
to the access transistor and a complete magnetization change
for the MTJ. The write latencies for STT and SOT bitcells are
significantly different, as expected. This difference can be seen
in the energy values as well. The access device is more than
double the width of the technology minimum device in order
to enable a larger current flow to the STT bitcell, causing the
ITIR STT bitcell to occupy a larger area than the 2T1R SOT
bitcell. The isolation of the read and the write terminals in the
SOT bitcell allows for a smaller write access device. The area
values are normalized by the foundry bitcell area. We highlight
the significant area difference and demonstrate its impact on
the cache characteristics in Section III-B. We use these bitcell
parameters for energy-delay-area product (EDAP) optimized
cache design exploration as discussed in the next section.

B. Microarchitecture-Level Cache Design Exploration

In order to demonstrate the impact of using STT and SOT
bitcells in L2 caches, we use NVSim [46], a circuit-level
analysis framework that delivers energy, latency, and area
results. After developing NVSim-compatible bitcell models as
described in Section III-A, we analyzed a range of cache
capacities (1-32 MB) for all possible configurations and cache
access types to demonstrate the potential of STT-MRAM and
SOT-MRAM as the cache capacity tends to grow. Such a scal-
ability study will help in determining the benefits of switching
from conventional SRAM to NVM-based caches in future
GPU platforms as depicted by the trend in Fig. 1.

3429

Algorithm 1: EDAP-Optimal Cache Tuning Algorithm

mem € M = {SRAM, STT, SOT},
cap € C=1{1,2,4,8, 16, 32};
opt € O = {ReadLatencyv WriteLatencyv ReadEnergyv
...Writegnergy, Readppp, Writegpp, Area, Leakage};
acc € A = {Normal, Fast, Sequential};
for each mem € M do
for each cap € C do
Q0 « oo
for each opt € O do
for each acc € A do

Q <« calculate(EDAP);

if 0 < Q' then

\ 0 <0

end

end

end
TunedConfig.append(argv(Q));

end
end
return TunedConfig;

TABLE II
LATENCY, ENERGY, AND AREA RESULTS FOR SRAM, STT-MRAM, AND
SOT-MRAM CACHES FOR ISO-CAPACITY AND ISO-AREA

SRAM STT'-MRAM SOT_»MRAM
Iso-Capacity | Iso-Area | Iso-Capacity | Iso-Area

Capacity (MB) 3 3 7 3 10
Read Latency (ns) 291 2.98 4.58 3.71 6.69
Write Latency (ns) 1.53 9.31 10.06 1.38 2.47
Read Energy (n]) 0.35 0.81 0.93 0.49 0.51
Write Energy (nJ) 0.32 0.31 0.43 0.22 0.40
Leakage Power (mW) 6442 748 1706 527 1434
Area (mm?) 5.53 2.34 5.12 1.95 5.64

Algorithm 1 depicts the EDAP-optimal cache tuning algo-
rithm. Based on the optimization target used in NVSim, the
cache PPA values vary substantially. Therefore, we indepen-
dently choose the best configuration for each type of memory
technology in terms of EDAP metric to perform a fair com-
parison that encompasses all and not just one of the design
constraint dimensions.

As described in Section III-A, we use a commercial 16-nm
bitcell design. To ensure a correct analysis, we modified
the internal technology file of NVSim to the correspond-
ing 16-nm technology parameters. Next, we compare SRAM,
STT-MRAM, and SOT-MRAM for various cache capaci-
ties in terms of area, latency, and energy results. Based on
these, we determine the EDAP for the cache (as denoted by
calculate(EDAP) in Algorithm 1).

Table II shows the latency, energy, and area results that
correspond to the cache capacity of 1080 Ti GPU (3 MB)
and to the larger MRAM caches that fit into the same area
of SRAM baseline. We convert read and write latencies to
clock cycles based on 1080 Ti GPU’s clock frequency for
our calculations. For STT-MRAM and SOT-MRAM, we show
parameters for both iso-capacity and iso-area when compared
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TABLE III
CONFIGURATIONS FOR DNNS UNDER CONSIDERATION

AlexNet | GoogLeNet | VGG-16 | ResNet-18 | SqueezeNet
Top-5 error 16.4 6.7 7.3 10.71 16.4
CONV Layers 5 57 13 17 26
FC Layers 3 1 3 1 0
Total Weights 61M ™ 138M 11.8M 1.2M
Total MACs 724M 1.43G 15.5G 2G 837M

to SRAM. We use these parameters to evaluate the workload-
dependent impact of memory choices using DL workloads
with diverse structures and multiply—accumulate operations
(MAC:s) configurations.

The energy and latency benefits of STT-MRAM and SOT-
MRAM depend on the data characteristics of a given work-
load. To account for differences in the data-related read/write
characteristics, we used a simple model where we multiply the
number of read and write transactions by the corresponding
latency and energy values for those operations.

Implications in Architecture-Level Analysis: To gauge the
benefits of using the MRAM technology, we consider two
scenarios: 1) first, one could replace the SRAM cache in a
GPU with the same capacity MRAM with a smaller area and
2) alternatively, by using the same area dedicated to the cache,
one can increase the on-chip cache capacity, thereby reducing
costly DRAM traffic. We analyze and discuss both approaches
through platform profiling results for iso-capacity scenario and
a set of architecture-level simulations for iso-area scenario.

C. Architecture-Level Iso-Capacity Analysis

As the platform target to demonstrate our work, we use
a high-end 1080 Ti GPU which is fabricated in a commer-
cial 16-nm technology node that also matches our bitcell and
cache models. We use the Caffe [52] framework to run various
DNN:s, such as AlexNet [56], GoogLeNet [57], VGG-16 [58],
ResNet-18 [59], and SqueezeNet [60] for the ImageNet [53]
dataset as shown in Table III. Our analysis is generalizable
to other types of neural network architectures since we cover
a wide range of DNN configurations with various workload
characteristics. We use the NVIDIA profiler [61] to obtain the
device memory and L2 cache read and write transactions to
better understand both on-chip and off-chip memory behavior
of DNN workloads.

D. Architecture-Level Iso-Area Analysis

Since the iso-area larger capacities enabled by higher
density NVM implementations do not exist in existing plat-
forms, we use GPGPU-Sim [54] to explore the power and
performance implications of having these larger L2 caches
in GPU architectures for DNN workloads. For comparison,
we model the high-end GTX 1080 Ti GPU. The configura-
tions for 1080 Ti GPU are shown in Table IV. We extend the
GPGPU-Sim simulator to support the cache capacity of GTX
1080 Ti GPU. This GPU is built using a commercial 16-nm
technology node that matches our bitcell and cache models.
In particular, for GPGPU-Sim compatibility, we set L2 cache
capacity to 3 MB. We use this capacity for our analysis in the
remainder of this article. We measure the number of DRAM
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TABLE IV
GPGPU-S1M CONFIGURATIONS

GTX 1080 Ti
Number of Cores 28
Number of Threads/Core 2048
Number of Registers/Core 65536
48 KB, 128 B line,
L1 Data Cache 6-way LRU

128 KB/channel, 128 B
line, 16-way LRU
8 KB, 128 B line,

L2 Data Cache

Instruction Cache

16-way LRU
Number of 4
Schedulers / Core
Frequency (MHz): 1481, 2962
Core, Interconnect, 1481, 2750

L2, Memory

transactions to quantify and better understand the relationship
between larger L2 caches and the overall system power and
performance. As a DNN benchmark, we use AlexNet [56]
with the ImageNet [53] dataset which is provided by the
DarkNet [62] framework. We extend the DarkNet source code
to enable DL workloads on GPGPU-Sim.

IV. RESULTS

We analyze STT-MRAM and SOT-MRAM in terms of
energy, performance, and area results by using GPU pro-
filing results for both iso-capacity and iso-area cases in
Sections IV-A and IV-B, respectively. In Section IV-B, we use
iso-area cache parameters as shown in Table II and we use
GPGPU-Sim to quantify the DRAM access reduction in the
iso-area case at larger cache capacities. We include DRAM
accesses in our performance and energy calculations for iso-
area case. In Section IV-C, we perform a scalability analysis
to project the implications of the current GPU trend shown in
Fig. 1 on performance and energy results.

A. Performance and Energy Results for Iso-Capacity

By combining the actual technology-dependent latency and
energy metrics from Table II, we can perform a performance
and energy analysis for replacing conventional SRAM caches
with MRAM caches. We choose batch size 4 for inference
and 64 for training for our workloads as it is typically used
in related work [63].

Fig. 3 shows normalized dynamic energy and leakage
energy breakdown results for 1080 Ti GPU based on actual
platform memory statistics and our MRAM cache models at
the same cache capacity. We use our cache parameters and
profiling results to calculate results for various DNNs for both
inference and training workloads.

In Fig. 3, we observe that STT-MRAM has 2.1x dynamic
energy whereas SOT-MRAM has 1.3x dynamic energy on
average when compared to SRAM baseline. Furthermore, our
results show that 83% of the total dynamic energy of SRAM
comes from read operations whereas write operations only
make for 17% of all transactions on average across all work-
loads. Our profiling results also support these findings as read
operations dominate write operations in these DL workloads.

On the other hand, Fig. 3 also shows that STT-MRAM and
SOT-MRAM provide 5.9x and 10x lower leakage energy
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on average when compared to SRAM, respectively. Based on
this result, Fig. 4 shows significant total normalized energy
reduction of STT-MRAM and SOT-MRAM when compared to
SRAM given that leakage energy dominates the total energy. In
more detail, STT-MRAM and SOT-MRAM achieve 5.1 x and
8.6x energy reduction on average across all workloads com-
pared to SRAM baseline, respectively, due to their significantly
low leakage energy. Moreover, Fig. 4 shows that STT-MRAM
and SOT-MRAM provide up to 3.8 x and 4.7x EDP reduction
and 2.4x and 2.8x area reduction, respectively.

Impact of Batch Size on EDP: We perform this study to
better understand the relationship between batch size and its
implications for performance and energy results of SRAM,
STT-MRAM, and SOT-MRAM. Fig. 5 shows the impact of
batch size on EDP results for AlexNet during training and
inference stages based on 1080 Ti memory profiling statistics.
We show that batch size significantly affects the improvement
of STT-MRAM and SOT-MRAM for training. For training,
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Fig. 6. Simulation results for the reduction in the total number of DRAM

accesses in percentage (%).

STT-MRAM provides 2.3x to 4.6x EDP reduction as batch
size increases. On the other hand, SOT-MRAM provides 7.2 x
to 7.6x EDP reduction when compared to the SRAM base-
line. For inference, STT-MRAM and SOT-MRAM achieve
4.1x to 5.4x and 7.1x to 7.3x EDP reduction, respectively.
These results also confirm the different workload character-
istics of training and inference. STT-MRAM provides higher
EDP reduction for training workloads as batch size increases.
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Iso-area EDP results for STT-MRAM (7 MB) and SOT-MRAM (10 MB) (lower is better) normalized with respect to SRAM-based caches for

inference (/) and training (7) stages without (left chart) and with (right chart) DRAM energy and latency.

On the other hand, SOT-MRAM follows the same pattern for
inference workloads due to their different access characteris-
tics as shown in Table II. We observe that training workloads
become more read dominant whereas inference workloads
have a lower read/write ratio as batch size increases.

B. Performance and Energy Results for Iso-Area

As in the iso-capacity study, for iso-area analysis, we use
a batch size 4 for inference and 64 for training. Fig. 6 shows
the reduction in the total number of DRAM accesses as L2
cache capacity increases. We use GPGPU-Sim and start with
the baseline configuration which is 3 MB for GTX 1080 Ti
and double its cache capacity up to 24 MB to quantify the per-
centage of DRAM access reduction for STT-MRAM and SOT-
MRAM at larger cache capacities. Fig. 6 shows that replacing
SRAM with STT-MRAM and SOT-MRAM equivalents that
fit into the same area significantly reduces the total number
of DRAM transactions by 14.6% and 19.8%, respectively for
1080 Ti GPU.

Fig. 7 shows normalized dynamic energy and leakage
energy breakdown results for 1080 Ti GPU based on actual
platform memory statistics and our MRAM cache models at
the same area. We use our iso-area cache parameters in which
STT-MRAM (7 MB) and SOT-MRAM (10 MB) have larger
cache capacities for the same area budget with SRAM. We
use these cache parameters and profiling results to calcu-
late results for various DNNs for both inference and training
workloads.

In Fig. 7, we observe that STT-MRAM has 2.5x dynamic
energy whereas SOT-MRAM has 1.4x dynamic energy on

average when compared to SRAM baseline. On the other hand,
Fig. 7 also shows that STT-MRAM and SOT-MRAM pro-
vide 2.1x and 2.3x lower leakage energy on average when
compared to SRAM, respectively. Based on this result, STT-
MRAM and SOT-MRAM achieve 2x and 2.3x lower energy
when compared to SRAM.

Furthermore, Fig. 8 shows that STT-MRAM and SOT-
MRAM provide 1.1x and 1.2x EDP reduction and 2.3x and
3.3x larger cache capacity on average across all workloads
when compared to SRAM and off-chip DRAM accesses are
not included in the calculations, respectively. When DRAM
accesses are included in determining EDP, as shown in Fig. §,
STT-MRAM and SOT-MRAM provide 2x and 2.3x EDP
reduction on average across all workloads when compared to
SRAM, respectively.

We show that although the cache latency and energy
results for STT-MRAM and SOT-MRAM do not outper-
form SRAM results at larger cache capacities as shown in
Table II, they do outperform SRAM when costly off-chip
DRAM accesses are also considered in EDP calculations.
To this end, Chen et al. [13] showed that the normalized
energy cost of a global buffer access relative to a MAC
operation is 6x, whereas a DRAM access is 200x for a
machine learning hardware accelerator. By the same token,
the higher cell density of NVM can be exploited to shift the
memory traffic from DRAM to L2 cache to further improve the
power and performance of the overall system. This approach
can dramatically reduce the total number of costly DRAM
accesses and reduce data movement, which is a daunting
impediment for achieving energy-efficient machine learning
hardware [13], [63]-[66].
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Fig. 9. Cache capacity scaling results for SRAM, STT-MRAM, and SOT-MRAM for (a) area, (b) latency, and (c) energy metrics.

C. Scalability Analysis

As shown in Fig. 1, the current trend for NVIDIA GPUs is
toward increasing L2 size with each new GPU generation. The
most recent high-end NVIDIA GPUs have even up to 6-MB
L2 cache to further improve the performance of the system by
reducing costly off-chip memory accesses. However, SRAM
has a scalability problem due to its high leakage and large
bitcell area, which poses a significant challenge to further con-
tinue the current GPU trend. To this end, NVM technologies
come to the rescue of future GPU architectures since their
PPA scale better as cache capacity increases. Therefore, there
is a need for a scalability analysis to project and quantify
performance and energy gains that can be achieved by using
more scalable memory solutions.

To this end, we perform a scalability analysis by first
comparing SRAM, STT-MRAM, and SOT-MRAM for var-
ious cache capacities in terms of area, latency, energy
results following the DeepNVM++ framework methodology
as described in Section III. Therefore, each memory technol-
ogy is optimized for EDAP objective at each cache capacity
independently to make a fair comparison among SRAM,
STT-MRAM, and SOT-MRAM. Next, we evaluate and show
how NVM-based caches behave in terms of performance and
energy when compared to conventional SRAM-based caches
for DL workloads in a scalability analysis.

Area: Fig. 9(a) demonstrates the impact of higher cell den-
sity of MRAMSs on the area of caches compared to SRAM.
The area difference between SRAM and the MRAM variants
grows significantly as the cache capacity increases. The main
reason for this difference comes from the bitcell area dif-
ference between SRAM and MRAMs as shown in the last
row of Table I. Particularly for deeply scaled technology
nodes wherein interconnects account for a significant por-
tion of parasitics, bigger bitcells translate to longer wires,
bigger buffers, and peripheral logic. Therefore, STT-MRAM
and SOT-MRAM caches become more area efficient when
compared to SRAM caches as cache capacity increases.

Latency: Fig. 9(b) shows that for capacities smaller than
3 MB SRAM offers lower read latency, whereas both MRAM
variants have lower read latency than SRAM beyond 4 MB.
In terms of write latency, STT-MRAM has always the high-
est among all memory technologies due to its inherent device

characteristic. In contrast, the write latency of SOT-MRAM
becomes increasingly smaller than that of SRAM. Moreover,
the write latency of SRAM almost matches that of STT-
MRAM at 32 MB.

Energy: In terms of read access energy, Fig. 9(c) shows
that 7 MB is a break even point where SOT-MRAM becomes
more efficient than SRAM whereas STT-MRAM clearly has
the highest read energy among all memories. Regarding
write access energy, SOT-MRAM is the most efficient option
whereas SRAM consumes the most energy for a write opera-
tion beyond 3 MB.

Based on these PPA results, we perform a detailed scal-
ability analysis for SRAM, STT-MRAM, and SOT-MRAM.
In Fig. 10, we show the normalized energy, latency, and
EDP results with respect to SRAM for STT-MRAM and
SOT-MRAM for various cache capacities. As it can be seen,
STT-MRAM and SOT-MRAM provide lower energy and
latency results as cache capacity increases.

In terms of energy, STT-MRAM and SOT-MRAM provide
lower energy as cache capacity increases. Specifically, STT-
MRAM and SOT-MRAM caches achieve up to 31.2x and
36.4x energy reduction as cache capacity increases, respec-
tively. In terms of latency, STT-MRAM and SOT-MRAM have
higher latency results for cache capacities up to 4 MB, whereas
both MRAM variants have lower latency results when com-
pared to SRAM beyond that point. In more detail, SRAM
provides up to 3.2x and 2x latency reduction for small cache
capacities when compared to STT-MRAM and SOT-MRAM,
respectively. However, STT-MRAM and SOT-MRAM achieve
up to 2.1x and 2.6x latency reduction as cache capacity
increases, respectively. In terms of EDP, we show that STT-
MRAM and SOT-MRAM provide up to 65x and 95x EDP
reduction when compared to SRAM, respectively. Therefore,
we conclude that for latency-critical applications, SRAM-
based caches become a more suitable option when compared to
MRAM variants for small cache capacities whereas MRAMs
provide more energy-efficient solutions. Although SRAM
provides lower EDP results for smaller cache capacities, STT-
MRAM and SOT-MRAM outperform SRAM by orders of
magnitude for larger cache capacities due to their better PPA
scalability when compared to SRAM. These results show that
a significant portion of the overall system energy or latency
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capacities for inference (left) and training (right) stages. Error bars show standard deviation across workloads.

is saved and can be used for additional on-chip resources or
capabilities that are not available now.

V. DISCUSSION

In this section, we discuss the implications of the results
shown in this article. We also share the potential future direc-
tions to guide our community to better explore the use of
nonvolatile memories for DL workloads in different design
spaces.

Scalability is a Major Problem for SRAM: As we show in
Fig. 9 and Section IV-C, one of the key challenges for the cur-
rent GPU architectures is the scalability problem of SRAM due
to its significantly high leakage energy and large area when
compared to STT-MRAM and SOT-MRAM. We observe that
there is a current trend in GPU architectures toward increas-
ing L2 cache capacity and we show that SRAM has significant

scalability problems in terms of area, latency, and energy. We
show that STT-MRAM and SOT-MRAM have promising solu-
tions for larger cache capacities which can maintain the current
trend shown in Fig. 1 with increasing performance and energy
benefits.

Implications of Dense NVM Caches on Logic Usage:
Fig. 9(a) shows the area results for SRAM, STT-MRAM, and
SOT-MRAM for various cache capacities. We note that STT-
MRAM and SOT-MRAM provide an increasingly smaller area
than SRAM as cache capacity increases. For the same cache
capacity, STT-MRAM and SOT-MRAM provide 58% and 65%
area reduction on average, respectively. Therefore, the remain-
ing whitespace can be utilized by cramming more processing
elements, register files, or L2 cache on the die. This analysis
is left for future work.

As CMOS scaling issues limit the affordable improve-
ment of computing systems, our results from device-level
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simulations to actual GPU profiling show that MRAMs are
extremely promising candidates. Particularly, as STT-MRAM
and SOT-MRAM fabrication processes become more mature,
system-level benefits of STT-MRAM and SOT-MRAM can be
maximized, enabling faster and more energy-efficient compu-
tation.

Mobile Design Space Exploration for NVM: In this work,
we explore the GPU architecture design space to unveil the
potential of nonvolatile memories for DL workloads. Having
said that, we note that inference at the edge devices also
becomes a common practice for many service providers, such
as Google [67], Amazon [68], and Facebook [69] to improve
user experience by reducing latency and preserving the pri-
vate user data on device [70]. To this end, Wu et al. [69]
shows that the majority of mobile inference for Facebook
workloads run on mobile CPUs. Mobile platforms have various
resource constraints, such as energy, memory, and computing
capabilities. Thus, last-level caches of mobile CPUs or hard-
ware accelerators can also be replaced by STT-MRAM and
SOT-MRAM to improve performance and energy by reducing
leakage energy and costly off-chip memory accesses due to
their nonvolatility and higher cell density [71]-[74]. Therefore,
the design space exploration of STT-MRAM and SOT-MRAM
for mobile CPUs and hardware accelerators for inference
workloads merits further research.

VI. CONCLUSION

In this article, we present the first cross-layer analysis
framework to characterize, model, and analyze various NVM
technologies in GPU architectures for DL workloads. Our
novel framework can be used to further explore the feasibility
of emerging NVM technologies for DL applications for differ-
ent design choices, such as technology nodes, bitcell models,
DL workloads, cache configurations, optimization targets, and
target platforms.

Our results show that in the iso-capacity case, STT-MRAM
and SOT-MRAM provide up to 3.8x and 4.7x EDP reduc-
tion and 2.4x and 2.8x area reduction when compared to
SRAM, respectively. In the iso-area case, STI-MRAM and
SOT-MRAM achieve up to 2xand 2.3x EDP reduction and
accommodate 2.3x and 3.3x cache capacity when compared
to SRAM, respectively. Finally, we perform a scalability anal-
ysis and show that STT-MRAM and SOT-MRAM outperform
their SRAM counterpart by orders of magnitude in terms of
EDP for large cache capacities. The newly created energy or
latency slack can be used for additional on-chip resources or
capabilities that are currently not possible.
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