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Abstract. This paper provides efficient authenticated-encryption (AE)
schemes in which a ciphertext is a commitment to the key. These are
extended, at minimal additional cost, to schemes where the ciphertext
is a commitment to all encryption inputs, meaning key, nonce, associ-
ated data and message. Our primary schemes are modifications of GCM
(for basic, unique-nonce AE security) and AES-GCM-SIV (for misuse-
resistant AE security) and add both forms of commitment without any
increase in ciphertext size. We also give more generic, but somewhat
more costly, solutions.

1 Introduction

Symmetric encryption is the canonical primitive of cryptography, with which
the field is often identified in the popular mind. Over time, the primitive has
evolved. Failures of privacy-only schemes lead to the understanding that the goal
should be authenticated encryption [10, 32]. The underlying syntax, meanwhile,
has gone from randomized or counter-based [7] to nonce-based [40, 39].

Recent attacks and applications [34, 27, 3, 25, 4] motivate another evolution.
Namely, a ciphertext should be a commitment to the key, and beyond that,
possibly even to other or all the inputs to the encryption process.

In this paper we contribute definitions and new schemes for such committing
authenticated encryption. Our schemes combine efficiency, security and practi-
cality attributes that may make them attractive for inclusion in cryptographic
software libraries or for standardization.

Background. In a nonce-based symmetric encryption scheme SE, encryption
takes key K, nonce N , associated data A and message M to deterministically re-
turn a ciphertext C ← SE.Enc(K,N,A,M), with decryption recovering viaM ←
SE.Dec(K,N,A,C) [40, 39]. AE security asks for both privacy and authenticity
of the message. In its most basic form, called UNAE (Unique-Nonce AE secu-
rity) this is under the assumption that nonces are unique, meaning never reused
across encryptions [40, 39]. MRAE (Misuse-resistant AE security) is stronger,
asking in addition for best-possible security under any reuse of an encryption
nonce [41].
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A central scheme is GCM [36]. It is a government standard [23] and is used in
TLS [42]. Other standardized and widely-used schemes are XSalsa20/Poly1305
and ChaCha20/Poly1305 [17, 15, 16]. All these are UNAE-secure. AES-GCM-SIV
[43, 28] is a leading MRAE scheme poised for standardization.

For both UNAE and MRAE, proofs are the norm, but the bar is now high: not
only multi-user (mu) security [13] —reflecting that deployment settings like TLS
have millions of users— but with bounds that are good, meaning almost the same
as for the single-user setting. Dedicated analyses show that GCM has such UNAE
security [13, 35, 29], and likewise for the MRAE security of AES-GCM-SIV [20].
Henceforth when we refer to UNAE or MRAE, it means in the mu setting

Committing security. We formalize, in a systematic way, different notions of
what it means for a ciphertext C ← SE.Enc(K,N,A,M) to be a commitment.
For the purposes of this Introduction, we can confine attention to two notions,
CMT-1 and CMT-4. The primary, CMT-1 notion asks that the commitment be
to the keyK. In the game formalizing this, the adversary returns a pair ((K1, N1,
A1,M1), (K2, N2, A2,M2)) satisfying K1 6= K2, and is successful if SE.Enc(K1,
N1, A1,M1) = SE.Enc(K2, N2, A2,M2). Extending this, CMT-4 asks that the
commitment be, not just to the key, but to K,N,A,M , meaning to all the
inputs to SE.Enc. The game changes only in the requirement K1 6= K2 being
replaced by (K1, N1, A1,M1) 6= (K2, N2, A2,M2). As a mnemonic, think of the
integer ℓ in the notation CMT-ℓ as the number of inputs of SE.Enc to which we
commit.

Clearly CMT-4→ CMT-1, meaning any scheme that is CMT-4-secure is also
CMT-1-secure, and the implication is strict. (There exist CMT-1-secure schemes
that are not CMT-4-secure.)

In Section 3, we also consider CMT-3, simpler than, but equivalent to,
CMT-4; we give alternative, decryption-based formulations of all these defini-
tions but show the two equivalent for schemes that, like all the ones we con-
sider, satisfy the syntactic requirement of tidiness [38]; and finally we extend
the notions from 2-way committing security to s-way committing security for a
parameter s ≥ 2 which will enter results.

Simple counterexamples show that neither UNAE nor MRAE security im-
ply even CMT-1-security. And the gap is real: attacks from [34, 4, 27] show
that GCM, XSalsa20/Poly1305, ChaCha20/Poly1305 and OCB [40] are all CMT-1-
insecure.

Prior notions. The notion of key-committing (KC) security, asking that a
ciphertext is a commitment to the key, starts with Abdalla, Bellare and Neven
(ABN) [3], who called it robustness and studied it for PKE and IBE. Their
definitions were strengthened by Farshim, Libert, Paterson and Quaglia [24].
Now calling it key-robustness, Farshi, Orlandi and Ro̧sie (FOR) [25] bring it to
randomized symmetric encryption. Albertini, Duong, Gueron, Kölbl, Luykx and
Schmieg (ADGKLS) [4] and Len, Grubbs and Ristenpart (LGR) [34] consider
it for nonce-based symmetric encryption, giving definitions slightly weaker than
CMT-1.
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Grubbs, Lu and Ristenpart (GLR) [27] consider committing to the header
and message. CMT-4 is stronger in that it asks for the commitment to be not
just to these but also to the key and nonce. However, we do not consider or
require what GLR [27] call compact commitment.

Why commit to the key? The canonical method for password-based encryp-
tion (PKCS#5 [31]) uses a symmetric encryption scheme SE, such as GCM, as a
tool. In a surprising new attack, LGR [34] show that absence of key-committing
(KC) security in SE leads to a break of the overlying password-based encryption
scheme. This attack is circumvented if SE is CMT-1-secure.

Broadly, we have seen protocols failing due to absence of key-committing
security in an underlying encryption scheme and then fixed by its being added.
ABN [3] illustrate this when the protocol is PEKS [19]; they also note that when
encryption strives to be anonymous, key-committing security is necessary for
unambiguous decryption. FOR [25] illustrate the issue for an encryption-using
Oblivious Transfer protocol and note that encryption not being key-committing
has lead to attacks on Private Set Intersection protocols [33]. ADGKLS [4] de-
scribe in detail three real-world security failures —the domains are key rota-
tion, envelope encryption and subscribe-with-Google— arising from lack of key-
committing security.

Why commit to everything? CMT-4 is a simple, optimally-strong goal: we
commit to everything. This means all 4 of the inputs to the encryption algo-
rithm: key, nonce, associated data and message. Some motivation comes from
applications; for example, GLR [27] show that committing to header and mes-
sage is needed for an AE scheme to provide message franking, a capability in
messaging systems that allows a receiver to report the receipt of abusive con-
tent. But the larger benefit is to increase ease of use and decrease risk of error
or misuse. An application designer is spared the burden of trying to understand
to exactly which encryption inputs the application needs a commitment; with
CMT-4, she is covered.

Path to schemes. Our starting points are existing AE schemes. Given one
such, call it SE, we will modify it to a CMT-1 scheme SE-1 and then further into
a CMT-4 scheme SE-4. These modifications must of course retain AE security:
for XX ∈ {UN,MR}, if SE is XXAE-secure then so are SE-1, SE-4. The ciphertext
overhead (length of ciphertext in new scheme minus that in old) is kept as small
as possible, and is zero for our primary schemes. Computational overhead will
always be independent of the length of the message.

Proofs of AE security for our schemes are in the multi-user setting, with
bounds as good as those for the starting schemes. This requires significant ana-
lytical effort.

Modern encryption standards are purely blockcipher based, meaning do not
use a cryptographic hash function like SHA256; this allows them to most effec-
tively exploit the AES-NI instructions for speed, and also lowers their real-estate
in hardware. We aim, as much as possible, to retain this. For CMT-1, we succeed,
reaching this without cryptographic hash functions. The extension to CMT-4
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Scheme
AE Committing Ciphertext Starts

security security overhead from

CAU-C1 UNAE CMT-1 0 GCM

HtE[CAU-C1, ·] UNAE CMT-4 0 GCM

CAU-SIV-C1 MRAE CMT-1 0 AES-GCM-SIV

HtE[CAU-SIV-C1, ·] MRAE CMT-4 0 AES-GCM-SIV

UtC[SE, ·] UNAE CMT-1 1 block any UNAE SE

HtE[UtC[SE, ·], ·] UNAE CMT-4 1 block any UNAE SE

RtC[SE, ·, ·] MRAE CMT-1 1 block any MRAE SE

HtE[RtC[SE, ·, ·], ·] MRAE CMT-4 1 block any MRAE SE

Fig. 1. Summary of attributes of our schemes. Ciphertext overhead is length of
ciphertext in our scheme minus that in the scheme from which it starts. Computational
overhead is always independent of message length. A “·” as an argument to a transform
refers to some suitable auxiliary primitive discussed in the text.

however requires a function H that we would instantiate via a cryptographic
hash function.

The step from CMT-1 to CMT-4 is done via a general, zero ciphertext-
overhead transform, called HtE, that we discuss next. Figure 1 summarizes the
attributes of the different new schemes that we give and will discuss below.

From CMT-1 to CMT-4 via HtE. We give a generic way to turn a CMT-1
scheme into into a CMT-4 one. (That is, once you can commit to the key, it
is easy to commit to everything.) The transform incurs no ciphertext overhead
and preserves both UNAE and MRAE security. The computational overhead
involves processing only the nonce and associated data, and is independent of
message length.

We now give some detail. Given a symmetric encryption scheme SE-1, and a
function H, our HtE (Hash then Encrypt) transform defines the scheme SE-4←
HtE[SE-1, H] in which SE-4.Enc(K,N,A,M) lets L← H(K, (N,A)) and returns
SE-1.Enc(L,N, ε,M). Here outputs of H have the same length as keys of SE-1.
There is no ciphertext overhead: ciphertexts in SE-4 have the same length as in
SE-1. The computational overhead, namely the computation ofH, is independent
of message length. Theorem 1 shows that SE-4 is CMT-4 assuming SE-1 is CMT-1
and H is collision resistant. Theorem 2 shows that if H is a PRF then (1) If
SE-1 is UNAE then so is SE-4, and (2) If SE-1 is MRAE then so is SE-4. All
these results are with good bounds.

We stress that we avoid assuming H is a random oracle; we instead make
the standard-model assumption that it is a collision-resistant PRF. Section 3
discusses instantiations of H based on HMAC [5], SHA256 or SHA3.

CAU schemes. GCM [36] is a UNAE scheme that, due to its standardization [23]
and use in TLS [42], is already widely implemented. Attacks [34, 4, 27] however
show that it is not CMT-1-secure. Making only a tiny modification to GCM,
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we obtain a new scheme, that we CAU-C1, that is UNAE and CMT-1 secure.
Theorem 3 establishes CMT-1 security of CAU-C1, and Theorem 4 establishes
UNAE security with good mu bounds.

CAU-C1 changes only how the last block GCM block is encrypted so that the
tag is a Davies-Meyer hash. (See Figure 9.) The locality and minimality of the
change means that it should be easy to modify existing GCM code to obtain
CAU-C1 code, making CAU-C1 attractive for implementation. With regard to
performance, CAU-C1 incurs essentially no overhead; in particular, the ciphertext
size remains the same as in GCM.

We can obtain a UNAE and CMT-4-secure scheme, that we call CAU-C4, by
applying our above-discussed HtE transform to CAU-C1 and a suitable collision-
resistant PRF H. Ciphertext overhead continues to be zero: CAU-C4 ciphertexts
have the same size as CAU-C1, and thus GCM, ones.

With the above, we have obtained CMT-1 and CMT-4 UNAE schemes that
offer minimal overhead, good quantitative security and ease of implementation.
We now turn to MRAE, doing the same. Here our starting point is AES-GCM-SIV
[43, 28], a leading MRAE scheme poised for standardization. We give CAU-SIV-C1,
a tiny modification of AES-GCM-SIV that is MRAE and CMT-1-secure. Theo-
rem 5 establishes CMT-1 security of CAU-SIV-C1, and Theorem 6 establishes
MRAE security with good mu bounds. Again, applying HtE to CAU-SIV-C1
yields a MRAE and CMT-4 scheme CAU-SIV-C4 that continues to be a small
modification of AES-GCM-SIV. There is no growth in ciphertext size.

Generic transforms. With the four schemes discussed above, we have ob-
tained CMT-1 and CMT-4 security for both UNAE and MRAE schemes, with
zero ciphertext overhead and almost zero computational overhead. These schemes
however are intrusive, making small modifications to GCM or AES-GCM-SIV. We
now give ways to add committing security via generic transforms that invoke the
given scheme only in a blackbox way. The price we will pay is some ciphertext
overhead.

We give a generic transform UtC that takes any UNAE scheme SE and re-
turns a scheme SE ← UtC[SE,F] that is UNAE and CMT-1-secure. Here F is
a committing PRF, a primitive we introduce that generalizes the notion of a
key-robust PRF from FOR [25]. We build a cheap committing PRF, that we
call CX, from (only) a blockcipher. Proposition 5 proves its security with good
bounds. Theorem 7 establishes CMT-1 security of SE, and also shows that SE

inherits the mu UNAE security of SE without degradation in the bound. Cipher-
texts in SE are one block longer than those in SE. Applying HtE to SE and a
suitable collision-resistant PRF H, we obtain a UNAE CMT-4 scheme, leaving
ciphertext overhead at one block.

UtC however does not preserve MRAE security. We give a second generic
transform, RtC, that takes any MRAE scheme SE and returns a scheme SE ←
RtC[SE,F,H] that is MRAE and CMT-1-secure. Here F as before is a committing
PRF that we set to CX, and H is a collision-resistant PRF that we instantiate
via the Davies-Meyer method. Theorem 8 establishes CMT-1 security of SE, and
also shows that SE inherits the mu MRAE security of SE without degradation
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in the bound. Ciphertexts in SE are one block longer than those in SE. Again,
applying HtE to SE yields an MRAE CMT-4 scheme, leaving ciphertext overhead
at one block.

Extensions and remarks. For an integer parameter s ≥ 2, we can extend
CMT-1 to a notion CMTs-1 of multi-input committing security. Here the ad-
versary returns an s-tuple ((K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms)) in which K1,
. . . ,Ks are all distinct, and is successful if SE.Enc(K1, N1, A1,M1), . . . , SE.Enc(Ks,
Ns, As,Ms) are all the same. CMT-4 is likewise extended to CMTs-4.

Clearly CMT-a implies CMTs-a (for all a ∈ {1, 4}). Our results however
consider CMTs-a (not just CMT-a) and prove bounds on its being violated that
degrade quickly with s. This allows us to give better guarantees for security
against partitioning oracle attacks [34]. Namely, we can show that, with use of
one of our CMT-1 schemes, the probability that an attacker can speed up the
attack by a factor s decreases quickly as a function of s.

2 Preliminaries

Notation and terminology. Let ε denote the empty string. For a string x
we write |x| to refer to its bit length, and x[i : j] is the bits i through j (inclusive)
of x, for 1 ≤ i ≤ j ≤ |x|. By Func(Dom,Rng) we denote the set of all functions
f : Dom→ Rng and by Perm(Dom) the set of all permutations π : Dom→ Dom.
We use ⊥ as a special symbol to denote rejection, and it is assumed to be
outside {0, 1}∗. In the context that we use a blockcipher E : {0, 1}k ×{0, 1}n →
{0, 1}n, the block length of a string x, denoted as |x|n, is max

{

1,
⌈

|x|/n
⌉}

. If
X is a finite set, we let x←$ X denote picking an element of X uniformly at
random and assigning it to x.

Symmetric Encryption. A (nonce-based) symmetric encryption (SE) scheme
SE specifies deterministic algorithms SE.Enc : K×N×{0, 1}∗×{0, 1}∗ → {0, 1}∗
and SE.Dec : K × N × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}. Here K,N are the
associated key and nonce spaces. The encryption algorithm takes as input a key
K ∈ K, a nonce N ∈ N , associated data A ∈ {0, 1}∗ and a message M ∈ M,
and returns a ciphertext C ← SE.Enc(K,N,A,M). The decryption algorithm
takes as input K,N,A,C and returns either a message M ∈ {0, 1}∗ or the
special symbol ⊥ indicating invalidity or rejection. The correctness requirement
says that decryption reverses encryption, namely if C ← SE.Enc(K,N,A,M)
then SE.Dec(K,N,A,C) returns M . We assume that there is a ciphertext-length
function SE.len : N → N such that the length of SE.Enc(K,N,A,M) is exactly
SE.len(|M |) bits for all K,N,A,M .

We say that SE is tidy [38] ifM ← SE.Dec(K,N,A,C) implies that SE.Enc(K,
N,A,M) returns C. Combining correctness and tidiness means that functions
SE.Enc(K,N,A, ·) and SE.Dec(K,N,A, ·) are the inverse of each other. The
schemes we consider will be tidy.

AE security. Let SE be a symmetric encryption scheme with key space K and
nonce space N . We now define its security as an authenticated encryption (AE)
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Game Greal
SE (A)

b′←$ANew,Enc,Vf; return b′

New()

v ← v + 1; Kv←$K

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥

C ← SE.Enc(Ki, N,A,M)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥

V ← SE.Dec(Ki, N,A,C); return (V 6= ⊥)

Game Grand
SE (A)

b′←$ANew,Enc,Vf; return b′

New()

v ← v + 1

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥

C←$ {0, 1}SE.len(|M|)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥

return false

Fig. 2. Games defining misuse-resistance security of a SE scheme SE.

scheme in the multi-user setting, following the formalization of [13]. The first,
basic requirement, called unique-nonce AE (UNAE), asks for security assuming
encryption never repeats a nonce for any given user. The second, advanced re-
quirement, called misuse-resistant AE (MRAE) drops this condition. Consider
games Greal

SE (A) and Grand
SE (A) in Fig. 2. We define the mrae advantage of an

adversary A as

Advmrae
SE (A) = Pr[Greal

SE (A)]− Pr[Grand
SE (A)] .

To avoid trivial wins, we forbid the adversary from repeating a query to either
its Enc or its Vf oracles. Moreover, if the adversary previously received C ←
Enc(i, N,A,M) then later it is not allowed to query Vf(i, N,A,C). We can
now recover UNAE security by restricting attention to unique-nonce adversaries,
these being ones that never repeat an (i, N) pair across their Enc queries. (That
is, a nonce is never reused for a given user.) We stress that there is no such
restriction on decryption queries. If A is a unique-nonce adversary, then we
write its advantage as Advunae

SE (A) for clarity.

Multi-collision resistance. Let H : Dom→ Rng be a function. Let s ≥ 2 be
an integer. An s-way collision for H is a tuple (X1, . . . , Xs) of distinct points in
Dom such that H(X1) = · · · = H(Xs). For an adversary A, define its advantage
in breaking the s-way multi-collision resistance of H as

Advcoll
H,s(A) = Pr[(X1, . . . , Xs) is an s-way collision for H]

where the probability is over (X1, . . . , Xs)←$A. When s = 2 we recover the
classical notion of collision resistance.

AXU hashing. Let G : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed hash
function. We say that G is c-almost xor universal if for all (M,A) 6= (M ′, A′)
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Game G
prf

F (A)

v ← 0; b←$ {0, 1}

b′←$ANew,Eval

return (b′ = b)

New()

v ← v + 1

Kv←$ {0, 1}k

fv←$ Func(Dom,Rng)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥

C1 ← F(Ki,M); C0 ← fi(M)

return Cb

Game G
prp
E (A)

v ← 0; b←$ {0, 1}

b′ ← ANew,Eval

return (b′ = b)

New()

v ← v + 1

Kv←$ {0, 1}k

πv←$ Perm({0, 1}n)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥

C1 ← E(Ki,M); C0 ← πi(M)

return Cb

Fig. 3. Games defining PRF security of F and PRP security of E.

and all ∆ ∈ {0, 1}n,

Pr
K←$ {0,1}n

[GK(M,A)⊕GK(M ′, A′) = ∆] ≤ c ·max{|M |n + |A|n, |M ′|n + |A′|n}
2n

.

PRFs and PRPs. For a function F : {0, 1}k×Dom→ Rng and an adversary A,
we define the advantage of A in breaking the (multi-user) PRF security of F [6]
as

Advprf
F (A) = 2Pr[Gprf

F (A)]− 1 ,

where game Gprf
F (A) is shown in Fig. 3. For a blockcipher E : {0, 1}k×{0, 1}n →

{0, 1}n and an adversary A, we define the advantage of A in breaking the multi-
user PRP security of E as

Advprp
E (A) = 2Pr[Gprp

E (A)]− 1 ,

where game Advprp
F (A) is defined in Fig. 3. Mouha and Luykx [37] show that

if we model E as an ideal cipher then for any adversary making q evaluation
queries and p ideal-cipher queries, Advprp

E (A) ≤ (q2 + 2pq)/2k+1.

3 Committing AE Framework

Let SE be a symmetric encryption scheme with key space K and nonce space N .
We define a hierarchy of levels of committing security CMTD-1 ← CMTD-3
↔ CMTD-4, where the “D” indicates these are decryption-based. For each ℓ ∈
{1, 3, 4} we also recast CMTD-ℓ as an encryption-based notion CMT-ℓ that is
simpler but equivalent if SE is tidy. We give relations between the notions, and
then extend all this to s-way committing security for s ≥ 2.

Think of ℓ here as indicating that we commit to the first ℓ inputs of the
encryption algorithm. Since popular schemes, and the ones in this paper in par-
ticular, are tidy, the CMT-ℓ notions become our focus moving forward. The In-
troduction had discussed only CMT-1 and CMT-4; here we introduce the ℓ = 3
notions as simpler than, but equivalent to, the ℓ = 4 ones, something our results
will exploit.



Efficient Committing Authenticated Encryption 9

Game Gcmtd-ℓ
SE (A)

(

C, (K1, N1, A1,M1), (K2, N2, A2,M2)
)

←$A

Require: WiCℓ(K1, N1, A1,M1) 6= WiCℓ(K2, N2, A2,M2)

Return ((M1 = SE.Dec(K1, N1, A1, C) and M2 =

SE.Dec(K2, N2, A2, C))

Game Gcmt-ℓ
SE (A)

(

(K1, N1, A1,M1), (K2, N2, A2,M2)
)

←$A

Require: WiCℓ(K1, N1, A1,M1) 6= WiCℓ(K2, N2, A2,M2)

Return (SE.Enc(K1, N1, A1,M1) =

SE.Enc(K2, N2, A2,M2))

ℓ 1 3 4

WiCℓ(K,N,A,M) K (K,N,A) (K,N,A,M)

CMTD-1 CMTD-3 CMTD-4

CMT-1 CMT-3 CMT-4

Fig. 4. Games defining committing security of a symmetric encryption scheme SE. Be-
low them are the associated what-is-committed functions WiCℓ, and then the relations
between the notions. The gray arrows hold for tidy SE.

This section concludes with a simple transform, called HtE, that promotes
ℓ = 1 security to ℓ = 4 security with minimal overhead.

What is committed? In asking that a ciphertext C ← SE.Enc(K,N,A,M) be
a committal, the question is, to what? We consider this in a fine-grained way. We
define a function WiCℓ (What is Committed) that on input (K,N,A,M) returns
the part of the input to which we want the ciphertext to be a commitment. It
is defined as shown in the table in Figure 4. Thus, when ℓ = 1, we are asking
that we commit to the key; this corresponds to robustness [3], also called key-
robustness [25] or key-committing [4] security. When ℓ = 3, we commit to the
key, nonce and associated data. Finally ℓ = 4 means we commit, additionally, to
the message, and thus to all the inputs of SE.Enc.

The D-notions. Let ℓ ∈ {1, 3, 4} be an integer representing the level of com-
mitting security. Consider game Gcmtd-ℓ

SE (A) in Fig. 4, and define the advantage

of adversary A as Advcmtd-ℓ
SE (A) = Pr[Gcmtd-ℓ

SE (A)]. In the game, the adversary
provides a ciphertext C together with a pair of tuples (K1, N1, A1,M1) and
(K2, N2, A2,M2). (No entry of a tuple is allowed to be ⊥.) The adversary wins
if both decryptions of C equal the respective adversary-provided messages. The
game requires that the outputs of the WiCℓ function on the adversary-provided
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Game Gcmtd-ℓ
SE,s (A)

(C, (K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms))←$A

Require: WiCℓ(K1, N1, A1,M1), . . . ,WiCℓ(Ks, Ns, As,Ms) are all distinct

Return (∀ i : Mi = SE.Dec(Ki, Ni, Ai, Ci))

Game Gcmt-ℓ
SE,s (A)

((K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms))←$A

Require: WiCℓ(K1, N1, A1,M1), . . . ,WiCℓ(Ks, Ns, As,Ms) are all distinct

Return (SE.Enc(K1, N1, A1,M1) = · · · = SE.Enc(Ks, Ns, As,Ms))

CMTDs-1 CMTDs-3 CMTD-4

CMTs-1 CMTs-3 CMTs-4

Fig. 5. Games defining s-way committing security of a symmetric encryption scheme
SE for s ≥ 2. Below them are the relations between the notions. The gray arrows hold
for tidy SE.

tuples be different, precluding a trivial win. The only difference between the
different levels indicated by ℓ is in the value of WiCℓ(K,N,M,A) as given in the
table. We denote the resulting notions by CMTD-ℓ for ℓ ∈ {1, 3, 4}.

Our CMTD-1 notion is stronger than the key-committing notion in prior
work [4], since we allow the adversary to specify different nonces N1 and N2. In
contrast, the key-committing notion requires the two nonces to be the same.

On the other hand, achieving CMTD-4 security requires processing the as-
sociated data under a collision-resistant hash function. To see why, note that in
settings where messages are the empty string, a ciphertext is a compact com-
mitment of the associated data.

The E-notions. Let ℓ ∈ {1, 3, 4} be an integer representing the level of com-
mitting security. Consider game Gcmt-ℓ

SE (A) in Fig. 4, and define the advantage

of adversary A as Advcmt-ℓ
SE (A) = Pr[Gcmt-ℓ

SE (A)]. In the game, the adversary
provides a pair of tuples (K1, N1, A1,M1) and (K2, N2, A2,M2). (No entry of a
tuple is allowed to be ⊥.) The functions WiCℓ are unchanged. The game returns
true (the adversary wins) if the encryptions of the two tuples are the same. We
denote the resulting notions by CMT-ℓ for ℓ ∈ {1, 3, 4}.

Relations. The bottom of Fig. 4 shows the relations between the notions of
committing security. An arrow A → B, read as A implies B, means that any
scheme SE that is A-secure is also B-secure. A gray arrow means the implication
holds when SE is tidy. The relations in the picture are justified in [8].

Multi-input committing security. The notions above considered an adver-
sary successful if it opened a ciphertext in two different ways (D) or provided
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two encryption inputs with the same output (E). We now generalize from “two”
to an integer parameter s ≥ 2, the prior notions being the special case s = 2.
The games, in Figure 5, are parameterized, as before, with symmetric encryp-
tion scheme SE, but now also with s. Again there are “D” and “E” variants. The
functions WiCℓ remain as in Figure 4. The advantages of an adversary A are
defined as Advcmtx-ℓ

SE,s (A) = Pr[Gcmtx-ℓ
SE,s (A)] for x ∈ {d, ε} and ℓ ∈ {1, 3, 4}. We

denote the resulting notions by CMTXs-ℓ for X ∈ {D, ε} and ℓ ∈ {1, 3, 4}. Their
relations remain as before and for completeness are also illustrated in Figure 5.

Why generalize? It is easy to see that CMTX-ℓ implies CMTXs-ℓ for all
s ≥ 2 and X ∈ {D, ε}, meaning if a scheme SE is CMTX-ℓ-secure then it is
also CMTXs-ℓ for all s ≥ 2. So why consider s > 2? The reason is that we
can give schemes for which the bound on adversary advantage gets better as s
gets larger, indeed even decaying exponentially with s. Indeed, one can break
CMT-1-security of the scheme CAU-C1 in Section 5 in about 264 operations.
However, for any adversary A that spends at most 280 operations, the chance
that it can break CMT3-1 security of CAU-C1 is at most 2−62. This allows us
to offer a much stronger guarantee for situations like the Partitioning Oracle
attack [34]. Recall that here, breaking CMTs-1 security speeds up the time to
find the underlying password used for key derivation by a factor of s. Thus our
results say that despite investing 280 operations, A can at best speed up its
password search by a factor of two.

Discussion. Practical schemes tend to be tidy, and all the ones we consider are,
so, moving forward, we make tidiness an implicit assumption and focus on the E
notions. Our primary focus is (s-way) CMT-1 because this is already non-trivial,
what was targeted in many previous works, and enough for many applications.
Below we give a generic way to promote CMT-1 security to CMT-4 security.

From CMT-1 to CMT-4. We give a way to turn CMT-1 security into CMT-4
security, for both unique-nonce and misuse-resistance security. (That is, if you
can commit to the key, it is easy to commit to everything.) It takes the form
of a transform we call HtE (Hash then Encrypt). The ingredients are a base
symmetric encryption scheme SE with key space {0, 1}k, and a function H :
{0, 1}k × {0, 1}∗ → {0, 1}k. The encryption and decryption algorithms of the
scheme SE = HtE[SE, H] are shown in Fig. 6. The key-space and nonce-space
remain that of SE.

With regard to performance, HtE preserves ciphertext length, meaning we
are promoting CMT-1 to CMT-4 without increase in ciphertext size. The com-
putational overhead, which is the computation of H(K, (N,A)), is optimal,
since achieving CMT-4 requires processing the associated data with a collision-
resistant hash function. In practice, associated data is often short (for example,
IP headers are at most 60B), and thus HtE typically incurs just a constant
computational overhead over the base scheme SE.

With regard to security, intuitively, if H is collision-resistant then the sub-
key L is a commitment to the master key K, the nonce N and the associated
data A. As a result, if the ciphertext is a commitment to the subkey L then it
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SE.Enc(K,N,A,M)

L← H(K, (N,A))

C ← SE.Enc(L,N, ε,M)

Return C

SE.Dec(K,N,A,C∗‖T ′)

L← H(K, (N,A))

M ← SE.Dec(L,N, ε, C)

Return M

Fig. 6. The scheme SE = HtE[SE, H] defined via the Hash-then-Encrypt transform
applied to a symmetric encryption scheme SE and a function H.

is also a commitment to (K,N,A). Hence the CMT-1 security of SE implies the
CMT-3 security of SE, and thus, as per the relations in Figure 4, also its CMT-4
security. Furthermore we will show that HtE preserves both unique-nonce and
misuse-resistance security assuming H is a PRF.

We note that we do not assume H is a random oracle, instead making the
standard-model assumption that it is a collision-resistant PRF.We now give for-
mal results confirming the intuition above. The following shows that HtE indeed
promotes CMT-1 security to CMT-4 security. The proof is in [8].

Theorem 1. Let SE be an SE scheme with key length k, and let H : {0, 1}k ×
{0, 1}∗ → {0, 1}k be a hash function. Let SE = HtE[SE, H]. Fix an integer s ≥ 2
and let t = ⌈√s ⌉. Then given an adversary A, we can construct adversaries B0
and B1 such that

Advcmt-4
SE,s

(A) ≤ max
{

Advcoll
H,t(B0),Advcmt-1

SE,t (B1)
}

.

Each Bi runs A and then runs H on s pairs (nonce, associated data) of A.
The next result shows that HtE preserves both unique-nonce and misuse-

resistance security, provided that H is a good PRF. The proof is in [8].

Theorem 2. Let SE be an SE scheme with key length k, and let H : {0, 1}k ×
{0, 1}∗ → {0, 1}k be a hash function. Let SE = HtE[SE, H]. Then given an
adversary A that makes at most q queries of totally σa bits for (nonce, AD)
pairs and at most B queries per (user, nonce, AD) triples, we can construct
adversaries B and D such that

Advmrae
SE

(A) ≤ Advprf
H (B) +Advmrae

SE (D) .

If A is unique-nonce then so is D, and we can rewrite the bound as

Advunae
SE

(A) ≤ Advprf
H (B) +Advunae

SE (D) .

Adversary B makes at most q queries on at most σa bits. Its running time is about
that of A plus the time to encrypt/decrypt A’s queries. Adversary D makes q
queries of the total length as A, but it makes only B queries per user. Its running
time is about that of A plus O(σa log(B)).

We now discuss the choice of H. If nonce length is fixed, one can instantiate
H(K, (N,A)) via HMAC-SHA256(K‖N‖A)[1 : k] or SHA3(K‖N‖A)[1 : k]. We
stress that if one considers using SHA256(K‖N‖A)[1 : k], one must beware of
the extension attack, to avoid which one should only use this if k = 128 [21].
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4 Some Building Blocks

We give building blocks, technical results and information that we will use later.
Some of the results are interesting in their own right, and may have applications
beyond the context of committing AE.

Multi-user PRP/PRF Switching. Lemma 1 below generalizes the classical
PRP/PRF Switching Lemma [12] to the multi-user setting; see [8] for a proof.
If one uses a hybrid argument on the standard single-user PRP/PRF Switching
Lemma, one will obtain a weak bound uB2/2n, where u is the number of users.
If there are Θ(q) users and some user makes Θ(q) queries then this bound is in
the order of q3/2n, whereas our bound is just q2/2n in this case.

Alternatively, if one parameterizes on q only, as in [35], one will end up
with another weak bound q2/2n. In the setting where each user makes approx-
imately B queries, this bound is even weaker than the trivial bound uB2/2n.
Lemma 1 instead uses a different parameterization to obtain a sharp bound
qB/2n. The idea of using both B and q as parameters in multi-user analysis is
first introduced in [20].

Lemma 1 (Multi-user PRP/PRF Switching Lemma). Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher. For any adversary A, if it makes at most q
evaluation queries in total, with at most B queries per user, then

Advprf
E (A) ≤ Advprp

E (A) + Bq

2n
.

Simplifying UNAE/MRAE proofs. In UNAE/MRAE proofs, an adversary
can adaptively interleave encryption and verification queries. Proofs will be sim-
pler if the adversary is orderly, meaning that (i) its verification queries are made
at the very end, and (ii) each verification query does not depend on the an-
swers of prior verification queries, but may still depend on the answers of prior
encryption queries. Proposition 1 shows that one can consider only orderly ad-
versaries in UNAE/MRAE notions with just a small loss in the advantage; see
[8] for a proof. The idea of restricting to orderly adversaries has been used in
prior works [20, 11]. They show that one can factor an UNAE/MRAE adver-
sary A into two adversaries B0 and B1 attacking privacy and authenticity re-
spectively, where B1 is orderly. Here we instead transform A to another orderly
UNAE/MRAE adversary B.

Proposition 1. Let SE be a symmetric encryption scheme such that its cipher-
text is at least τ -bit longer than the corresponding plaintext. For any adversary A
that makes qv verification queries, we can construct another orderly adversary B
of about the same running time such that

Advmrae
SE (A) ≤ Advmrae

SE (B) + 2qv
2τ

.



14 Mihir Bellare, Viet Tung Hoang

H
� H

�

X Z

Y

Fig. 7. Illustration of the cascade of the two hash functions H0 and H1.

Adversary B has the same query statistics as A. Moreover, if A is unique-nonce
then so its B, and thus in that case we can rewrite the bound as

Advunae
SE (A) ≤ Advunae

SE (B) + 2qv
2τ

.

For both notions, if every ciphertext of SE is exactly τ -bit longer than its plaintext
then the term 2qv/2

τ can be improved to qv/2
τ .

Committing AE via collision-resistant hash. Intuitively, from the defi-
nition of committing AE, to achieve this goal, one needs to include the image
of the key under some (multi)collision-resistant hash function in the ciphertext.
This connection has been recognized and explored in prior works. For example,
(i) the OPAQUE protocol [30] recommends the use of the Encrypt-then-HMAC
construction, (ii) Albertini et al. [4] suggest using a hash-based key-derivation
function to add key-committing security into legacy AE schemes; and (iii) Dodis
et al. [22] propose a hash-based AE design for Facebook’s message franking. The
definition was recalled in Section 2. We now give some new fundamental results.

The Truncated Davies-Meyer construction. A common way to build a
collision-resistant compression function from a blockcipher is the Davies-Meyer
construction. Our paper makes extensive use of this construction to have a cheap
commitment of the key for obtaining committing security. It appears in both
the AE schemes of Sections 5 and 6. While the collision resistance of the Davies-
Meyer construction is well-known [18], its multi-collision resistance has not been
studied before. Moreover, in our use of Davies-Meyer, we usually have to truncate
the output, and even ordinary collision resistance of truncated Davies-Meyer has
not been investigated.

In particular, let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. Let m ≤ n
be an integer, and define DM[E,m] : {0, 1}k × {0, 1}n → {0, 1}m via

DM[E,m](X,Y ) =
(

EX(Y )⊕Y
)

[1 : m] .

We write DM[E] for the special case m = n (meaning there is no truncation).
Proposition 2 below analyzes the multi-collision resistance of DM[E,m]; see [8]
for a proof. The result is in the ideal-cipher model, that is, the adversary is given
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oracle access to both E and its inverse, and the number of ideal-cipher queries
refers to the total queries to these two oracles.

Proposition 2. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher that we will
model as an ideal cipher. Let s ≥ 2 and m ≤ n be integers. For an adversary A
that makes at most p ≤ 2n−1 − s ideal-cipher queries,

Advcoll
DM[E,m],s(A) ≤ 21−m +

(

p

s

)

· 2(1−m)(s−1) .

For the case s = 2 and m = n, our bound is 21−n + p(p− 1)/2n, which slightly
improves the classical bound p(p+1)/2n of Black, Rogaway, and Shrimpton [18].
For a general s, in [8], we show that for an ideal hash function on range {0, 1}m,
there is an attack on the s-way multi-collision resistance of advantage

1

4
·
(

p

s

)

· 2−m(s−1) .

Thus the Truncated Davies-Meyer construction achieves essentially the best pos-
sible multi-collision resistance that we can hope for the output length m.

The Iterative Truncated-Permutation construction. Let E : {0, 1}k×
{0, 1}n → {0, 1}n be a blockcipher. Let r < n be a positive integer, and let
m ≤ 2n be a positive even integer. Let pad : {0, 1}r × {1, 2} → {0, 1}n be a
one-to-one mapping. Define ITP[E, r,m] : {0, 1}k × {0, 1}r → {0, 1}2m via

ITP[E, r,m](K,X) = EK(pad(X, 1))[1 : m/2]‖EK(pad(X, 2))[1 : m/2] .

The ITP construction is used in the key-derivation function of AES-GCM-SIV,
where r = 96 and m = n = 128, and pad(X, i) is the concatenation of X
and an (n − r)-bit encoding of i. For proving the committing security of the
variants of AES-GCM-SIV in Section 6, we need to show that in using ITP to
derive subkeys, one is also committing the master key and the nonce to one of
the subkeys. Proposition 3 below analyzes the multi-collision resistance of ITP;
see [8] for a proof. The analysis is difficult because ITP was not designed for
collision resistance. This result is in the ideal-cipher model, meaning that the
adversary is given oracle access to both E and E−1, and the number of ideal-
cipher queries refers to the total queries to both oracles. Note that for r ≤ 3n/4
and m = n (which holds for the situation of AES-GCM-SIV), ITP has birthday-
bound security or better.

Proposition 3. Let m, r, n be positive integers such that r < n, and m ≤ 2n is
even. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as
an ideal cipher. Let s ≥ 2 be an integer. For an adversary A that makes at most
p ≤ 2n−3 − s ideal-cipher queries,

Advcoll
ITP[E,r,m],s(A) ≤ 21−m +

4ps

s! · 2(m−2)(s−1) +
2m/2+1 · ps

s! · 2(m/2+n−r−2)s
.

Compared to the lower bound
(

p
s

)

· 2−m(s−1), the ITP construction has some
security degradation due to the last term in the bound of Proposition 3. In [8], we
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give an attack that matches this term, implying that the bound of Proposition 3
is tight.

Multi-collision resistance on a cascade. Let c ≥ 2 be an integer. For
each i ∈ {0, . . . , c − 1}, let Hi : Li × Ri → Rngi be a hash function such that
Rngi ⊆ Ri+1. Define the cascade H0 ◦H1 of H0 and H1 as the hash function H
such that H(X,Y, Z) = H1

(

Z,H0(X,Y )
)

; see Fig. 7 for an illustration. The
cascade H0 ◦ · · · ◦Hi of H0, . . . , Hi is defined recursively as (H0 ◦ · · · ◦Hi−1)◦Hi.
Cascading appears in AE schemes of Section 6 where one first commits the
master key into a subkey, and then includes a commitment of the subkey into the
ciphertext. The following result shows how to bound the multi-collision resistance
of H0 ◦ · · · ◦Hc−1; see [8] for a proof.

Proposition 4. Let H be the cascade of hash functions H0, H1, . . . , Hc−1 as
above. Let s ≥ 2 be an integer, and let t = ⌈ c

√
s ⌉. Then for any adversary A, we

can construct adversaries B0, . . . ,Bc−1 such that

Advcoll
H,s(A) ≤ max

{

Advcoll
H0,t(B0), . . . ,Advcoll

Hc−1,t(Bc−1)
}

.

Each adversary Bi runs A, and then runs the cascade of H0, . . . , Hmin{c−2,i} on
the s inputs of A.

5 A Committing Variant of GCM

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that
achieves both CMT-1 and unique-nonce security with the same speed and band-
width costs as GCM. In this entire section, let E : {0, 1}k×{0, 1}n → {0, 1}n be a
blockcipher. Following Bellare and Tackmann [14], we consider a generalization
CAU of GCM. This scheme loosely follows the encrypt-then-MAC paradigm,
where the encryption scheme is the CTR mode, and the MAC is the Carter-
Wegman construction via an almost-xor-universal (AXU) hash function. (The
name CAU is a mnemonic for the use of the CTR mode and an AXU hash func-
tion.) In GCM, the function G is instantiated by a 1.5-AXU hash GHASH.

The scheme CAU. We now describe the scheme CAU. Let G : {0, 1}n×{0, 1}∗×
{0, 1}∗ → {0, 1}n be an AXU hash function. Let N = {0, 1}r be the nonce space,
where r < n is an integer. In GCM, n = 128 and r = 96. For a string N ∈ N , we
write pad(N) to refer to N‖0n−r−1‖1. Let τ ≤ n be the tag length. The scheme
CAU[E,G, τ ] is specified in Fig. 8; it only accepts messages of at most 2n−r − 2
blocks. See also Fig. 9 for an illustration.

Specification of CAU-C1. The code of CAU-C1[E,G, τ ] is shown in Fig. 8.
Like CAU, it only accepts messages of at most 2n−r−2 blocks. Compared to CAU,
the change occurs in how we derive the tag, as illustrated in Fig. 9. In particular,
in CAU, one obtains the tag by using the Carter-Wegman paradigm, applying
a one-time pad EK(pad(N)) to the output R of the AXU hash. In contrast, in
CAU-C1, we use a different Carter-Wegman flavor, enciphering V ← R⊕pad(N).
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Enc(K,N,A,M)

// 0 ≤ |Mm| < n and |Mi| = n otherwise

Y ← pad(N); M1 · · ·Mm ←M

//Encrypt with CTR mode and IV Y + 1

For i← 1 to m− 1 do Ci ←Mi⊕EK(Y + i)

Cm ←Mm⊕EK(Y +m)
[

1 : |Mm|
]

; C ← C1 · · ·Cm

//Use Carter-Wegman on G

L← EK(0n); R← GL(A,C); T ← Tag(K,Y,R)

Return C‖T

Dec(K,N,A,C‖T )

// 0 ≤ |Cm| < n and |Ci| = n otherwise

Y ← pad(N); C1 · · ·Cm ← C

//Decrypt with CTR mode and IV Y + 1

For i← 1 to m− 1 do Mi ← Ci⊕EK(Y + i)

Mm ← Cm⊕EK(Y +m)
[

1 : |Cm|
]

; M ←M1 · · ·Mm

//Use Carter-Wegman on G

L← EK(0n); R← GL(A,C); T ′ ← Tag(K,Y,R)

If T ′ 6= T then return ⊥ else return M

Tag(K,Y,R) //CAU

S ← EK(Y )⊕R

Return S[1 : τ ]

Tag(K,Y,R) //CAU-C1

V ← Y⊕R; S ← EK(V )⊕V

Return S[1 : τ ]

Fig. 8. The common blueprint for encryption (top) and decryption (middle) of
CAU[E,G, τ ] and CAU-C1[E,G, τ ]. The two schemes only differ on how they imple-
ment the internal procedure Tag, as shown in the bottom panels.

However, to ensure committing security, instead of using T ← EK(V )[1 : τ ], we
employ the Truncated Davies-Meyer method, outputting T ← DM[E, τ ](K,V ).

We note that if one instead computes T ← DM[E, τ ](K,R) then the resulting
scheme will not have unique-nonce security. In particular, once we obtain a valid
ciphertext C under nonce N and associated data A, the pair (A,C) remains
valid for any nonce N ′, and thus breaking authenticity is trivial. Xor’ing pad(N)
to R ensures that the tag T depends on all of N,A,C.

Farshim, Orlandi, and Roşie [25] also point out that in Encrypt-and-MAC,
if the encryption scheme and the PRF can use the same key, and the PRF is
committing, then the composition has key-committing security. Their result is
however for probabilistic AE, so it does not imply the key-committing security
of CAU-C1.

Discussion. Our CAU-C1 scheme has several merits. (1) The change to CAU is
small, making it easy to modify existing CAU code to get CAU-C1 code. (2) The
speed of CAU-C1 is about the same as CAU for moderate and large messages.
Moreover, the absence of any ciphertext overhead over CAU means there is no
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Fig. 9. A pictorial comparison of the encryption schemes of CAU and CAU-C1. The
two scheme have the same blueprint on the top panel. They however have different
implementations for the internal procedure Tag, illustrated in the bottom panels. Here
the trapezoid MSBτ outputs the τ -bit prefix of the input.

additional bandwidth cost. In contrast, prior proposed solutions [30, 4, 25, 22, 27]
have to sacrifice either speed or bandwidth. (3) As we will show later, for short
tag length, CAU-C1 has much better UNAE security than CAU.

It however does have some limitations. (1) Since it requires modifying CAU’s
code, one may not be able to use CAU-C1 in some legacy systems. (2) In the en-
cryption algorithm of CAU-C1, the blockcipher call for the tag must be computed
strictly after all other blockcipher calls are completed. In contrast, in CAU, all
blockcipher calls can be done in parallel. This slowdown can be significant for
tiny messages.
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CMT-1 security of CAU-C1. The following Theorem 3 analyzes CMT-1 secu-
rity of CAU-C1; the proof is in [8]. The result is in the standard model, although
it relies on the multi-collision of the truncated Davies-Meyer that is justified in
the ideal-cipher model via Proposition 2.

Theorem 3. Let CAU-C1[E,G, τ ] be as above. Let s ≥ 2 be an integer. Then
for any adversary A, we can construct an adversary B such that

Advcmt-1
CAU-C1[E,G,τ ],s(A) ≤ Advcoll

DM[E,τ ],s(B) .

Adversary B runs A and makes s other calls on E.

Discussion. Note that an adversary can break the two-way CMT-1 security of
CAU-C1[E,G, τ ] by using about 2τ/2 operations. If one aims for at least birthday-
bound security and one’s application requires two-way CMT-1 security, we must
not truncate the tag, namely τ must be 128. However, if we only need to resist
the Partitioning-Oracle attack and can tolerate a small speedup in adversarial
password search, we can use, say τ = 96. From Proposition 2, with τ = 96,
for any adversary B that spends at most 264 operations, it can find a 5-way
multi-collision on DM[E, τ ] with probability at most 2−60, and thus B can at
best speed up its password searching by a factor of four.

Unique-nonce security of CAU-C1. For the scheme CAU-C1[E,G, τ ] to have
unique-nonce security, in addition for the hash G to be AXU, we also need it to
be weakly regular, a notion that we define below.

Let G : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed hash function. We
say that G is weakly c-regular if GK(ε, ε) = 0n for every K ∈ {0, 1}n, and for all
Y ∈ {0, 1}n and (A,M) ∈ {0, 1}∗ × {0, 1}∗\(ε, ε),

Pr
K←$ {0,1}n

[GK(A,M) = Y ] ≤ c · (|M |n + |A|n)
2n

.

Why does CAU-C1 need a weakly regular hash function? In CAU-C1, in each
encryption, we encrypt the i-th block of the message by running the blockcipher
on pad(N)+ i, and obtain the tag by calling the blockcipher on V ← pad(N)⊕R,
where R is the output of the hash G. The weak regularity of G ensures that these
inputs are different. In contrast, CAU obtains the tag by running the blockcipher
on pad(N), and thus does not need a weakly regular hash.

In [8] we show that the hash function GHASH of GCM is weakly 1.5-regular.
The following result confirms that CAU-C1 has good unique-nonce security. The
proof is in [8].

Theorem 4. Let CAU-C1[E,G, τ ] be as above, building on top of a c-AXU,
weakly c-regular hash function G and a blockcipher E : {0, 1}k × {0, 1}n →
{0, 1}n. Then for an adversary A that makes at most q queries of σ blocks and qv
verification queries in total, with at most B blocks per user, we can construct
another B of at most σ + q queries such that

Advunae
CAU-C1[E,G,τ ](A) ≤ Advprf

E (B) + (4c+ 2)Bσ + (2c+ 2)Bq

2n
+

2qv
2τ

.
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The running time of B is about that of A plus the time to use G on A’s messages
and associated data.

On short tags. When the tag length τ is short, CAU-C1 has much better
unique-nonce security than CAU. In particular, Ferguson [26] gives a (single-
user) attack of qv decryption queries, each of ℓ blocks, to break the security of
CAU with advantage qvℓ/2

τ . In contrast, CAU-C1 enjoys a smaller term qv/2
τ .

CAU-C4 for CMT-4-security. Applying the HtE transform of Section 3, with
a suitable choice of H, to CAU-C1, yields a CMT-4 and UNAE scheme that we
call CAU-C4. There is no increase in ciphertext size. The computational overhead,
running H on the key, nonce and associated data, is independent of the message
length.

6 A Committing Variant of AES-GCM-SIV

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that
achieves both CMT-1 and misuse-resistance security with the same speed and
bandwidth costs as AES-GCM-SIV. In this entire section, let n be an even integer,
and let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, with k ∈ {n, 2n}. We
will consider a generalization CAU-SIV of AES-GCM-SIV that we describe below.
The name CAU-SIV is a mnemonic for the use of (i) the classic SIV paradigm [41]
in achieving misuse-resistance security, (ii) (a variant of) the CTR mode and (iii)
an AXU hash function.

The PRF GMAC+. Like CAU, the scheme CAU-SIV is based on a c-AXU hash.
As shown in [20], the hash function POLYVAL of AES-GCM-SIV is 1.5-AXU. In
CAU-SIV, the AXU hash function is used to build a PRF that Bose, Hoang, and
Tessaro [20] call GMAC+. We begin with the description of this PRF.

For strings X and Y such that |X| < |Y | = n, let X ⊞ Y denote the string
obtained by setting the first bit of (0n−|X|‖X)⊕Y to 0. Let r < n be an integer,
and let N = {0, 1}r. Define GMAC+[E,G] : {0, 1}k+n ×N × {0, 1}∗ × {0, 1}∗ →
{0, 1}n via

GMAC+[E,G](Kin‖Kout, N,A,M) = E
(

Kout, X
)

,

where X ← N ⊞G(Kin,M,A). See Fig. 11 for an illustration of GMAC+.

The key-derivation function KD1. In each encryption, CAU-SIV derives sub-
keys by applying a key-derivation function (which we call KD1) on the given
nonce. Specifically, KD1 is exactly the ITP hash function in Section 4 with
padding pad(N, i) = N‖[i]n−r, where [i]n−r denote an (n − r)-bit encoding of
an integer i. The code of KD1 is given in the second-top panel of Fig. 10 for
completeness.

CTR mode. CAU-SIV is based on the following variant of the CTR mode. Let
r < n be an integer. (For AES-GCM-SIV, r = 96 and n = 128.) Let add be an
operation on {0, 1}n × {0, 1, . . . , 2n−r − 1} such that

add(X, i) = 1‖X[2 : r]‖(X[r + 1 : n] + i mod 2n−r) .
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Enc(K,N,A,M)

Kin‖Kout ← KD1[E, k + n](K,N)

IV← Tag(Kin‖Kout, N,A,M)

C ← CTR[E, add].Enc(Kout,M ; IV)

Return C

Dec(K,N,A,C)

Kin‖Kout ← KD1[E, k + n](K,N)

M ← CTR[E, add].Dec(Kout, C)

IV← Tag(Kin‖Kout, N,A,M)

If IV 6= C[1 : n] then return ⊥

Return M

KD1[E, ℓ](K,N)

For i← 1 to 2ℓ/n do Yi ← EK(N‖[i]n−r)[1 : n/2]

Return Y1‖ · · · ‖Y2ℓ/n

Tag(Kin‖Kout, N,A,M) //GMAC+ or GMAC2

X ← N ⊞G(Kin,M,A); Y ← E
(

Kout, X
)

; Y ← Y⊕X

Return Y

CTR[E, add].Enc(K,M ; IV)

// 0 ≤ |Mm| < m; other |Mi| = n

M1 · · ·Mm ←M

For i = 1 to m− 1 do

Ci ← EK

(

add(IV, i)
)

⊕Mi

Cm ← EK

(

add(IV,m)
)[

1 : |Mm|
]

⊕Mm

Return IV‖C1 · · ·Cm

CTR[E, add].Dec(K,C)

// 0 ≤ |Cm| < m; other |Ci| = n

IV‖C1 · · ·Cm ← C

For i = 1 to m− 1 do

Mi ← EK

(

add(IV, i)
)

⊕Ci

Mm ← EK

(

add(IV,m)
)[

1 : |Cm|
]

⊕Cm

Return M1 · · ·Mm

Fig. 10. The schemes CAU-SIV and CAU-SIV-C1 whose encryption and decryption
schemes are given in the top-left and top-right panels, respectively. Procedure Tag

implements GMAC+ (for CAU-SIV) or GMAC2 (for CAU-SIV-C1); the latter contains
the highlighted code, but the former does not.

The encryption and decryption schemes of CTR[E, add] are defined in the bottom
panels of Fig. 10. They are essentially the same as the standard CTR mode, ex-
cept that they use the add operation instead of the modular addition in mod 2n.

The scheme CAU-SIV. The scheme CAU-SIV[E,G, add] is described in Fig. 10.
Informally, one first uses KD1 on the given nonce to derive subkeys Kin ∈ {0, 1}n
and Kout ∈ {0, 1}k. One then follows the classic SIV paradigm [41] in building a
misuse-resistant AE scheme: first use the PRF GMAC+ on the triple (N,A,M)
to derive an initialization vector IV, and then run CTR with that particular IV

to encrypt M . However, unlike the standard SIV with key separation, here both
GMAC+ and CTR use E on the same key Kout. There is, however, a domain
separation in the use of the blockcipher: GMAC+ will only run E on an input
whose most significant bit is 0, whereas CTR runs E on inputs of most significant
bit 1.

The CAU-SIV-C1 scheme.We now show how to add CMT-1 security to CAU-SIV.
Recall that CAU-SIV internally uses a PRF GMAC+ that is based on an AXU,
weakly regular hash function G. The scheme CAU-SIV-C1 introduces an extra
xor in GMAC+, resulting in a new PRF construction that we call GMAC2, and
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Fig. 11. The GMAC+ construction (left) and its variant GMAC2 (right).

that is the only difference between the two AE schemes. In particular,

GMAC+[E,G](Kin‖Kout, N,A,M) = E
(

Kout, X
)

,

where X ← N ⊞ G(Kin,M,A). In contrast, GMAC2 employs the Davies-Meyer
construction to break the invertibility of E, namely,

GMAC2[E,G](Kin‖Kout, N,A,M) = E
(

Kout, X
)

⊕X .

See Fig. 11 for a side-by-side pictorial comparison of GMAC+ and GMAC2. The
code of CAU-SIV-C1 is given in Fig. 10.

The difference of CAU-SIV-C1 and CAU-SIV is tiny, just a single xor. As a
result, the speed and bandwidth costs of CAU-SIV-C1 are about the same as
CAU-SIV for all message sizes. While one must intrusively modify CAU-SIV’s
code to obtain CAU-SIV-C1, since CAU-SIV is new, we anticipate that there will
be very few legacy situations that one cannot adopt CAU-SIV-C1.

Committing Security of CAU-SIV-C1. Theorem 5 below confirms that the
extra xor indeed hardens CAU-SIV-C1, ensuring CMT-1 security. The proof is
in [8]. Intuitively, the synthetic IV of CAU-SIV-C1 is obtained by a two-step
chain of hashing: (i) first use the Iterative Truncated Permutation construction
ITP[E, r, n] to commit the master key K and the nonce N to the n-bit prefix
of the blockcipher subkey Kout, and then (ii) use the Davies-Meyer construction
DM[E] to commit Kout. We show in [8] how this allows the CMT-1 security of
CAU-SIV-C1 to reduce to the multi-collision resistance of ITP[E, r, n] and DM[E],
both of which we justify with good bounds.
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Theorem 5. Let SE = CAU-SIV-C1[E,G, add] be as described above, building
on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}k. Let r < n be the nonce
length. Let s ≥ 2 be an integer, and let t =

⌈√
s
⌉

. Then for any adversary A,
we can construct adversaries D0 and D1 such that

Advcmt-1
SE,s (A) ≤ max

{

Advcoll
ITP[E,r,n],t(D0),Advcoll

DM[E],t(D1)
}

.

Each of D0 and D1 runs A and then makes at most 6s other blockcipher calls.

Misuse-Resistance Security of CAU-SIV-C1. The following result shows that
CAU-SIV-C1 also has good misuse-resistance security; the proof is in [8].

Theorem 6. Let SE = CAU-SIV-C1[E,G, add] be as described above, building on
top of a c-AXU hash function G and a blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n.
Then for any adversary A that makes at most q queries of totally σ blocks with
at most B blocks per (user, nonce) pair and D queries per user, we can construct
an adversary B of max{6q, σ + q} queries such that

Advmrae
SE (A) ≤ 2 ·Advprp

E (B) + 6
√
nDq

23n/4
+

7σB + (2c+ 7)qB

2n
.

The running time of B is at most that of A plus the time to encrypt/decrypt the
latter’s queries.

CAU-SIV-C4 for CMT-4-security. Applying the HtE transform of Section 3,
with a suitable choice of H, to CAU-SIV-C1, yields a CMT-4 and MRAE scheme
that we call CAU-SIV-C4. There is no increase in ciphertext size. The computa-
tional overhead is independent of the message length.

7 Adding Key-Committing Security To Legacy AE

In this section, we describe two generic methods UNAE-then-Commit (UtC) and
MRAE-then-Commit (RtC) that transform an AE scheme SE into a CMT-1-
secure one. The former preserves unique-nonce security, whereas the latter pre-
serves misuse-resistance security. As a stepping stone, we define a new primitive
that we call committing PRF, which we will describe below.

Committing PRFs. A committing PRF F is a deterministic algorithm, and
associated with a message spaceM and key space {0, 1}k. It takes as input a key
K ∈ {0, 1}k and a message M ∈M, and then produces (P,L) ∈ {0, 1}ℓ×{0, 1}λ.
We refer to ℓ as the commitment length of F, and λ as the mask length of F.

We require that F be a good PRF, meaning that its outputs (P,L) are indis-
tinguishable from (P ∗, L∗)←$ {0, 1}ℓ × {0, 1}λ. In addition, for an adversary A
and an integer s ≥ 2, we define the advantage of A breaking the s-way binding
security of F as Advbind

F,s (A) = Pr[Gbind
F,s (A)], where game Gbind

F,s (A) is defined
in Fig. 12. Informally, a committing PRF is a combination of a PRF and a com-
mitment scheme, where the string P is a commitment of the key K and the
message M .
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Game Gbind
F,s (A)

(K1,M1, . . . ,Ks,Ms)←$A // (K1,M1), . . . , (Ks,Ms) must be distinct

For i← 1 to s do (Pi, Li)← F(Ki,Mi)

Return (P1 = · · · = Ps)

Fig. 12. Game defining the binding security of a committing PRF F.

CX[E](K,M)

a← ⌈ℓ/n⌉; b← ⌈λ/n⌉

For i ← 1 to a + b do Xi ← pad(M, i);

Vi ← EK(Xi)

V1 ← V1⊕X1

P ← (V1 · · ·Va)[1 : ℓ]; L ←

(Va+1 · · ·Va+b)[1 : λ]

Return (P,L)

E
K

M

E
K

E
K

E
K

� M � M � M �

P L

Fig. 13. The committing PRF scheme CX[E, pad], illustrated for the case ℓ = λ = 2n
and pad(M, i) is the concatenation of M and an (n−m)-bit encoding of i.

For s = 2, our notion of committing PRF can be viewed as a PRF coun-
terpart of the notion of right collision-resistant PRG in [25]. We however will
give practical instantiations via a blockcipher whereas the construction in [25]
is theoretical, using hardcore predicates.

An efficient committing PRF. We now describe an efficient committing
PRF Counter-then-Xor (CX) that is built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. Here the message space M = {0, 1}m and the key space is
{0, 1}k, with m < n. Let pad denote a one-to-one encoding that turns a pair
(M, i) ∈ {0, 1}m × {1, . . . , 2n−m} into an n-bit string. The commitment length
ℓ ≥ n and the mask length λ satisfy ⌈ℓ/n⌉ + ⌈λ/n⌉ ≤ 2n−m. The construction
CX[E, pad] is shown in Fig. 13.

The following result shows that CX is a good committing PRF scheme. Part
(a) is a straightforward application of the (multi-user) PRP/PRF Switching
Lemma, with an observation that for each query that A0 makes to CX, it trans-
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UtC[F, SE].Enc(K,N,A,M)

(P,L)← F(K,N)

C ← SE.Enc(L,N,A,M)

Return P‖C

UtC[F, SE].Dec(K,N,A, P ∗‖C)

(P,L)← F(K,N)

If P ∗ 6= P then return ⊥

Else return SE.Dec(L,N,A,C)

Fig. 14. The encryption (left) and decryption (right) schemes of the resulting AE
scheme under the UtC transform.

lates to d = ⌈ℓ/n⌉+ ⌈λ/n⌉ PRP queries on the blockcipher. For applications in
this paper, d ≤ 5. Part (b) is a direct corollary of Proposition 2, since the first
block of P is obtained from the Davies-Meyer construction DM[E].

Proposition 5. Let CX[E, pad] be as above, and let s ≥ 2 be an integer. Let
d = ⌈ℓ/n⌉+ ⌈λ/n⌉.
a) For any adversary A0 making q queries in total with at most B queries per
user, we can construct an adversary B of about the same running time that makes
at most dq queries such that

Advprf
CX[E,pad](A0) ≤ Advprp

E (B) + d2 ·Bq

2n
.

b) For any adversary A1, we can construct another adversary B of about the
same running time and resources such that

Advbind
CX[E,pad],s(A1) ≤ Advcoll

DM[E],s(B) .

The UNAE-then-Commit (UtC) transform. Let SE be an AE scheme with

key space {0, 1}k and nonce space N . Let F be a committing PRF scheme of
message space N and mask length k. The scheme UtC[F, SE] is shown in Fig. 14.
Informally, under UtC, a ciphertext contains a commitment P of the master
key K, ensuring CMT-1 security. The security of UtC[F, SE] is analyzed below;
the proof is in [8].

Theorem 7. Let SE and F be as above. Let s ≥ 2 be an integer.
a) For any adversary A0, we can construct an adversary B0 of about the same
running time and using the same resources as A0 such that

Advcmt-1
UtC[F,SE],s(A0) ≤ Advbind

F,s (B0) .

b) For any adversary A1 of at most B queries per (user, nonce) pair, we can
construct an adversary B1 and B2 such that

Advunae
UtC[F,SE](A1) ≤ Advprf

F (B1) +Advunae
SE (B2) .

The running time of B1 is about that of A1 plus the time to encrypt/decrypt the
queries of A1 via SE, and its queries statistics is the same as A1. Adversary B2
has the same number of queries and the total query length as A1, but it makes
at most B queries per user. It has about the same running time as A1.
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RtC[F, SE, H].Enc(K,N,A,M)

(P,L)← F(K,N)

C ← SE.Enc(L,N,A,M)

T ← H(P,C[1 : n])

Return T‖C

RtC[F, SE, H].Dec(K,N,A, T‖C)

(P,L)← F(K,N)

T ∗ ← H(P,C[1 :n])

If T 6= T ∗ then return ⊥

Return SE.Dec(L,N,A,C)

Fig. 15. The encryption (left) and decryption (right) algorithms of the scheme given
by the RtC transform.

Discussion. Albertini et al. [4] also give a generic transform. (An instantiation
of this transform is now deployed in the latest version of the AWS Encryption
SDK, an open-source client-side encryption library [1].) It can be viewed as a
specific instantiation of UtC, in which the committing PRF F is built on top of
two collision-resistant PRFs. One of these two collision-resistant PRFs however
may have to provide up to 256-bit output (since this output is used as a key
of the legacy SE), obstructing an obvious instantiation via Davies-Meyer on
AES. As a result, Albertini et al. instantiate them via SHA-256. Not only is
this instantiation slower than our Count-then-Xor construction, but using it in
UtC also requires an additional primitive in addition to AES. In addition, we
realize that UtC achieves CMT-1 security, whereas Albertini et al. only claim
key-committing security.

The MRAE-then-Commit (RtC) transform. Let SE be an AE scheme with

key space {0, 1}λ and nonce space N . Let F be a committing PRF scheme of
message space N , key space {0, 1}k, commitment length ℓ, and mask length λ
(that is also the key length of SE). Assume that each ciphertext in SE is at least
n-bit long. Let H : {0, 1}ℓ × {0, 1}n → {0, 1}n be a collision-resistant PRF. We
can instantiate F via CX, and H via the Davies-Meyer construction. (The PRF
security of this particular choice of H can be trivially obtained from Lemma 1.)
The scheme RtC[F, SE, H] is shown in Fig. 15. Intuitively, RtC creates a two-
step chain of commitments K → P → T , where K is the master key, P is the
commitment generated by F, and T is the hash output, which is a part of the
ciphertext. This leads to an underlying cascade of two hash functions whose col-
lision resistance an adversary has to break in order to break the CMT-1 security
of RtC[F, SE, H]. Thus from Proposition 4, the CMT-1 security of RtC[F, SE, H]
is reduced to the committing security of F and the collision resistance of H. The
proof of the following is in [8].

Theorem 8. Let SE and F be as above.

a) Let s ≥ 2 be an integer, and let t = ⌈√s ⌉. For any adversary A0, we can
construct adversaries B0 and B1 such that

Advcmt-1
RtC[F,SE,H],s(A0) ≤ max

{

Advbind
F,t (B0),Advcoll

H,t(B1)
}

.
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Each of B0 and B1 runs A0, and then runs RtC[F, SE, H] to encrypt one out of
the s messages that A0 outputs, and then evaluates F on s inputs.

b) For any adversary A1 of at most B queries per (user, nonce) pair and at
most q queries, we can construct adversaries B2, B3, and B4 such that

Advmrae
RtC[F,SE,H](A1) ≤ Advprf

F (B2) +Advmrae
SE (B3) +Advprf

H (B4) +
Bq

2n
.

Adversary B2 has the same query statistics as A1, and its running time is at
most that of A1 plus the time to use RtC to encrypt/decrypt the latter’s queries.
Adversaries B3 and B4 have the same number of queries and the total query
length as A1, but they make only B queries per user. The running time of B3 is
about that of A1 plus the time to run H on q inputs, and B4 has about the same
running time as A1.

Connection to libsodium’s approach. The libsodium library [2] suggests
the following transformation to add key-committing security to an AE scheme SE.
Assume that a ciphertext of SE can be parsed as a concatenation of a tag T and a
ciphertext core C∗. Let H : {0, 1}∗ → {0, 1}m be a cryptographic hash function.
To encrypt (N,A,M) under key K, let T‖C∗ ← SE.Enc(K,N,A,M), let T ∗ ←
H(K‖N‖T ), and output T ∗‖T‖C∗. To decrypt (N,A, T ∗‖T‖C∗) with key K,
first check if T ∗ = H(K‖N‖T ). If they agree then return SE.Dec(K,N,A, T‖C∗),
else return ⊥.

The transform above works if we model the hash function H as a (pro-
grammable) random oracle. The RtC transform can be viewed as a way to refine
libsodium’s approach to (i) achieve security in the standard model and (ii) in-
stantiate the hash function via the Davies-Meyer construction instead of SHA-
256. While the libsodium’s transform is suggested for unique-nonce security, we
points out that RtC also works for misuse-resistance security.
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25. P. Farshim, C. Orlandi, and R. Roşie. Security of symmetric primitives under
incorrect usage of keys. IACR Trans. Symm. Cryptol., 2017(1):449–473, 2017.

26. N. Ferguson. Authentication weaknesses in GCM. Manuscript, available in NIST
webpage, 2005.

27. P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenti-
cated encryption. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, Springer 2017.

28. S. Gueron and Y. Lindell. Better bounds for block cipher modes of operation via
nonce-based key derivation. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 2017, 2017.

29. V. T. Hoang, S. Tessaro, and A. Thiruvengadam. The multi-user security of GCM,
revisited: Tight bounds for nonce randomization. In D. Lie, M. Mannan, M. Backes,
and X. Wang, editors, ACM CCS 2018, 2018.

30. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In J. B. Nielsen and V. Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, Springer 2018.

31. B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898, Sep. 2000. https://datatracker.ietf.org/doc/html/rfc2898.

32. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, Springer
2001.

33. M. Lambæk. Breaking and fixing private set intersection protocols. Cryptology
ePrint Archive, Report 2016/665, 2016. https://eprint.iacr.org/2016/665.

34. J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In M. Bailey and
R. Greenstadt, editors, 30th USENIX Security Symposium. USENIX Association,
2021.

35. A. Luykx, B. Mennink, and K. G. Paterson. Analyzing multi-key security degra-
dation. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part II, volume
10625 of LNCS, Springer 2017.

36. D. A. McGrew and J. Viega. The security and performance of the Galois/counter
mode (GCM) of operation. In A. Canteaut and K. Viswanathan, editors, IN-

DOCRYPT 2004, volume 3348 of LNCS, Springer 2004.

37. N. Mouha and A. Luykx. Multi-key security: The Even-Mansour construction
revisited. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, Springer 2015.

38. C. Namprempre, P. Rogaway, and T. Shrimpton. Reconsidering generic composi-
tion. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, Springer 2014.

39. P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor,
ACM CCS 2002, 2002.



30 Mihir Bellare, Viet Tung Hoang

40. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of
operation for efficient authenticated encryption. In M. K. Reiter and P. Samarati,
editors, ACM CCS 2001, 2001.

41. P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap
problem. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
Springer 2006.

42. J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter Mode (GCM)
Cipher Suites for TLS. RFC 5288, Aug. 2008. https://datatracker.ietf.org/

doc/html/rfc5288.
43. J. Salowey, A. Choudury, and D. A. McGrew. AES Galois Counter Mode (GCM)

cipher suites for TLS. RFC 5288, August 2008.


