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Abstract

For an input graph G, an additive spanner is a sparse subgraph H whose shortest paths
match those of G up to small additive error. We prove two new lower bounds in the area of
additive spanners:

• We construct n-node graphs G for which any spanner on O(n) edges must increase a
pairwise distance by +Ω(n1/7). This improves on a recent lower bound of +Ω(n1/10.5) by
Lu, Wein, Vassilevska Williams, and Xu [SODA ’22].

• A classic result by Coppersmith and Elkin [SODA ’05] proves that for any n-node graph
G and set of p = O(n1/2) demand pairs, one can exactly preserve all pairwise distances
among demand pairs using a spanner on O(n) edges. They also provided a lower bound
construction, establishing that this range p = O(n1/2) cannot be improved. We strengthen
this lower bound by proving that, for any constant k, this range of p is still unimprovable
even if the spanner is allowed +k additive error among the demand pairs. This negatively
resolves an open question asked by Coppersmith and Elkin [SODA ’05] and again by
Cygan, Grandoni, and Kavitha [STACS ’13] and Abboud and Bodwin [SODA ’16].

At a technical level, our lower bounds are obtained by an improvement to the entire obstacle
product framework used to compose “inner” and “outer” graphs into lower bound instances. In
particular, we develop a new strategy for analysis that allows certain non-layered graphs to be
used in the product, and we use this freedom to design better inner and outer graphs that lead
to our new lower bounds.

∗This work was supported by NSF:AF 2153680.
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1 Introduction

A basic question arising in robotics [19], circuit design [21, 22, 38], distributed algorithms [10, 14],
and many other areas of computer science (see survey [5]) is to compress a graph metric G into
small space while approximately preserving its shortest path distances. When this compression is
achieved by a sparse subgraph H ⊆ G whose distance metric is similar to that of G, we call H
a spanner of G. The setting of spanners on a linear or near-linear number of edges is considered
particularly important in applications; that is, for an input graph on n nodes, we often want
spanners on O(n) or perhaps O(n1+ε) edges [5].

Spanners were first abstracted by Peleg and Upfal [36] and Peleg and Ullman [35] after arising
implicitly in prior work. Their initial work studied spanners in the setting of multiplicative error:

Definition 1 (Multiplicative Spanners). For a graph G, a subgraph H ⊆ G over the same vertex
set is a ·k multiplicative spanner of G if, for all nodes s, t, we have distH(s, t) ≤ k · distG(s, t).

Optimal bounds for multiplicative spanners were quickly closed in a classic paper by Althöfer,
Das, Dobkin, Joseph, and Soares [9]. For the specific case of O(n)-size spanners, they proved:

Theorem 1 ([9]). Every n-node graph has a ·O(log n) multiplicative spanner on O(n) edges. More-
over, there are graphs that do not have an ·o(log n) multiplicative spanner on O(n) edges.

Thus, the question of compression by multiplicative spanners was closed. However, for many
problems, the paradigm of multiplicative error is considered unacceptable. For example, ·O(log n)
multiplicative blowup in travel time would be unacceptable for a cross-country trucking route.
This generated interest in the community in new error paradigms that perform better on the
long distances in the input graph. Several new types of spanners were suggested and studied in the
following years [25, 39]. The most optimistic was purely additive spanners, where pairwise distances
in the spanner increase only by an additive error term:

Definition 2 (Additive Spanners [32]). For a graph G, a subgraph H ⊆ G over the same vertex
set is a +k additive spanner of G if, for all nodes s, t, we have distH(s, t) ≤ distG(s, t) + k.

Unfortunately, high-quality constructions of near-linear-size spanners with purely additive error
remained elusive. That is, the community faced the following question:

Do all graphs admit +k additive spanners of near-linear size, with k a constant, or at least a
small enough function of n to be practically efficient?

This problem became a central focus of the community following a sequence of upper bound
results. First was the seminal 1995 work of Aingworth, Chekuri, Indyk, and Motwani [6], which
proved that every n-node graph has a +2 additive spanner on O(n3/2) edges. This was followed
by a theorem of Chechik [20] that all graphs have +4 spanners on Õ(n7/5) edges (see also [7]), and
from Baswana, Kavitha, Mehlhorn, and Pettie [13] who proved that all graphs have +6 spanners
on O(n4/3) edges (see also [31, 41]). Thus, it seemed that one might be able to continue this trend,
paying more and more constant additive error in exchange for sparser and sparser spanners. Unfor-
tunately, a barrier to further progress was discovered by Abboud and Bodwin [3], who constructed
graphs for which any additive spanner on O(n4/3−c) edges suffers +nΩ(1) additive error. Thus,
near-linear spanners with subpolynomial error are not generally possible.

That said, the lower bound of [3] is a small enough polynomial to be entirely practical even
on enormous input graphs. This work showed graphs for which any O(n)-size spanner pays at
least +n1/22 error, which is a small enough polynomial to be entirely practical even on huge input
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graphs. However, the upper bounds for O(n)-size spanners were far from this ideal. The first
nontrivial constructions of O(n)-size spanners [37] (following [18]) had +n9/16 error. Thus began a
focused effort by the community to narrow these upper and lower bounds on additive error towards
the middle, with the goal to determine whether practically-significant constructions of near-linear
additive spanners can be generally achieved.

Despite a high throughput of recent work on the topic, the attainable error bounds for linear-size
additive spanners remain wide open. The initial lower bound of +n1/22 additive error was improved
to +n1/11 in two concurrent papers [27, 33], and then recently to +n1/10.5 by Lu, Vassilevska
Williams, Wein, and Xu [34] where it stands today. Meanwhile, the upper bound on additive error
was improved to +Õ(n1/2) [16] and then to +n3/7+ε [17] (see also [20, 37]).

1.1 New Lower Bounds

The main results of this paper are two new lower bound for additive spanners:

Theorem 2 (First Main Result). There are n-node graphs that do not admit a +o(n1/7) additive
spanner on O(n) edges.

Our construction follows the obstacle product framework used to prove lower bounds in prior
work, but with a key generalization. Previously, the obstacle product carefully composes a layered
outer graph with a set of layered inner graphs in a way that causes the shortest paths in the com-
posed graphs to inherit desirable structural properties from each. We provide a stronger framework
for analysis that allows one to compose unlayered inner and outer graphs.

It turns out that this unlayering technique also addresses a related open problem in the area.
One can relax additive spanners to pairwise additive spanners, where we only need to approximate
distances among a set of demand pairs P taken on input:

Definition 3 (Pairwise Additive Spanners [23, 24]). For a graph G = (V,E) and a set of demand
pairs P ⊆ V × V , a subgraph H ⊆ G is a +k additive spanner of G with respect to P if, for all
(s, t) ∈ P , we have distH(s, t) ≤ distG(s, t) + k.

We can then hope for better error bounds in the setting where the number of demand pairs |P |
is not too large. Pairwise spanners were introduced by Coppersmith and Elkin [23], who specifically
focused on the exact k = 0 case (also called distance preservers); the approximate k > 0 case has
been studied repeatedly in followup work [1, 24, 28, 29, 30, 31]. The initial paper by Coppersmith
and Elkin [23] established the following fundamental result:

Theorem 3 ([23]).

• (Upper Bound) For any n-node graph G = (V,E) and set P ⊆ V ×V of |P | = O(
√
n) demand

pairs, there is a distance preserver (+0 pairwise spanner) on O(n) edges.

• (Lower Bound) For any p = ω(
√
n), there are n-node graphs G = (V,E) and sets of |P | = p

demand pairs that do not admit a distance preserver on O(n) edges.

Thus, with a budget of O(n) edges, we can exactly preserve distances among O(
√
n) demand

pairs and no more. A question asked repeatedly in followup work [1, 23, 24] is whether this
√
n

threshold can be improved if we allow constant +k error; this question was explicitly studied in
[1, 24], without resolution. We settle this question negatively:

Theorem 4 (Second Main Result). For any constant k > 0 and p = ω(
√
n), there are n-node

graphs G = (V,E) and sets of |P | = p demand pairs that do not admit a +k pairwise spanner on
O(n) edges.
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On a technical level, this stronger lower bound is again proved using an unlayered obstacle
product. In our view, our new lower bound further cements the importance of the

√
n demand

pair/O(n) size threshold by Coppersmith and Elkin: it is even robust to any constant additive
error.

2 Technical Overview of Main Result and Comparison to Prior
Work

At a technical level, our main result departs from prior work by altering a fundamentally different
piece of the construction than the one typically considered previously. We overview the construction
and our improvement in the next section. Here we overview the parts of our construction that match
prior work, and we overview the new technical ingredients that give our improved lower bounds.

2.1 The Obstacle Product Framework

Like every other lower bound in the area, we follow the obstacle product framework. This framework
involves composing an outer graph and many copies of an inner graph.

The essential property of the outer graph GO is that it has a set of critical pairs PO ⊆ V (GO)×
V (GO), such that:

• for each critical pair (s, t) there is a unique shortest s  t path π(s, t) in GO, called the
canonical path, and

• the canonical paths are pairwise edge-disjoint.

If we remove an edge from a canonical path π(s, t), then since it is a unique shortest path,
dist(s, t) will increase by at least +1. To amplify this error, we apply an edge-extension step in
which we add k = nΩ(1) new nodes along every edge. Thus, removing an edge from an (edge-
extended) canonical path π(s, t) will cause dist(s, t) to increase by at least +k.

s tπ(s, t)
×

dist(s, t) ≥ |π(s, t)|+ 1

s tπ(s, t)
×

dist(s, t) ≥ |π(s, t)|+ k

· · ·

· · ·

Figure 1: Deleting an edge from a canonical path stretches its distance by at least +1. After the
edge extension step, deleting an edge stretches distance by at least +k.

Although edge-extension forces any nontrivial spanner of the outer graph to suffer +k distance
error, the problem is that the extended outer graph is now very sparse: the vast majority of the
nodes are new edge-extension nodes of degree 2, while only a small handful of nodes are from the
original outer graph and may have higher degree. Thus the trivial spanner, that keeps the entire
outer graph, has O(n) size (where n is the number of nodes after edge extension) and can be used.
The purpose of the next inner graph replacement step in the obstacle product is to regain this lost
density, so that an O(n)-size spanner actually has to remove a significant number of edges from the
graph.
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The inner graph GI is equipped with a set of critical pairs PI with unique edge-disjoint shortest
paths, just like the outer graph. We will call these inner-canonical paths, and the paths in the outer
graph outer-canonical paths to make clear the distinction. Let v be a node in the outer graph that is
contained in exactly d outer-canonical paths, and suppose the inner graph GI has exactly |PI | = d
critical pairs (the case where these quantities only approximately match, instead of both being
exactly d, can be handled easily). We then replace the node v with a copy of the entire graph GI .
To preserve outer-canonical paths, we associate each outer-canonical path π(s, t) that intersects v
to some inner-canonical path π(sI , tI) in GI . We arrange the composed graph in such a way that
the unique shortest s t path in the composed graph is exactly the original outer-canonical path
π(s, t), with each node v replaced by the corresponding inner-canonical path π(sI , tI) in the copy
of GI that replaced v. We call this unique shortest s t path the composed-canonical path.

v

GI

Figure 2: To regain lost density from edge extension, the inner graph replacement step replaces
nodes in the outer graph with copies of the inner graph, carefully attaching canonical paths in the
outer graph to canonical paths in the inner graph.

Most of the edges in the composed graph lie in inner graphs. This implies that, in any O(n)-size
spanner H of the composed graph GO ⊗GI , there will be a composed-canonical path π(s, t) where
the spanner is missing most of the edges used by π(s, t) in inner graphs. We use two cases to argue
that distH(s, t) must be much longer than distG(s, t). In the first case, suppose that the shortest
s  t path in H uses the same sequence of inner graphs as the composed-canonical path. It then
suffers at least +1 error in most of its inner graphs due to missing edges; it intersects k = nΩ(1) total
inner graphs, for a total cost of +Θ(k) additive error. The other case is when the shortest s  t
path in the spanner avoids these gutted inner graphs by instead following a path that corresponds
to a non-canonical s t path in the outer graph. This other kind of path also suffers +Θ(k) error
over the composed-canonical path, essentially due to the edge-extension step.

s t

× × ×
+1 +1 +1

k inner graphs

s t
× × ×+k · · ·

· · ·

× × ×

Figure 3: In any O(n)-size spanner H, there is a canonical path π(s, t) that is missing most of its
edges in inner graphs. The additive error of s t paths in the spanner are analyzed in two types:
those that suffer +1 error in each inner graph (left), and those that avoid the problematic inner
graphs entirely by following a non-outer-canonical path (right).
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2.2 Improvements in Prior Work: Changes to the Alternation Product

Essentially every major improvement in the lower bound has thusfar been achieved by an im-
provement to the alternation product. Although the alternation product is not used at all in the
technical part of this paper, it is worth overviewing, to highlight the core difference between the
new improvements in this paper and those obtained in prior work.

The motivating observation behind the alternation product is that, for correctness of the lower
bound, one needs that each edge in an inner graph is only used by one composed-canonical path.
To enforce this, it is actually overkill to require edge-disjoint outer-canonical paths. Rather, we
can allow the pairwise intersections of outer-canonical paths to contain at most one edge.

Figure 4: We can allow the outer-canonical paths to contain an edge in their pairwise intersections
(left), and then after the inner graph replacement step, the composed-canonical paths will become
edge-disjoint on inner graphs (right).

Thus, there is some additional freedom in outer graph design. The alternation product tries to
leverage this freedom for a stronger lower bound. It changes the edge-disjoint outer-canonical paths
into 2-path-disjoint outer-canonical paths, in exchange for different relative counts of nodes, critical
pairs, and canonical path lengths in the outer graph. These parameter changes are favorable when
the goal is to build a lower bound against denser spanners; for example, the alternation product is
necessary to establish the existence of graphs that need +nΩ(1) error for any spanner on O(n4/3−ε)
edges. But, in a naive implementation of the alternation product, these parameter changes are
unfavorable when the goal is lower bounds against O(n)-size spanners.

The improved lower bounds of Ω(n1/11) from [27, 33] are mostly achieved by removing the
alternation product from [3] entirely. The subsequent Ω(n1/10.5) lower bounds of Lu et al [34]
reintroduce the alternation product; their main technical innovation is a clever new implementation
of the alternation product that takes advantage of the geometric structure of the outer graph to
obtain more favorable parameter changes, which make it beneficial even in the setting of sparse
spanners.

2.3 Improvements in Our Work: New Inner/Outer Graphs

The current paper obtains achievements in a different way from prior work. We omit the alternation
product entirely; in that sense, our construction forks [27, 33] rather than [34] (we briefly explain
why in the following section). Rather, we enable a significant technical change in the design of
inner/outer graphs, which we explain next.

Roughly, the goal of the inner/outer graphs is to pack in as many critical pairs as possible, with
as long canonical paths as possible. The main technical innovation in the Ω(n1/22) lower bound of
[3] was to replace the “butterfly” outer graph implicitly used by Woodruff [40] with a “distance
preserver lower bound graph,” along the lines of a construction by Coppersmith and Elkin [23] (see
also [8, 26] for prior graph constructions based on a similar technique). Ideally, one would like to use
the Coppersmith-Elkin distance preserver lower bound graphs exactly for inner/outer graphs. But
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there’s a catch. When we execute the inner graph replacement step, we need to make sure that the
composed-canonical paths are unique shortest paths in the composed graph. This property is not
immediate, and in fact it does not hold for arbitrary choices of inner/outer graphs. Rather, it holds
if the inner and outer graphs are both layered. But layeredness is not free; introducing layeredness
to the Coppersmith-Elkin construction significantly harms the inner/outer graph quality, leading
to worse lower bounds. All previous lower bound constructions [3, 27, 33, 34, 40] pay this penalty
in order to layer their graphs.

Lower Bound Outer Graph Inner Graph Alternation Product? Citation

Ω(log n) Butterfly Biclique No [40]

Ω(n1/22) Layered Dist Pres LB Biclique Yes [3]

Ω(n1/11) Layered Dist Pres LB Layered Dist Pres LB No [27, 33]

Ω(n1/10.5) Layered Dist Pres LB Biclique Improved [34]

Ω(n1/7) Dist Pres LB Dist Pres LB No this paper

The technical contribution of our paper can be summarized as follows:

Lemma 1 (Main Technical Lemma, Informal). There are certain amended versions of the Coppersmith-
Elkin graphs in [23] whose structure allows them to be used as inner/outer graphs in the obstacle
product, despite being unlayered.

In addition to its use in spanner lower bounds, this technical lemma is also the essential missing
ingredient towards our extension of pairwise distance preserver lower bounds of Coppersmith and
Elkin to pairwise additive spanners with +k error (Theorem 4). Our lower bound matches the

√
n

demand pair threshold obtained by the Coppersmith-Elkin lower bound against distance preservers
precisely because we can use an amended Coppersmith-Elkin distance preserver lower bound for
the outer graph of our obstacle product.

One can view the Coppersmith-Elkin graph construction as parametrized by a convex set of
vectors taken on input. The original graphs in [23] use a standard convex set construction from
[12]. We need to design very precise convex sets that have essentially the same size as those used
by Coppersmith and Elkin, but with some additional technical properties that enable use with the
obstacle product. Some of our main new technical contributions lie in the design of these convex
sets, which we describe in Section 5.

The other major technical step in this paper lies in the part of the obstacle product where
outer-canonical paths are attached to inner-canonical paths in the inner graph replacement step.
In all prior work, it has been completely arbitrary which outer-canonical path was attached to
which inner-canonical path. In this work, it is non-arbitrary: we show that the obstacle product
benefits from a specific alignment between these paths; roughly, outer-canonical paths are attached
to inner-canonical paths based on the direction they are travelling. Details are given in Section 5.3.

With this, we employ a more complex version of the error analysis from prior work, that leverages
our convex set design and alignment between inner and outer canonical paths. We introduce a move
decomposition framework to do so, which enables an amortized version of the convexity argument
used for error analysis in prior work. A high-level overview of the move decomposition framework
can be found in Section 4, but we will not overview it further here.

2.4 Future Directions: Can the Obstacle Product Achieve Tight Error Bounds?

This research project was initiated by a thought experiment: is it even conceivable for the obstacle
product framework to produce lower bounds matching the upper bounds obtained by the path-
buying framework currently used for the spanner upper bounds in this paper and in [13, 17]? In
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this subsection, we argue that the answer is a resounding “sort of:” on all axes except one, there is
clear potential for these frameworks to produce matching upper and lower bounds. This problematic
axis likely spoils the possibility of pinning down an exact error bound for O(n)-size spanners in the
near future, but this problematic axis is more of a barrier in analysis than in construction.

Suppose we run the current state-of-the-art upper bound construction from [17] on lower bound
graphs produced by the obstacle product. One arrives at three main points of technical disagree-
ment, where the upper bound analysis makes pessimistic assumptions not actually realized on the
current lower bound graph. Thus, a hypothetical tight analysis would have to either introduce a
lower bound graph that realizes these pessimistic assumptions, or it would need to improve the up-
per bound argument to avoid making these pessimistic assumptions in the first place. We overview
these points, and their implications for future work, below.

Our Unlayered Inner Graphs Are Probably Necessary. The path-buying framework used
in previous spanner upper bounds [2, 13, 31] begins with a clustering phase, in which the graph
nodes are partitioned into low-radius “clusters.” In the second path-buying phase, one adds a
collection of shortest paths that connect far-away clusters with small additive error. A key piece
of the upper bound analysis argues that we only add a small number of shortest paths through
each cluster. More specifically, leveraging distance preserver upper bounds from [23] for a cluster

C with nC nodes, we can afford O(n
1/2
C ) shortest paths while paying only a linear number of edges

for this cluster C.
When the path-buying framework is run on an obstacle product construction, it precisely picks

out the inner graphs (plus a few nodes in the attached edge-extended paths) as clusters, and it
picks out the outer-canonical paths as the shortest paths added in the second phase. Thus, for

tightness, one would hope that parameters balance in such a way that we have Ω(n
1/2
I ) canonical

paths through each inner graph on nI nodes. Prior to this work, this was not so: the forced layered

structure of the inner graphs meant that one actually had to place Ω(n
2/3
I ) canonical paths [27] or

even Ω(nI) canonical paths [3, 34] to achieve a lower bound. By unlayering our inner graphs, we

are able to rebalance parameters to have Ω(n
1/2
I ) canonical paths through each inner graph for the

first time. Thus, this particular axis is no longer a point of disagreement following our work; we
view our main conceptual contribution as demonstrating tightness between the path buying and
obstacle product frameworks in this regard.

An Improved Alternation Product Is Probably Still Needed. In the clustering phase of
the path-buying framework, each cluster is either “small” or “large,” depending on its number
of nodes. The worst-case input graphs for the spanner upper bounds would have the structure
that all clusters are right on the small/large borderline; it is a good case when all clusters are
significantly above or below this threshold. As mentioned, when one clusters obstacle product
graphs, the clusters are precisely the inner graphs plus some of their attached edge-extended paths.
However, they would specifically be classified as large clusters in the upper bound, far away from
this borderline. So the upper bound makes a pessimistic assumption of borderline clusters that is
not actually realized in the current lower bound construction.

Let us engage for a moment in some wishful thinking. Suppose that we could apply an alter-
nation product on the outer graph, and then replace in inner graphs with our current density of
canonical paths but with the additional structure S × S on their demand pairs (such graphs are
constructed in [23]). This would substantially reduce the number of edge-extended paths attached
to each inner graph, and this change would put our inner graphs right on the small/large borderline
when viewed as clusters. Thus, to resolve this discrepancy between the path buying and obstacle
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product frameworks, we think that the alternation product or something similar is very likely to
be the right tool.

There is no intrinsic barrier to applying an alternation product on top of our unlayering method,
but it complicates the already-delicate geometric details of our argument in a way that we have
not resolved. So we wish to emphasize that the improved alternation product in [34] remains an
important technical idea, and the natural next step for the area is to integrate this alternation
product (or perhaps one with even further-improved parameters) with our unlayered inner graphs.
In this sense, although our lower bounds improve numerically on [34], we think it is more conceptu-
ally correct to consider our respective constructions as concurrent state-of-the-art that achieve two
different desirable features of the ultimate lower bound construction, which will need to be unified
in future work.

Optimal Outer Graphs Will Probably Be Hard To Achieve. In order to replace in inner
graphs of nontrivial size, we need to start the obstacle product construction with a relatively dense
outer graph, that has poly(n) canonical paths passing through a typical node. Such an outer graph
would essentially need to be a distance preserver lower bound as in [23] (perhaps passed through
an obstacle product). The trouble is that it is arguably out of reach of current techniques to
determine the optimal quality of a distance preserver lower bound graph. Distance preserver lower
bounds have close relationships to several long-standing open problems in extremal combinatorics,
like bounds for the triangle removal lemma [15], and it will probably be difficult to settle the
bounds for distance preservers without also making a breakthrough on these difficult combinatorial
problems.

This paper is the first that is able to use state-of-the-art distance preserver lower bounds for the
outer graph. One can explain a substantial part of the remaining numerical upper/lower bound gap
for additive spanners by acknowledging that the upper bound implicitly uses off-the-shelf distance
preserver upper bounds, and the lower bound uses distance preserver lower bounds, and these are
far apart. Thus: while it is quite reasonable to think that the obstacle product might produce
tight lower bounds when an optimal distance preserver lower bound outer graph is plugged in, it
will likely be hard to find a concrete graph to plug in.

3 Construction Framework

We now present our lower bound construction. We refer back to the technical overview (Section
2) for intuition, comparison to prior work, and to highlight the part of this paper that is new. For
simplicity of presentation, we will frequently ignore issues related to non-integrality of expressions
that arise in our analysis; these issues affect our bounds only by lower-order terms.

3.1 Base Graph GB

We start by describing a template for a base graph GB, which is a generalized version of the lower
bound construction for distance preservers by Coppersmith and Elkin [23] (they use the following
construction with a particular choice ofW ). The outer and inner graphs in our obstacle product will
both be versions of the base graph, instantiated a bit differently. Graph GB will have parameters
(x, y, r,W ).

Vertices. The vertices of the base graph are [1, x]× [1, y], where x, y are positive integers that are
inputs to the construction. We imagine these vertices as a subset of Z2, i.e., embedded as points
in the Euclidean plane.
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The Strongly Convex Set W . The edges and critical pairs of the base graph both depend on
an additional input W , which is required to be a strongly convex set of vectors in Z

2. We recall
the definition:

Definition 4 (Strongly Convex Set). A set of vectors W is strongly convex if the equation ~v0 =
λ1~v1+ · · ·+λk~vk has no nontrivial solutions with all ~vi ∈W , k any positive integer, and λi (possibly
negative) scalars with

∑
i |λi| ≤ 1. The trivial solutions are when ~v0 = ~v1 = · · · = ~vk.

We will write our strongly convex set asW (r, ψ) to mean that (1) the x-coordinate of all vectors
is between r/2 and r, and (2) the angle between any vector and the horizontal is in the range [0, ψ]
radians. For a technical reason to follow, we further require that the parameter r satisfies r ≤ x

4 .

Critical Pairs. We next define the set of critical pairs P for the base graph. Let r be an integer
parameter of GB and W (r, ψ) be our chosen strongly convex set. Let S = [1, r/2] × [1, y/2], and
let T = [x − r, x] × [1, y]. The critical pairs P are a subset of S × T . Specifically: for each s ∈ S
and each ~v ∈ W (r, ψ), let t = s + k~v where k is the largest positive integer such that t ∈ V , and
include (s, t) ∈ P . We quickly confirm that this node t is well-defined:

Lemma 2. If we choose ψ so that 0 ≤ ψ ≤ π/4 and tanψ ≤ yx−1/2, then for all s ∈ S,~v ∈W (r, ψ)
there exists a positive integer k with t := s+ k~v ∈ T .

Proof. Choose k to be the largest integer such that s1+kv1 ≤ x, where s1, v1 are the first coordinates
of s,~v respectively. Since ‖~v‖ ≤ r, this implies s1+kv1 ≥ x−r, and so the first coordinate of s+k~v
is in the appropriate range [x− r, x].

For the second coordinate: since s2 ≥ 1 and tanψ ≥ 0, we have s2 + kv2 ≥ 1. Additionally,
since s2 ≤ y/2 and tanψ ≤ yx−1/2, we have s2 + kv2 ≤ y/2 + x · yx−1/2 ≤ y. Thus the second
coordinate of s+ k~v is in the appropriate range [1, y], completing the proof that s+ k~v ∈ T .

This lemma imposes a mild constraint on our choice of ψ, which will be satisfied in the instan-
tiation of our inner and outer graphs from this base graph.

Edges and Canonical Paths. Each critical pair (s, t) ∈ P is generated using a vector ~v ∈
W (r, ψ); we call this the canonical vector of (s, t). We define the canonical (s, t)-path πs,tB the
(s  t)-path containing exactly the edges of the form (s + i~v, s + (i + 1)~v) for integers 0 ≤ i < k.
The edges of the graph are exactly those contained in any canonical path.

Important Properties of the Base Graph. This completes the construction of the base graph;
we note its important structural properties before moving on. A version of this lemma appears
frequently in prior work.

Lemma 3 (Properties of Base Graph GB, similar to lemmas in [4, 27, 34]). The base graph
GB = (V,E) has the following properties:

1. |V | = xy

2. |P | = Θ(ry · |W (r, ψ)|)

3. The canonical paths πs,tB are pairwise edge-disjoint.

4. For all s, t ∈ P ,
∣∣∣πs,tB

∣∣∣ = Θ(xr ). Consequently, |E| = Θ(xy · |W (r, ψ)|).

9



S T

ψ

r
2

r

W (r, ψ)

Figure 5: For each node s ∈ S, we use the strongly convex set W (r, ψ) to generate the the nodes
t ∈ T for which (s, t) is included as a critical pair, in addition to the generation of the canonical
paths connecting these critical pairs.

5. Each canonical path πs,tB is the unique shortest (s, t)-path in GB.

Proof.

1. The number of vertices is immediate from construction.

2. There is exactly one critical pair in P for each combination of a vertex in S and vector in
W (r, ψ). Thus

|P | = |S| · |W (r, ψ)| = Θ(ry · |W (r, ψ)|).

3. Each edge (a, b) ∈ E uniquely identifies a vector ~v ∈ W (r, ψ). Since by construction (a, b)
lies on a canonical path, we can subtract ~v from a zero or more times to reach a node in S;
since the first coordinate of v is at least r/2 and the width of S is r/2, there is a unique node
in S that we can reach in this way. Thus (a, b) also uniquely identifies the first node of its
canonical path s ∈ S. Since s,~v determine a canonical path, (a, b) lies on a unique canonical
path.

4. Let ~v be the canonical vector of a critical pair (s, t). Notice that

∣∣∣πs,tB

∣∣∣ = ‖t− s‖
‖~v‖ .

10



Since P ⊆ S × T , the first-coordinate displacement |t1 − s1| is at least x − 2r ≥ x/2. Then
since ‖~v‖ ≤ r, we have ∣∣∣πs,tB

∣∣∣ = ‖t− s‖
‖~v‖ ≥ x− 2r

r
≥ x

2r

where the last inequality is since we require r ≤ x/4. Since critical paths are edge-disjoint
and every edge lies on a critical path, it follows that

|E| = |P | ·Θ
( x
2r

)
= Θ(xy · |W (r, ψ)|).

5. Let πs,tB = (s, s+~v, s+2~v, . . . , t) be a canonical path, where πs,tB has k edges and so t−s = k~v.
Suppose for the sake of contradiction that there is some other (s, t)-path π of length j ≤ k in
GB, and let ~vi be the vector used to create the ith edge in π. Then

k~v = t− s =

j∑

i=1

~vi.

Since we have assumed that π 6= πs,tB , this violates strong convexity property of W (r, ψ),
completing the contradiction.

3.2 Composing the Final Graph G

Inner Graph and Outer Graph. We instantiate two different copies of our base graph, which
we will call the inner graph GI = (VI , EI) and the outer graph GO = (VO, EO). We will use sub-
scripts I and O to indicate the inputs used to create GI , GO respectively. That is: the inner graph
has dimensions xI , yI , strongly convex set WI(rI , ψI), critical pairs PI , and canonical paths πs,tI .
The outer graph parameters are the same with subscript O. Since GI , GO are both instantiations
of the base graph, they both satisfy Lemma 3.

Inner Graph Replacement Step. The next step in the construction of G is to replace each
vertex in GO with a copy of the inner graph GI . For each vertex u in GO replaced with a copy Gu

I

of GI , we must reconnect every edge originally incident to u in GO to some vertex in Gu
I . Recall

that the critical pair set PI is a subset of SI × TI . We will regard the source vertices SI to be
the input ports of Gu

I and the sink vertices TI to be the output ports of Gu
I . We will attach every

incoming edge of form (u − ~v, u) in GO where ~v ∈ WO to an input port in Gu
I . Likewise, we will

attach every outgoing edge of form (u, u+ ~v) in GO to an output port in Gu
I .

To perform this attachment, we define a bijection φ : WO 7→ PI from the vectors in the outer
graph’s strongly convex set to the critical pairs in PI . Later in the analysis, we will specify that
φ is non-arbitrary; for technical reasons we must specifically choose a bijection satisfying certain
properties. But for now we will prove some useful properties of the construction that hold regardless
of which bijection φ is used. We note that since φ is a bijection we gain constraints

|WO| = |PI | = Θ(rIyI · |WI |).

If ~v ∈ WO and φ(~v) = (s, t), we plug in the incoming edge (u − ~v, u) into input port s in Gu
I ,

and we plug in the outgoing edge of form (u, u+ ~v) originally in GO into output port t in Gu
I . We

repeat this process for all copies of GI and all vectors ~v ∈WO. Let G
′ be the graph resulting from

this process.
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Edge Subdivision Step. Let z be a new parameter of the construction. To obtain our final
graph G, we subdivide every edge of G′ corresponding to an original edge in outer graph GO into
a path of length z = |VI | · |PI |−1, by adding new nodes along the edge. We refer to the paths in G
replacing edges from GO as subdivided paths.

Critical pairs. We define the critical pairs P associated to the final graph G as follows:

• For each (sO, tO) ∈ PO, let G
sO
I and GtO

I be the inner graph copies in G corresponding to
vertices sO and tO in GO. Let ~vO be the canonical vector corresponding to critical pair
(sO, tO) ∈ PO, and let φ(~vO) = (sI , tI) ∈ PI .

• We then add a critical pair to P from the vertex sI in GsO
I paired with the vertex sI in GtO

I .1

Denote these vertices in G as s and t, respectively.

• The associated canonical (s, t)-path πs,t through the final graph G is the one obtained by
starting with πsO,tO

O and replacing each edge with the corresponding subdivided path in G

and each node u with the canonical path πsI ,tII in the graph Gu
I , except that we replace the

final node tO with the single node sI in GtO
I .We define vector ~vO ∈ WO to be the canonical

vector of G associated with πs,t.

We summarize the properties of our construction:

Lemma 4 (Properties of Final Graph G). Graph G = (V,E) has the following properties:

1. |V | = Θ(|VO‖VI |)

2. |P | = Θ(rOyO · |WO|)

3. The canonical paths πs,t for (s, t) ∈ P are pairwise edge-disjoint.

4. For all (s, t) ∈ P ,
∣∣πs,t

∣∣ = Θ
(
xO
rO

· xI
rI

)
. Consequently, |E| = Ω(|WI ||V |).

Proof.

1. The number of vertices in inner graph copies in G is |VO‖VI |. Now we just need to count the
vertices in the subdivided paths of G. Each inner graph copy GI in G is incident to at most
2|WO| subdivided paths, each of which has length z = |VI | · |PI |−1. Then since |PI | = |WO| by
our bijection φ, the number of vertices in subdivided paths is at most |VO|·2|WO|·|VI‖WO|−1 =
2|VO‖VI |.

2. The number of demand pairs follows immediately from Lemma 3 and the fact that |P | = |PO|.

3. The fact that canonical paths do not share edges along subdivided paths follows from edge-
disjointness of canonical paths in the outer graph (Lemma 3). The fact that canonical paths
do not share edges in inner graph copies follows by noticing that any two canonical paths
in GO with the same canonical vector ~v ∈ WO are node-disjoint. Thus, any two canonical
paths in G that use the same inner graph Gu

I have different canonical vectors, and so they
use different canonical subpaths through Gu

I , as determined by the bijection φ. The claim
then follows from edge-disjointness of canonical paths in GI .

1In principle we could use tI in place of sI in G
to
I , but using sI instead happens to simplify some technical details

later on.
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4. Let (s, t) ∈ P , and let paths πsO,tO and πsI ,tI be the canonical paths in GO and GI respectively
used to define πs,t. By construction we have

∣∣πs,t
∣∣ ≥

∣∣πsO,tO
∣∣ ∣∣πsI ,tI

∣∣ .

Applying Lemma 3 to bound the lengths of canonical paths, we thus have

∣∣πs,t
∣∣ = Θ

(
xO
rO

· xI
rI

)
.

Finally, since canonical paths of G are edge-disjoint and |WO| = |PI |, we have

|E| ≥ |P | ·Θ
(
xO
rO

· xI
rI

)
= Ω(|WI | · |V |) .

4 Analysis Framework

Fix a critical pair of vertices (s, t) ∈ P in our final graph G. Let π∗ denote the canonical path
corresponding to critical pair (s, t) in G, and let π be any alternate s  t path. The majority
of our analysis will be dedicated to proving that π is much longer than π∗ in the case where π

takes at least one subdivided path not in π∗; specifically, we show |π| − |π∗| = Ω(r
2/3
O ) (see Lemma

19). After proving this lemma, the rest of the analysis follows arguments similar to prior work
[3, 27, 33, 34].

We begin our analysis by decomposing paths in G into subpaths we call moves. We define a
partition of these moves that we call the moveset M.

Definition 5 (Moveset M). Let π be a (u, v)-path in G from some input port u ∈ SI in some inner

graph copy G
(1)
I to some input port v ∈ SI in some inner graph copy G

(2)
I . If no internal vertex of

π is an input port, then we call π a move. We define the following categories of moves in G.

• Forward Move. Path π is a forward move if it travels from u to some output port w ∈ TI
in G

(1)
I and then takes a subdivided path e from w to reach input port v in G

(2)
I .

• Backward Move. Path π is a backward move if it takes some subdivided path e incident to

u to reach some output port w ∈ TI in G
(2)
I and then travels to input port v in G

(2)
I .

• Zigzag Move. Path π is a zigzag move if it takes some subdivided path e1 incident to u to

reach some output port w1 ∈ TI in some inner graph copy G
(3)
I , then travels to some output

port w2 ∈ TI in G
(3)
I , and then takes a subdivided path e2 incident to w2 to reach vertex v in

G
(2)
I .

• Stationary Move. Path π is a stationary move if G
(1)
I = G

(2)
I , i.e. if u and v are input

ports in the same inner graph copy.

We define the moveset M to be the collection of these categories of moves, namely

M = {Forward, Backward, Zigzag, Stationary}.

Moves will be the basic unit by which we analyze (s, t)-paths in G. A useful property of the
moveset is the following.
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forwardbackward

zigzag

stationary

u

Figure 6: The four types of moves from one input port to another in our move decomposition of
paths. All four moves pictured here use u as their start node, the circles represent different copies
of the inner graph, and the dotted lines between inner graph copies represent subdivided paths.

Proposition 1. Every simple (s, t)-path π can be decomposed into a sequence of pairwise internally
vertex-disjoint moves from the moveset.

Proof. Let s1, s2, . . . , sk be the list of input ports contained in π, listed in their order in π. Note
that s1 = s and sk = t. Each subpath π[si, . . . , si+1] will have no input port as an internal vertex,
and therefore will be a move mi. This move mi will be internally vertex-disjoint from all other
moves mj , where i 6= j, since π is a simple path. It is immediate from the construction of G that
M is a partition of the set of moves in G. Then move mi will belong to some category of moves in
M.

Note that the canonical (s, t)-path π∗ specifically decomposes into a sequence of forward moves,
each of which take a subdivided path corresponding to the canonical vector of π∗. Our goal is to
compare the length of π∗ to the length of an arbitrary (s, t)-path π. We will accomplish this by
comparing the moves in the move decomposition of the two paths. We now identify some geometric
notions corresponding to moves that will be useful in our analysis.

Fix a simple (s, t)-path π, and let m1,m2, . . . ,mk be its move decomposition, where mi is a

move from an input port si in inner graph copy G
(i)
I to an input port si+1 in inner graph copy

G
(i+1)
I , and s1 = s and sk+1 = t. If an inner graph copy G

(i)
I replaces a vertex v ∈ VO in G, then we

will let coord(G
(i)
I ) be the vector in Z

2 with the coordinates of v. We now define several geometric
notions that will be essential to our analysis of path π in G.

Definition 6 (Move vector). The move vector ~mi corresponding to move mi is defined as

~mi = coord

(
G

(i+1)
I

)
− coord

(
G

(i)
I

)
.

We may think of moves in the move decomposition as vectors in Z
2 between vertices in GO (with

vertices in GO corresponding to inner graph copies GI in G). Now let ~v∗ ∈ WO be the canonical
vector corresponding to canonical (s, t)-path π∗. Corresponding to each move mi, we define a move
distance di.
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Definition 7 (Move distance). The move distance di corresponding to move vector ~mi is defined
as di = proj~v∗ ~mi, that is, the (possibly negative) scalar projection of the vector ~mi onto ~v

∗ in the
standard Euclidean inner product.

We roughly use di as a measure of how much closer or farther we get to t in G when we take
move mi. Besides the move distance di of mi, the other salient property is its length (number of
edges) in the final graph, |mi|. We will be comparing the moves of a path π against the moves of
π∗, all of which have move distance ‖~v∗‖ and the same path length. The following quantity will be
useful for this purpose.

Definition 8 (Unit length of π∗). We define the unit length Lπ∗ of π∗ as Lπ∗ := |π∗|
‖t−s‖ .

Lπ∗ is the number of edges in π∗ per unit distance travelled in Z
2. Using this quantity we can

directly compare any move mi to the moves of π∗ via the following quantity.

Definition 9 (Move length difference). ∆(mi) = |mi| − Lπ∗di

The move length difference ∆(mi) is the number of additional edges used by mi to travel
distance di in the direction ~v∗, as compared with the same move in π∗.

Proposition 2.
∑

i∆(mi) = |π| − |π∗|

Proof. We have:

∑

i

∆(mi) =
∑

i

|mi| − Lπ∗

∑

i

di = |π| − |π∗|
‖t− s‖ ·

∑

i

di = |π| − |π∗|

The final equality follows from the fact that
∑

i di =
∑

i proj~v∗ ~mi = proj~v∗(t− s) = ‖t− s‖, since
π is an (s, t)-path and ~v∗ is the canonical vector of (s, t) ∈ P .

Proposition 2 gives us a way to compare |π| and |π∗| at the level of individual moves. If we could
show that for all moves m, ∆(m) ≥ 0, then we would be a lot closer to our current goal of proving
a separation between |π| and |π∗|. (Roughly speaking, the inequality ∆(m) ≥ 0 was immediate
in prior constructions.) Unfortunately, this is not generally true in our construction. Because our
inner graph is unlayered, it’s possible that the canonical inner graph path used by π∗ in copies of
inner graph GI is much longer than a different path connecting some input port to some output
port in GI , which might be used in an alternate move mi. This would result in negative ∆(mi).

We will outline our fix here, although some technical details are pushed to later in the argument
where they are used. We will use an amortized version of move difference, based on a potential
function Φ : SI 7→ R≥0 that we call the inner graph potential. Note that the input to Φ is an input
port in the original inner graph; we will evaluate Φ on input ports in various inner graph copies
in the final graph, and so if a, b represent the same input port in two different inner graph copies,
we must have Φ(a) = Φ(b). We will specify Φ in Section 6. With this, we can define an amortized
version of move difference, ∆̂(mi).

Definition 10 (Amortized move difference). ∆̂(mi) := ∆(mi)− (Φ (si+1)− Φ (si))

The following proposition shows that the amortized move difference still captures the difference
between |π| and |π∗|.

Proposition 3.
∑

i ∆̂(mi) = |π| − |π∗|
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Proof. We have:
∑

i

∆̂(mi) =
∑

i

∆(mi)−
∑

i

(Φ(si+1)− Φ(si)) = |π| − |π∗| − (Φ(t)− Φ(s)) = |π| − |π∗|.

The final equality follows from the fact that s and t have the same coordinates in their respective
inner graph copies as specified in the definition of P .

In Section 6, we will see that ∆̂(m) ≥ 0 for every move m. Then using Proposition 3 and the
unique shortest path property of the base graph GB (see Lemma 3), we will obtain our desired
separation between |π| and |π∗|.

5 Specifying the Construction

In the following notation, we will let nI = |VI | and nO = |VO|. We also use a parameter c > 0;
roughly one may think of c as a large constant, and we will assume where convenient that c is
at least a large enough constant. But, we do not hide f(c) factors in our big-O notation unless
explicitly noted with Oc notation. Our goal is to argue that for our final graph G and for any
subgraph H ⊆ G with ≤ cn edges, there exists a pair of vertices u, v ∈ V (G) such that

dH(u, v) > dG(u, v) + Ωc

(
n1/7

)
.

This is a rephrasing of the statement that O(n)-size spanners generally require Ω(n1/7) error. We
may also assume where convenient that nI , nO are sufficiently large, relative to c. We do not make
any effort to optimize the dependence of our lower bound on c; to do so would imply stronger lower
bounds against denser spanners, but it introduces considerable technical complexity that we do not
think is worth it. See [17] for discussion of these optimizations.

5.1 Specifying the Inner Graph

We next specify the parameters xI , yI , rI ,WI used to construct the inner graph GI = (VI , EI).
Relative to a choice of nI for the total number of nodes in the inner graph, we use dimensions

xI = 2−1n
1/2
I · c50 and yI = 2n

1/2
I · c−50

and so xIyI = nI . We set rI = c102; note that by choice of large enough nI we have rI ≤ xI/4. We
then define WI to be the set of c vectors






rI − c+ i,

c∑

j=i

j


 | i ∈ [1, c]



 .

Strong convexity of WI follows from the fact that the function f : Z 7→ Z defined as f(x) =
∑c

j=x j
is positive and strictly concave on the interval [1, c]. We also notice that for all ~v ∈ WI , the first
coordinate of ~v is in the range [rI/2, rI ]. Let ψI be the largest angle between a vector in WI and
the horizontal. Observe that by taking c to be sufficiently large, we have

tanψI ≤ (rI − c)−1 ·
c∑

j=1

j ≤ 2c−100 ≤ yIx
−1
I

2
.

Thus this inner graph construction satisfies the premises of the base graph, and we have proved:
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Lemma 5 (Inner Graph Strongly Convex Set). The set WI(rI , ψI) has the following properties:

1. |WI | = c

2. For all ~v = (v1, v2) ∈WI , rI/2 ≤ v1 ≤ rI . Specifically, WI ⊆ [rI − c, rI ]× [0, c2]

3. 0 ≤ tanψI ≤ 2c−100.

The next lemma is a key structural property of our inner graph that enables its analysis in
our move decomposition framework. To enable this lemma, we need to specifically choose nI such
that, for each canonical vector (v1, v2) ∈ WI , we have v1 | (xI − rI/2). In particular, this can be
accomplished by defining λ := Πc

i=1(rI − c + i) and choosing nI so that xI ≡ rI/2 mod λ. Since
λ = Θc(1), there are infinitely many choices of nI that satisfy this.

Proposition 4. For all ((s1, s2), (t1, t2)) ∈ PI , we have t1 − s1 = xI − rI/2.

Proof. Let ~v = (v1, v2) be the canonical vector for ((s1, s2), (t1, t2)) ∈ PI . By choice of nI we have
that v1 | (xI − rI/2). Now let k = (xI − rI/2)/v1, and let t′ = (s1, s2) + k~v. Observe that

t′ = (s1, s2) + k~v = (s1 + kv1, s2 + kv2) = (s1 + xI − rI/2, s2 + v2/v1 · (xI − rI/2)) .

Since s ∈ SI we have s1 ∈ [1, rI/2], and so t′ is a vertex in [xI − rI/2 + 1, xI ] × [1, yI ] ⊆ TI . We
then note that v1 ≥ rI/2 by property 2 of Lemma 5. So the first coordinate of t′ + ~v is > s1 + xI ,
and thus t′ + ~v 6∈ TI . It follows that t

′ = (t1, t2), and so t1 = s1 + xI − rI/2 as desired.

Proposition 4 guarantees that all critical pairs (s, t) ∈ PI have the same horizontal displacement.
Note that this doesn’t imply that the graph distances between critical pairs in GI is the same.
Applying Lemma 3 to our construction, we summarize the following properties of the inner graph:

Lemma 6 (Inner Graph Properties). Inner graph GI = (VI , EI) has the following properties:

1. |VI | = nI

2. |EI | = Θ(c · nI)

3. |PI | = Θ(c53 · n1/2I )

4. The canonical paths πs,tI for (s, t) ∈ PI are pairwise edge-disjoint.

5. The canonical path πs,tI is the unique shortest (s, t)-path in GI for all (s, t) ∈ PI .

5.2 Specifying the Outer Graph

In our specification of the the outer graph GO, we will make use of the existence of dense strongly
convex sets of integer vectors in Z

2 with certain nice properties. The existence of these sets follows
directly from the work of [12] on the size of the convex hull of integer points inside a disk of radius
r; however, we need to tweak the construction slightly to enforce a few extra convenient properties.
Most of the following lemma follows directly from [12], but for completeness we give a proof in
Appendix A.

Lemma 7. For sufficiently large r, there exists a strongly convex set W (r) of integer vectors in Z
2

of size Θ(r2/3) such that:

1. For all ~v ∈W (r), r − r−1/3 ≤ ‖~v‖ ≤ r.
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2. If S is a sector with inner angle ψ of the circle of radius r centered at the origin, then there
are at most O(ψ · r2/3) vectors in W (r) ∩ S.

3. For all distinct ~u,~v ∈ W (r), proj~v~u < ‖~v‖. (In other words, for all vectors ~v ∈ W (r), the
vector in W (r) with the largest magnitude scalar projection in the direction of ~v is ~v itself.
This implies strong convexity, but is in fact a bit stronger.)

Proof. Deferred to Appendix A.

Now we use the convex setW (r) constructed in Lemma 7 as a starting point for our construction
of WO(rO, ψO).

Strongly convex set WO(rO, ψO) for GO. Let W (rO) denote the strongly convex set of Lemma
7 with input parameter rO. By Lemma 7, there exists a circular sector with inner angle ψ1 = c−5

radians that contains Ω
(
ψ1r

2/3
O

)
vectors from W (rO). By choice of sufficiently large c, we may

assume ψ1 ≤ π/4. We let W ′(rO) be the set of vectors in W (rO) with endpoints in this sector.
We will take parameter ψO = π/4, i.e. we will modify W ′(rO) so that its vectors lie in the

first quadrant and have angle at most ψO with the horizontal. Note that if we reflect the vectors
of W (rO) across the lines x = 0, y = 0, y = x, or y = −x in R

2, then the resulting set of
vectors W ′(rO) also satisfies the properties of Lemma 7. By performing these reflection operations
a constant number of times, we can ensure that at least half the vectors in W ′(rO) lie in the first
quadrant and have angle at most ψO with the horizontal. We let W ′′(rO) denote the resulting set

of vectors with maximum angle ψO to the horizontal; we thus have |W ′′(rO)| = Ω(c−5r
2/3
O ).

We are now ready to construct our strongly convex set WO from W ′′(rO). Our set WO will be
partitioned into c disjoint sets S1,S2, . . . ,Sc called stripes, which have the following two properties:

• (Same Size) All stripes contain the same number of vectors |Si| =: β = Θ(c−6r
2/3
O ) vectors.

• (Well-Separated) For any two distinct stripes Si,Sj and for vectors ~u ∈ Si, ~v ∈ Sj , the angle
between ~u,~v is at least c−10.

We construct our stripes as follows. Starting at the horizontal and rotating counterclockwise, let
~u11, ~u

1
2, . . . , ~u

1
β be the first β vectors we encounter in W ′′(rO). After encountering the βth vector,

we rotate c−10 radians about the origin counterclockwise, ignoring any vectors encountered in this

arc. By Lemma 7, this will skip over only O(c−10r
2/3
O ) vectors in W ′′(rO). We then take the next

β vectors we encounter to be ~u21, ~u
2
2, . . . , ~u

2
β , and again rotate c−10 radians counterclockwise. We

repeat this process until we’ve obtained vectors ~uji for i ∈ [1, β] and j ∈ [1, c]. We call the set of

of vectors {~uji | i ∈ [1, β]} the jth stripe Sj of WO. Our procedure is guaranteed to identify all cβ

vectors ~uji , since we skip over only O(c−9r
2/3
O ) vectors from W ′′(rO) in our construction. Note that

|WO| = cβ = Θ(r
2/3
O c−5). We summarize our properties:

Lemma 8 (Outer Graph Strongly Convex Set). For sufficiently large parameters c, rO we may

construct a strongly convex set WO =WO(rO, ψO) containing Θ(r
2/3
O c−5) integer vectors in Z

2 with
the following properties:

1. For all ~v ∈WO, rO − r
−1/3
O ≤ ‖~v‖ ≤ rO.

2. For all ~u,~v ∈WO, proj~v~u ≤ ‖~v‖.

3. For all ~v ∈WO, the angle between vector ~v and the horizontal is at most ψO = π/4 radians.
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4. For all ~u,~v ∈WO, the angle between ~u and ~v is at most ψ1 = c−5 radians.

5. WO can be partitioned into c stripes S1,S2, . . . ,Sc with the following properties:

(a) |Si| = β = Θ(r
2/3
O c−6) for all i ∈ [1, c].

(b) For ~u ∈ Si and ~v ∈ Sj where i 6= j, the angle between ~u and ~v is at least ψ2 = c−10

radians.

length r 

length r -1/3

c -10 rad 

c -5 rad 

(0, 0) 

Figure 7: A depiction of WO. The endpoints of the vectors in WO lie in the black stripes in the
above figure.

Parameter choices for GO. We will let 2xO = yO =
√
2n

1/2
O . We will leave rO unspecified

until the end of the construction, for expository purposes, as it is selected according to a parameter
balance on the final graph. However, unlike with rI in GI , our choice of rO will grow polynomially
with nO. We quickly verify that our choices satisfy the base graph construction. We have tanψO =
1 = yOx

−1
O /2. Additionally, for all ~v ∈ WO, the first coordinate v1 of ~v is between rO/2 and rO,

by properties 1 and 3 of Lemma 8. Then assuming we choose rO ≤ n
1/2
O /4, it’s clear that our

parameter choice (xO, yO, rO,WO) of GO will yield a valid instantiation of base graph GB. The
following lemma summarizes the properties of GO, using Lemma 3:

Lemma 9 (Outer Graph Properties). Outer graph GO = (VO, EO) has the following properties:

1. |VO| = nO

2. |EO| = Θ(c−5 · r2/3O · nO)

3. |PO| = Θ(c−5 · r5/3O · n1/2O )

4. The canonical paths πs,tO for (s, t) ∈ PO are pairwise edge-disjoint.

5. The canonical path πs,tO is the unique shortest (s, t)-path in GO for all (s, t) ∈ PO.
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5.3 Specifying the Final Graph

In our construction of final graph G, we made use of a bijection φ :WO 7→ PI to plug the subdivided
paths of GO into the input and output ports of the inner graph copies of GI . To that end, we

required that |WO| = |PI |. This can be achieved by taking nI = Θ(r
4/3
O c−116), so our inner graph

will be fully specified by parameters c, rO. Note that we can get exact equality in the cardinality of
WO and PI by simply ignoring a constant fraction of vectors in WO or a constant fraction of paths
in PI .

We specifically define φ as follows. Let ~v1, ~v2, . . . , ~vc be the c vectors in WI . Observe that for
every ~vi ∈WI , each vertex s ∈ SI has a critical pair in PI with ~vi as its canonical vector. Then there
will be exactly |PI |c−1 critical pairs in PI with canonical vector ~vi. Let φ map the |WO|c−1 vectors
in stripe Si of WO to the |PI |c−1 critical pairs in PI with canonical vector ~vi, with some arbitrary
bijection, for all i ∈ [1, c]. The following proposition captures the key property of φ needed in our
construction.

Proposition 5. For all ~u,~v ∈WO, the critical pairs φ(~u), φ(~v) ∈ PI have the same canonical inner
graph vector in WI if and only if ~u and ~v belong to the same stripe Si, i ∈ [1, c].

For analysis purposes, it will be convenient if the set of canonical paths for pairs in P partition
the edges E of G. Currently, the canonical paths partition the outer extended edges of G, since in
our base graph construction we only include edges that lie in canonical paths. However, it might
be that some inner graphs edges e are not used in canonical paths for pairs in P . Specifically, this
happens in the case where the inner-canonical path containing e bijects with a canonical vector ~v
that, in turn, does not define an edge contained in an outer canonical path (typically because the
point corresponding to the inner graph that contains e, plus the vector ~v, yields a point outside
the [1, x]× [1, y] dimensions of the outer graph).

To simplify the following analysis we remove all edges in E from inner graphs that do not belong
to a canonical path πs,t where (s, t) ∈ P . Then by properties 3 and 4 of Lemma 4, the canonical
paths for pairs in P will partition E and the density of G will remain the same (within constant
factors). We summarize the properties of our final graph:

Lemma 10 (Properties of Final Graph G). Graph G = (V,E) has the following properties:

1. |V | = Θ(r
4/3
O · c−116 · nO)

2. |E| =
∑

(s,t)∈P |πs,t| = Θ(c · |V |)

3. |P | = Θ(r
5/3
O · c−5 · n1/2O )

4. The subdivided paths of G are of length z = |VI ||PI |−1 = Θ(r
2/3
O c−111).

5. The set of canonical paths {πs,t | (s, t) ∈ P} form a partition of E.

6 Completing the Analysis

As in Section 4, fix a critical pair of vertices (s, t) ∈ P in our final graph G with canonical path
π∗ and canonical vector ~v∗. We will compare π∗ to an arbitrary simple (s, t)-path π, with move
decomposition m1,m2, . . . ,mk. As before, move mi is a move from an input port si in inner graph

copy G
(i)
I to an input port si+1 in inner graph copy G

(i+1)
I , and s1 = s and sk+1 = t.
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The majority of the analysis in this section will be towards giving lower bounds for the amortized
move difference ∆̂(mi) of moves mi. Intuitively, we should think of proving lower bounds on ∆̂(mi)
as proving that move mi is longer than a move in the canonical path in some sense. In this section,

it will be helpful to recall that rI = c102, xI = 2−1n
1/2
I c50, z = Θ(n

1/2
I c−53), and nI = Θ(r

4/3
O c−116).

6.1 Lower Bounding the Move Difference ∆

We begin our analysis by lower bounding the move difference ∆ of several categories of moves in
the moveset. We will need the following useful proposition.

Proposition 6 (Inner Graph Path Lengths).

1. For every (sI , tI)-path πI in GI , where sI ∈ SI and tI ∈ TI ,

n
1/2
I

2c52
− 2 ≤ |πI |

2. For every critical pair (sI , tI) ∈ PI with canonical path πsI ,tII ,

|πsI ,tII | ≤ n
1/2
I c50

2(c102 − c)

Proof.

1. Observe that by the construction of GI , the x-displacement between any vertex in SI and

any vertex in TI is at least xI − 2rI = 2−1n
1/2
I c50 − 2c102. Additionally, each edge e ∈ EI

corresponds to a vector ~w = (w1, w2) ∈ WI , and by property 2 of Lemma 5, w1 ≤ rI = c102.
Then for every s ∈ SI and t ∈ TI , every (sI , tI)-path in GI is of length at least

2−1n
1/2
I c50 − 2c102

c102
=
n
1/2
I

2c52
− 2

2. The x-displacement between any vertex in SI and any vertex in TI is less than xI = 2−1n
1/2
I c50.

Let ~v∗I = (v∗I,1, v
∗
I,2) be the canonical vector in WI corresponding to πsI ,tII , and note that by

property 2 of Lemma 5, v∗I,1 ≥ rI −c = c102−c. Then |πsI ,tII | is a most (2−1n
1/2
I c50)/(c102−c)

as desired.

Now we will lower bound the move length difference ∆(mi) of moves in Backward. This lemma
essentially formalizes the obvious reason why backwards moves are much worse than canonical
moves – it’s because they move backwards, away from t.

Lemma 11. Let mi be a move in Backward. Then ∆(mi) = Ω(r
2/3
O c−110).

Proof. Observe that in a backward move, we take a subdivided path corresponding to some vector
~mi = −~u for some ~u ∈WO. Since all vectors in WO lie in a sector with inner angle c−5 by property
3 of Lemma 8, it follows that the angle between ~u and ~v∗ is less than c−5, so the angle between
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~mi = −~u and ~v∗ is at least π − c−5. Then for sufficiently large c, rO, the scalar projection of ~mi

onto ~v∗ will be negative, so di < 0. Recall that Lπ∗ is the unit length of π∗ and that Lπ∗ ≥ 0. Then

∆(mi) = |mi| − Lπ∗di ≥ |mi| ≥
n
1/2
I

2c52
− 2 + z = Ω(r

2/3
O c−110)

(The final inequality follows from part 1 of Proposition 6.)

We now give a precise upper bound on Lπ∗ , the unit length of π∗.

Proposition 7. Lπ∗ = O(r
−1/3
O c−110), and specifically,

Lπ∗ ≤ n
1/2
I c50 · (2(c102 − c))−1 + z

rO − r
−1/3
O

Proof. Recall that z is the length of all subdivided paths in G. Note that every move m in path
π∗ is a forward move with the same move vector ~m = ~v∗ and will have the same path length |m|.
Then an upper bound for |m| ·‖~v∗‖−1 will give an upper bound for Lπ∗ . By property 1 of Lemma 7,

‖~v∗‖ ≥ rO − r
−1/3
O for sufficiently large rO. Note that the length of m is the length of the canonical

inner graph path corresponding to π∗, plus the length z of the subdivided path taken by m. By

part 2 of Proposition 6, every canonical path in GI is of length at most (n
1/2
I c50)/(2(c102 − c)).

Then combining these observations,

Lπ∗ =
|m|
‖~v∗‖ ≤ (n

1/2
I c50) · (2(c102 − c))−1 + z

rO − r
−1/3
O

as claimed. For sufficiently large c, rO, we find that Lπ∗ ≤ 4n
1/2
I

rOc52
= O(r

−1/3
O c−110).

We now lower bound the move length difference ∆(mi) of zigzag moves. We will see that
because we specified that the vectors in our set WO lie in a small cone with inner angle ψ1 = c−5

(see property 4 of Lemma 8), zigzag moves will be quite inefficient compared to canonical moves.

Lemma 12. Let mi be a move in Zigzag. Then ∆(mi) = Ω(r
2/3
O c−111).

Proof. Observe that in a zigzag move, we first take some vector −~u1 for some ~u1 ∈WO, and then we
take some other vector ~u2 with ~u2 ∈WO. Then ~mi = ~u2−~u1. Since ~u1, ~u2 ∈WO, the angle between

vector ~u1 and ~u2 is at most c−5 by property 4 of Lemma 8. Then since rO − r
−1/3
O ≤ ‖~u1‖ ≤ rO

and rO − r
−1/3
O ≤ ‖~u2‖ ≤ rO, some straightforward geometry shows that ‖~mi‖ ≤ 2r

−1/3
O + c−5 · rO.

Then di ≤ ‖~mi‖ ≤ 2c−5 · rO for sufficiently large rO. Additionally, observe that move mi takes

two subdivided paths in G, so |mi| ≥ 2z = Ω(r
2/3
O c−111). Then

∆(mi) = |mi| − Lπ∗di ≥ |mi| − Lπ∗2c−5rO ≥ 2z −O(r
2/3
O c−115) = Ω(r

2/3
O c−111)

for sufficiently large c.

Now to analyze the forward moves in M, we find it useful to partition the set Forward into
sets Forward-S and Forward-D, depending on the vector inWO corresponding to the subdivided
path taken in the move. Let m be a move in Forward. Then m is in Forward-S if move vector
~m ∈ WO belongs to the same stripe as vector ~v∗ in WO. Otherwise, move vector ~m belongs to a
different stripe than ~v∗ and m is in Forward-D. We first analyze moves in Forward-D.
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Proposition 8. Let ~u,~v be two vectors in WO that belong to different stripes. Then proj~v~u ≤
rO(1−σ), where σ = 4−1c−20. Consequently, if mi is a move in Forward-D, then di ≤ rO(1−σ).

Proof. By property 4a of Lemma 8, the angle ψ between ~u and ~v is at least ψ2 = c−10 radians.
Then from the Taylor expansion of cosx, we get that proj~v~u = ‖~u‖ cosψ ≤ rO · (1 − ψ2/2 +
ψ4/4!) ≤ rO(1 − σ) for sufficiently large c. Now note that if mi is a move in Forward-D, then
di = proj~v∗ ~mi ≤ rO(1− σ).

Proposition 8 tells us that if a move mi is in Forward-D, then it loses a constant fraction
σ of its move distance di. This follows from the fact that ~mi is in a different stripe than ~v∗, so
move vector ~mi is not travelling as far in the direction of ~v∗. (See Figure 7 for reference.) This
deficiency in di makes moves in Forward-D inefficient compared to canonical moves, as we prove
in the following lemma.

Lemma 13. Let mi be a move in Forward-D. Then ∆(mi) = Ω(r
2/3
O c−130).

Proof. Since mi is a move in Forward-D, it follows that di ≤ rO(1 − σ) by Proposition 8. Note
that the length of mi is the length of the inner graph traversal of GI in mi plus the length z
of the subdivided path taken by m. Then by part 1 of Proposition 6, move mi requires at least

(n
1/2
I )/(2c52) − 2 edges to travel from an input port in GI to an output port. The length of the

subdivided path taken by mi is z, so |mi| ≥ (n
1/2
I )/(2c52)− 2 + z. We calculate ∆(mi) as follows.

∆(mi) = |mi| − Lπ∗di

≥ |mi| −
n
1/2
I c50 · (2(c102 − c))−1 + z

rO − r
−1/3
O

· rO(1− σ) by Prop. 7, 8

≥ |mi| − (n
1/2
I c50 · (2(c102 − c))−1 + z) · (1 + 2r

−4/3
O ) · (1− σ)

≥
(
n
1/2
I

2c52
− 2 + z

)
−
(

n
1/2
I c50

2(c102 − c)
+ z

)
· (1− σ)−O(r

−2/3
O ) by Prop. 6

≥ n
1/2
I

2c52
− n

1/2
I c50

2(c102 − c)
· (1− σ)−O(r

−2/3
O )

≥
(
n
1/2
I

2c52
− n

1/2
I c50

2(c102 − c)

)
+

n
1/2
I c50

2(c102 − c)
σ −O(r

−2/3
O )

≥ −n
1/2
I

c153
+
n
1/2
I

8c72
−O(r

−2/3
O ) = Ω(r

2/3
O c−130)

We have shown that ∆(mi) = Ω(r
2/3
O c−130) ifmi is a move inBackward, Zigzag, or Forward-

D. Moreover, if mi is a move in Stationary, then ∆(mi) ≥ 0 since ~mi = ~0. However, it’s not true
in general that ∆(mi) ≥ 0 if mi is a move in Forward-S. This is essentially because mi can take
an (SI , TI)-path in GI that is possibly much shorter than the canonical inner graph path used by
π∗. In the following section we will introduce our inner graph potential function Φ, and show that
in an amortized sense, moves in Forward-S are not shorter than the moves in π∗.

6.2 Lower Bounding the Amortized Move Difference ∆̂

Let (s∗, t∗) ∈ PI be the inner graph critical pair whose canonical path πs
∗,t∗

I is a subpath of π∗

in GI , and let s∗ := (s∗1, s
∗
2) and t∗ := (t∗1, t

∗
2). Note that by construction of G, (s∗, t∗) = φ(~v∗).
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Additionally, let ~v∗I := (v∗I,1, v
∗
I,2) = (rI − c+ i∗,

∑c
j=i∗ j) ∈WI be the canonical inner graph vector

corresponding to critical pair (s∗, t∗) ∈ PI , where i
∗ ∈ [1, c]. Then for si = (si,1, si,2) ∈ SI we define

our inner graph potential function Φ to be

Φ(si) =
si,2 · (i∗)−1 + si,1

rI − c+ i∗

Roughly, we may think of Φ(si) as the capacity for path π to have future moves mj , j ≥ i with
move length difference ∆(mj) < 0. The potential function Φ will be essential for analyzing the
moves in Forward-S. However, first we verify that the introduction of Φ does not affect our existing
lower bounds on the move length differences of moves in Backward, Zigzag, Forward-D, or
Stationary.

Proposition 9. Let mi be a move in Backward,Zigzag, or Forward-D. Then ∆̂(mi) =
Θ(∆(mi)).

Proof. To prove this claim we need to upper bound Φ(si+1)− Φ(si). Recall from our construction
of GI that SI = [1, rI/2] × [1, yI/2]. Now observe that Φ(·) ≥ 0, and Φ(si) is maximized when

si,1 = rI/2 and si,2 = yI/2 = n
1/2
I c−50 = Θ(r

2/3
O c−108). In this case,

Φ(si) =
si,2 · (i∗)−1 + si,1

rI − c+ i∗
≤ 4si,2

rI
= O(r

2/3
O · c−210)

Then Φ(si+1) − Φ(si) = O(r
2/3
O · c−210). Now recall that by Lemmas 11, 12, and 13, ∆(mi) =

Ω(r
2/3
O c−130). Then the claim immediately follows by taking c to be sufficiently large.

We can also lower bound the amortized move length difference of stationary moves.

Lemma 14. Let mi be a move in Stationary. Then ∆̂(mi) ≥ 0.

Proof. Observe that di = 0 because we stay in the same inner graph copy in this move, so ~mi = ~0.
Then ∆̂(mi) = |mi| − (Φ(si+1)− Φ(si)). Let si = (si,1, si,2) and let si+1 = (si+1,1, si+1,2). Observe
that si+1,1 − si,1 ≤ rI/2 since si, si+1 ∈ SI . Let m

I
i be the subpath of mi restricted to inner graph

copy G
(i)
I . Note that |mi| ≥ |mI

i |. Suppose that |mI
i | = d for some integer d > 0. Now note that

for all vectors ~v = (v1, v2) ∈ WI ∪ −WI , we have that v1 ≤ c2. Then by the construction of GI it
follows that si+1,2 − si,2 ≤ dc2. Then using the fact that rI = c102 and i∗ ∈ [1, c],

Φ(si+1)− Φ(si) = Φ(si+1 − si) ≤
dc2 · (i∗)−1 + rI/2

rI − c+ 1
≤ 2dc−100 + 2/3 ≤ d

for sufficiently large c. Then ∆̂(mi) ≥ |mI
i | − (Φ(si+1)− Φ(si)) ≥ 0 as claimed.

Before lower bounding ∆̂(mi) for moves mi in Forward-S, we first define a geometric object
associated with mi that will be useful in our analysis.

Definition 11 (Displacement vector). Let mi be a move from input port si in G
(i)
I to input port

si+1 in G
(i+1)
I , and let ti ∈ TI be the output port incident to the subdivided path taken by mi to

reach si+1. The displacement vector ~δi = (δi,1, δi,2) of mi is defined as

~δi = (ti − si)− (t∗ − s∗).
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Observe that intuitively, ~δi corresponds to the difference between the displacement from si to
ti and the displacement from s∗ to t∗ in Z

2. Despite being a purely geometric notion, ~δi has two
key properties related to the structure of graph G that we will make use of in our analysis:

• Update Property. If mi is a move in Forward-S, then si+1 is uniquely determined by si
and ~δi. This property is formalized by Proposition 10.

• Graph Distance Property. The displacement vector ~δi is tightly connected to dGI
(si, ti),

the graph distance from si to ti in GI . This property is formalized by Lemma 15.

As it turns out, these two properties will be sufficient to show that ∆̂(mi) ≥ 0 for moves mi in
Forward-S. We will proceed by formalizing and proving the Update Property of ~δi.

Proposition 10 (Update Property). Let mi be a move from si to si+1 in Forward-S. Then

si+1 = si + ~δi.

Proof. In move mi we take a subdivided path plugged into output port ti := (ti,1, ti,2) ∈ TI in

G
(i)
I . This subdivided path corresponds to the outer graph vector ~mi ∈ WO. By the construction

of φ, any such subdivided path will be plugged into an input port si+1 of G
(i+1)
I such that φ(~mi) =

(si+1, ti) ∈ PI . By Proposition 4, for all (si+1, ti) ∈ PI , ti,1−si+1,1 = xI−rI/2, where si+1,1 denotes
the first coordinate of si+1. Then si+1,1 = ti,1−(xI−rI/2) = ti,1−(t∗1−s∗1), since t∗1−s∗1 = xI−rI/2
by Proposition 4. Consequently, si+1,1 = si,1 + ti,1 − si,1 − (t∗1 − s∗1) = si,1 + δi,1.

Recall that since move mi is in Forward-S, vector ~mi ∈WO is in the same stripe as ~v∗ ∈WO.
Then by Proposition 5, the critical pair φ(~mi) = (si+1, ti) ∈ PI has the same canonical inner graph
vector in WI as the critical pair φ(~v∗) = (s∗, t∗) ∈ PI . Namely, critical pairs φ(~mi) and φ(~v∗)
share the canonical inner graph vector ~v∗I = (~v∗I,1, ~v

∗
I,2) ∈WI . Then since ti,1 − si+1,1 = t∗1 − s∗1 (by

Proposition 4), we have that

ti,2 − si+1,2 = v∗I,2 · ti,1 − si+1,1) = (v∗I )y · (t∗x − s∗x) = t∗y − s∗y

by the construction of PI . Then s
i+1
y = tiy − (t∗y − s∗y) = siy + δiy. The claim follows.

The above proposition imposes a strong condition on the location of the next input port after
a move in Forward-S. We will use this proposition to argue about how the inner graph potential
Φ changes after a move in Forward-S. See Figure 8 for a visualization of the Update Property
acting on moves in Forward-S.

Graph Distance Property. Before stating the graph distance property formally, we will first
attempt to convey an intuitive understanding of it. Because our graph GI is embedded in Z

2 and
the edges in GI correspond to vectors WI ⊆ Z

2, it is natural to imagine a correspondence between
distances in the Euclidean metric and distances in the graph metric of GI . Roughly, we might
presume that vertices si, ti in GI with a large Euclidean distance ‖ti − si‖ in Z

2 will have a large
graph distance dGI

(si, ti) in GI . This understanding is approximately correct.
Suppose that δix ≥ 0. Then tix − six ≥ t∗x − s∗x, so vertices si, ti have a larger horizontal

displacement than vertices s∗, t∗. Since all our edges ~w = (wx, wy) ∈ WI ∪ −WI in GI have
horizontal displacement at most wx ≤ rI , we can imagine that we must travel on more edges in GI

to reach ti from si than are needed to reach t∗ from s∗. Likewise, if δix ≤ 0, then we can imagine
that we may travel on fewer edges in GI to reach ti from si than are needed to reach t∗ from s∗.
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Figure 8: Above, two consecutive moves in π∗. The dotted lines between inner graphs represent
subdivided paths in G. Note that all moves in π∗ are forward moves that take inner graph path
πs

∗,t∗

I and the subdivided path corresponding to vector ~v∗ ∈ WO. Below, two consecutive moves
mi, mi+1 belonging to Forward-S in path π. Here mI

i denotes the restriction of mi to inner

graph G
(i)
I . Vectors t∗ − s∗ and ~δi are depicted in blue and purple respectively. Note that by the

Update Property, si+1 is uniquely determined by si and ~δi. In particular, si+1 = si + ~δi. Likewise,
si+2 = si+1 + ~δi+1.
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Now suppose that δiy ≥ 0. Then tiy − siy ≥ t∗y − s∗y, so vertices si, ti have a larger vertical
displacement than vertices s∗, t∗. Then it follows that every (si, ti)-path in GI must attain a larger
vertical displacement than every (s∗, t∗)-path. Now note that by the construction of WI , edges
~w = (wx, wy) ∈WI∪−WI with a larger vertical component wy have a smaller horizontal component
wx. Then we will need to travel on more of these edges with smaller horizontal components in order
to reach ti from si. Thus we can imagine that more edges must be traversed in GI to reach ti from
si than are needed to reach t∗ from s∗. Likewise, if δiy ≤ 0, then we can argue that fewer edges are
needed to travel from si to ti, since we can travel on edges inWI with larger horizontal components.

If we examine the movesmi andmi+1 in Figure 8, our intuition would suggest that dGI
(si, ti) �

dGI
(s∗, t∗), since tiy − siy � t∗y − s∗y. Likewise, our intuition would suggest that dGI

(si+1, ti+1) �
dGI

(s∗, t∗), since ti+1
y −si+1

y � t∗y−s∗y. To summarize, our (completely informal) argument suggests
that the graph distance dGI

(si, ti) increases with δix and δiy. We now present Lemma 15, which
states our precise formalization of the Graph Distance Property.

Lemma 15 (Graph Distance Property). Let si be an input port in SI , and let ti be an output port

in TI , where ti is incident to a subdivided path in G. Suppose that dGI
(si, ti) = |πs∗,t∗I | + d, for

some integer d. Then
δiy · (i∗)−1 + δix
rI − c+ i∗

≤ d

Proof. This lemma requires a precise and technical analysis of graph distances in GI , so we defer
its proof to Section 6.3.

Notice that the lower bound on dGI
(si, ti) in Lemma 15 increases as δix and δiy increase, matching

our intuitive understanding of distances in GI . Now that we have formally stated our two properties
of ~δi, we are ready to lower bound the amortized move length difference ∆̂(mi) for moves mi in
Forward-S.

Lemma 16. Let mi be a move in Forward-S. Then ∆̂(mi) ≥ 0.

Proof. LetmI
i be the restriction ofmi to inner graph copy G

(i)
I . Then |mi| = |mI

i |+z. Additionally,
mI

i must begin at some input port si ∈ SI and end at some output port ti ∈ TI , where ti is incident

to a subdivided path. Note that dGI
(si, ti) ≤ |mI

i |. Now recall that Lπ∗ =
|πs∗,t∗

I |+z

‖~v∗‖ and observe
the following:

∆(mi) = |mi| − Lπ∗ · di

= |mI
i |+ z − |πs∗,t∗I |+ z

‖~v∗‖ · di

≥ |mI
i |+ z − |πs∗,t∗I |+ z

‖~v∗‖ · ‖~v∗‖ by Property 3 of Lemma 7

≥ |mI
i | − |πs∗,t∗I |

Now let dGI
(si, ti) = |πs∗,t∗I |+ d for some integer d. Then
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∆̂(mi) ≥ |mI
i | − |πs∗,t∗I | − (Φ(si+1)− Φ(si))

≥ d− (Φ(si+1)− Φ(si))

= d−
(si+1

y − siy)(i
∗)−1 + (si+1

x − six)

rI − c+ i∗

= d−
δiy · (i∗)−1 + δix
rI − c+ i∗

by Proposition 10

≥ d− d by Lemma 15

≥ 0

With the exception of the proof of Lemma 15, which has been deferred to Section 6.3, we have
established lower bounds for the amortized move difference ∆̂ of all moves in the moveset. We will
finish our lower bound argument in Section 6.4.

6.3 Proving Lemma 15 (Graph Distance Property)

We will prove the following inequality, which is equivalent to the one stated in Lemma 15:

δiy ≤ i∗(d(rI − c+ i∗)− δix)

Let si := (sx, sy) ∈ SI , and let ti := (tx, ty) ∈ TI , where ti is incident to a subdivided path in

G. Let πi be a shortest (si, ti)-path of length ` = |πs∗,t∗I |+ d in GI . Corresponding to πi, we define
the vector ~v = (vx, vy) = ti − si. Let ~v1, ~v2, . . . , ~v` be the vectors corresponding to the edges of πi
and observe that ~v =

∑`
i=1 ~vi. Furthermore, ~vi ∈ WI ∪ −WI for i ∈ [1, `]. Additionally, we define

the vector ~u = (ux, uy) =
∑`

i=1 ~v
∗
I .

Observe that the quantity we want to upper bound is δiy = (ty − sy)− (t∗y − s∗y) = vy − (t∗y − s∗y).
We find that it easiest to separately upper bound δ1 = vy − uy and δ2 = uy − (t∗y − s∗y). Then since
δiy = δ1 + δ2, this will give us an upper bound of δiy as desired. We first find the precise value of δ2.

Proposition 11.

δ2 = d ·
c∑

j=i∗

j

Proof. We find the precise value of δ2 by observing that since ~u = |πs∗,t∗I | ·~v∗I + d~v∗I = t∗− s∗+ d~v∗I ,
it follows that

δ2 = uy − (t∗y − s∗y) = d ·
c∑

j=i∗

j

where the final equality follows from the fact that ~v∗I = ((v∗I )x, (v
∗
I )y) = (rI − c+ i∗,

∑c
j=i∗ j).

For the rest of the proof, we will make use of the fact that
∑c

j=i j = −i(i−1)/2+c(c+1)/2 ≥ 0
for i ∈ [1, c]. Before upper bounding δ1, we first observe that by Proposition 4,

vx − ux = vx − (t∗x − s∗x)− d · (v∗I )x
= δix − d · (v∗I )x
= δix − d(rI − c+ i∗)
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Moreover, since si ∈ SI , 1 ≤ sx ≤ rI/2. Likewise, since ti ∈ TI , xI − rI ≤ ti ≤ xI . However, since
ti is incident to a subdivided path, it follows by Proposition 4 that the horizontal displacement
between ti and some input port in SI is exactly xI − rI/2. Consequently, we obtain the stronger
condition that xI − rI/2 + 1 ≤ ti ≤ xI . Then since vx = tx − sx, it follows that xI − rI ≤ vx ≤ xI .
Finally, since vx − (t∗x − s∗x) = δix, we conclude that

−rI/2 ≤ δix ≤ rI/2.

Now we can upper bound δ1 by upper bounding the solution of the following optimization
problem IP1:

IP1:

maximize vy − uy =
∑̀

i=1

((vi)y − (v∗I )y)

subject to vx − ux =
∑̀

i=1

((vi)x − (v∗I )x)

~vi = ((vi)x, (vi)y) ∈WI ∪ −WI for i ∈ [1, `]

We now perform the following change of variables. Let

~qi := ~vi − ~v∗I for i ∈ [1, `]

Then the constraint that ~vi ∈WI ∪ −WI becomes ~qi ∈ Q1 ∪Q2, where

Q1 :=WI − ~v∗I =

{(
i− i∗,

−i(i− 1) + i∗(i∗ − 1)

2

) ∣∣ i ∈ [1, c]

}

and

Q2 := −WI − ~v∗I =

{(
−i− 2rI + 2c− i∗,

i(i− 1) + i∗(i∗ − 1)

2
− c(c+ 1)

) ∣∣ i ∈ [1, c]

}
.

Set Q1 corresponds to the translated vectors from WI and Q2 corresponds to the translated vectors
from −WI . We now give a linear relaxation of IP1:

LP1:

maximize δ′1 =
∑

~q∈Q1∪Q2

qyw~q

subject to
∑

~q∈Q1∪Q2

qxw~q = vx − ux

w~q ≥ 0 for ~q ∈ Q1 ∪Q2

Note that δ′1 ≥ δ1, since any feasible solution {~vi}i∈[1,`] to IP1 can be converted to a feasible
solution {w~q}~q∈Q1∪Q2

in LP1 with the same value. Thus it will be sufficient for our purposes to
upper bound δ′1. To that end, we observe the following useful fact about solutions to LP1. This
fact, expressed in Proposition 12, follows straightforwardly from a convexity property of Q1 and
Q2. We will defer the proof of Proposition 12 to Appendix B.

29



Proposition 12. There exist optimal solutions to LP1 that are of the form

δ′1 = w~q1 · (q1)y + w~q2 · (q2)y

where ~q1 = ((q1)x, (q1)y) ∈ Q1, ~q2 = ((q2)x, (q2)y) ∈ Q2, and w~q1 · (q1)x + w~q2 · (q2)x = vx − ux.

Proof. Deferred to Appendix B.

For the remainder of the proof, we split our analysis into three cases:

• Case 1: vx − ux > 0

• Case 2: vx − ux < 0

• Case 3: vx − ux = 0

We begin with Case 1.

Proposition 13 (Case 1). If vx − ux > 0, then δiy ≤ i∗(d(rI − c+ i∗)− δix).

Proof. We may assume our solution is of the form δ′1 = w~q1 · (q1)y + w~q2 · (q2)y subject to ~q1 ∈ Q1,
~q2 ∈ Q2, and w~q1 · (q1)x + w~q2 · (q2)x = vx − ux. First note that (q2)x < 0 and (q2)y < 0 for all
~q2 ∈ Q2, so it follows that (q1)x > 0. Then by the definition of Q1, (q1)y < 0. Then the following
feasible solution will be at least as good as our initial solution:

δ′1 = w′
~q1
· (q1)y, where w′

~q1
:= (vx − ux)/(q1)x

• Feasible: Note that vx − ux > 0 and (q1)x > 0, so w′
~q1
> 0 as required. Additionally, the

constraint w′
~q1
· (q1)x = vx − ux is satisfied.

• Optimal: The difference between the value of our new solution and our old solution is

w′
~q1
· (q1)y − (w~q1 · (q1)y + w~q2 · (q2)y)

= (vx − ux) ·
(q1)y
(q1)x

− (w~q1 · (q1)y + w~q2 · (q2)y)

= (w~q1 · (q1)x + w~q2 · (q2)x) ·
(q1)y
(q1)x

− (w~q1 · (q1)y + w~q2 · (q2)y)

= w~q2

(
(q2)x(q1)y

(q1)x
− (q2)y

)
≥ 0

The inequality follows from the fact that (q1)x > 0, (q1)y < 0, (q2)x < 0, and (q2)y < 0 as
noted earlier in the proof. We conclude our new solution is at least as good as the initial
solution.

Consequently, we may assume that our solution is of the form δ′1 = w~q1(q1)y, where w~q1(q1)x =

vx−ux. This term is maximized when we choose ~q1 ∈ Q1 to be the vector with the maximum
(q1)y
(q1)x

ratio, where (q1)x > 0. It is straightforward to verify that vector (1,−i∗) ∈ Q1 has the maximum

such ratio
(q1)y
(q1)x

= −i∗.
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We conclude that δ1 ≤ δ′1 =
(q1)y
(q1)x

·(vx−ux) = −i∗(vx−ux). Recall that vx−ux = δix−d(rI−c+i∗)
and −rI/2 ≤ δix ≤ rI/2. Then since 0 ≤ vx − ux, it follows that d ≤ δix/(rI − c + i∗) < 1.
Consequently, d ≤ 0. Then

δiy = δ1 + δ2

≤ −i∗(vx − ux) + d ·
c∑

j=i∗

j

≤ i∗(ux − vx) = i∗(d(rI − c+ i∗)− δix),

as desired.

Proposition 14 (Case 2). If vx − ux < 0, then δiy ≤ i∗(d(rI − c+ i∗)− δix).

Proof. Again we may assume our solution is of the form δ′1 = w~q1 · (q1)y+w~q2 · (q2)y, where ~q1 ∈ Q1,
~q2 ∈ Q2, and w~q1 · (q1)x + w~q2 · (q2)x = vx − ux. It can be seen that δ′1 ≥ 0 (e.g. by taking w~q2 = 0
and ~q1 = (−1, i∗ − 1) ∈ Q1). Now note that (q2)x < 0 and (q2)y < 0 for all ~q2 ∈ Q2. Additionally,
note that if (q1)x ≥ 0, then (q1)y ≤ 0. Consequently, if (q1)x ≥ 0, then δ′1 < 0, so we may assume
(q1)x < 0. Then since (q1)x < 0, it follows that (q1)y > 0 by the definition of Q1. On the other
hand, we know that (q2)y < 0, so the following feasible solution will be at least as good as our
initial solution:

δ′1 = w′
~q1
· (q1)y, where w′

~q1
:= (vx − ux)/(q1)x

• Feasible: Note that vx − ux > 0 and (q1)x > 0, so w′
~q1
> 0 as required. Additionally, the

constraint w′
~q1
· (q1)x = vx − ux is satisfied.

• Optimal: The difference between the value of our new solution and our old solution is

w′
~q1
· (q1)y − (w~q1 · (q1)y + w~q2 · (q2)y)

= (vx − ux) ·
(q1)y
(q1)x

− (w~q1 · (q1)y + w~q2 · (q2)y)

= (w~q1 · (q1)x + w~q2 · (q2)x) ·
(q1)y
(q1)x

− (w~q1 · (q1)y + w~q2 · (q2)y)

= w~q2

(
(q2)x(q1)y

(q1)x
− (q2)y

)
≥ 0

The inequality follows from the fact that (q1)x < 0, (q1)y > 0, (q2)x < 0, and (q2)y < 0 as
noted earlier in the proof. We conclude our new solution is at least as good.

Then we may assume our solution is of the form w~q1(q1)y, where w~q1(q1)x = vx − ux. This

term is maximized when we choose ~q1 to be the vector with the maximum − (q1)y
(q1)x

ratio, where

(q1)x < 0. It is straightforward to verify that vector (−1, i∗ − 1) ∈ Q1 has the maximum such ratio

− (q1)y
(q1)x

= i∗ − 1.

We conclude that δ1 ≤ δ′1 = − (q1)y
(q1)x

· (vx − ux) = −(i∗ − 1)(vx − ux). Recall that vx − ux = δix −
d(rI−c+i∗) and −rI/2 ≤ δix ≤ rI/2. Then since 0 ≥ vx−ux, it follows that d ≥ δix/(rI−c+i∗) > −1.
Consequently, d ≥ 0. Now note that if d = 0, then

δiy = δ1 + δ2 = δ1 ≤ (i∗ − 1)(ux − vx) ≤ i∗(d(rI − c+ i∗)− δix)
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where the final inequality follows from the fact that ux − vx > 0. Otherwise, if d > 0, then

δiy = δ1 + δ2 ≤ (i∗ − 1) · (d(rI − c+ i∗)− δix) + d ·
c∑

j=i∗

j

≤ i∗ · (d(rI − c+ i∗)− δix)− (d(rI − c+ i∗)− δix) + dc2

≤ i∗ · (d(rI − c+ i∗)− δix)− d(rI − c2 − c) + δix

≤ i∗ · (d(rI − c+ i∗)− δix)− rI/2 + δix

≤ i∗ · (d(rI − c+ i∗)− δix)− rI/2 + rI/2

= i∗(d(rI − c+ i∗)− δix)

Proposition 15 (Case 3). If vx − ux = 0, then δiy ≤ i∗(d(rI − c+ i∗)− δix).

Proof. Assume our solution is of the form δ′1 = w~q1 · (q1)y + w~q2 · (q2)y. By taking w~q1 = w~q2 = 0,
we see that δ′1 ≥ 0. Moreover, if w~q2 > 0, then δ′1 < 0, so we may assume w~q2 = 0. Then
~q1 = (0, 0) ∈ Q1, so δ1 ≤ δ′1 = 0. Additionally, by the arguments in the previous two cases, d = 0.
Then

δiy = δ1 + δ2 = 0 = ux − vx = d(rI − c+ i∗)− δix ≤ i∗(d(rI − c+ i∗)− δix).

Lemma 15 follows immediately from Propositions 13, 14, 15.

6.4 Finishing the Lower Bound

Now that we have lower bounds for every category of move, we can begin reasoning about the
difference in lengths between π and π∗.

Lemma 17. Let π be an (s, t)-path in G that contains a move in Zigzag, Backward, or Forward-D.

Then |π| − |π∗| = Ω(r
2/3
O c−130).

Proof. Note that for every move m in the move decomposition of π, ∆̂(m) ≥ 0. Moreover, since π

has a move m′ in Zigzag, Backward, or Forward-D, ∆̂(m′) = Ω(r
2/3
O c−130) by Proposition 9.

Then by Proposition 3, |π| − |π∗| = Ω(r
2/3
O c−130).

Lemma 18. Let π be an (s, t)-path in G with moves only in Stationary or Forward-S that

takes a subdivided path not in π∗. Then |π| − |π∗| = Ω(r
2/3
O c−111).

Proof. It will be useful to split the edges in π and π∗ into two categories, the edges in the inner
graph and the edges in the outer graph. Let `πI and `πO denote the number of edges in the inner
graph (respectively outer graph) in π, so |π| = `πI + `πO. Define `π

∗

I and `π
∗

O similarly. Now since
π takes a subdivided path not in π∗, by part 5 of Lemma 9 we know that π takes at least one
more subdivided path than π∗, so `πO − `π

∗

O ≥ z, where z is the length of a subdivided path in G.
Additionally, by our amortized analysis, we know that |π| − |π∗| ≥ 0. However, we claim that our
amortized analysis proves the stronger statement that `πI − `π

∗

I ≥ 0.
Let m1,m2, . . . ,mk be the move decomposition of π. For i ∈ [1, k], let mI

i denote the restriction

of move mi to inner graph copy G
(i)
I . Note that

∑
i |mI

i | = `πI . We now define an amortized

inner graph move length difference function ∆̂I(mi) for moves mi, i ∈ [1, k]. If mi is a move in
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Stationary, then let ∆̂I(mi) = |mI
i |−(Φ(si+1)−Φ(si)). Likewise, if mi is a move in Forward-S,

then let ∆̂I(mi) = |mI
i | − |πs∗,t∗I | − (Φ(si+1)− Φ(si)).

Suppose that π contains q ∈ [1, k] moves in Forward-S. Now note that every move in
Forward-S can be interpreted as travelling on an edge in GO. Additionally, path π∗ is com-
posed exclusively of moves in Forward-S. Then by the unique shortest path property of GO (part

5 of Lemma 9), path π∗ has at most q moves, so `π
∗

I ≤ q · |πs∗,t∗I |. It follows that
∑

i

∆̂I(mi) =
∑

i

|mI
i | − q · |πs∗,t∗I | − (Φ(t)− Φ(s)) = `πI − q · |πs∗,t∗I | ≤ `πI − `π

∗

I

Additionally, observe that the proofs of Lemma 14 and Lemma 16 establish that ∆̂I(mi) ≥ 0 if mi

is in Stationary or Forward-S. Then it immediately follows that `πI − `π
∗

I ≥
∑

i ∆̂I(mi) ≥ 0.

Consequently, |π| − |π∗| = (`πI + `πO)− (`π
∗

I + `π
∗

O ) ≥ z = Ω(r
2/3
O c−111).

The following lemma is immediate from Lemma 17 and Lemma 18.

Lemma 19. Let π be an (s, t)-path in G that takes a subdivided path not in π∗. Then |π| − |π∗| =
Ω(r

2/3
O c−130).

We can now prove our main result.

Theorem 5. For any sufficiently large parameter c0, there are infinitely many n for which there
is an n-vertex graph G such that any spanner of G with at most c0n edges has additive distortion
+Ω(n1/7c−80

0 ).

Proof. We are given a sufficiently large parameter c0 > 0. Then we will choose construction
parameter c = Θ(c0) for our infinite family of graphs G. Recall that by Lemma 10, every graph in
our family on n nodes has m = Θ(cn) edges. We choose c to be sufficiently large so that for every
graph G on n vertices and m edges in our family, c0n

m < 1/2. Now consider any spanner H of graph
G with at most c0n edges. Graph H will contain at most half of the edges of G. Then because the
canonical paths of G are a partition of the edges of G, some canonical (s, t)-path π∗ has at most
half of its edges in H, for some (s, t) ∈ P .

Now fix a shortest (s, t)-path π in H. If path π takes a subdivided path in G not in path

π∗, then by Lemma 19, |π| − |π∗| = Ω(r
2/3
O c−130). Else, path π travels through exactly the inner

graph copies that path π∗ travels through. Moreover, all the subdivided paths of π∗ must be in H.
Then at least half of the inner graph subpaths of π∗ are missing an edge in H. Now fix an inner
graph copy GI that π and π∗ pass through in G, and let πI and π∗I be the subpaths of these paths
restricted to graph GI . Recall that π

∗
I is a unique shortest path between its endpoints in GI . Then

if path π∗I is missing an edge in H, then πI 6= π∗I , so |πI | − |π∗I | ≥ 1. Finally, observe that paths π∗

and π pass through Ω(n
1/2
O r−1

O ) inner graphs. It follows that |π| − |π∗| = Ω(n
1/2
O r−1

O ).

Then balancing our parameters so that r
2/3
O c−130 = Θ(n

1/2
O r−1

O ) gives us rO = Θ(n
3/10
O c78). We

note that rO ≤ xO
4 , so our construction requirements are satisfied. By Lemma 4, G will have

n = Θ(nO · r4/3O c−116) = Θ(n
7/5
O c−12) vertices. By the argument in the previous paragraph, |π| −

|π∗| = Ω(n
1/5
O c−78) = Ω(n1/7c−80). So H will have additive distortion of at least +Ω(n1/7c−80

0 ).

By choosing a different value for rO, we are able to obtain new lower bounds against pairwise
additive spanners.

Theorem 6. For any sufficiently large parameter c0, there are infinitely many n for which there
is an n-vertex graph G and a set P of p = Θc0(n

1/2) demand pairs such that any pairwise spanner
of (G,P ) with at most c0n edges has additive distortion +c0.
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Proof. Given c0 > 0, we choose construction parameter c = Θ(c0) so that for every graph G on n
vertices and m edges in our infinite family of graphs, c0n

m < 1/2. We define our demand pairs to
be the set of critical pairs P in our construction. Let H be a pairwise spanner of (G,P ) with at
most c0n edges. By an argument identical to that of Theorem 5, it follows that H has additive

distortion at least +k = min{r2/3O c−130, n
1/2
O r−1

O }.
Now instead of choosing rO to grow polynomially with n as in Theorem 5, we will let rO =

Θc0(1). Moreover, we will require that rO > c3000 . Note that there exists infinitely many valid
choices of rO satisfying these criteria. Then for sufficiently large c0 and sufficiently large n relative

to c0, it follows that +k = min{r2/3O c−130, n
1/2
O r−1

O } ≥ c0. Additionally, by Lemma 10, |P | =

Θ(r
5/3
O · c−5 · n1/2O ) = Θc0(n

1/2
O ), and n = Θ(nO · r4/3O c−116) = Θc0(nO), so we conclude that

|P | = Θc0(n
1/2).
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A Proof of Lemma 7

Our proof of Lemma 7 begins with a result of Balog and Bárány which we restate in our specific
context below:

Lemma 20 ([11], Theorem 1). For r ≥ 0, there exists a strongly convex set W (r) of integer vectors
in Z

2 of size |W (r)| = Θ(r2/3) such that for all ~v ∈W (r), r − r−1/3 ≤ ‖~v‖ ≤ r.

The fact that all vectors ~v ∈ W (r) satisfy r − r−1/3 ≤ ‖~v‖ ≤ r is not stated explicitly in [11].
However, it follows directly from the lower bound argument in Section 3 of [11], specifically the
assignment of parameter ∆. The fact that W (r) is strongly convex is also technically not stated
in [11], but it follows immediately from symmetry of the construction; that is, if ~v ∈ W (r) then
−~v ∈ W (r). We will now remove some of the vectors from the strongly convex set W (r) from
Lemma 20 in order to obtain a strongly convex set satisfying Lemma 7. Note that any subset of
W (r) will be a strongly convex set satisfying property 1 of Lemma 7, so it remains to obtain the
latter two properties.

Property 2. Next, we try to enforce the second property of Lemma 7: for any circular sector S
with inner angle ψ, there are only O(ψ · r2/3) vectors in W (r) ∩ S. To do so: restrict W (r) to be
the vectors in just one quadrant of R2 (throwing away a constant fraction of these vectors), and let
~v1, ~v2, . . . , ~vk be the vectors in W (r) ordered counterclockwise about the origin. Let ~ui = ~vi+1 − ~vi
for i ∈ [1, k] (where indices are taken mod k). Observe that ~ui 6= ~uj for all i 6= j by the convexity of
W (r). Moreover, by integrality of the vectors inW (r), we have that all ~ui have integer coordinates.
Now observe that there are only 4(` + 1) distinct integer vectors (x, y) such that |x| + |y| = `,
namely, the vectors

(i, `− i), (−i, `− i), (i,−(`− i)), (−i,−(`− i)) for i ∈ [0, `].

Thus, the number of these vectors ~ui of magnitude ‖~ui‖ ≤ m is at most

m∑

`=0

4(`+ 1) ≤ 8m2.

We will throw away the vectors ~vi in W (r) that are close together. Let |W (r)| ≥ αr2/3 where
α > 0 is some constant. We define W ′(r) as follows:

W ′(r) =

{
~vi ∈W (r) | ‖~ui‖ >

α1/2

4
· r1/3

}

Since each ~ui is a distinct integer vector, by our previous observations there can be no more than
α/2 · r2/3 vectors ~ui with magnitude ‖~ui‖ ≤ α1/2/4 · r1/3. Thus

∣∣W ′(r)
∣∣ ≥ α

2
· r2/3

as desired. Now we claim that W ′(r) has property 2. For notational convenience, we will redefine
~v1, . . . , ~vk and vectors {~ui} as before, over the surviving vectors inW ′(r). Since all vectors inW ′(r)
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lie in the same quadrant of R2, all vectors {~ui} have the same signs for their respective coordinates,
and it follows that for all i we have

‖~ui‖ >
α1/2

4
· r1/3.

Let S be a circular sector with inner angle ψ, and let ~vi, ~vi+1, . . . , ~vi+j be the j + 1 vectors in
W ′(r) ∩ S. Now consider the convex hull CH(~vi, . . . , ~vi+j) of the endpoints of vectors ~vi, . . . , ~vi+j .
Observe that the boundary of this convex hull has length

i+j−1∑

ν=i

‖~uν‖+ ‖~vi+j − ~vi‖.

Furthermore, if aS denotes the circular arc of radius r spanning the circular sector S, then the convex
hull CH(aS , ~vi, ~vi+j) encloses CH(~vi, . . . , ~vi+j). The length of the boundary of CH(aS , ~vi, ~vi+j) is
dominated by the arc aS , so it is O(rψ). We thus have

Ω
(
j · r1/3

)
≤

i+j−1∑

ν=i

‖~uν‖+ ‖~vi+j − ~vi‖ ≤ O(rψ)

so we conclude that j ≤ O
(
ψ · r2/3

)
.

Property 3. Lastly, we enforce the property that for each vector ~v, the vector in our strongly
convex set with the largest magnitude scalar projection onto ~v is ~v itself. To do so, we will pass
from W ′(r) to W ′′(r). Note that any subset of W ′(r) will be a strongly convex set and satisfy
properties 1 and 2 of Lemma 7.

First we overview our strategy to construct W ′′(r). We repeatedly select some ~v ∈ W ′(r) and
add it to W ′′(r). Let `v be the chord of the circle of radius r that intersects the endpoint of ~v and
is perpendicular to it. If there are vectors ~u ∈ W ′(r) with scalar projection proj~v~u ≥ ‖~v‖, then
they lie on the side of `v opposite the origin. We throw away all such vectors from W ′(r) before
proceeding, and selecting one of the surviving vectors in W ′(r) as our next choice of ~v.

Let us bound the total number of vectors discarded in this way. Using the fact that r− r−1/3 ≤
‖~v‖ ≤ r, a straightforward application of the Pythagorean theorem shows that the chord `v has
length O(r1/3). Thus, the angle ψv of the circular sector spanning `v satisfies sin(ψv) = O(r−2/3),
and thus ψv = O(r−2/3). Applying property 2 of Lemma 7, this circular sector contains only O(1)
vectors from W ′(r). Thus, we discard only O(1) vectors from W ′(r) for each vector that we add to
W ′′(r), and so we discard only a constant fraction of the vectors in W ′(r) in total.

So far, this construction guarantees that, for any vector ~v added to W ′′(r), no future vector ~v′

added to W ′′(r) has larger projection onto ~v than ~v itself. We still need to handle the opposite
dependency, in which a past vector ~v′ added to W ′′(r) has larger projection onto ~v than ~v itself.
In fact, this is easily handled by considering the vectors in W ′(r) in a specific order, rather than
choosing an arbitrary ~v ∈ W ′(r) in each round. Notice that this problematic dependence only
occurs in the case when ‖~v′‖ > ‖~v‖, and so ~v escapes the discarded sector for ~v′, but ~v′ lies in the
discarded sector for ~v. We therefore select the vector ~v ∈W ′(r) with minimum length ‖~v‖ in each
round (breaking ties arbitrarily). This avoid conflicts as described, since we would then consider ~v
first, and discard ~v′.

B Proof of Proposition 12

We must show that any optimal solution to our relaxed optimization problem is of form δ′1 =
w~q1 · (q1)y + w~q2 · (q2)y, where ~q1 = ((q1)x, (q1)y) ∈ Q1, ~q2 = ((q2)x, (q2)y) ∈ Q2, and w~q1 · (q1)x +
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w~q2 · (q2)x = vx−ux. We can accomplish this by showing that any feasible solution in general form
can be converted into a feasible solution in our desired form that is at least as good.

We first show that there is at most one w~q1 > 0 where ~q1 ∈ Q1 in any optimal solution.
Corresponding to the vectors in Q1, we define the following function f . For all 1− i∗ ≤ x ≤ c− i∗,
let

f(x) = −1/2 · ((x+ i∗)(x+ i∗ − 1)− i∗(i∗ − 1)).

Note that for all ~q = (qx, qy) ∈ Q1, f(qx) = qy. Moreover, function f is concave over its domain
and strictly decreasing.

Proposition 16. Let {w~q}~q∈Q1∪Q2
be a feasible solution to LP1. Then we can obtain a feasible

solution {w′
~q}~q∈Q1∪Q2

that is at least as good as {w~q}, by letting

w′
(x,f(x)) := 0 for x ∈ [1− i∗,−2]

w′
(−1,f(−1)) := −

∑

x∈[1−i∗,−1]

x · w(x,f(x))

w′
(0,f(0)) := 0

w′
(1,f(1)) :=

∑

x∈[1,c−i∗]

x · w(x,f(x))

w′
(x,f(x)) := 0 for x ∈ [2, c− i∗]

w′
~q := w~q for ~q ∈ Q2

Proof.

• Feasible: We must verify that w~q ≥ 0 for all ~q ∈ Q1 ∪Q2 as required. This follows straight-
forwardly from the definition of our solution and the fact that w~q ≥ 0 for all ~q ∈ Q1 ∪ Q2,
since we assumed our initial solution was feasible.

Additionally, the constraint
∑

~q∈Q1∪Q2
qxw

′
~q = vx − ux remains satisfied, since

∑

~q∈Q1∪Q2

qxw
′
~q = 1 · w′

(1,f(1)) +−1 · w′
(−1,f(−1)) +

∑

~q∈Q2

qxw
′
~q

=
∑

x∈[1,c−i∗]

x · w(x,f(x)) +
∑

x∈[1−i∗,−1]

x · w(x,f(x)) +
∑

~q∈Q2

qxw~q

=
∑

~q∈Q1∪Q2

qxw~q

= vx − ux

where the final equality follows from our assumption that our initial solution was feasible.

• At least as good: The value of our old solution is

∑

~q∈Q1∪Q2

qyw~q =
∑

x∈[1−i∗,c−i∗]

f(x) · w(x,f(x)) +
∑

~q∈Q2

qyw~q
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The value of our new solution is

∑

~q∈Q1∪Q2

qyw
′
~q =

∑

x∈[1−i∗,c−i∗]

f(x) · w′
(x,f(x)) +

∑

~q∈Q2

qyw~q

= f(−1) · w′
(−1,f(−1)) + f(1) · w′

(1,f(1)) +
∑

~q∈Q2

qyw~q

= −f(−1) ·
∑

x∈[1−i∗,−1]

x · w(x,f(x)) + f(1) ·
∑

x∈[1,c−i∗]

x · w(x,f(x)) +
∑

~q∈Q2

qyw~q

= −(i∗ − 1) ·
∑

x∈[1−i∗,−1]

x · w(x,f(x)) − i∗ ·
∑

x∈[1,c−i∗]

x · w(x,f(x)) +
∑

~q∈Q2

qyw~q

Then the difference between the value of our new solution and our old solution is

diff :=
∑

x∈[1−i∗,−1]

((−i∗ + 1)x− f(x)) · w(x,f(x)) +
∑

x∈[1,c−i∗]

(−i∗x− f(x)) · w(x,f(x))

If we can establish that f(x) ≤ (−i∗ + 1)x for x ≤ −1 and f(x) ≤ −i∗x for x ≥ 1, then
it will immediately follow that diff ≥ 0. Observe that the line tangent to f at x = −1 is
t(x) = (−i∗ + 3/2)x + 1/2. Then since f is concave, f(x) ≤ t(x) ≤ (−i∗ + 1)x for x ≤ −1.
Likewise, the line tangent to f at x = 1 is t(x) = (−i∗ − 1/2)x+ 1/2, so f(x) ≤ t(x) ≤ −i∗x
for x ≥ 1. We conclude that diff ≥ 0, so our new solution is at least as good as our initial
solution as desired.

We will use Proposition 16 to establish our desired property about weights w~q1 with ~q1 ∈ Q1.

Proposition 17. There exist optimal solutions to LP1 with at most one ~q1 ∈ Q1 such that w~q1 > 0.

Proof. By Proposition 16, we may assume our solution is of the form δ′1 = f(−1) · w(−1,f(−1)) +
f(1) ·w(1,f(1)) +

∑
~q∈Q2

qyw~q where −1 ·w(−1,f(−1)) +1 ·w(1,f(1)) +
∑

~q∈Q2
qxw~q = vx − ux. We split

our analysis into two cases:

Case 1: w(−1,f(−1)) ≤ w(1,f(1)) In this case, we define our new solution {w′
~q} to be

w′
(−1,f(−1)) := 0

w′
(1,f(1)) := w(1,f(1)) − w(−1,f(−1))

w′
~q := w~q for ~q ∈ Q2

It is immediate that {w′
~q} is feasible. Observe that the difference between the value of our new

solution and our old solution is

diff = (f(1)(w(1,f(1)) − w(−1,f(−1))))− (f(−1) · w(−1,f(−1)) + f(1) · w(1,f(1)))

= −f(1) · w(−1,f(−1)) − f(−1) · w(−1,f(−1))

≥ (i∗ − (i∗ − 1)) · w(−1,f(−1)) ≥ 0

so our new solution is at least as good as the old solution.

40



Case 2: w(−1,f(−1)) > w(1,f(1)) In this case, we define our new solution {w′
~q} to be

w′
(−1,f(−1)) := w(−1,f(−1)) − w(1,f(1))

w′
(1,f(1)) := 0

w′
~q := w~q for ~q ∈ Q2

It is immediate that {w′
~q} is feasible. Observe that the difference between the value of our new

solution and our old solution is

diff = (f(−1)(w(−1,f(−1)) − w(1,f(1))))− (f(−1) · w(−1,f(−1)) + f(1) · w(1,f(1)))

= −f(−1) · w(1,f(1)) − f(1) · w(1,f(1))

≥ (−(i∗ − 1) + i∗) · w(1,f(1)) ≥ 0

Our new solution is at least as good as the old solution. The claim is established.

Now to finish our proof of Proposition 12, we need to extend Proposition 17 to vectors in Q2.

Proposition 18. There exist optimal solutions {w~q}~q∈Q1∪Q2
to LP1 with at most one ~q1 ∈ Q1 such

that w~q1 > 0 and at most one ~q2 ∈ Q2 such that w~q2 > 0.

Proof. By Proposition 16, we may assume our solution is of the form δ′1 = q1y ·w~q1 +
∑

~q∈Q2
qy ·w~q

where ~q1 = (q1x, q
1
y) ∈ Q1, and q

1
x ·w~q1 +

∑
~q∈Q2

qx ·w~q = vx − ux. Now corresponding to the vectors
in Q2, we define the following function g. For all −2rI − i∗ + c ≤ x ≤ −2rI − i∗ + 2c− 1, let

g(x) = 1/2 · ((x+ 2rI − 2c+ i∗)(x+ 2rI − 2c+ i∗ + 1) + i∗(i∗ − 1))− c(c+ 1).

Note that for all ~q = (qx, qy) ∈ Q2, g(qx) = qy. Function g is strictly decreasing. Moreover, the
domain and range of g contain only negative numbers. Let ` := −2rI − i∗ + c. We define the
following new solution {w′

~q}~q∈Q1∪Q2
.

w′
~q1

:= w~q1

w′
(`,g(`)) := `−1 ·

∑

x∈[`,`+c−1]

x · w(x,g(x))

w′
~q := 0 if ~q 6∈ {~q1, (`, g(`))}

• Feasible: Since `−1 < 0 and x ≤ ` + c − 1 < 0, it follows that w′
~q ≥ 0 for all ~q ∈ Q1 ∪ Q2.

Additionally,

q1x · w~q1 + ` · `−1 ·
∑

x∈[`,`+c−1]

x · w(x,g(x)) = q1x · w~q1 +
∑

~q∈Q2

qx · w~q = vx − ux

so our constraint is satisfied.

• Optimal: The difference between our new solution and our old solution is

diff =


g(`) · `−1 ·

∑

x∈[`,`+c−1]

x · w(x,g(x))


−

∑

x∈[`,`+c−1]

g(x) · w(x,g(x))

=
∑

x∈[`,`+c−1]

(g(`) · `−1 · x− g(x)) · w(x,g(x))
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If we can establish that g(`) · `−1 · x − g(x) ≥ 0, then diff ≥ 0. Since ` < 0, this inequality
can be restated as

g(`) · x ≤ g(x) · `
Now note that ` ≤ x < 0 and g(x) ≤ g(`) < 0, since g is strictly decreasing over its domain.
Then 0 < −x ≤ −` and 0 < −g(`) ≤ −g(x), so combining these inequalities gives us
g(`) · x ≤ g(x) · `, so diff ≥ 0, as desired.

Proposition 12 follows immediately from Proposition 18.
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