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A B S T R A C T

The pressure coefficient of a low-rise building in the ASCE wind load design provision is usually obtained

from boundary-layer wind-tunnel tests. Although these tests tend to be standardized, inconsistent results from

different facilities have been acknowledged as a long-standing issue. This work compares roof pressure for a

low-rise building model archived in the National Institute of Standards and Technology (NIST) aerodynamic

database and the Tokyo Polytechnic University database, followed by quantifying the measurement and

data reduction uncertainties of the NIST datasets. The Monte Carlo simulation propagates four elemental

uncertainties to the mean 𝐶𝑝, standard deviation 𝐶 ′
𝑝
and peak pressure coefficient 𝐶𝑝,𝑝𝑒𝑎𝑘. Results indicate that

pronounced differences in the roof pressure from two datasets are attributed to different inflow characteristics

(including the Jensen number variation) and the inherent measurement uncertainties. High measurement

uncertainties of 𝐶𝑝 and 𝐶𝑝,𝑝𝑒𝑎𝑘 are strongly correlated with vortical flow structures, either separated flow or

conical vortices at the roof corner and windward edges. Two dominant measurement uncertainty sources are

distinguished: the dynamic pressure ratio uncertainty and the surface pressure tap uncertainty. Alternative

flow and pressure measurement techniques are noted to potentially reduce the two dominant uncertainty

sources. This work is intended to clarify measurement uncertainty sources of obtaining pressure coefficients

in wind-tunnel model tests and shed lights on why large differences exist from different tests.

1. Introduction

Boundary-layer (BL) wind-tunnel tests of wind loading on building

models have served as the primary means to determine the minimal

design wind loads by the American Society of Civil Engineers (ASCE)

provisions. Wind-tunnel tests create a controlled, simulated boundary-

layer flow condition and scaled building models are used to reproduce

the wind structure interaction that is of interest. For wind load tests,

the essential measurement quantities include local surface pressure

and/or overall forces and moments, as well as the inflow properties

(wind speed profiles, turbulence intensities and power spectrum) that

a model is subjected to. Wind loads for building design (including the

main structure and building components) in the ASCE wind codes are

specified as,

𝐹𝑎 = 𝑞 ⋅ 𝐶𝑝 ⋅ 𝐶𝑒 ⋅ 𝐶𝑔 ⋅ 𝐴, (1)

where 𝐹𝑎 is the wind load, 𝑞 is the dynamic wind pressure, 𝐶𝑒 and 𝐶𝑔

are the terrain exposure and wind gust factors, 𝐴 is the nominal tribu-

tary area, and 𝐶𝑝 is the pressure (or load) coefficient. This seemingly

simple equation links the local wind climate, the wind loads, and the
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structure’s dynamic response to the wind — ‘‘Alan G. Davenport Wind

Loading Chain’’ (Kareem and Tamura, 2013). Pressure coefficient 𝐶𝑝

for a typical building type is usually measured by boundary-layer (BL)

wind-tunnel tests. BL wind-tunnel model tests have advanced the wind

loading design in the past few decades (Holmes, 1988; Surry, 1991;

Letchford, 2001; Cermak, 2003; Tieleman, 2003; Cochran, 2006; Endo

et al., 2006; Fernández-Cabán and Masters, 2018) and will continue

doing so in the foreseeable future. However, it is well known that

pressure coefficients on scaled building models often show pronounced

discrepancies from different wind-tunnel tests. As reported by Fritz

et al. (2008), the variability of wind effects indicated in peak negative

pressure coefficient ranges from 10% to 30% for wind directions of

0◦ and 90◦ based on tests at six renowned wind tunnel laboratories.

Indeed, such tests are guided by standards (Cermak et al., 1999; Simiu

et al., 2009), and significant efforts are put in model preparation,

experimental setup, equipment/instrumentation calibration, and data

reduction methodology. There is a need for a detailed analysis of

what caused the large variability and uncertainties that could improve

estimation of wind load factors.

https://doi.org/10.1016/j.jweia.2022.105246

Received 17 March 2022; Received in revised form 31 October 2022; Accepted 16 November 2022



E. Shelley et al.

Uncertainties in the wind-tunnel measurements of pressure coeffi-

cients 𝐶𝑝 are primarily in three aspects: (1) how well the simulated

wind represents full-scale atmospheric boundary-layer winds; (2) to

what extent the dynamic similarity is achieved (in particular, the

Reynolds number range); and (3) measurement and data reduction un-

certainties (Simiu and Yeo, 2019). The first two aspects are extensively

discussed in the literature, such as Tieleman (2003), Cochran (2006)

among others. For example, a recent work by Nandi et al. (2022)

quantified the effect of uncertainty of roughness length (𝑧𝑜) of up-

stream terrain on the estimation of structural response to wind. It was

found that neglecting this uncertainty can underestimate the building

response by as much as 45%. However, the measurement and data

reduction uncertainties in the wind-tunnel measurements of pressure

coefficients 𝐶𝑝 have not been well understood. To address this outstand-

ing issue and improve understanding of what caused the significant

variabilities of the pressure coefficients 𝐶𝑝, measurement and data

reduction uncertainties must be carefully examined and quantified.

Uncertainty quantifies a probabilistic interval within which a ‘‘true

value’’ is likely to fall from the reported result (Coleman and Steele,

2018). Error sources in wind-tunnel tests can be classified into two

categories: systematic or bias sources and random sources. Systematic

errors create an offset from the actual value to the ‘‘nominal’’ value,

while random errors cause a random variation typically following a

Gaussian distribution about the nominal value. Distinguishing between

uncertainty sources as random and systematic can be useful for re-

searchers to determine if the resulting uncertainties will affect their

results. For example, a researcher comparing the experimental results

with CFD models cares about both systematic and random uncer-

tainties, while a researcher looking for small changes in results due

to model modification requires low random uncertainty but may not

concern a systematic offset in their data. Random uncertainties could

be evaluated and minimized by repeating the same test a sufficient

number of times. Systematic errors can be compensated once correctly

identified, but often it is difficult to completely separate random and

systematic errors. Systematic uncertainty sources are sometimes over-

looked and hard to quantify; they do not cause variation in repeatedly

collected data but rather introduce biasing effects for which they are

defined.

‘‘The uncertainty is as important a part of the result as the es-

timate itself. ... An estimate without a standard error is practically

meaningless’’ (Jefferys 1967 in Higdon et al. 2006). Even when sources

of uncertainty are acknowledged, experimentalists and researchers of-

ten publish test results without uncertainty explicitly. When reporting

pressure statistics from BL wind-tunnel tests, a detailed uncertainty

quantification (UQ) is often missing (Ho et al., 2005). This hinders a

fair comparison among similar tests in different experimental facilities

and understanding of the driving uncertainty sources introduced at

different stages of wind-tunnel tests. Without uncertainty as part of the

results, meaningful comparisons cannot be made between two tests,

or between computational model and a test for validation purposes.

Additionally, when uncertainty sources and their impacts on a result

are less understood, strategies to effectively improve tests and increase

the fidelity of the results remain elusive. One must also note that, owing

to the complexity of data acquisition/reduction, it is often necessary to

estimate uncertainties not only on the basis of measurements and statis-

tics, but also by making somehow subjective assessments, inferences

from past practices, and simplified reliability methods (Simiu and Yeo,

2019).

Despite the rapid growth of computing performance, it may take

decades until the complexity of wind and structure interaction can

be faithfully simulated in all details. It can be expected that full-

scale experiments and wind tunnel tests of wind effects on buildings

remain essential tools for better understanding flow physics, and for

validation of prediction results and for assisting numerical modeling

development (Scharnowski and Kähler, 2020). Since BL wind-tunnel

test cases and results are increasingly used to validate computational

fluid dynamics (CFD) simulation in wind engineering research, it is

highly desirable to provide uncertainty quantification of the wind-

tunnel test data and results. Recent results in quantifying uncertainties

in CFD simulations suggest wind pressure loads on buildings can be

strongly influenced by uncertainty in the inflow boundary conditions

and the turbulence model. UQ presents more meaningful information

to designers and engineers than the outcome of a single deterministic

CFD simulation (Lamberti and Gorlé, 2018).

There are several aerodynamic databases in public domain, includ-

ing the The NIST/University of Western Ontario (UWO) aerodynam-

ics database, referred to as the UWO database, the Tokyo Polytech-

nic University (TPU) aerodynamic database and the NSF-sponsored

DesignSafe-CI Data Depot. The UWO database archives time series of

pressure coefficients at large numbers of ports on the external surface

of a variety of low-rise building models (NIST, 2017). Until recently

it was the largest existing aerodynamic database for low-rise build-

ing wind loading. The basic building configuration has a rectangular

plane shape. Thirty-seven building models with distinct dimensions and

five roof slopes and eave heights are tested. A series of publications

documented the comprehensive wind-tunnel study of pressure distri-

bution on variations of building model scale, wind directions, leakage

condition, and terrain type (Ho et al., 2005; St. Pierre et al., 2005;

Oh et al., 2007). The NIST aerodynamic database has been used for

assessing the wind load provisions for low-rise buildings. For example,

Kopp and Morrison (2018) examined component and cladding wind

load provisions for low-sloped roofs on low-rise buildings using mea-

sured pressure data from the UWO database. The TPU aerodynamic

database is part of the Wind Effects on Buildings and Urban Envi-

ronment, the 21st Century Center of Excellence Program, 2003–2007

(Tamura, 2012). Gierson et al. (2015) utilized the TPU wind tunnel

data to evaluate the ASCE 7-10 wind velocity pressure coefficients

on the components and cladding of low-rise buildings. Hagos et al.

(2014) examined aerodynamic pressures and forces based on the UWO

and TPU data for low-rise buildings to assess the extent to which

the respective aerodynamic pressure measurements are comparable.

They compared three cases of gable-roof low-rise buildings (of two

roof slopes and two width/depth ratios) and concluded reasonable

equivalent results from these cases for practical engineering purposes.

The present work is built upon (Hagos et al., 2014) to not only compare

selected cases from UWO and TPU databases, but account for measure-

ment uncertainties of the pressure coefficients obtained in the UWO

datasets.

This work will look into the differences in the measured pres-

sure coefficient statistics using data archived in the NIST and TPU

aerodynamic databases. The objective of this research is two-fold: (1)

To compare the mean, standard deviation of and the peak pressure

coefficient of selected comparable cases in the UWO and the TPU

databases; and (2) determine the measurement uncertainty and identify

the primary uncertainty contributors to pressure statistics, which al-

lows for thinking of alternative measurement techniques to potentially

reduce the measurement uncertainty in similar wind-tunnel tests.

2. Case selection and analysis methodology

2.1. Low-rise building model, inflow conditions and terrain exposure

An isolated low-rise building of a nearly-flat roof (1:100 scaled, 1:12

roof pitch, no leakage model) is selected as the target building model.

While ABL flows over two exposures – open and suburban terrains – are

simulated in the UWO datasets, only suburban terrain is simulated in

the TPU wind-tunnel tests. Therefore, test cases for suburban terrain

with a roughness length of 𝑧𝑜 = 0.3 m is selected from the UWO

database. For a fair comparison, building geometric similarities were

also considered in terms of building depth 𝐷, breadth 𝐵 and eave height

𝐻 (Table 1).
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Table 1

Dimensions and geometric ratios of the low-rise building model of the UWO and TPU wind-tunnel tests (Ho et al., 2003; Tamura, 2012).

Database Model Roof slope Breadth Depth D Eave height Ratio Ratio Ratio

case # scale (◦) B (m) D (m) H (m) B/H D/H D/B

UWO (ox2) 1:100 4.76 0.49 0.76 0.12 4:1 6.25:1 3.12:2

TPU 1:100 4.8 0.16 0.24 0.04 4:1 6:1 3:2

The inflow of the simulated surface layer is characterized in terms

of mean wind profiles, streamwise turbulence intensity profiles, and

scaling parameters. The empirical power-law mean wind profile is

commonly used in wind engineering as follows:

𝑈 (𝑧)
𝑈 (𝑧𝑟)

=
(

𝑧

𝑧𝑟

)𝛼

(2)

where 𝑧𝑟 is the reference height, 𝑈 (𝑧𝑟) is the mean wind speed at the
reference height, and 𝛼 is the power-law exponent or the wind shear

exponent. Vertical profiles of the streamwise turbulence intensity are

obtained as the primary turbulence quantity. While UWO incoming

wind is measured using hot-wire anemometers (HWA) which allow

for turbulence scales of three dimensions as examined in Ho et al.

(2005), such information is not available for the TPU wind-tunnel tests.

Therefore turbulent length scales are not included in the comparison.

The flow development and pressure distribution over a roof is

strongly affected by wind direction. The UWO dataset (Data Set ID ox2

(NIST, 2017)) covers 5◦ to 90◦ and 270◦ to 360◦ with a 5◦ interval,

in total 37 wind directions. The TPU case covers 0◦ to 90◦ with an

interval of 15◦. We will focus on the normal wind direction of 270◦

(90◦ equivalent) to the longer side of the building and an oblique wind

direction of 315◦ (45◦ equivalent). When comparing the UWO and

TPU datasets, the coordinate systems of the pressure tap locations of

the models are inconsistent, as seen in Fig. 1. For the convenience of

comparison, a coordinate system is defined to place the origin (0,0) at

the top left corner of the roof schematics and align with that of the

UWO case (Fig. 1).

2.2. Data processing of time series of surface pressure

The pressure coefficient 𝐶𝑝 datasets recorded by UWO can be ac-

cessed at the NIST Aerodynamic Database (NIST, 2017). The NIST

database provides time series of pressure coefficients at the reference

height 𝐶𝑝,𝑟𝑒𝑓 , and at 1000 times the magnitude of the actual values.

The reference height is located approximately at the halfway height of

the wind tunnel, where the incoming wind velocity is uniform with low

turbulence levels outside of the simulated surface layer. Data processing

is required to convert 𝐶𝑝,𝑟𝑒𝑓 referenced to the upper-level dynamic

pressure 𝑞𝑟𝑒𝑓 in the wind tunnel to 𝐶𝑝 referenced to the eave height

dynamic pressure 𝑞𝐻 conventionally. This is done by the following:

𝐶𝑝 = 𝐶𝑝,𝑟𝑒𝑓 ×
𝑞𝑟𝑒𝑓

𝑞𝐻
= 𝐶𝑝,𝑟𝑒𝑓 ×

(
𝑉𝑟𝑒𝑓

𝑉𝐻

)2
, (3)

𝑉𝑟𝑒𝑓

𝑉𝐻
=

𝑉𝑟𝑒𝑓

𝑉𝑖𝑛𝑡
×

𝑉𝑖𝑛𝑡

𝑉𝐻
, (4)

where 𝑞𝑟𝑒𝑓 /𝑞𝐻 is the dynamic pressure ratio of the reference height

with respect to the eave height. The velocity ratio 𝑉𝑟𝑒𝑓∕𝑉𝐻 is not

measured directly in the UWO datasets, instead obtained via an

intermediate-level velocity 𝑉𝑖𝑛𝑡. The velocity measurements by pitot

tubes in building model tests were conducted at the intermediate height

of 0.488 m and the roof height. The intermediate level measurements

are taken upstream of the turntable at the centerline and 1/4 point

of the wind tunnel width, and the eave height measurements are

located off the turntable to avoid model-induced disturbances. The

intermediate height measurements are intended to give a reference

related to upper-level wind speed measurements and serve as an overall

monitor of the simulation (Ho et al., 2005).

TPU’s aerodynamic database contains multiple sub-databases rang-

ing from low-rise buildings (with and without eave) to high-rise build-

ings (TPU, 2012). For the selected cases of a low-rise building model,

surface pressure taps were evenly distributed over the surfaces with a

spacing of 20 mm. The TPU database provides the processed 𝐶𝑝 statis-

tics data, which are treated with a 3-point moving average (Tamura,

2012). The TPU data has a time scale 3/100 (with 3-point moving

average already applied to the time series), and the UWO data has a

time scale of about 6/100. At the lab scale, the UWO had sampling

period of 100 s while TPU had a sampling period of 18 s with each

case being sampled at 500 Hz. To be consistent, the UWO time series

of pressure data are also treated with a 6-point moving average to

calculate the duration of 0.2 s for the full scale so that a fair comparison

between these two cases is achieved.

Mean pressure coefficient 𝐶𝑝 and the standard deviation 𝐶𝑝
′ are

calculated using the corresponding time series of surface pressure data

as follows:

𝐶𝑝 =
1
𝑁

𝑁∑
𝑖=1

𝐶𝑝𝑖
(5)

𝐶𝑝
′ =

√√√√ 1
𝑁 − 1

𝑁∑
𝑖=1

(𝐶𝑝𝑖
− 𝐶𝑝)2 (6)

Since the pressure fluctuations are only explicitly captured for

the duration of the sampling period of the wind-tunnel tests, the

expected peak pressures for full-scale need to be found by considering

the statistical distribution of peak pressures. Gavanski et al. (2016)

studied how data duration and sampling frequency impact on the

peak pressure estimation. The method adopted herein utilizes a pro-

cedure to estimate expected peak values for database-assisted design

(Sadek and Simiu, 2002). Through statistical testing, this procedure

determines and uses the Extreme Value Type I (Gumbel) distribution

to best estimate the peak distribution, with gamma and normal distri-

butions to estimate the longer and shorter tails of this non-Gaussian

distribution. A primary and two supplemental MATLAB functions were

developed by Joseph A. Main using this procedure and was used to

calculate the expected peak 𝐶𝑝,𝑝𝑒𝑎𝑘 in this study.

2.3. Uncertainty quantification (UQ) procedure

The uncertainty analysis begins by determining elemental uncer-

tainty estimates of the instrumentation used for measurements of each

quantity, then determines the random and systematic uncertainties

associated with particular measurements and the flow facility. As cal-

ibrations, assumptions and data reduction are made, associated un-

certainties are also included in the chain, and all uncertainties are

propagated to obtain the overall uncertainty of the value of inter-

est (Stephens et al., 2016). To model how the elemental uncertainties

propagate to the uncertainty of the value of interest, the Taylor se-

ries method is traditionally used, which becomes less effective when

dealing with non-linear equations and dynamic systems. On the con-

trary, the Monte Carlo Method (MCM) of uncertainty propagation

standardized in the ISO Guide’s supplement (BIPM et al., 2008), is a

probabilistic approach to UQ — random draws are made from assumed

error distributions for all identified uncertainty sources, errors are

added to appropriate seed data values to simulate measured data,

and then perturbed data are reduced to results of interest (Coleman

and Steele, 2018). Random numbers based on the statistical distri-

bution of each uncertainty source are generated for the time series

data. The errors are then propagated and reduced to the 𝐶𝑝 statistics

(Stephens et al., 2016). The standard deviations of these parameters of

interest are calculated, representing the standard uncertainty obtained
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Fig. 1. Schematic diagram of pressure tap layout on the model building roof. (a) 335 pressure taps over the UWO building model with a dense patch of pressure taps installed

at one corner; (b) 96 pressure taps uniformly distributed with a spacing of 20 mm over the TPU building model.

from each uncertainty source. This procedure is repeated through 𝑛

iterations until the probability distribution of the outcomes is stable

and well-defined. For example, for outcome distributions of a Gaussian

nature, convergence criteria can be selected for the sample standard

deviation 𝑢 such that||𝑢𝑛 − 𝑢𝑛−1||
𝑢𝑛

< 0.001 (7)

A probabilistic interval can then be defined as the uncertainty in the

result, typically a 95% level of coverage or 2𝜎. The process is depicted

in Fig. 2. Using these results, the percent contribution of each identified

elemental uncertainty to the overall measurement uncertainty of the

quantity of interest can be evaluated. This study will estimate system-

atic measurement uncertainty of mean, standard deviation and peak

pressure coefficients using instrument-level uncertainties of flow and

pressure measurements.

Uncertainty quantification is performed for the UWO case only,

because time series of point wind pressure in the TPU datasets were

pre-treated with a moving average. The primary instruments used

in the UWO wind-tunnel tests include a high-speed solid-state pres-

sure scanning system for building surface pressure measurement, two

HWAs and two pitot–static tubes for wind profiles (Ho et al., 2003,

2005). Introduced by such instruments to the UWO wind tunnel tests,

four elemental uncertainty sources are identified: pressure tap 𝑈𝑝,

pressure correlation among transducer channels 𝑈𝑝,𝑐𝑜𝑟𝑟, hot-wire ac-

curacy 𝑈𝑉 ,𝑎𝑐𝑐 and hot-wire resolution 𝑈𝑉 ,𝑟𝑒𝑠 in Table 2. For steady-

state measurements, we commonly use equipment accuracy specifi-

cation as the elemental source of uncertainty. Since no information

is available about the pressure transducer model or the HWA, we

have assumed that modern instruments’ specifications are representa-

tive. The specifications of pressure scanner Scanivalve ZOC33 is used

here: +/−10 inch 𝐻2𝑂 pressure range (+/−52.023 psf), the accu-

racy specifications represent 2𝜎 value and Gaussian distribution of

errors (BIPM et al., 2008; Hubbard, 2019). The correlation error be-

tween pressure channels share the same calibration process and instru-

mentation, and therefore, share the systematic correlation uncertainty.

A small level of correlation between pressure channels from pressure

system calibration at 25% is used, typical of channel-to-channel cal-

ibration uncertainty ratios. For the HWA, the Kanomax Climomaster

6501 hot-wire velocity specifications are considered as representative

and comparable to that used in the UWO tests. The four elemental

uncertainties and assumed statistical distributions are summarized in

Table 2.

Fig. 3 shows the flow charts of BL wind profile measurement un-

certainties created by two hot-wires and two pitot tube measurements.

The top of Fig. 3 represents the introduction of elemental uncertainties

𝑈𝑉 ,𝑎𝑐𝑐 and 𝑈𝑉 ,𝑟𝑒𝑠 at different heights and their propagation with the hot-

wire measurements. The bottom of Fig. 3 shows uncertainties of two

pitot tube measurements as the parallel efforts. Both the total and static

recordings of each pitot probe are needed to determine the dynamic

pressures thus the velocity, so the elemental uncertainties of 𝑈𝑝 and

𝑈𝑝,𝑐𝑜𝑟𝑟 are introduced and propagated through the data acquisition and

reduction process.

Fig. 4 shows the elemental uncertainties 𝑈𝑝 and 𝑈𝑝,𝑐𝑜𝑟𝑟 introduced

by model pressure measurements (bottom chart), combined with uncer-

tainties from the pitot tube measurements to obtain the re-referencing

velocity ratios (top chart). The pitot tube measurements taken at the

reference, intermediate and roof/eave heights contribute to the aver-

aged 𝑉𝐻∕𝑉𝑖𝑛𝑡 and 𝑉𝑖𝑛𝑡∕𝑉𝑟𝑒𝑓 (in Eqs. (3) and (4)). Two tests (one BL

velocity profile and one model test) were performed and averaged

to obtain 𝑉𝑖𝑛𝑡∕𝑉𝐻 , and three test results (one BL velocity profile and
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Fig. 2. Monte Carlo simulation of uncertainty propagation.

Table 2

Elemental uncertainty estimates and assumed statistical distributions.

Uncertainty Uncertainty Estimated uncertainty Estimated uncertainty

quantity source magnitude statistical distribution

𝑈𝑝 Pressure scanner accuracy ±0.078 psf (±0.15%FS) 2𝜎, Gaussian distribution

𝑈𝑝,𝑐𝑜𝑟𝑟 Pressure scanner calibration ±0.02 psf (0.25𝑈𝑃 ) 2𝜎, Gaussian distribution

(channel to channel correlation)

𝑈𝑉 ,𝑎𝑐𝑐 Hot-wire accuracy Greater of 2% of reading or 0.015 m/s 2𝜎, Gaussian distribution

𝑈𝑉 ,𝑟𝑒𝑠 Hot-wire resolution ±0.01 m/s uniform distribution

Fig. 3. Estimated uncertainties of measured parameters and the procedure to obtain BL inflow velocity profiles by parallel measurements with hot-wires and pitot tubes.

two model tests) were averaged to obtain 𝑉𝑟𝑒𝑓∕𝑉𝑖𝑛𝑡. The velocity ratio
measurements and averages from these tests are summarized in Table 3

of Ho et al. (2005). The velocity ratio uncertainties serve as the input

to obtain 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 in the bottom flow chart. All elemental uncertainties

propagate from the point of measurement through the instruments,

data acquisition and data reduction procedure to the primary variables

of interest; 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘.

3. Results and discussion

Incoming flow characteristics are crucial to examine the induced

building wind load. We first compare the inflow characteristics of the

UWO and TPU wind tunnels, the mean velocity profiles and turbulence

intensities. Subsequently, we present the comparison of the pressure

coefficients over the roof using the UWO and TPU wind-tunnel data

in terms of mean and standard deviation, and expected peak pressure

values at normal and cornering wind directions. For the UWO data,

we included the measurement uncertainty quantification results for the

roof and targeted locations.

3.1. Comparison of inflow characteristics

For wind-tunnel tests of low-rise building models, mostly wind

properties in the atmospheric surface layer (or the lowest 10% of

the ABL) are reproduced. The UWO full-scale reference wind speed is

13.7 m/s, with a 1:4 velocity ratio and wind-tunnel eave height velocity

of 9.1 m/s. TPU full-scale reference wind speed is 22 m/s, with a 1:3

velocity ratio and wind-tunnel eave height velocity of 6.5 m/s. Inflow

characteristics parameters were compared in lab-scale in Table 3. The



E. Shelley et al.

Fig. 4. Uncertainties of re-referencing velocity ratios (top chart) and building model surface pressure (bottom chart) to obtain the 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 in the UWO wind tunnel

tests.

Table 3

Comparison of non-dimensional scaling parameters of the simulated surface-layer inflow

of the UWO and TPU wind-tunnel tests.

Wind-tunnel Eave height velocity Reynolds Number Jensen number

Tests 𝑉𝐻 (m/s) 𝑅𝑒𝐻 𝐻∕𝑧0
UWO 9.1 7.3 × 104 40.6

TPU 6.5 1.7 × 104 26.7 - 5.7

Reynolds number is defined as follows:

𝑅𝑒𝐻 =
𝑉𝐻𝐻

𝑣
(8)

where 𝐻 is the eave height, 𝑉𝐻 is the eave height velocity and 𝜈 is

the kinematic viscosity of air at the test pressure and temperature.

𝑅𝑒𝐻 are 7.3×104 and 1.7×104 for the UWO and TPU tests, respectively.
For sharp-edged bluff bodies, such as low-rise buildings, a minimum

Reynolds number of 104 is required to reduce the Reynolds number
dependence (Cermak et al., 1999). Since the roughness height, 𝑧𝑜,

associated with the simulated boundary-layer inflow in the TPU study

was not specified, a range of 0.15 to 0.7 𝑚 based on the building

codes is used to calculate the Jensen number (𝐻∕𝑧𝑜) listed in Ta-

ble 3 for a typical roughness height over the suburban terrain. A

significant difference exists in the Jensen number of the UWO and

TPU tests. The effects of Jensen Number on low-rise building pressure

are discussed in Holmes and Carpenter (1990): fluctuating pressures

decrease and mean suctions in separated flow regions increase with

increasing Jensen number for the Jensen number between 120 and 480.

While the Jensen numbers of the UWO/TPU tests are lower than the

studied range of Jensen Numbers, the effects of variation of Jensen

number on roof pressure statistics would be expected.

Fig. 5 shows the comparison of the mean inflow velocity ratio 𝑈∕𝑉𝐻
and streamwise turbulent intensity 𝑇𝑢 profiles between the UWO and

TPU test cases. The power-law profile was used to fit a curve to the

velocity ratio data, yielding power-law exponents of 0.23 for UWO

and 0.21 for TPU and an 𝑅2 value of 0.97. The UWO boundary-layer

flow was described using the logarithmic law (Ho et al., 2003), thus

no information of the power-law exponent was provided. The TPU

boundary-layer flow is reported to have the exponent of 0.20 (Tamura,

2012), which closely matches the present estimate. Considerable dif-

ferences in the velocity ratio and the streamwise turbulence intensity

profiles are revealed in Fig. 5. The normalized velocity of the TPU

tests is consistently less than that of the UWO tests above the eave

height. This difference is almost negligible below the eave height.

The streamwise turbulence intensities 𝑇𝑢 show similar value of 0.25

below the roof height (ℎ∕𝐻 = 1). 𝑇𝑢 is relatively constant below

ℎ∕𝐻 = 4 for the TPU tests. In contrast, 𝑇𝑢 decreases at a much

higher rate with increasing the height ℎ above the ground for the

UWO test. At the eave height, 𝑇𝑢 = 0.22 for UWO tests is lower than

0.25 of the TPU case. Turbulence intensity and turbulent scales of

the incoming boundary-layer flows have significant impacts on spatial

distribution and magnitude of the mean and fluctuating pressures

(Morrison and Kopp, 2018; Fernández-Cabán and Masters, 2018). Dif-

ferences in velocity profile, turbulence intensity level, 𝑅𝑒𝐻 along with

the Jensen number need to be kept in mind when comparing pressure

coefficients of the UWO and TPU cases in the following section.

3.2. Comparison of roof pressure statistics: 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 of the UWO

and TPU cases

The overall distribution of roof pressure statistics of the low-rise

building model for 90◦ and 45◦ wind directions are compared in

Figs. 6 and 7. Fig. 6 displays contour plots of the mean 𝐶𝑝, standard

deviation 𝐶 ′
𝑝
and peak pressure coefficients 𝐶𝑝,𝑝𝑒𝑎𝑘 over the building

roof subjected to the normal wind (90◦) for the UWO and TPU tests.
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Fig. 5. Vertical profiles of mean wind profiles (left) and streamwise turbulence intensity (right) of the UWO and TPU wind-tunnel tests. Fitted power-law profiles are overlaid

upon scattered raw data.

The lowest mean pressure coefficients 𝐶𝑝 occur near the windward roof

edge (Figs. 6(d) and 6(g)) where the approaching wind separates upon

the sharp edge, then gradually increase as flow moves towards the roof

trailing edge. Values of 𝐶𝑝 over the entire roof surface are negative

(Fig. 6(d) and 6(g)), yielding an uplift force collectively. The standard

deviation of pressure coefficients 𝐶 ′
𝑝
(Figs. 6(e) and 6(h)) show higher

values in the flow separation region and then reduced significantly.

The peak pressure coefficients 𝐶𝑝,𝑝𝑒𝑎𝑘 (Figs. 6(f) and 6(i)) demonstrate

the lowest values at the windward roof edge, and in particular the

roof corner. Flow separation near the roof edge followed by the flow

reattachment downstream is the dominant aerodynamic mechanism for

the lowest mean pressure and the most severe peak suction for 90◦

wind (Akon and Kopp, 2016).

The spatial distribution of the mean, standard deviation and peak

pressure coefficients (𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘) of the UWO and TPU cases

show a generally good agreement, but the magnitude should be studied

in more details by comparing targeted locations (Figs. 8 and 9). The

major difference is resulted from layout arrangement of pressure taps

over the roof. The UWO building model is more densely populated with

pressure taps compared to the TPU model, indicated by each marker

in Fig. 1. Therefore, the pressure taps on the UWO model are able to

capture the surface pressure with higher spatial resolution, including

extreme values closer to the roof edge. Correspondingly, the pressure

coefficient variation near the roof ridge (𝑥∕𝐻 = 2) become more

distinct and visible in the UWO datasets.

The spatial distribution of roof pressure coefficients for a typical cor-

nering wind of 45◦ is shown in Fig. 7. The overall pressure coefficient

distribution for the UWO and TPU measurements agree well, demon-

strating three distinct regions: the roof corner, along two windward roof

edges and the pressure coefficient recovery region. Low 𝐶𝑝 and 𝐶𝑝,𝑝𝑒𝑎𝑘
and high 𝐶 ′

𝑝
are at the roof corner. High values of 𝐶 ′

𝑝
and low 𝐶𝑝,𝑝𝑒𝑎𝑘

along the two edges reflect the distinct footprint of delta vortices. Due

to coarsely spaced pressure taps (or lower spatial resolution) of the

TPU data, the contour plots appear smoother than those of the UWO

datasets. This also leads to that the regions of maximum and minimum

values of pressure statistics are significantly reduced. In contrast, strong

local non-discontinuity of pressure coefficient is evident near the roof

ridge for the UWO measurements, which used two columns of pressure

taps very close to the ridge (see markers on the UWO building model

in Fig. 1).

To do a more detailed quantitative comparison, magnitudes of the

𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 of the UWO and TPU data along the mid-span of the

building for 90◦ wind are shown in Fig. 8. 𝐶𝑝 of the TPU test case are

consistently lower than that of UWO cases by 0.2 to 0.5. The difference

in 𝐶 ′
𝑝
values across the mid-span of the models range between 0.03

and 0.1. The largest difference of 1 in 𝐶𝑝,𝑝𝑒𝑎𝑘 values is located around

𝑥∕𝐻 = 0.25 and reduces as flow moves towards the trailing edge to

around 0.1. The difference between the UWO and TPU test cases is

more significant for 𝑥∕𝐻 < 1.5, but becomes smaller for 𝑥∕𝐻 > 1.5. The

TPU measurements do not capture the peak suction near the leading

edge due to a lower spatial resolution than that of UWO data. In the

UWO data, one of the pressure coefficient data near the middle ridge

does not follow the trend, most likely an outlier.

For 45◦ wind, the magnitudes of 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 measured by

a series of pressure taps near the windward edge of the low building

model is analyzed in Fig. 9. Though 𝐶𝑝 show a similar trend between

both cases, the TPU data is lower by 0.2 to 0.6 than those of UWO data.

The lowest 𝐶𝑝 of −1.25 in the UWO case was not captured in the TPU

datasets. The 𝐶 ′
𝑝
values show a similar pattern, while the TPU data are

consistently higher by 0.03 to 0.3. The 𝐶𝑝,𝑝𝑒𝑎𝑘 values of the TPU cases

are consistently lower by 0.1 to 1.8 than that of the UWO results. Note

that a slight difference of 𝑥∕𝐻 = 0.05 exists between the locations of

these taps of UWO and TPU models (Fig. 9), which might contribute to

the pressure coefficient value difference.

The evident differences in the magnitude of 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 of

the UWO and TPU cases (as seen in Figs. 8 and 9) are attributed to

both the different inflow characteristics and the inherent measurement

uncertainties of wind-tunnel model tests. Ideally, uncertainties of the

UWO and TPU pressure coefficients are to be evaluated for a fair

comparison. Because no raw pressure data are accessible from the TPU

database, only the uncertainties of pressure coefficients for the UWO

wind-tunnel tests are presented. The contours of the total measurement

uncertainties for 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 are shown in the top row of Figs. 6

and 7. Note the total uncertainty refers to the sum of uncertainty values

derived from the four identified uncertainty sources. The uncertainty

levels are highest in the region where flow separates (for 90◦ wind) or

delta vortices form (for 45◦ wind). It is not surprising that the lower

peak pressure coefficients 𝐶𝑝,𝑝𝑒𝑎𝑘 are the greater of the uncertainties.

Due to the heterogeneous distribution of roof pressure uncertainties,
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Fig. 6. Rooftop contour plots of 𝐶𝑝 (left), 𝐶
′
𝑝
(middle) and 𝐶𝑝,𝑝𝑒𝑎𝑘 (right) of the UWO (middle row) and TPU (bottom row) wind-tunnel tests at 90◦ wind direction. Measurement

uncertainty contours of 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 of the UWO data are shown in the top row (a), (b) and (c).

the dominant uncertainty sources are expected to depend on the spe-

cific regions over a roof. Herein, driving measurement uncertainty

sources are further assessed along the mid-span (Fig. 8) and the wind-

ward long-side edge (Fig. 9) for both the normal and cornering wind

directions.

3.3. Driving measurement uncertainty sources

3.3.1. Roof mid-span at wind directions of 90◦ and 45◦

Fig. 10 displays uncertainty percent contribution of each uncer-

tainty source for 𝐶𝑝, 𝐶
′
𝑝
, and 𝐶𝑝,𝑝𝑒𝑎𝑘 along the roof mid-span of the

UWO model at 90◦ and 45◦ wind directions. The percent contribu-

tions herein are out of 100% of the total measurement uncertainty

generated from the four elemental uncertainty sources. For the 90◦

case, the dynamic pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 and the building

pressure tap uncertainty 𝑈𝑝 are the two dominant uncertainty sources

among four uncertainty sources for deriving the uncertainty of mean

pressure coefficient 𝐶𝑝 (Fig. 10(a) top row). The dynamic pressure ratio

uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 shows the maximum (≈ 48%) at the roof leading

edge as the leading uncertainty source and then reduces with increasing

𝑥∕𝐻 . At 𝑥∕𝐻 = 2.5, 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 is negligible — about zero. In contrast,

the second leading uncertainty source 𝑈𝑝, increases from about 40%

to 90% (at 𝑥∕𝐻 = 2.5), reaching a plateau beyond the location of

𝑥∕𝐻 = 2.5. The reference probe dynamic pressure uncertainty 𝑈𝑞𝑟𝑒𝑓

is about 5% and soon becomes negligible at 𝑥∕𝐻 = 0.75. The correla-

tion uncertainty 𝑈𝑝,𝑐𝑜𝑟𝑟 from the pressure transducer calibration holds

a constant level of 5% at all tap locations. Uncertainties of 𝐶𝑝 are

more sensitive to 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 at the leading edge where flow separates.

Beyond this region, the overall 𝐶𝑝 uncertainty is driven primarily by

the building tap pressure measurement uncertainty 𝑈𝑝.

Uncertainty of standard deviation of pressure coefficient 𝐶 ′
𝑝
(Fig. 10(a)

middle row) is dominated by the dynamic pressure ratio 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻
(90%) and 𝑈𝑞𝑟𝑒𝑓

is about 10%, regardless of tap location. 𝑈𝑝 and

𝑈𝑝,𝑐𝑜𝑟𝑟, the building and correlated pressure uncertainty contributions

are negligible, since the only uncertainty propagated in this analysis

applies as steady-state error, which drops out as part of the steady-state

component of the 𝐶 ′
𝑝
calculation.

Similar to uncertainty of 𝐶𝑝, 𝐶𝑝,𝑝𝑒𝑎𝑘 uncertainty (in Fig. 10(a) bot-

tom row) is mostly from the dynamic pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻
and the building pressure tap uncertainty 𝑈𝑝. 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 decreases from

about 80% at the leading edge to 15% to the trailing edge. The building

pressure tap uncertainty 𝑈𝑝 is insignificant at the leading edge, but
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Fig. 7. Rooftop contour plots of 𝐶𝑝 (left), 𝐶
′
𝑝
(middle) and 𝐶𝑝,𝑝𝑒𝑎𝑘 (right) of the UWO (middle row) and TPU (bottom row) wind-tunnel tests at 45◦ wind direction. Measurement

uncertainty contours of 𝐶𝑝, 𝐶
′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 of the UWO data are shown in the top row (a), (b) and (c).

gradually increases to be the dominant uncertainty (≈ 80%) at the

trailing edge. The reference probe dynamic pressure uncertainty 𝑈𝑞𝑟𝑒𝑓

is 15% at the leading edge and then declined to be about 10% beyond

𝑥∕𝐻 = 1.0.

The most significant total uncertainty values lie with those of

𝐶𝑝,𝑝𝑒𝑎𝑘, with the maxim reaching up towards 0.80 at the roof corner

for 45◦ wind direction (Fig. 7). Also, the maximum total uncertainty

values for 𝐶𝑝 are around 0.20 at the roof corner for 45
◦ wind (top row

of Fig. 7), indicating significance for consideration. As the foremost

uncertainty source of uncertainties of 𝐶𝑝, the building pressure tap

uncertainty 𝑈𝑝 is increased by around 26% at the leading edge at

45◦ wind compared to that of 90◦ wind. The dynamic pressure ratio

uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 is reduced by about half at the leading edge com-

pared to the 90◦ case, thus being the second driving uncertainty source.

The reference probe dynamic pressure uncertainty 𝑈𝑞𝑟𝑒𝑓
is decreased

correspondingly. The uncertainties of 𝐶 ′
𝑝
and 𝐶𝑝,𝑝𝑒𝑎𝑘 remain relatively

consistent for the two wind directions. The variations of uncertainty

source contributions between 90◦ and 45◦ cases, are primarily due to

the flow structure developed on the roof surface and captured by the

pressure taps along the roof mid-span.

3.3.2. Wind-ward long-side roof edge at wind directions of 90◦ and 45◦

Fig. 11 examines uncertainty percent contribution of each uncer-

tainty source along the wind-ward long-side roof edge (marked in

Fig. 9), because this location is strongly affected by the flow separation

at the 90◦ wind, and by the delta-wing vortices for the 45◦ wind.

Though two driving uncertainty sources are 𝑈𝑝 and 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 for the

uncertainty of 𝐶𝑝 (Fig. 11 top row), their percent contributions are

noticeably different depending on the wind direction and the specific

tap location. For the 45◦ case, the dominant source of the uncertainty

of the 𝐶𝑝 is building pressure tap uncertainty 𝑈𝑝. 𝑈𝑝 starts at around

50% at the roof corner, jumping to about 90% at 𝑦∕𝐻 = 0.15, then
reducing to about 80% at 𝑦∕𝐻 = 1.2 and downstream. The dynamic
pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 , the second leading uncertainty

source, exhibits a high level of around 37% at the roof upper-side edge

attributed to delta vortices. 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 drops to very low values (5%) at

the following tap locations and then gradually increases to about 16%

at 𝑦∕𝐻 = 1.2. For the 90◦ wind direction, the primary uncertainty

source for 𝐶𝑝 uncertainty is the building pressure tap uncertainty 𝑈𝑝.

𝑈𝑝 has a value of around 70% at the corner, then reduces to around

50% beyond 𝑦∕𝐻 = 0.35. The secondary driver of 𝐶𝑝 uncertainty is
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Fig. 8. Comparison of 𝐶𝑝 (top), 𝐶
′
𝑝
(middle) and 𝐶𝑝,𝑝𝑒𝑎𝑘 (bottom) along roof mid-span at 90

◦ wind direction. Error bars indicate the measurement uncertainty levels of the UWO

pressure coefficients.

the dynamic pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 , starting at around 23%

then increasing to around 36% beyond 𝑦∕𝐻 = 0.35.
Regardless of the wind direction, the correlated pressure uncertainty

𝑈𝑝,𝑐𝑜𝑟𝑟 and the reference probe dynamic pressure uncertainty 𝑈𝑞𝑟𝑒𝑓

are minor uncertainty sources for the uncertainty of 𝐶𝑝 (Fig. 11 top

row). At 45◦ wind direction, 𝑈𝑝,𝑐𝑜𝑟𝑟 contributes at a relatively constant

level of 10% in the column of the selected pressure tap array, and

𝑈𝑞𝑟𝑒𝑓
contributes to around 6% in the corner, and reduces to less

than 3% heading towards the trailing edge. At 90◦ wind direction, the

correlation uncertainty 𝑈𝑝,𝑐𝑜𝑟𝑟 is slightly higher than the reference probe

uncertainty (around 4%) at the corner, and remains relatively constant

at around 6%.

The uncertainties of 𝐶 ′
𝑝
(Fig. 11 middle row) are impacted by

only the dynamic pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 (≈ 83%) and the

reference probe dynamic uncertainty 𝑈𝑞𝑟𝑒𝑓
(≈ 16%) for the selected

pressure taps. The two other uncertainty sources 𝑈𝑝 and 𝑈𝑝,𝑐𝑜𝑟𝑟 mostly

cancel out in the data reduction process. This remains unchanged for

both wind directions.

For uncertainties of 𝐶𝑝,𝑝𝑒𝑎𝑘 at 45
◦ wind direction (Fig. 11(b) bottom

row), the dynamic pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 becomes the

leading source, starting at around 80% at the corner, reducing to about

60% at 𝑦∕𝐻 = 0.35, then increasing to about 73% beyond 𝑦∕𝐻 =

0.75. The reference probe dynamic uncertainty 𝑈𝑞𝑟𝑒𝑓
being the second

leading source, is consistent at around 11%, followed by the building

pressure tap uncertainty 𝑈𝑝 around 6%. The correlation uncertainty

𝑈𝑝,𝑐𝑜𝑟𝑟 contributes at the lowest constant level, around 4%. At 90
◦ wind

direction, the 𝐶𝑝,𝑝𝑒𝑎𝑘 uncertainty follows the same driving uncertainty

hierarchy as the 45◦ case, although with relatively constant levels of

all uncertainty sources. The dynamic pressure ratio, reference probe

dynamic pressure, building pressure tap and correlation uncertainties

contribute to the 𝐶𝑝,𝑝𝑒𝑎𝑘 uncertainty around 80%, 13%, 5% and 2%,

respectively.

3.4. Potential approaches to reduce measurement uncertainties

Once the driving uncertainty sources are determined, it is of great

interest to think about how changes in data acquisition, instrumenta-

tion, and specific test procedure, might affect or reduce uncertainty.

Since the driving uncertainty is the dynamic pressure ratio 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻
for the mean 𝐶𝑝, standard deviation 𝐶 ′

𝑝
, and peak pressure coefficients

𝐶𝑝,𝑝𝑒𝑎𝑘, improving the accuracy of turbulent velocities is essential to

reduce the overrall measurement uncertainties. Though pitot tubes

have been standardized as a wind speed measurement probe, it is

only reasonable to quantify the mean wind speed but hardly avoid
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Fig. 9. Comparison of 𝐶𝑝 (top), 𝐶
′
𝑝
(middle) and 𝐶𝑝,𝑝𝑒𝑎𝑘 (bottom) near the windward roof edge at 45

◦ wind direction. Error bars represent the measurement uncertainty levels of

the UWO pressure coefficient.

disturbance of the sensitive flow near the roof edge. HWAs are ap-

propriate to measure the turbulent velocities of inflows as documented

in the UWO wind-tunnel tests but are tricky for the roof edge due to

disturbance of the flow. The optics-based particle image velocimetry

(PIV) has been an established technique to measure turbulent flow char-

acteristics (Raffel et al., 2007). Indeed, in similar atmospheric BL wind

tunnel experiments, PIV measurements have been used for wind turbine

and wind farm wake aerodynamics research (Zhang et al., 2012, 2013;

Markfort et al., 2018). PIV was also reported to examine the effects

of turbulence on the mean roof pressure coefficients and reattachment

lengths of separation bubbles for surface-mounted prisms in a BL wind

tunnel (Akon and Kopp, 2016). The combination of PIV and HWAs

for characterizing inflow velocity profile and quantify highly turbulent

flows at the roof height while the model being present would reduce

the measurement uncertainty of the pressure coefficient calculation

compared to using pitot tubes. Moreover, in the UWO wind tunnel

tests, pitot tube measurements at an intermediate level reference were

used (Eq. (4)). The intermediate level measurement would introduce

undesired uncertainties and thus should be avoided if possible.

Surface pressure tap uncertainty 𝑈𝑝 is another dominant measure-

ment uncertainty source of the mean 𝐶𝑝 and peak pressure coefficients

𝐶𝑝,𝑝𝑒𝑎𝑘, though it does not impact uncertainties of 𝐶 ′
𝑝
. 𝑈𝑝,𝑐𝑜𝑟𝑟 is a

secondary uncertainty source as long as pressure taps are used to

measure the roof pressure. To explore alternatives, one possibility is to

consider new surface pressure measurement techniques — for example

a non-intrusive optics method pressure sensitive paint (PSP), which

maps the surface pressure using images of paint response to pressure

variation in the airflow. Various PSP methods, including the binary PSP

and the fast-response PSP, have been extensively applied to aerospace

or high-speed aerodynamics field (Liu and Sullivan, 2005; Crafton

et al., 2013), but not to wind effects on model buildings yet. PSP

allows the surface pressure to be measured with a very high spatial

resolution corresponding to a single pixel of the scientific camera.

However, the major challenge is the low signal-to-noise ratio for the

airflow speed range that is of interest to the wind engineering commu-

nity (Peng and Liu, 2020). Nevertheless, the PSP method is worthwhile

to be further investigated for wind engineering applications. If this

method is employed to replace most of the pressure taps, corresponding

measurement uncertainties should be quantified.
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Fig. 10. Driving uncertainty sources of 𝐶𝑝 (top), 𝐶
′
𝑝
(middle), 𝐶𝑝,𝑝𝑒𝑎𝑘 (bottom) along roof mid-span of the UWO wind-tunnel tests at (a) 90◦ and (b) 45◦ wind directions.

4. Conclusions

The inconsistency of pressure coefficients reported from different

BL wind tunnels has been acknowledged as a long-standing issue by

the wind engineering community. It is important to understand what

causes discrepancies of measured pressure coefficients from different

wind tunnel tests since this is the primary means to determine pressure

coefficients in the wind loading standards and codes. Uncertainty quan-

tification of quantities of interest could shed light on the inconsistency

issue and also allow for a meaningful comparison of results from

different test facilities and with numerical model predictions. This work

focuses on the measurement uncertainties by utilizing time series of

roof pressure data for an isolated low-rise building model subjected

to simulated BL inflows archived in the NIST and TPU aerodynamic

databases. First, the mean, standard deviation and expected peak pres-

sure coefficients were compared at the rooftop and targeted arrays of

pressure taps for the normal and cornering wind directions. Second,

a detailed uncertainty quantification analysis via the Monte Carlo

simulation following the data acquisition and data reduction procedure

was conducted for the UWO datasets. The roof pressure statistics from

UWO/TPU wind tunnel tests show a consistent trend, however, the

large differences in the roof pressure coefficient do not seem to be

explained by the level of measurement uncertainties. The considerable

differences of the inflow conditions, including the discrepancies in the

velocity profile, turbulence intensity profile and the Jensen number, are

expected to contribute to the pressure coefficient differences.

The level of measurement uncertainties is highly correlated with

flow behavior over the roof surface. The highest uncertainties occur

in the region of flow separation for the normal wind and delta vor-

tices for the cornering wind. Among the four identified measurement

uncertainty sources used for the bias uncertainty quantification, two

major uncertainty sources – the dynamic pressure ratio 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 and

the building surface pressure uncertainties 𝑈𝑝 – contribute most to

the 𝐶𝑝 and 𝐶𝑝,𝑝𝑒𝑎𝑘. The weight of the two leading uncertainty sources

depends on the wind direction and the specific location of a pressure

tap. For the uncertainties of standard deviation pressure coefficient 𝐶 ′
𝑝
,

the dynamic pressure ratio uncertainty 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 remain to be the dom-

inant uncertainty source with the reference probe dynamic pressure

uncertainty 𝑈𝑞𝑟𝑒𝑓
as the second. Alternative measurement methods such

as PIV and PSP, can be considered to potentially reduce the dynamic

pressure ratio 𝑈𝑞𝑟𝑒𝑓 ∕𝑞𝐻 and the building surface pressure uncertainties

𝑈𝑝, respectively.

The present uncertainty quantification focuses on the systematic

errors, specifically the measurement and data reduction uncertainties,

which are important when comparing different wind tunnel tests and

as a reference for CFD validation. Ideally, random errors should also

be evaluated if details of the flow facility, environmental factors are

available. Once the driving uncertainty sources are correctly identified,

a new set of experiments can be conducted to compensate for these as-

pects. The current uncertainty analysis does not account for interaction

between different uncertainties, which is the limitation of this approach

(Stephens et al., 2016). It should also be noted, uncertainty results are

only as good as the elemental uncertainty estimates that are propagated

through the specific data acquisition and data reduction procedure.

The more pertinent data are for the random, systematic, and spatial
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Fig. 11. Driving uncertainty sources of 𝐶𝑝 (top), 𝐶
′
𝑝
(middle), 𝐶𝑝,𝑝𝑒𝑎𝑘 (bottom) near the windward roof edge of the UWO wind-tunnel tests at (a) 90◦ and (b) 45◦ wind directions.

distribution of uncertainty estimates, the more reliable the uncertainty

analysis is. This work only accounts for measurement uncertainties

of UWO results by propagating measurement device uncertainties.

Other uncertainty sources, including model surface effects, tap-to-tap

effects and static tap finish condition (dimension, edge characteristics

like chamfers, blemishes, etc.) are difficult to quantify and not taken

into account. If these uncertainty contributors could be estimated, the

uncertainty bounds of the UWO datasets are expected to expand. This

work intends to improve understanding of critical uncertainty sources

of the pressure measurements in the BL wind tunnel of the UWO aero-

dynamics datasets, shedding light on why the significant discrepancy

exists between pressure statistics results from different facilities.
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