
2	 Month/Month 2022	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/22©2022IEEE

Carl Landwehr | University of Michigan
Michael K. Reiter | Duke University
Laurie Williams | North Carolina State University
Gene Tsudik | University of California, Irvine
Trent Jaeger | Pennsylvania State University
Tadayoshi Kohno | University of Washington
Apu Kapadia | Indiana University Bloomington

The U.S. National Science Foundation (NSF) celebrated the 20th anniversary of its research funding
programs in cybersecurity, and more generally, secure and trustworthy computing, with a panel session
at its conference held in June, 2022. The panel members, distinguished researchers in different research
areas of trustworthy computing, were asked to comment on what has been learned, what perhaps
should be “unlearned,” what still needs to be learned, and the status of education and training in their
respective areas of expertise. Laurie Williams covered enterprise security and measuring security, Gene
Tsudik commented on cryptographic security, Trent Jaeger addressed computing infrastructure security,
Tadayoshi Kohno reviewed security in cyberphysical systems, and Apu Kapadia provided insights on
human-centered security. Michael K. Reiter chaired the panel and moderated questions from the
audience. This report provides a brief summary of NSF's research programs in the area and an edited
transcript of the panel discussion.

A s IEEE Security & Privacy Magazine celebrates
its 20th anniversary, the National Science Foun-

dation (NSF) Secure and Trustworthy Computing
(SaTC) program also celebrated the 20th anniversary

of its funding for research in this area at a meeting in
Alexandra, VA, in June 2022. As part of that celebra-
tion, I was asked to organize a panel to look back on
20 years of projects in this broad area to try to assess
the progress we’ve made and the directions we should
be heading. Because the space is vast, I broke it into a
few reasonably distinct areas, with a panelist for each.
I chose

Looking Backwards (and Forwards):
NSF Secure and Trustworthy Computing
20-Year Retrospective Panel Transcription

Digital Object Identifier 10.1109/MSEC.2022.3208721
Date of current version: 25 January 2023

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-5824-1697

www.computer.org/security� 3

■■ enterprise security and measuring security, to be cov-
ered by Laurie Williams, Distinguished University
Professor, North Carolina State University

■■ cryptographic security, to be covered by Gene Tsudik,
Distinguished Professor of Computer Science, Uni-
versity of California, Irvine

■■ computing infrastructure security, to be covered by
Trent Jaeger, professor of computer science and engi-
neering, Pennsylvania State University

■■ cyberphysical systems (CPSs) security, to be covered
by Tadayoshi Kohno, professor of computer science
and engineering, University of Washington

■■ human-centered security, to be covered by Apu Kapa-
dia, professor of computer science, Indiana University.

I was delighted that these distinguished academics
accepted my invitation to participate.

For readers unfamiliar with the SaTC program and
its history, in the fall of 2001, a few weeks after the
9/11 attacks, I arrived at the NSF as a newly minted
program director to direct a new program called
Trusted Computing. The program was organized and
championed by Kamal Abdali and Helen Gill under
Růžena Bajcsy, then the NSF assistant director for
Computer and Information Science and Engineering
(CISE). Although the NSF had funded some crypto-
graphic research, this was its first direct foray into what
now would be called cybersecurity. Helen and Kamal
crafted and released the initial program announce-
ment; I just had to encourage submissions and orga-
nize reviews for the proposals as they came in. The
call yielded around 140 proposals, and we were able to
fund about 37 of those with a budget just under US$5
million. Under Peter Freeman, the program expanded
into “Cyber Trust” with a broader scope and a budget
of US$25 million or more.

A few years later, it became Trustworthy Com-
puting, and finally, SaTC as it is today, a multidis-
ciplinary program that embraces activities in half a
dozen of the NSF’s research directorates, well beyond
CISE. A recent search turned up more than 1,000
active awards with a total awarded value approaching
$US400 million.

Although I was unable to chair the panel in person,
Michael Reiter, the James B. Duke Distinguished Pro-
fessor of Computer Science and Electrical and Com-
puter Engineering, Duke University, and the principal
organizer of the SaTC 20th anniversary principal inves-
tigator (PI) meeting, capably took that role. The tran-
scription that follows has been lightly edited; audience
questioners are left anonymous.

Mike Reiter: This is the 10th anniversary of
the SaTC program and 20th anniversary of the
programs that the NSF dedicated to cybersecurity

funding. So, we thought it would be a good oppor-
tunity to take inventory of where we are and what
we have accomplished as a field but also to kind of
chart the course for the next 20 years. As part of
this, we wanted to do a retrospective panel on the
SaTC program. We laid out several questions for the
panelists to address.

1.	 What have we learned? (List two or three milestone
achievements.)

2.	 What we should unlearn (that is, where should we
stop wasting time, as a field)?

3.	 What do we still need to learn (which problems are
still worth pursuing)?

4.	 How have we done with education and training,
both of our own students and of the public at large?

Enterprise Security and
Measuring Security
Laurie Williams: My background is in software engi-
neering plus security, so that’s my perspective. Enter-
prise security for me is security done by the enterprise.

What Have We Learned, and What
Are Some Milestones?
Exactly 20 years ago, Bill Gates’s Trustworthy Comput-
ing memo went out to Microsoft. That marked a big
change, a new emphasis on building security into a prod-
uct, not just adding security features but building features
securely. It led to Microsoft’s contribution of the Secure
Development Lifecycle, which lives today. A big lesson
was to build security into a product rather than “pen-
etrate and patch.” Another milestone was the advent of
cloud computing in about 2008. There were big changes
(pros and cons). Enterprises no longer needed compre-
hensive security expertise but could employ a shared
responsibility model, relying on the cloud provider for
basic security expertise, functions, and certification. The
enterprise still needed to secure its applications. On the
downside, moving to the cloud could increase enter-
prises’ vulnerability to Internet-wide attacks, including
denial of service attacks.

Another milestone was the introduction of con-
tinuous integration/continuous delivery (CI/CD),
DevOps, and later DevSecOps, which changed enter-
prise security. It’s not so clear whether this was a gain
or a loss. It’s fast paced, with a focus on tooling. Over-
all, I saw benefits in getting vulnerabilities and defects
fixed faster. It increased accountability to engineers.
Earlier, it was common for engineers to throw a new
release over the wall, expecting someone else to deal
with its flaws. With CI/CD and rapid deployment, it
was the engineer who produced the code who got the
call in the middle of the night if something happened.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4	 IEEE Security & Privacy� Month/Month 2022

That accountability drove better code review and unit
testing. It also enabled continuous compliance, ben-
eficial for government organizations, and provided a
way to get security fixes out faster. In 2014, Tesla and
Jeep takeovers made news; Tesla was able to update its
vehicles over the air, while Jeep mailed USB sticks to
its customers. In 2011, Amazon Web Services started
using formal methods to check its customers’ security
policies and configurations, which was a good event.
More recently, we’ve seen how many enterprises are
vulnerable to attacks through the software supply
chain.

What Do We Need To Unlearn? How Are
Enterprises Wasting Time?
I see time wasted in the overreliance on penetration
testing, which finds bugs very late in the development
cycle, and in adversarial relationships between security
and development teams. Also, I see security teams advo-
cating measures such as “fix all static security alerts” that
are not really risk-based. Not having risk-based guid-
ance, but rather proclamations, can waste time.

What Do We Need To Learn?
We need to understand how to fit security into the
developers’ workflows so they can develop securely in
the context of all their other challenges. We need to
manage the social interactions that need to take place
in this context.

Education
Education is getting better for enterprise security. From
an academic standpoint, U.S. accreditation criteria
require security to be throughout the computer science
(CS) curriculum. That’s helping out. We do need more
just-in-time and practitioner education.

Switching to Measuring Security
First, why do we want to measure security? We need to
decide when a product is secure enough to ship. How
do we know if a voting system (or any system) is secure
enough to ship? The question is always posed for a
particular product, and the answer must consider the
criticality of that product. There’s an Executive Order
(Executive Order 13691) that advocates a lot of secu-
rity practices, but do we really know that they help?
What areas of a product seem to have the most vulner-
abilities? How can we measure that? Are those vulner-
abilities likely to be exploited?

What Have We Learned About
Measuring Security?
There are a number of industry-wide initiatives. Start-
ing in 2005, the National Vulnerability Database (NVD)

was established, where vulnerabilities are reported (a
milestone), but we have to recognize that it captures
only a small fraction of the vulnerabilities known. Two
industry-wide taxonomies on security practices were
developed, starting in 2008: the Building Security In
Maturity Model (BSIMM) and the OWASP Software
Assurance Maturity Model (SAMM). Very recently, the
Linux Foundation has started the OpenSFF Security
Metrics project to provide some guidance on whether
a component is a good choice. Recently, there has been
movement toward having machine-readable vulnerability
databases, bringing in not only vulnerabilities from the
NVD but other sources as well.

What Do We Need to Unlearn?
We need to stop treating all vulnerabilities as equal. We
need to be able to identify those that are high risk and
those that are exploitable.

What Do We Need to Learn?
The biggest hurdle to measuring security is: what is the
dependent variable, and how do we measure it? What
does it mean to be secure or not secure? We can’t just
use the number of vulnerabilities reported to the NVD
because popular software may be more likely to be
attacked and have its vulnerabilities revealed. Less pop-
ular software may have as many or more vulnerabilities,
but they may not (yet) have been revealed. Overall, we
need to make more risk-based decisions.

Teaching Security Measurement
I think we haven’t done a very good job, and we have a
long way to go to be able to teach people about measur-
ing security.

Cryptography
Gene Tsudik: As part of my spiel, I was asked to criti-
cize certain things. So, be ready for macro-aggressions,
and note that this is now not a “safe space.”

Advances/Milestones in Crypto
Starting in the early 2000s, ID-based encryption (IBE)
and hierarchical IBE come to mind, and fully homomor-
phic encryption is definitely a real highlight of the last
20 years, followed, in no particular order, by oblivious
random-access memory, private information retrieval,
and differential privacy. Common applications for these
advances, whether by design or not, include outsourced
or cloud-based privacy-preserving computing of all types.

What to Give Up On
Let’s start with anything to do with order-preserving
encryption and its application; for example, CryptDB
comes to mind. Provable obfuscation and watermarking

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security� 5

I would give up in a second. Also, achieving differential
privacy in any practical fashion.

Just a pet peeve: let’s stop sticking Merkle hash trees
and Bloom filters everywhere they belong and don’t
belong! And finally, although this may seem like ancient
history, let’s forget about wireless sensor networks and
multihop mobile ad hoc networks. These are mythical
creatures, like unicorns, that no one has ever seen, but
many of us wrote lots of articles about them.

But though I would like to forget about those things,
I don’t hold out much hope that they will disappear
because, even though they were already insecure in the
1980s, privacy homomorphisms and knapsack crypto
systems are still not gone and, believe it or not, people
are still working on them nowadays. It’s like hundreds
of years after Galileo and Copernicus, we still have the
Flat Earth Society!

What to Learn
We need to learn how to achieve arbitrary arithmetic or
computation, something like what fully homomorphic
encryption gives us, but with guaranteed or provable
integrity and correctness. This is not out there yet, but
I hope it will be. Also, I hope we will see more practi-
cal privacy models, for example, “indifferential privacy.”
Maybe one day we will learn how to build provably
secure, including side channel-free, hardware. Maybe
one day we will know what “provably secure” means!

Education
Not much time is needed to think about this: we just
suck! Crypto and security should be introduced in mid-
dle school, just like they introduce health, sex ed, and
basic hygiene. We should teach Internet hygiene (that
is, security/privacy) early on because, in some ways, it’s
more important. Things like number theory, especially
the kind of number theory used in crypto, are fairly
elementary, much easier than trigonometry, and could
be taught early. At the college level, most CS courses,
except maybe for graphics, should have a module or
two on the security of whatever they are teaching. Many
schools already do that, but we are not quite there yet.

How can we teach better and simpler? I think that
crypto can be taught through humor. We have a dearth
of humor in our society, especially in the research
community. There are things out there that I use in
my elementary crypto course, like the well-known
Zero-Knowledge Cave or Quisquater’s article from
the 1980s appropriately titled “How to Explain Zero
Knowledge Protocols to Your Children.” There is also
the famous Dining Cryptographers Problem that you
can explain to a child. Things like that.

Here is a random comment in conclusion. As the
world reels from dual pandemics of COVID and mpox,

we (the security research community) are also suffering
from two viruses: machine learning and blockchains/
cryptocurrencies!

Computing Infrastructure Security
Trent Jaeger: Those of you working with computers in
2002 were probably dealing with some kind of Internet
worm event. In those days, all it took was one vulnera-
bility for the adversary to gain control of your host. And
if adversaries wanted to control other hosts, they could
easily propagate the attack using the worm to gain con-
trol of a large fraction of the Internet. Researchers at the
time were thinking about how fast could they infect all
the (Windows) machines on the Internet—could it be
done in an hour? And that’s about where we were with
infrastructure security in 2002.

We’ve made many improvements since then. Since
then, a lot of things the research community worked on
actually were adopted in the commercial sector.

Mandatory access control: There was little access con-
trol in commercial operating systems beyond discretion-
ary Unix access control, but eventually, mandatory access
controls (MACs), originally developed for military appli-
cations, were adopted by the commercial sector, and
MACs became broadly available. For example, Android
has several versions of MAC that it relies on.

Trusted computing base: In 2000, pretty much every-
thing was in the trusted computing base (TCB). This
meant that once your one network-facing daemon was
compromised, your whole machine was owned by the
bad guy. So, reducing a system’s TCB became an impor-
tant goal, both in the research and commercial communi-
ties, and led to the emergence of things like virtualization.
In addition, new hardware to reduce the TCB was pro-
posed (for example, the Trusted Platform Module). Some
of that hardware has created other challenges, such as
those introduced by side channels, but it was important
that the research community both propose solutions and
vet those solutions so that we can improve.

Program analysis techniques: One big change from
2002 has been the utilization of program analysis tech-
niques of various kinds both to find vulnerabilities and
to detect and analyze malware. This was quite a new field
in 2002 and has grown tremendously in importance.

Software defenses: A variety of software defenses have
been proposed in the past 20 years by the research com-
munity. A challenge we face is how to pull these together
and utilize these defenses effectively and efficiently.

What We Should Unlearn/Learn
We’ve unlearned quite a few things already, so I want to
address some things we should perhaps relearn. Some-
thing I thought was a little odd 20 years ago was that
people would stand up at meetings and assert that if

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6	 IEEE Security & Privacy� Month/Month 2022

we would only use the secure operating systems of the
1970s, like MULTICS, for example, we wouldn’t have
all these problems. I thought that was hyperbole, but
today, I find while teaching software security classes to
graduate students that they don’t have the vaguest idea
of any of that work. It’s been buried in the annals of his-
tory. But when we build software today, whether operat-
ing systems or applications, we are facing the same kinds
of threats that people faced in the 1970s and 1980s, and
we don’t have any good case studies for how to build a
server application, a client application, or a cellphone
app, in a secure way, from beginning to end.

The best documentation I’ve ever seen on how to
try to build secure systems, the challenges faced, and
the approaches to overcome those challenges was
recorded by people attempting to build secure systems,
especially secure operating systems, back in the 1970s
and 1980s. If you talk to Peter Neumann, he will point
you to the documentation for PSOS, which includes
hundreds of pages documenting the full thought pro-
cesses of what they were trying to do to build this arti-
fact, the design for a secure operating system, PSOS.
You may not be building a secure operating system
now, but something we might want to fund are studies
of how you would build software for various applica-
tions that aim to achieve concrete security goals, from
beginning to end.

Education
About education, I tend to agree with Gene, but I
think education has improved slowly, albeit surely. Last
term, I taught a software security class to seniors. They
knew about security, about some of the attacks in the
news, and the buzzwords, but they didn’t really think
at all about programming securely. We did a make-it/
break-it/fix-it exercise, and they were all perfectly happy
to write programs using many unsafe functions, such as
the strcpy function, which should be a knuckle-rapping
offense in the first class where you find it! A challenge
we face, still, is: how do we get the students to think
about security and functionality concurrently? How
do we build tools that will enable them to think about
those things at the same time?

CPSs
Tadayoshi Kohno: Twenty years ago, computer secu-
rity and privacy research for CPSs was still a nascent
field—not a field centered in mainstream computer
security venues. That has changed.

CPS security and privacy issues are, for example,
now listed as in the IEEE Symposium on Security and
Privacy call for papers, along with other important new
security and privacy subareas. In my list of achieve-
ments, this is item #1: that CPS security and privacy

research is a focus of our field and receiving significant
attention.

For someone not working in CPS security, it would
be reasonable to ask: why is it important that CPS secu-
rity research is now a focus? One answer is that there
is the potential for significant harm with CPSs if secu-
rity and privacy risks are not proactively mitigated.
For example, there are risks to safety if a wireless com-
putational implantable medical device; a self-driving
car; the power grid; or a telerobotic surgery system is
compromised.

I am not trying to scare people and say that we are
at imminent risk of security attacks against medical
devices, vehicles, or certain other classes of CPSs, like
telerobotic surgery systems. While I can’t say the same
for systems like the electric grid, I do not recall any
instance of anyone maliciously compromising a wire-
less medical device or an automobile.

But I also know the following to be true. It is because
of research done by this community—and funded by
the NSF—that millions of automobiles and count-
less medical devices and I’m sure other CPSs are more
secure. If an adversary were to manifest today, they
would have a much harder time compromising the secu-
rity and privacy of medical devices and automobiles
than they would if we—our research community—had
not done the research that we did.

In my list of achievements, this is item #2: that
millions of CPSs are safer and more secure because
of this community. This community provides scien-
tific foundations for industry and also keeps industry
in check.

Let me now dive more deeply into the research that
my colleagues and I did with respect to wireless medi-
cal devices and automobiles. There are, of course, many
other important works to consider. But, as a coauthor
on these projects, I am better positioned to talk about
these works. Diving deep into these projects will allow
me to cover a few key lessons.

For context, as a researcher, I often ask myself: what
will be the next hot technology in five, 10, or 15 years? I
try to predict what security and privacy threats and risks
might manifest with those technologies. And I try to
develop a foundation for mitigating harm. Sometimes,
my process involves experimentally analyzing the secu-
rity and privacy of a present-day version of that artifact
and then extrapolating from those results into predic-
tions for the future.

With that framing in mind, in 2006, Prof. Kevin
Fu, now at the University of Michigan, and I began a
research program focused on wireless medical device
security. We obtained a short-range wireless implant-
able cardiac defibrillator. We experimentally discovered
that an unauthorized party could change the setting on

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security� 7

that defibrillator and even wirelessly cause it to emit a
large shock.

Similarly, in or around 2008, Prof. Stefan Savage, at
the University of California San Diego, and I began a
research program focused on the modern automobile.
We obtained two 2009 sedans of the same make and
model and experimentally analyzed them. Our car had
a built-in cellular modem that allowed the car to effec-
tively call 911 if it got into an accident. We found that
we could call our car’s phone number; play the appro-
priate modem tone to switch to an in-band modem;
play more modem tones to bypass an authentication
vulnerability; and then play more modem tones to
exploit a buffer overflow vulnerability that resulted
in our own code running on the car’s telematics unit.
From there, we could remotely and interactively con-
trol the car’s engine, brakes, and more from anywhere
in the world.

I want to step back and repeat that the security
and safety risks of adversarial compromise to medical
devices or cars were low. It took a significant amount of
effort to do what we did. Any unauthorized party devel-
oping or implementing our methods might worry about
leaving an incriminating forensic trail. And the technol-
ogies were still primitive compared to today.

Also, because the technologies were primitive com-
pared to today, they were more agile. Not that they were
agile, but they had fewer legacy artifacts to contend with
than if vulnerabilities were discovered for the first time
today. This leads me to my first lesson. Then was the
right time to do our research—a time before the tech-
nologies became more sophisticated and harder to
secure and when the capabilities, and hence the poten-
tial harms, of the technologies were fewer.

But even though the risks were low, government and
industry mobilized. Full mobilization was not imme-
diate—these were industries that had little to no prior
experience with computer security. Today, these indus-
tries by and large consider security and privacy impor-
tant priorities. Further, our research spawned numerous
follow-on efforts to replicate our findings on other sys-
tems. For example, Charlie Miller and Chris Valasek
later evaluated similar attacks against other automo-
biles. Such additional research further galvanized indus-
try and government attention on securing CPSs.

And, over time, entire research and industry ven-
ues emerged around automotive security research and
CPS security in general. Naturally, these venues did not
arise just because of our work but because of the great
work being done by so many people in this field. As a
reminder, please check out the CPS breakout report
from this PI meeting once the report is available.

This brings me to my second lesson. Before our
research, there were prior studies that considered

automotive security. But it took our work, which dis-
covered real vulnerabilities with real cars, to catalyze
the automotive industry into taking security and pri-
vacy seriously. The challenge is: how can we as a field
learn to prioritize security and privacy research for tech-
nologies that have not yet been demonstrably hacked?
It is comparatively “easy” to write an article that defends
against a known attack. It is harder to write an article
that both hypothesizes an attack scenario and then pro-
vides a defense against the hypothesized attack.

My third lesson is the following. I would like us as
a field to broaden our definition of what constitutes a
CPS, though some people already share this broader
definition. For example, consider a head-mounted
mixed-reality display. With such a display, it is possible
to display virtual content in the context of the physical
world. Think about, for example, Pokémon GO.

Prof. Franzi Roesner and I have a 10-year research
program at the University of Washington (UW) focused
on security and privacy for mixed reality. Together with
two neuroscientists, we wrote a think piece on how
adversarial applications running inside a mixed-reality
head-mounted display might manipulate a person’s
perception of the world, sometimes with long-term
impacts. Given the intimate relationship between
mixed-reality content and the physical world, I person-
ally consider mixed-reality devices to be CPSs and hope
our community considers them seriously over the next
20 years. DNA sequencing and synthesis should also be
considered CPSs.

Education
On the education side, it is hard for me to know, glob-
ally, how much students learn about CPS security and
privacy. However, I observe that CPS security and pri-
vacy issues have entered the popular culture and media,
and hence, CPS security- and privacy-related concepts
have become more accessible and intuitive to students.
We can’t always teach students how to solve all CPS
security problems, but we can at least give them an
awareness of the problems and the tools to think about
them. In our undergraduate computer security class at
UW, we always feature threat modeling exercises involv-
ing CPSs and other emerging technologies. I encourage
other educators to do so as well if they aren’t already.

Wrapping Up
In summary, while the battle isn’t over, I am thrilled that
research done over the past 20 years has made today’s
CPSs more secure. The challenge for us, over the next
20 years, is to proactively identify the next emerging
technologies and to work toward proactively securing
them, too, and I hope I am here to listen to what is dis-
cussed in SaTC’s 40-year retrospective.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8	 IEEE Security & Privacy� Month/Month 2022

Usable/Human-Centered Security
Apu Kapadia: I’m representing the human-centered
computing track and the usable security area. This is a
large, multidisciplinary field, and I want to acknowledge
that my opinions reflect a computer scientist’s perspec-
tive. I want to start by thanking the NSF; SaTC whole-
heartedly embraced human-centered security at its
formation 10 years ago, and I thank them for that. I also
want to thank Lorrie Cranor and Jean Camp for brain-
storming ahead of this discussion.

What Have We Learned?
Since we are a younger community than some of the
others here, I will speak to our milestones more gen-
erally. The first milestone, around 20 years ago, was to
recognize that usable security was important. Even back
in 1975, Saltzer and Schroeder had recognized psycho-
logical acceptability as one of their core security design
principles. So, yes, the importance of usable security
and the human-in-the-loop has been acknowledged for
many years, but when did it actually gain traction? I can
point to a couple of early studies. Mary Ellen Zurko rec-
ognized the concept of usable security or user-centered
security in an article published in 1996. That may have
been the first mention of the concept in our community.
She and her coauthors argued that usable security, that
is, considering the human, shouldn’t be just any goal in
designing a security technology, it should be a central
goal. Unlike other security mechanisms, such mecha-
nisms recognize the importance of the user’s role in
keeping systems secure.

Angela Sasse wrote in 1999 about how “users are
not the enemy.” Engineers might have claimed that
they built awesomely secure systems and that it was
the users just not doing the right thing. Today, attitudes
may have changed, but this insight, that the engineers
need to design better systems and not blame the user,
was an important shift in 1999. So, the first milestone
was acknowledging that we do have a problem and we
need to think about usable security mechanisms instead
of blaming the users of these systems.

If milestone one was about recognizing the prob-
lem, milestone two was about moving to do something
about it, that is, moving to a more systematic study of
usable security. Over the last 20 years, we’ve made a
great deal of progress. I’ve been part of one particular
community, the Symposium on Usable Privacy and
Security (SOUPS) conference community, and I’ve
noticed the progression of how research methodology
has improved over the years. (I acknowledge I’m scared
to reread some of my early articles!) We’ve become
much better at using social science techniques, which
have not been traditionally taught in the CS curriculum.
Many of us coming from the CS community were not

trained in these techniques and have had to learn a lot
along the way, and I’ve seen dramatic improvements in
the rigor of our methods over the years.

In terms of research areas, to pick a few broad exam-
ples, we have gotten better at security and privacy
interfaces. But usable security is more than design-
ing interfaces. It’s also about understanding and shap-
ing people’s security behaviors, that is, understanding
the psychology, the sociology, the economics—the
behavioral perspective of people’s security actions. For
example, my colleague Jean Camp at Indiana University
studies people’s mental models—how do you commu-
nicate security risks to users effectively and improve
their decision making? You need to understand how
people think and perceive the world of computing if
you want to influence their interactions with systems.
There’s been a fair deal of work on security warnings
and how to improve them.

We’ve even discovered various paradoxical behav-
iors, highlighting that you shouldn’t just build a system,
thinking that humans will find your system important
or useful. Many of your assumptions about what people
want or how they will behave will be challenged. Results
on paradoxes include Alessandro Acquisti’s lab’s work
on the control paradox, for example. If you give people
more control through privacy settings, you might think
they will be better at managing their privacy, but it turns
out they end up sharing more, leading to harm for them-
selves. In my own research, we have some recent work
showing that a privacy warning in the context of photo
sharing—“Are you sure you want to share this photo as
it might infringe on someone’s privacy?”—backfires;
people receiving the warning are on average more likely
to share the photo. This is why it’s important for us not
to make assumptions about how people will behave
without studying their behaviors empirically.

Milestone three was that once we settled into a sys-
tematic study of usable security, we embraced inter-
disciplinarity. I like that the SaTC Dear Colleague
letters have been pushing us to pair up with social
scientists and catalyzing collaborations. These are
important structural improvements. As a commu-
nity, we’ve been publishing more with social, behav-
ioral, and economics researchers, which in the end
improves not only our methods but also our broader
understanding of the problem and the potential for
multifaceted solutions.

Milestone four was to embrace the concept of inclu-
sive security and privacy—security and privacy for all,
for marginalized and vulnerable populations: for exam-
ple, the visually impaired, victims of intimate partner
violence, undocumented immigrants, and incarcerated
people. We are just starting to study and understand the
security and privacy needs of various subpopulations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security� 9

Where Do We Go From Here?
In our next milestone, we need to move from point solu-
tions to broader frameworks and systematization of
knowledge. As a community, we’ve already started to
do so, and I’m glad to see this as our next major focus
of research.

We also need to engage more with the ethical
choices of our designs. The ethics panel (earlier in the
meeting) focused on how to be ethical in conducting
research, particularly in relation to human subjects and
ethics review boards. But we should also consider the
ethical implications of our choice of research topics. For
example, should we be designing machine learning algo-
rithms that aim to determine an individual’s gender?

In my lab’s work with visually impaired people who
might wear augmented reality glasses as an assistive
device, we wanted to know what kind of information they
would want about the people in front of them. And you
might think they would want to know the person’s gen-
der, height, and other visual characteristics. Our visually
impaired participants felt this would be crossing the line—
they don’t fully trust artificial intelligence and worry such
systems might misrepresent people. And as a society, we
are recognizing that gender is not a binary concept, and
so can you really develop an algorithm to visually gender
people? More broadly, we need to consider the potential
for harm when building solutions that might seem to ben-
efit one population but then might harm others.

What Should We Unlearn?
First, and maybe our subcommunity already knows
this, but usability and security are not a tradeoff! It’s not
the case that if you make a system more usable, it will
become less secure. I also see some people with very
strong opinions about how we should not have secu-
rity warnings, saying that we should just design these
systems to be secure in the first place. But more gener-
ally, we must recognize that you cannot eliminate all the
risks. We must help people manage the risks and pres-
ent them with the information (or warnings) they need
to make informed choices.

Now thinking more broadly about the community,
coming from the perspective of reviewing articles, I think
we must unlearn this obsession with technical novelty. I
see a lot of articles getting rejected for not being techni-
cally novel enough, as if this is some kind of competi-
tion for technical superiority. What I have learned in the
human-centered community is that our heart has mostly
been in the right place, in focusing on the problems peo-
ple face and trying to solve these problems scientifically,
as opposed to devising a really amazing algorithm as
being the central goal. When reviewing articles, I hope
the more systems-oriented reviewers will think of the
bigger picture and the overall impact of the work.

Audience Q&A
Reiter: I’m starting us off with a question for Laurie.
You made a comment about deciding when a product
is “secure enough to ship,” a favorite topic of mine. I’ve
marveled at our collective inability to reach a consensus
on that. Other fields, I think, do a much better job of
deciding what is safe enough to ship. When a plane flies,
the builders put together an assurance case for it to con-
vince the U.S. Federal Aviation Administration that it’s
safe enough to fly. But we seem to leave this to each and
every vendor of products. What makes this so hard in
our case? And is there any prospect for improvement?

Williams: It is hard. I have a background in software
reliability; there is a process—what’s the acceptable
arrival rate of failures during testing? There are mathe-
matical and statistical models, and I do have some work
where we are trying to translate that into security, but
it’s difficult in two respects. One is that testing has to be
with malicious intent as opposed to just general func-
tionality testing. But really, the hardest thing is asking
what’s the “right” number of vulnerabilities. We don’t
have a good way to answer that question; we don’t have
that dependent variable. I’m hopeful that in 20 years,
even in five years, we’ll have the analogy to reliability
where we have statistical models, and we understand
what the right arrival rate is and what the right vulner-
ability density is, to make that informed decision.

Audience: If you had a magic wand, and you could
create any capability, what would that capability be,
from a security point of view?

Kohno: I’ll jump in. “Capability”—how to define
it? Maybe helping make sure that everyone in indus-
try creating technology and all policymakers creating
technology policy understand the presence of an adver-
sary and how hard it is to design for and to think about
systems in the presence of an adversary. So, the magic
wand is around making that happen. I think that con-
nects to education, not just in the computing field, but
the education of everyone who makes decisions around
computing technologies and the intersection between
technologies and society.

Tsudik: I like Yoshi’s interpretation. Being labeled
a crypto person, I have to think about that domain. If
I could wave a magic wand, I would have guaranteed
“time-lock” security: something that guarantees me
integrity and/or secrecy for a predefined amount of time
so I can just sit back and relax. That would be my wish.

Kapadia: I might have an impossible request, but
in thinking about moving to solutions that are not just
point solutions, but that affect multiple populations,
I’ve thought about how we create solutions that are
great for one community but horrible for others. For
example, you might build better parental controls, but
then, these can be used for surveillance, such as intimate

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10	 IEEE Security & Privacy� Month/Month 2022

partner surveillance. So, the magic wand would be: how
can we create technologies that can’t be misused? Now,
I know that’s not possible, but as a research commu-
nity, we need to work toward preventing or minimiz-
ing, as much as we can, these possibilities and abuses
of technology.

Williams: I’ll take off on that prevention theme.
One of the times I was speaking with someone from
industry, they had a quote, which I repeat a lot: “We can
no longer do hand-to-hand combat with individual vul-
nerabilities.” We can’t handle them one on one; we really
need to prevent them. So that’s a focus on, whether it be
formal methods, safe languages, or compilers that won’t
compile if there’s a vulnerability, just getting it so the
vulnerabilities aren’t there in the first place, much more
than they are today.

Jaeger: Going along this thread a bit, I’m less san-
guine about removing risky or unsafe operations from
our systems, but if we have unsafe operations, we need
to identify how to deal with them, accounting for the
overhead they incur. So, I guess for my one wish, if we
could identify all unsafe operations in a particular sys-
tem automatically, and then, for that system, produce
the best defenses that we could within some cost budget
automatically, that would be a cool thing.

Audience: We’ve heard a lot of great positive things
about progress and advances that have come. I think
we would learn more from failures. I would like to hear
more from the panel about the failures. Could panelists
share things that, if we went back 10 or 20 years, this is a
problem we should have solved, or made a lot of progress
on, but have failed to make the progress we should have?

Kapadia: In the usable security space, we have a
string of articles with playful titles, like “Why Johnny
can’t encrypt” and the like. It’s been a while since that
first article was written. It seems that Johnny still can’t
encrypt. It still takes the average computer scientist a
good deal of effort to set up secure e-mail. For instant
messages as well, like Signal, presumably we are sup-
posed to verify the key fingerprints, and I don’t know
how many of us do that, even those of us in this room.
So, I think we are still not there yet with secure com-
munication. At the same time, there has been some neat
research in this area, so my conclusion is that this is just
a very hard problem that we have underestimated as a
community.

Williams: I wish we had come a lot further with
security metrics. I’ve been with the Science of Secu-
rity program since 2011, and one of the hard prob-
lems is security metrics. Being able to measure security
reliably is something that I feel bad we haven’t gotten
better at. As I mentioned before, the NVD captures
probably 5% of the vulnerabilities. We just can’t oper-
ate with that. And so how do we get a good picture of

the vulnerabilities in a product so that we can do more
with that?

Jaeger: Twenty years ago or so, there was an article
called “CCured” that reported that around 90% of the
pointers in each program are not used in pointer arith-
metic nor in typecasting operations, which are opera-
tions that may cause spatial and type memory errors.
As a result, these pointers are safe with respect to those
types of memory errors. So, I was optimistic at that time,
somewhat overly so, that we would have tooling to help
programmers avoid these kinds of errors and deal with
remaining unsafe pointers systematically to remove
a critical threat. This also relates to usable security
because more usable interactive development environ-
ments that are security aware could help the program-
mers address these challenges. I guess I expected there
would be more tools for programmers to remove and/
or protect code that may be prone to memory errors
than fuzz testing by this time.

Tsudik: I thought one shade of the question was,
“What have you done that you wished you hadn’t.” If
I were confessing, I would say that I wasted a lot of
time on this evil thing called group key management.
I wish I hadn’t! If you find yourself confronted with
this topic, stay away! If the question comes to, “What
could we have done better?”, I’ll come to it from the
educational perspective. I fail to teach people the
importance of not designing their own security proto-
cols from scratch. No matter how much I teach them
all the subtle, abstruse, weird, bizarre errors people
make in designing protocols, and the literature is full
of them, they still try. A few months ago, I received
an e-mail from a student I taught about eight years
ago. And it was a weird e-mail because the student
started to say, “Well, you know during the part of the
class where you were teaching Diffie–Hellman that
nobody ever uses and all these strange things that can
happen, all these weird bugs you can have, for three
weeks, I pretty much slept through it.” Now the stu-
dent is working for a company that requires him to
integrate some security protocols and authentication
protocols. Guess what? He wrote one from scratch!
A month later, a bug was found. And then he had an
epiphany. He said he went back to the notes, and now
he wishes he hadn’t slept through the class. So I failed.
He still made the mistake. I still don’t know how to
teach people not to design things from scratch.

Kohno: Great question. I think our community,
as a scientific discipline, is constantly putting pressure
on itself to not be happy with the progress that we’ve
made. Building on Apu’s comments about usable secu-
rity, if we rewind 20 years, we see that as a field, we were
largely working on the technical elements of security
and not thinking about users. If we continued to do that,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security� 11

that would have been a failure. But we then started to
think about users. Then, if we kept on thinking that all
users are the same, that would have been a failure. But
we’re not doing that. We’re realizing that we should not
design for a so-called “default persona.” We need to be
thinking about different users and circumstances. So my
perspective is that at individual times, there have been
directions that, in retrospect, our community realized
require more nuance and attention. Are those failures,
or are those contributing to our greater growth? It’s a
thought-provoking question.

Reiter: I would say our inability to enforce least
privilege in almost any aspect of systems is a categorical
failure of our efforts.

Reiter: Final question?
Audience: One of my pandemic hobbies has been

reading research articles in really far-away fields from
ours—from the usual epidemiology to exercise sci-
ence to cancer research to a variety of things. One of
my favorite things to do there is to read meta-analyses.
I was thinking about Apu’s comment about novelty,
and we’ve finally gotten to the point in security where
we are accepting and publishing systematic reviews.
I found myself reading these useful nice thorough
meta-analyses in other fields, but I can’t really picture
this in computer security because we don’t allow people
to publish on repeated studies, with different cohorts,
across too many different, but similar enough, topics
to actually build up a body of work that would support
these kinds of articles. Do you think that would be valu-
able, do you think we will get there, and is there a way to
make that happen?

Kapadia: I completely agree with you; I think we
need to get to the point when we accept replication and
meta-analyses as important for the community, but I do
worry that the average reviewer in the Big Four security
conference is overly focused on technical novelty. Do we
need hard problems to work on? No, we need important
problems to work on. Replication and meta-analyses are
important aspects of scientific study.

Williams: I can just make a comparison. I publish
in software security, but also software engineering, and
I see the same kind of discussion, although I think in
software engineering, we are a little bit further along.
As reviewers and program committees, we are encour-
aged to accept replications; replications are called for.
We even get badges now, artifact badges, and there’s a
replication badge. You can retroactively get a replication
badge if someone ever replicates your work. I know,
particularly for conferences, that everyone wants big
exciting presentations. If there were a track or some
acknowledgment that the replications that enable
meta-analyses in the future were valuable, that would be
a good contribution.

Tsudik: I’d just like to concur with that. I would even
go further: replications are an important confirmation
of previous research results, but I still think that con-
structive novel research is super important. We are dead
in the water without it. We will move nowhere without
novel constructive research. But it should be judged
against results of the same caliber. We should not be
reviewing constructive novel research in the same way
as we review replicated research or in the way we review
attack-oriented research. These three have their place
under the sun, and they should, in all these top venues.
But they should be judged using different criteria.

Kohno: I haven’t read as broadly as you, but the
question that comes to my mind is: how do these rep-
lication studies fit into the career trajectories of the
people involved? I think it would be super great if our
community had that type of study. But I’m trying to fig-
ure out how such studies fit into the ecosystem of stu-
dents’ careers. So I would love to know more about how
that works in those other communities.

Kapadia: Reacting broadly to comments made
earlier today, I’ve heard many times, in discussions like
this, that we should make it a requirement of the ten-
ure track, and I really feel strongly against this because
it’s like saying, “Oh yes, the assistant professors, we’ll
make them do all this, and we get away scot-free.” I
think we need to decide what’s important and make
the community do it together. So, I really want to push
back on the idea of requiring such work from a few
specific groups.

Jaeger: I just want to say that replication is good,
along the lines of what Gene said. Laurie mentioned
that software engineering conferences give replication
badges, as do some operating systems conferences.
For example, we just got a replication badge for our
OSDI paper, so we should consider doing that in secu-
rity as well.

Reiter: Thanks to all!

Carl Landwehr is a visiting professor of electrical engi-
neering at the University of Michigan, Ann Arbor,
MI 48109-2122 USA. His research interests include
cybersecurity, software engineering, and formal
methods. Landwehr received a Ph.D. in computer
and communications sciences from the University
of Michigan. He is a Fellow of IEEE. Contact him at
carl.landwehr@gmail.com.

Michael K. Reiter is a James B. Duke distinguished pro-
fessor of computer science and electrical and com-
puter engineering at Duke University, Durham, NC
27708 USA. His research interests include computer
security, distributed computing, and applied cryptog-
raphy. Reiter received a Ph.D. in computer science

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12	 IEEE Security & Privacy� Month/Month 2022

from Cornell University. He is a Fellow of IEEE. Con-
tact him at michael.reiter@duke.edu.

Laurie Williams is a distinguished university professor
in the Computer Science Department of the Col-
lege of Engineering at North Carolina State Univer-
sity, Raleigh, NC 27513 USA. Her research interests
include software security, software supply chain secu-
rity, and software development process. Williams
received a Ph.D. in computer science from the Uni-
versity of Utah. She is a Fellow of IEEE. Contact her
at lawilli3@ncsu.edu.

Gene Tsudik is a distinguished professor of computer
science at the University of California, Irvine. His
research interests do not include machine learning,
blockchains/cryptocurrencies, or differential privacy.
Tsudik received a Ph.D. in computer science from the
University of Southern California. He’s a Fellow of
IEEE. Contact him at gts@ics.uci.edu.

Trent Jaeger is a professor of computer science and engi-
neering at The Pennsylvania State University, Uni-
versity Park, PA 16802 USA. His research interests
include operating systems security, software security,

and distributed systems security. Jaeger received a
Ph.D. in computer science and engineering from the
University of Michigan. He is a Senior Member of
IEEE. Contact him at trj1@psu.edu.

Tadayoshi Kohno is a professor in the Paul G. Allen
School of Computer Science and Engineering at the
University of Washington, Seattle, WA 98195 USA.
His research interests include helping protect the
security, privacy, and safety of users of current- and
future-generation technologies. Kohno received a
Ph.D. in computer science from the University of Cal-
ifornia, San Diego. He is a Fellow of IEEE. Contact
him at yoshi@cs.washington.edu.

Apu Kapadia is a professor in the Department of Com-
puter Science at Indiana University Bloomington,
Bloomington, IN, 47408 USA. His research interests
include privacy, usable security, photo sharing, Inter-
net of Things and wearables, and mixed and virtual
reality. Kapadia received a Ph.D. in computer science
from the University of Illinois at Urbana-Champaign.
He is a Member of IEEE. Contact him at kapadia@
indiana.edu.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

mailto:michael.reiter@duke.edu
mailto:lawilli3@ncsu.edu
mailto:kapadia@indiana.edu
mailto:kapadia@indiana.edu

