
52

Leveraging the Properties of mmWave Signals for 3D Finger

Motion Tracking for Interactive IoT Applications

YILIN LIU, Pennsylvania State University, USA

SHIJIA ZHANG, Pennsylvania State University, USA

MAHANTH GOWDA, Pennsylvania State University, USA

SRIHARI NELAKUDITI, University of South Carolina, USA

mmWave signals form a critical component of 5G and next-generation wireless networks, which are also

being increasingly considered for sensing the environment around us to enable ubiquitous IoT applications.

In this context, this paper leverages the properties of mmWave signals for tracking 3D finger motion for

interactive IoT applications. While conventional vision-based solutions break down under poor lighting,

occlusions, and also suffer from privacy concerns, mmWave signals work under typical occlusions and non-

line-of-sight conditions, while being privacy-preserving. In contrast to prior works on mmWave sensing

that focus on predefined gesture classification, this work performs continuous 3D finger motion tracking.

Towards this end, we first observe via simulations and experiments that the small size of fingers coupled with

specular reflections do not yield stable mmWave reflections. However, we make an interesting observation

that focusing on the forearm instead of the fingers can provide stable reflections for 3D finger motion tracking.

Muscles that activate the fingers extend through the forearm, whose motion manifests as vibrations on the

forearm. By analyzing the variation in phases of reflected mmWave signals from the forearm, this paper designs

mm4Arm, a system that tracks 3D finger motion. Nontrivial challenges arise due to the high dimensional search

space, complex vibration patterns, diversity across users, hardware noise, etc. mm4Arm exploits anatomical

constraints in finger motions and fuses them with machine learning architectures based on encoder-decoder

and ResNets in enabling accurate tracking. A systematic performance evaluation with 10 users demonstrates

a median error of 5.73◦ (location error of 4.07 mm) with robustness to multipath and natural variation in hand

position/orientation. The accuracy is also consistent under non-line-of-sight conditions and clothing that

might occlude the forearm. mm4Arm runs on smartphones with a latency of 19𝑚𝑠 and low energy overhead.
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1 INTRODUCTION

Wireless signals, which are mainly used for communication networks, also have the potential to
extend our senses, enabling us to see behind closed doors and track moving objects through walls
[21, 61]. Accordingly, there is a growing interest in the community recently to develop novel IoT
applications for sensing by exploiting radio frequency signals [30, 44, 45]. Given the compact size of
modern wireless devices, this enables ubiquitous applications in the areas of smart healthcare, sports
analytics, AR/VR etc. Specifically, as these signals travel in the medium, they traverse occlusions
and bounce off different objects before arriving at a receiver; hence, the reflected signals carry
information about the environment. By exploiting this property, this paper shows the feasibility of
tracking precise 3D finger motion using mmWave signals that are popularly used in 5G networks.
Motivation and Application: This paper presents mm4Arm, a system that quantifies the

performance of finger motion tracking for interactive applications using mmWave signals through
a carefully designed simulation and measurement study. We considered using mmWave signal
because FMCW-based radars are being used for ubiquitous applications in the areas of smart
healthcare [23], sports analytics, AR/VR [131], autonomous driving [25], etc. Similar to the popular
Google Soli platform [117], our main motivation is to enable wearable, mobile computing, and
AR/VR applications where conventional touch interaction may be hard. Finger motion-based
interfaces over the air are known to be a popular form of human-computer interaction [58, 107].
In contrast to Soli, which can only detect 11 predefined gestures, mm4Arm can perform arbitrary
3D motion tracking, thus allowing highly precise control. Decades of prior research have shown
that such a finer control can enable rapid and fluid manipulation for highly intuitive interaction
[124]. The finer precision of control can be observed in the case of a fluid expert interaction with
hand tools (e.g. watchmaker). We believe mm4Arm’s accuracy can allow such a finer control.
Therefore, regardless of the application, we focus on enabling the core motion tracking framework
by solving the underlying challenges. We envision interesting applications of mm4Arm, such as
developing prosthetic devices for amputees considering that forearm vibrations remain intact
despite amputations [35, 85, 87], and discuss them in Section 9. We leave a thorough investigation
of the application space for future research.
Radio Frequency (RF) Sensing vs. Vision: Recent works [28, 51, 82] track 3D finger motion

using cameras placed in the environment. Powered by the latest advances in machine learning
combined with the availability of large-scale training data, precise tracking is possible. However,
cameras are susceptible to occlusions, lighting conditions, and interference from objects in the
background. Furthermore, they are known to suffer from privacy concerns [31]. In contrast, RF
sensing based onmmWave signals as performed bymm4Arm can be privacy-preserving and agnostic
to lighting, resolution, and ambient conditions. Furthermore, RF sensing can work throughmaterials
and non-line-of-sight conditions, allowing it to be embedded into devices and environments.
Tracking Fingers by Observing the ForeArm: In this paper, we not only focus on tracking

the 3D finger motion using mmWave reflections, but based on observations via simulations and
measurements, we also identify the underlying conditions that enable precise tracking. A critical
observation is that the small size of fingers does not provide stable reflections to the level required
for tracking. However, the data-driven analysis reveals that it is possible to indirectly track fingers
by measuring reflections from the forearm. Finger motion activation involves neuro-muscular
interactions, which induce minute muscular motions in the forearm. Such muscular motion pro-
duces vibrations in the forearm. Thanks to the short wavelength of mmWave signals, the phase
measurements are extremely sensitive to small vibrations (up to 0.63𝜇𝑚 [53]), thus opening up
opportunities for precise motion tracking. Moreover, the forearm offers a rich texture and curvature
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Fig. 1. mmWave reflections are captured from the surroundings from which the phases of arm reflections are

first isolated. After subjecting the phase measurements to preprocessing techniques like low pass filters, deep

learning based models are designed for extracting 3D finger motion from the phase data. Domain adaptation

is incorporated in the design for decreasing the training overhead.

and a much bigger surface for reflections, in contrast to the small size of fingers, which facilitates
robust tracking. mm4Arm analyzes such forearm vibrations for 3D finger motion tracking.

We reiterate two critical observations made in this paper: (i) When 3D finger motion tracking is
of interest in contrast to predefined gesture classification, the reflections obtained directly from
fingers do not provide sufficient information. Very few reflections come back to the radar due to
the small size of fingers and dominant specular reflections. A similar observation on specularity
has been made earlier in the context of autonomous cars [26, 93]. (ii) Vibrations in the forearm
during finger motion can capture rich information. Because of the large surface of the forearm and
its curvature, the reflections are more stable and robust to natural variation in arm position, height,
and orientation. This can be leveraged for 3D finger motion tracking.

Contrast with Key Prior Work: As noted earlier, prior works on finger motion tracking with
radar devices are limited to discrete gesture classification. Google Soli [117] exploits reflections from
mmWave signals in combination with deep convolutional and recurrent neural networks to track
11 finger motion gestures. mmASL [102] shows the feasibility of detecting 50 ASL gestures using
reflections of mmWave signals. mHomeGes [72] uses mmWave signals for tracking 10 hand gestures
for user interface applications in settings like smart home. RFWash [55] makes a creative use of
mmWave radars for detecting hygienic methods of handwashing and alerting users accordingly. In
contrast to gesture and activity classification where the search space is 10-50 predefined discrete
classes,mm4Arm’s search space is a continuous space of 3D finger motion with 21 degrees of freedom.
The 3D finger locations predicted by mm4Arm can serve as inputs to any gesture classification
problem ś independent of a specific application. To the best of our knowledge, mm4Arm is the first
work to perform continuous 3D finger motion tracking using RF signals.

Challenges and Opportunities: Performing 3D finger motion tracking by sensing forearm
vibrations is non-trivial with many challenges: (i) As mentioned above, the search space for the
correct hand pose is high dimensional with 21 degrees of freedom. The complexity is comparable
to human skeleton tracking; (ii) The vibrations due to motion of individual fingers merge into
each other with complex patterns; (iii) The vibration pattern can vary among users, body sizes,
anatomy, etc. While these challenges seem daunting, mm4Arm exploits a number of opportunities
to overcome the challenges: (i) mm4Arm leverages anatomical constraints in finger motion towards
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Fig. 2. We present an approach for 3D finger motion tracking using mmWave signals. The figure shows a

comparison between several real hand poses and the corresponding tracking results from a depth camera

and our proposed system, mm4Arm. A short demo is included in this anonymous url [10].

narrowing down the search space of finger motion; (ii) Machine learning (ML) models are designed
by incorporating advances in encoder-decoder and skip connections for learning the complex
interrelationships between finger motions and the phase measurements while working with limits
of training data availability and stability in convergence; (iii) Domain adaptation techniques are
designed to develop a robust inferencing model for each user with low training overhead.

System Design: Fig. 1 illustrates the high-level architecture of mm4Arm. The radar illuminates
the environment and captures reflections from the forearm and other objects in the environment.
The forearm reflections are first isolated from other multipath components (wall, furniture, body,
etc) based on characteristic phase variation in the forearm reflections. The phase data from forearm
reflections are then preprocessed with techniques like low pass filtering for eliminating high-
frequency noise. Finally, an encoder-decoder basedMLmodel processes the phase data and generates
3D finger motion sequences by exploiting spatio-temporal constraints of hand motion.
Implementation: mm4Arm is implemented using an off-the-shelf radar TI IWR6843ISK[7]

operating at 60 GHz band using frequency modulated carrier wave (FMCW). The radar sensor data
is pre-processed offline with MATLAB/python, and fed to ML modules implemented in TensorFlow
for 3D finger motion tracking. The median error is 5.73 degrees (location error of 4.07mm), validated
under a systematic user study with 10 users. The accuracy degrades gracefully with the distance
of the user from the radar (evaluated upto 5ft) with robustness to environmental multipath and
natural changes in arm position, height and orientation. The accuracy is also consistent under
non-line-of-sight conditions and clothing. mm4Arm is implemented on modern smartphones -
Samsung Galaxy S20, OnePlus 9 Pro ś with low power consumption and a latency ≈ 19ms.
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Contributions:We make the following contributions. (i) Feasibility of finger motion tracking
by exploiting reflections from the forearm (ii) Free-from 3D finger motion tracking for arbitrary
hand motion with mmWave radar. (iii) Design of ML models that fuse anatomical constraints of
finger motion with sensor data for accurate 3D finger motion tracking. (iv) A systematic validation
with 10 users and implementation on embedded operating systems. Fig. 2 depicts some examples
of mm4Arm’s tracking quality. A short demo is included in the anonymous url [10].

2 BACKGROUND

We begin with a brief overview of: (i) Relationship between finger motion and forearm vibration.
(ii) Anatomical constraints of the human hand to be incorporated in ML models for narrowing
down the search space for 3D finger motion tracking.

2.1 Relationship between Finger Motion and Forearm Vibration

(a) (b)

Fig. 3. Muscles responsible for finger motion are

located in the forearm [4]. Movement of these

muscles causes the forearm to vibrate during

finger motion.

Muscles responsible for motion of fingers are located
in the forearm (Fig. 3). Depending upon which fingers
and the manner in which they need to move, a unique
pattern of muscles in the forearm are activated, thus
inducing minute vibration in the forearm. mm4Arm

tracks such forearm vibrations for 3D finger motion
tracking. We now provide a brief overview of forearm
muscular involvement during finger motions. Several
muscles are involved in performing finger motions.
Fig. 3a and 3b depict the anatomical structure of the
forearm where the muscles move. Extensor Pollicis
Longus extends the thumb joints whereas Abductor
Pollicis Longus and Brevis performs thumb abductions.
Extensor Indicis Proprius extends the index finger. Ex-
tensor Digitorum extends the four medial fingers and
Extensor Digiti Minimi extends the little finger. Volar
interossei and Dorsal interossei group of muscles are responsible respectively for adduction and
abduction of index, ring, and little fingers towards/away from the middle finger. They are connected
to the proximal phalanx and Extensor digitorum. Other muscles that are involved in large scale
motion and supporting strength include Supinator for forearm motion, Anconeus and Brachioradiali
for elbow joint, Extensor Carpi Ulnaris, Extensor Carpi Radialis Longus and Brevis for wrist joint
etc. The motion of these muscles in the forearm induces vibrations in the forearm. The pattern of
vibration is a function of what muscles need to move to activate a specific finger motion pattern.
mm4Arm exploits such forearm vibrations for tracking 3D finger motion.

2.2 Hand Skeletal Model and Constraints

Human hand consists of various joints that are responsible for complex articulation patterns that
generate 3D hand poses. Fig.4a depicts the skeletal structure. A simplified kinematic view is shown
in Fig. 4b.
The four fingers consist of three joints: (i) MCP (metacarpophalangeal), (ii) PIP (proximal in-

terphalangeal), and (iii) DIP (distal interphalangeal) joints. The joints at PIP (𝜙𝑝𝑖𝑝 ) and DIP (𝜙𝑑𝑖𝑝 )
can either flex or extend (Fig.4c) the fingers towards or away from the palm. Thus, they exhibit
a single degree of freedom (DoF). In contrast, the MCP joint can also undergo adduction and
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abduction (side-way motions depicted in Fig.4c) in addition to flexing/extending. Thus, an MCP
joint possesses two DoFs, denoted by 𝜙𝑚𝑐𝑝,𝑓 /𝑒 , and 𝜙𝑚𝑐𝑝,𝑎𝑎 respectively. Thus, each of the four
fingers possesses four DoF. On the other hand, the thumb exhibits a slightly different anatomical
structure than the other fingers. The MCP and TM (trapeziometacarpal) joints possess both flex
and abduction/adduction DoF. The IP (interphalangeal) joint can flex or extend with a single DoF
(𝜙𝑖𝑝 ). Thus, the thumb has five DoF ś 𝜙𝑖𝑝 , 𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑚𝑐𝑝,𝑎𝑎 , 𝜙𝑡𝑚,𝑓 /𝑒 , and 𝜙𝑡𝑚,𝑎𝑎 . The other 6 DoF
comes from the motion of palm including translation and rotation. We ignore the motion of the
palm in this paper and only focus on tracking fingers which together have 21 DoF ś modeled as
21-dimensional space (R21). Finger motion follows certain constraints. As studied in literature,

(a) (b) (c)

Fig. 4. (a) Anatomical details of the hand skeleton [32] (b) Joint notations [70] (c) Flex/extensions and

abduction/adductions in finger motion [90]

the joint angles exhibit a high degree of correlation and interdependence [32, 70]. Some of the
intra-finger constraints are enumerated below:

𝜙𝑑𝑖𝑝 =

2

3
𝜙𝑝𝑖𝑝 , 𝜙𝑖𝑝 =

1

2
𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑚𝑐𝑝,𝑓 /𝑒 = 𝑘𝜙𝑝𝑖𝑝 , 0 ≤ 𝑘 ≤

1

2
(1)

where 𝜙𝑑𝑖𝑝 denotes angles of the DIP joints, 𝜙𝑖𝑝 denotes angles of the thumb’s IP joints, 𝜙𝑚𝑐𝑝,𝑓 /𝑒

denotes angles of the MCP joints with flexing/extending. Assuming no external force is applied
on fingers, Equation 1 suggests that in order to bend the DIP joint, the PIP joint must also bend.
Similarly, the constraints on thumb joints is described in Equation 1. The range of motion for PIP is
very much limited by the MCP joint. The general range of motion constraints for other fingers are
enumerated below:

−15◦ ≤ 𝜙𝑚𝑐𝑝,𝑎𝑎 ≤ 15
◦, 0◦ ≤ 𝜙𝑑𝑖𝑝 ≤ 90

◦, 0◦ ≤ 𝜙𝑝𝑖𝑝 ≤ 110
◦

(2)

where𝜙𝑚𝑐𝑝,𝑎𝑎 denotes angles of theMCP joints with abduction/adduction. Compared to flex/extensions,
abduction/adduction angles have a smaller range of motion. In addition to these constraints, there
are complex interdependencies between finger joint motion patterns that cannot be captured by
well-formed equations. The ML models in mm4Arm learn such constraints and utilize them for
enhancing the accuracy of 3D finger motion tracking.

3 OVERVIEW OF THE EXPERIMENTAL PLATFORM: MMWAVE RADAR AND FMCW

mm4Arm adopts an FMCW radar for tracking forearm vibrations. An FMCW radar works by
emitting chirps. The chirp is reflected back by objects in the environment and based on the time
differences between transmission and reception of chirps and the doppler shifts, the radar can
estimate the range (distance) of these objects and velocities.
A chirp and the working principle of FMCW radars are visualized in Fig. 5a, which shows a

sinusoidal signal with linearly increasing frequency, which is employed by TI IWR6843ISK [7] radar,
used in mm4Arm. Since the transmitted signals are frequency-modulated signals, the reflected
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Fig. 5. (a) An FMCW signal with linearly increasing frequency (b) The reflected FMCW signals from objects

in the environment (c) A range-FFT will result in multiple peaks corresponding to objects in the environment.

Tracking the phase of the peak from forearm reflections will facilitate finger motion tracking

components will also be frequency-modulated signals. However, because they are delayed, at any
given point in time, there is a constant frequency difference between the transmitted and reflected
chirp as depicted in Fig. 5b. By computing the frequency difference Δ𝐹 between the transmitted
and received chirps, the distance of the reflecting object can be computed. The below equation
precisely converts the frequency difference into the range (𝑟 ) of the object from the radar.

𝑟 =
Δ𝐹

𝑆𝑙𝑜𝑝𝑒
(3)

where 𝑆𝑙𝑜𝑝𝑒 refers to the rate at which the chirp frequency is linearly modulated.
Depicted in Fig. 5b, multiple reflected chirps from different multipath components can be received

at the radar. By performing an FFT operation (called range FFT ), different multipath components,
and their ranges can be determined (Fig. 5c). The resolution at which ranges can be computed can
be expressed as a function of the chirp sweeping bandwidth 𝐵 as follows [96]:

Δ𝑅 =

𝑐

2𝐵
(4)

where 𝑐 is the speed of light. If the entire working bandwidth of the radar (3.705𝐺𝐻𝑧) is effectively
swept by a chirp, the above equation predicts a range resolution of 4.05𝑐𝑚. While this is good for
applications like human activity recognition (running, sitting, etc.) where the motion of objects is at
larger scales, the resolution is not sufficient for tracking minute micrometer-level vibrations needed
for capturing the forearm vibrations during finger motion. Towards capturing a higher resolution
range information, mm4Arm exploits the phases. The phase variations can capture minute changes
in motion of the reflector, as per the below equation.

Δ𝜙 =

2𝜋Δ𝑟

𝜆
(5)

Given that the wavelength is in the order of millimeters (≈ 4𝑚𝑚), and a typical phase noise of
0.057◦(based on our experimental observations and comparison with the ground truth of the phase
error), extremely small changes in range (Δ𝑟 ≈ 0.63 um) can be detected from phase variations.
mm4Arm tracks such variations to sense minute vibrations in the forearm. Fig. 5c depicts extraction
of continuous phase changes from the radar.
The range-FFT will result in multiple peaks due to multipath reflections. Among these peaks,

the peak corresponding to reflection from the arm is first isolated (Section 5.1). By measuring the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 52. Publication date: December 2022.



52:8 Yilin Liu et al.

Fig. 6. Simulation results at 60 GHz: The blue lines visualize the rays that are transmitted and returning back

to the radar via reflections. We vary the height of the radar to observe all surfaces on the hand that can yield

stable reflections back to the radar. Results indicate that the reflections from fingers are negligible even when

the radar is placed close to fingers. However, the large surface combined with texture and curvature of the

forearm provides stable reflections for 3D finger motion tracking.

phase of this FFT peak, and tracking its variations continuously over time and across antennas
helps identify rich patterns which are predictive of 3D finger motion.

4 ELECTROMAGNETIC SIMULATIONS OF FEASIBLE REFLECTIONS

We conduct simulations using RemcomWaveFarer toolkit [18] in the 60 GHz spectrum to understand
what reflections are feasible for finger motion tracking. WaveFarer uses shoot and bounce ray-
tracing technique [71] in addition to techniques based on physical optics [59] (for computing
scattered fields), method of equivalent currents [79] (for diffraction effects), and uniform theory of
diffraction [62] (formultipath effect between objects). This enables highly accurate simulations [106].
Such techniques have been successfully used in radar sensing applications, such as autonomous
driving [17]. Using this platform, we emulate the Texas Instruments IWR6843ISK radio [7] at 60 GHz
(used by mm4Arm) and place it in front of a CAD model of a human arm to obtain a preliminary
assessment of feasibility of reflections. The results are elaborated next.
Lack of stable reflections from fingers: Fig. 6 visualizes the simulation results of reflected

rays that arrive at the radar. Evidently, very few reflections from the palm and fingers appear at the
radar, even when the radar is placed close to the fingers. We observe that this is mainly because of
the small size of fingers coupled with the specular nature of the dominant reflections that deflect
the rays into random directions. A similar observation on specularity is made in [26, 93], in the
context of applications including autonomous cars. Also validated by real experiments in Section
6, the ML models to capture 3D finger motion using such reflections result in very high errors.
Therefore, we seek alternative approaches for tracking the motion of fingers.

Stable reflections from the forearm: While the small size of fingers do not provide stable
reflections, we observe that there is an opportunity to indirectly track fingers by focusing on
forearm reflections. Finger motion activation involves neuro-muscular interactions that trigger
minute muscular motions in the forearm, which in turn will induce vibrations in the forearm.
Simulation results in Fig. 6 also show that reflections from the forearm can be tracked reliably at
the radar owing to its larger surface, texture, and curvature, which can return significant reflections
back to the radar. The ability to obtain significant reflections from the forearm allows mm4Arm to
sense forearm vibrations and hence track finger motion. Note that The mmWave signal doesn’t
have to penetrate through the fat in the forearm, or have to go inside the human body. We are
actually measuring the surface vibration of the forearm caused by muscle activating, and that
vibration can cause phase variation of mmWave measurements.
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only) do not capture sufficient reflections
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dicting an always open palm. On the other

hand, forearm reflections (Forearm-only)

can provide reliable prediction of 3D finger

motion. Accordingly, ForeArm reflections

mainly contribute to the high accuracy in

mm4Arm.

Validation of Simulation Outcome via Real Mea-

surements: In contrast to high-fidelity electromagnetic
simulations, the real data does not offer fine enough res-
olution to visualize the individual reflections from the
radar. Therefore, we only provide the end result of 3D
hand pose prediction with real data (Fig. 7 shows joint
angle errors). Towards this end, we obtain the phase mea-
surements from themmWave radar, which is a superimpo-
sition of phases from individual reflections, and analyze
their variation over time in an attempt to capture the rich
spatiotemporal relationships to predict the 3D hand pose.
We employ a deep learning model for this prediction
(detailed in Section 5.2). Specifically, we compare the fol-
lowing three cases: (i) Finger-only: Analysis of reflections
from fingers-only (forearm blocked by a metal sheet) (ii)
Forearm-only: Analysis of reflections from forearm-only
(fingers blocked by a metal sheet) (iii) mm4Arm: Analysis of all reflections from finger and forearm.
We compare these three cases with a naive baseline in Fig. 7, that always outputs the static hand
pose with palm open. We make three observations from Fig. 7. (i) With Finger-only, the error is
higher and closer to the naive baseline, indicating that finger reflections are not sufficient enough to
capture 3D hand pose, (ii) Forearm-only results in high accuracy which is comparable to vision based
approaches (evaluated in Section 7). (iii) This indicates that accuracy with mm4Arm as shown in
Fig. 7 is mainly due to forearm reflections, and any reflections captured from fingers are too sparse
to make any difference in the accuracy. The rest of the paper expands on the details of the deep
learning model and associated challenges and provides a thorough performance of quantitative
and qualitative results via systematic implementation and measurements.

5 FROM FOREARM VIBRATIONS TO 3D FINGER JOINT TRACKING

Fig. 8. Tracking of FMCW peaks over time helps elimi-

nate noisy peaks. The phase data corresponding to the

peak from the forearm reflection is used for 3D hand

pose tracking

In this section, we describe the following key
signal processing and ML modules designed
for tracking the 3D finger motion. (i) Isolation
of arm reflection from other multipath compo-
nents (ii) Machine learning model for mapping
RF phase data into 3D finger motion pattern
by exploiting the spatio-temporal relationships
in finger movements. (iii) Domain adaptation
techniques for minimizing the training over-
head for new users of mm4Arm.

5.1 Isolation of Forearm Reflection

As discussed in Section 2, a given range-FFT

window will include the reflection from the
forearm as well as multipath reflections from
other objects in the environment. We face two
main challenges in isolating the arm reflections: (i) Several noisy peaks show up in the range-bin
mainly because of hardware related artifacts. (ii) In addition to the noisy peaks, there will be peaks
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corresponding to reflectors in the environment such as walls and furniture. Towards better isolation
of signal of interest from the above sources, mm4Arm tracks consistent peaks across successive
frames. Since the noisy peaks do not consistently appear at a given distance, they are eliminated.
This step also eliminates reflections from dynamic multipath such as mobile reflectors. Fig. 8 shows
an example where the arm reflection is consistently tracked over time. In addition to arm reflections,
there also exists reflections from other objects in the environment. In the real experiment, we are
able to eliminate reflections from other environmental reflections even when they are closer to the
radar based on the isolation algorithm explained below. The phase of the reflection from the arm
would exhibit rapid variations whereas phase from other reflectors will be somewhat monotonous.

Phase Variations of the ForeArm Reflection: The phase of the reflection from the arm
would exhibit rapid variations whereas phase from other reflectors will be somewhat monotonous.
By exploiting this property, mm4Arm isolates the reflections from the arm from other multipath
components. Fig. 9 depicts an example of phase variation from the arm in comparison with phase
variation from a wall reflection. The characteristic and higher level of variations in the arm can be
exploited for isolating the arm reflections from other multipath components. By exploiting this
property, mm4Arm designs a shallow convolutional neural network to first classify reflections into
two classes: (i) Reflections due to forearm vibrations (ii) Reflections from other reflectors in the
environment. The binary classifier provides high accuracy of 99.4%, thus isolating the forearm
reflections from other reflections.

Fig. 9. Phase variation of forearm reflections is more pronounced than the variations from other static objects

5.2 3D Finger Joint Tracking with Encoder Decoder Architecture

We design an encoder-decoder network as illustrated in Fig. 10. The size of convolution filters
and the number of filters at each layer are also specified. The network is designed to capture
plausible finger pose sequences with spatial constraints across fingers with temporally smooth
variations. Instead of looking at one sensor sample at a time, the network captures a holistic view
of a large interval of time-series sensor data. This enables the network to enforce and learn the
key spatio-temporal constraints, as well as consider historical phase data while making hand pose
inferences. The network takes 2𝑠 of phase data as input and outputs the corresponding 3D hand
pose sequence. The various components of the ML model are elaborated next.
(i) Encoder: The encoder-decoder model maps a sequence of input RF phase data to a sequence

of 3D finger poses. Unlike discrete classes, the output space of the model is a continuous domain
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R
21. Among these 21 dimensions, 5 of the dimensions (𝜙𝑑𝑖𝑝 for four fingers and 𝜙𝑖𝑝 for thumb) can

be directly computed using Equations 1 since it contains the constraints between the PIP joint
and the DIP joints of the 5 fingers of the human hand, which decreases 5 degrees of freedom total
as each finger of hand is decreased by 1. Therefore, the actual output of the network is only 16
dimensions. The size of the input is 𝑌 ×𝑇 , which includes phase samples from 𝑌 = 4 antennas,
over 𝑇 = 1000 samples at a sampling rate of 500 Hz (2 seconds). The input first passes through an
encoder network that consists of a series of convolutional layers with the input downsized at each
layer with maxpool operation. The encoder attempts to capture a compact representation of the
input to be used for hand pose extraction. Batch normalization is used at each layer for accelerating
convergence by controlling variation in the input distribution at each layer [50].

Fig. 10. Encoder Decoder Architecture. BN = Batch Normalization

(ii) Residual Blocks:We introduce residual blocks [48] with skip connections between the encoder
and decoder to increase the depth of the network. While the increase in depth allows learning
stronger features, the skip connections help achieve fast convergence.

(iii) Decoder: The decoder maps the encoded representations to 3D hand pose. Upsampling layers
are introduced so as to incrementally scale the size of output at each layer to eventually match the
dimensions of the output. We use nearest-neighbor interpolation technique [47] for performing
upsampling. The output size is 𝐷 ×𝑇 where 𝐷 = 16 is the number of joint angles predicted, and
𝑇 = 1000 samples (2 seconds at 500 Hz).

Loss Functions and Optimization: In equations below, 𝜙 denotes the prediction by ML models,
whereas 𝜙 denotes training labels from depth camera (leap [8]).

𝐿𝑚𝑐𝑝,𝑓 /𝑒 =

𝑖=4∑︁

𝑖=1

(𝜙𝑖,𝑚𝑐𝑝,𝑓 /𝑒 − 𝜙𝑖,𝑚𝑐𝑝,𝑓 /𝑒 )
2 (6)

𝐿𝑝𝑖𝑝 =

𝑖=4∑︁

𝑖=1

(𝜙𝑖,𝑝𝑖𝑝 − 𝜙𝑖,𝑝𝑖𝑝 )
2 (7)

𝐿𝑚𝑐𝑝,𝑎/𝑎 =

𝑖=4∑︁

𝑖=1

(𝜙𝑖,𝑚𝑐𝑝,𝑎𝑎 − 𝜙𝑖,𝑚𝑐𝑝,𝑎𝑎)
2 (8)

where 𝐿𝑚𝑐𝑝,𝑓 /𝑒 denotes loss value of MCP joint angles with flex/extensions, 𝐿𝑝𝑖𝑝 denotes loss
value of PIP joint angles, and 𝐿𝑚𝑐𝑝,𝑎/𝑎 is loss value of MCP joint angles with adduction/abduction.
The above equations capture the mean squared error (MSE) loss in prediction of joint angles of
MCP and PIP joints of the four fingers.
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𝐿𝑡ℎ𝑢𝑚𝑏 = (𝜙𝑡ℎ,𝑚𝑐𝑝,𝑎𝑎 − 𝜙𝑡ℎ,𝑚𝑐𝑝,𝑎𝑎)
2 + (𝜙𝑡ℎ,𝑚𝑐𝑝,𝑓 /𝑒 − 𝜙𝑡ℎ,𝑚𝑐𝑝,𝑓 /𝑒 )

2

+(𝜙𝑡ℎ,𝑡𝑚,𝑎𝑎 − 𝜙𝑡ℎ,𝑡𝑚,𝑎𝑎)
2 + (𝜙𝑡ℎ,𝑡𝑚,𝑓 /𝑒 − 𝜙𝑡ℎ,𝑚𝑐𝑝,𝑓 /𝑒 )

2
(9)

where 𝐿𝑡ℎ𝑢𝑚𝑏 denotes loss value of the thumb. The above equations capture the MSE loss in the
MCP and TM joints of the thumb.

𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = | | (∇𝜙𝑡 − ∇ ˆ𝜙𝑡−1) | |
2

2
(10)

where 𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 denotes loss value of the smoothness constraint.The above equation enforces
constant velocity smoothness constraint in the predicted joint angles where 𝜙𝑡 above is a represen-
tative vector of all joint angles across all fingers at a time step 𝑡 .

The overall loss function is given by the below equation.

𝐿 = 𝐿𝑚𝑐𝑝,𝑓 /𝑒 + 𝐿𝑚𝑐𝑝,𝑎𝑎 + 𝐿𝑝𝑖𝑝 + 𝐿𝑡ℎ𝑢𝑚𝑏 + 𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 (11)

Note that the loss function does not include 𝜙𝑑𝑖𝑝 or 𝜙𝑖𝑝 because we compute them directly from
anatomical constraints (Equation 1).
Applying Range of Motion Constraints: The constraints across various finger joints for

flex/extensions and abduction/adduction motions were described in Section 2. We apply such
constraints to the network in order to facilitate faster learning. Towards this, we first normalize
the predicted output of a joint angle by dividing it by the range constraint (for example, by 110

◦

for 𝜙𝑝𝑖𝑝 ). We then apply the bounded ReLU activation (bReLU) function [67] to the last activation
layer in our network. Bounded ReLU activation(bReLU) is added a upper boundary compared to
normal ReLU function:

𝑓𝑏𝑅𝑒𝐿𝑈 (𝑥) = min

(
max(0, 𝑥), 1

)
=





0 𝑥 ≤ 0

𝑥 0 < 𝑥 ≤ 1

1 𝑥 > 1

(12)

The bReLU outputs are multiplied again with their range constraints such that the unit of the output
is in degrees. The bReLU, in conjunction with other loss functions based on temporal constraints
(Equation 10), facilitates predicting anatomically feasible as well as temporally smooth tracking
results.

5.3 Decreasing Training Overhead via Domain Adaptation

For the encoder-decoder model proposed above, training separate models for each user will be
burdensome. Therefore, we explore domain adaptation strategies to pretrain a model with one
(source) user and fine-tune it to adapt to new users with low training overhead.

Transfer-learning based domain adaptation is popular in vision and speech processing. For
example, AlexNet model [63] pretrained on ImageNet database [37] was fine-tuned for classifying
images in medical domain[133], remote-sensing [46] and breast-cancer [84]. Similarly, a pre-trained
BERT language model [38] was fine-tuned for tasks such as text-summarizing [127], question
answering [94], etc. This significantly reduces the burden of training for a new task. In a similar
spirit, we use a pretrained model from one user and fine-tune it for a different user to significantly
decrease the training overhead without losing much accuracy.

The main steps in the domain adaptation process are as follows: (i) We generate a model for one
user (source) by extensively training the model with labeled data from that user ś known as the
pretrained model. (ii) We collect small training data with only few labels from the new (target) user.
Instead of developing the model for the target user from scratch, we initialize the model weights to
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be same as the pretrained model. (iii) We make all layers in the model untrainable except certain
layers which are made trainable (elaborated next). Using the few labels from the target user, we
update the trainable layers to minimize the loss function. This is called fine tuning. The model
thus generated will be used for making inferences on the target user. We explore three different
approaches for the choice of trainable layers as elaborated next.
Adapting the Batch Normalization Layers: Finetuning the BN layers can help contain

wide oscillations in the distributions of input fed from one layer to the next. Given the sufficient
success in BN layers (with only a few parameters) for accelerating convergence by minimizing
such covariate shift [50], we exploit them towards domain adaptation as well. The BN layers will
learn to sufficiently transform the distribution from target user to a distribution of the source

user on which the model is pretrained. Such a strategy has been exploited for image processing
applications [65, 66]. If successful, the pre-trained model from the source user can be used for
performing inferences on the target user with the finetuning steps discussed here.
Fine Tuning the Last Layers: Retraining the last layer of the network for a new task, while

freezing the pre-trained layers from the rest of the network from another task is a popular approach
with applications in image and speech processing [84, 91]. The key intuition is that a network learns
meaningful representations through all layers leading upto the last few layers. Thus the initial layers
are frozen during the domain adaptation. The last layers are retrained to take the representation
computed by the frozen layers and compute the final output. We explore this strategy by only
retraining the last layer in Fig. 10 for adapting a pre-trained model from one user for performing
inferences on a new user.

Fine Tuning Whole Model: We continue to update the weights of the model pre-trained from
another user (without freezing any weights) with limited amounts of training data from the target
user. While fine-tuning the whole model might be problematic since the parameter space can be
huge, because of high-level similarity in the forearm structure among humans, our experiments
suggest that we do not face any issue with convergence. Prior studies also show that fine-tuning
the whole network might work for some domains, as has been validated with PatchCamelyon
dataset [12] for an image classification problem [54]. With fine-tuning the entire network, our
model converges well with improved accuracy with limited amounts of training data. We also note
that the accuracy saturates quickly with small amounts of training dataset. Detailed evaluation,
and comparison with other strategies on domain adaptation discussed above, is provided in the
next section.

6 EXPERIMENTAL SETUP, USER STUDY, AND IMPLEMENTATION

We validate mm4Arm based on a systematic user study to analyze the performance across users,
distance, multipath environments, joint angles, natural variations in forearm position/orientation,
etc. This section details the data collection, size of data for training and testing across settings.

6.1 Data Collection and User Study

The experimental setup is depicted in Fig. 11. We explain the details in this subsection.
Radio Frequency Frontend: mm4Arm’s frontend includes Texas Instruments IWR6843ISK [7]

mmWave radar operating in 60-64 GHz spectrum. Operatingwith an FMCWbandwidth of 3.705𝐺𝐻𝑧,
we use the DCA1000EVM [14] platform to extract samples at 2 Msps, and obtain reflections from
the human arm. The extracted phases are further low pass filtered and down-sampled to a sampling
rate of 500 Hz. The phases extracted from the reflections are used for 3D hand pose tracking.
Because the technology depends on forearm vibration sensing, it is important for the radar to have
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the visibility of the forearm. While the radar does not need to be exactly perpendicular, and it
is robust to some variation and arm orientations and height, the accuracy can break down if the
forearm is not clearly visible to the radar. However, even with the current setting and a number
of applications such as wearable, mobile computing, and AR/VR applications where conventional
touch interaction may be hard. The radar beam does not need to be focused, we use off-the-shelf TI
IWR6843ISK radar with its natural config, and its field-of-view is +/- 60 degrees in Azimuth and +/-
15 degrees in Elevation[15].

Fig. 11. Experimental setup: Detailed view of IWR6843ISK

radar and DCA1000EVM board for data collection (Left) [16].

Forearm vibration detection by the radar (Right)

Data Collection Methodology: Our
user study protocol has been approved by
the IRB committee at our institute. We
recruit 10 users (6 males, 4 females) in
the age range of 22-47, weight range of
53-94 kgs, and height range of 5.1-6.2 ft.
The users face the radar with distances
upto 1 − 5 𝑓 𝑡 from the radar device as de-
picted in Fig. 11. We also conduct experi-
ments under non-line-of-sight conditions.
For stress-testing mm4Arm across all pos-
sible 3D finger poses, we follow the guidelines from standard computer vision literature [69].
Accordingly, while the users were allowed to perform arbitrary random finger motions, the study
staff also ensured that the users perform all base states of possible hand poses as defined in [69].
The majority of possible hand poses are known to be one of such base states or transitioning
between these poses [110] based on anatomical feasibility constraints. After some practice under
the guidance of research staff, the users perform arbitrary finger poses as well as pass through
these base states in random order. This ensures good convergence of the ML models as well as
generalizability. There are no discrete classes of gestures since mm4Arm performs tracking in a
continuous R21 space.

Environment: mm4Arm isolates the peak from the forearm reflections (Section 5.1). Thus, the
performance is naturally robust to environmental multipath. To better validate this, we conduct the
testing under three different environments as shown in Fig. 12 with people moving around in the
environment naturally. One-third of the data is collected under each setting with distances varying
from 1-5ft. We compare the results across different environments where training and testing data

(a) (b)

Radar

Dining 
Set

Kitchen Window

Door

TX

RX

Sliding
Door

(c)

Fig. 12. Environments for evaluation of mm4Arm (a) Balcony (b) Living Room (c) Kitchen

come from different environments.
Labels for Training and Testing: The collected data includes RF phase data from the mmWave

radar and the fingers’ 3D coordinates and joint angles captured by leap sensor [8]. While the
radar provides RF phase data for 3D pose tracking, the leap sensor data serves as the ground truth
for validation and provides labels for training mm4Arm’s ML models. The radar and leap data
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were synchronized by performing three distinct hand waving patterns at the beginning of each
experiment and matching the occurrence of such patterns in the leap and radar phase data. Since
mm4Arm performs continuous finger tracking instead of discrete gesture classification, we use
MSE (instead of cross-entropy) between predicted joint angles (from radar) and ground truth (from
leap) as the loss function.
Training Data Collection: As discussed before, the data collection is split uniformly across

three environments in Fig. 12. Each user participates in 5 sessions in each environment, with one
session each over distances of 1, 2, 3, 4, 5 ft. This results in 15 sessions per user. Each session lasts
for 300 seconds, with enough rest between sessions. The user exits the study space after a session
and returns to continue with the next session. This enables the model to develop robustness to
natural changes in hand position, height, and orientation which can vary across sessions.
Test Data: The above collected data is used for developing three kinds of models as described

below. For all cases, the training and testing data is taken from different multipath environments
(kitchen, balcony, living room). Other specifics about test cases for each model are also described
below. (i)Model with domain adaptation (mm4Arm): This is the default version of mm4Arm,
where a model for each user where a pre-trained model from a different user is taken and fine-tuned
using techniques in Section 5.3 such that only a small fraction (90 seconds) of user-specific training
data is used for developing a model for the user. (ii)Multi-user model: This is a user-independent
model. Here, we train a model based on training data from multiple users. The trained model
is directly used for inferences on a new user without any training data from the new user. (iii)
User-dependent model: As a baseline for comparison, we compare our system mm4Arm that
requires only 90s of user-specific training data as noted above with a user dependent model that
requires an excessive training overhead of 1800s of training data per user. This training data
comes from 6 sessions of that user (from 1-3ft) from two environments. Testing is done on the
third environment. All three combinations of train/test split (across the three environments) are
considered for evaluation.
Data size:We believe the training data size is sufficient. mm4Arm has much fewer parameters

compared to somewell-known network architectures, for instance, AlexNet has 61M parameters[63]
while our model has only 2M parameters. Our data size is also comparable with regular vision
solutions since our input frequency is 500 Hz and we require an excessive training overhead of
1800s of pre-training data per user, while vision based dataset usually have a FPS of 30-60Hz.
Moreover, we have also applied skip connections in the residual blocks of our network, helping the
model to converge with fewer data samples.

6.2 Implementation

mm4Arm is implemented on a combination of desktop and smartphone devices. The ML model is
implemented with TensorFlow [20] packages and the training is performed on a desktop with Intel
i7-8700K CPU, 16GB RAM memory, and Nvidia GTX 1080 GPU. We use the Adam optimizer [60]
with a learning rate of 1e-3, 𝛽1 of 0.9, and 𝛽2 of 0.999. To avoid over-fitting issues that may happen
in the training process, we apply the L2 regularization [27] on each CONV layer with a parameter
of 0.05, and also add dropouts [115] with a parameter of 0.05 following each RELU activation. We
apply anatomical constraints to the network in order to facilitate faster learning. Towards this, we
first normalize the predicted output of a joint angle by dividing it by the range constraint, then
apply the bounded ReLU activation (bReLU) function to the last activation layer in our network.
Our system is implemented on a combination of desktop and smartphone devices. Once a model is
generated from training, the inference is made entirely on smartphones using TensorFlowLite [43].
We perform the evaluation on OnePlus 9 Pro and Samsung Galaxy S20 smartphones.
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7 PERFORMANCE RESULTS

This section provides a systematic evaluation of mm4Arm based on insights gathered from the
simulations, the experimental platform, and the corresponding data collected as elaborated in the
previous section. First, we summarize our findings and later expand on the details.

• The reflections captured directly fromfingers are negligible, whereas the prominent reflections
generated from the forearm can provide reliable accuracy. The median error in joint angle
tracking is 5.73◦. The median error in location is 4.07𝑚𝑚.

• mm4Arm can track fingers under non-line-of-sight conditions and even when the forearm is
occluded from wearing clothes. The accuracy is robust to user diversity and natural variation
in arm position, height, and orientation. The multipath environment does not impact the
accuracy since the forearm reflections are isolated from other multipath components.

• mm4Arm can track all finger joints as well as flex and abduction motions reliably.
• The model trained on left hand can be easily transferred for performing inferences on the
right hand. This is a key result with applications in the development of prosthetic devices for
amputees based on mirrored bilateral training (elaborated in Section 9).

• mm4Arm runs on smartphones with a latency of ≈ 19ms and low power consumption.

Unless explicitly stated otherwise, the reported results are obtained under the following condi-
tions: (i) The model with domain adaptation as described above is used. This is the default version
of mm4Arm. The user-independent case is separately evaluated under multi-user models (Fig. 13).
The performance of user-dependent models is shown separately (Fig. 19b). (ii) Results from data
collected over a distance of 1-3ft from the radar are included. Other results corresponding to 4ft
and 5ft are discussed separately in Fig. 17a. (iii) The errors reported are for flex/extension angles as
they are prone to more errors with a high range of motion. Errors for abduction and adduction are
discussed separately (Fig. 17d).

To give a brief overview of our evaluation, we have a summary of the measurement results: Fig.
13 depicts the accuracy as a function of different users averaged across all joint angles. Fig. 14a
depicts a setting where a user is wearing a long sleeve jacket. Fig. 14b shows the non-line of sight
setting where the hand is hidden behind a room divider wall. We also evaluate such robustness in
Fig. 16a with users across 9 sessions at distances of 1-3ft over 3 environments. Fig. 16b provides
a breakup of accuracy over different heights of the forearm measured relative to the radar. Fig
16c depicts the accuracy breakup over different settings. Fig. 17 depicts the accuracy vs distance,
different fingers, finger joints and abduction/adductions and flex/extensions. Fig 19a,b depicts
Accuracy comparison of different domain adaptation techniques and size of training data. Based on
these results, the factor that may obviously affect the accuracy includes distances between radar
and users’ forearm and domain adaptation techniques.

Qualitative Results: A short demo is included in this anonymous url [10]. Fig. 2 shows samples
of 3D finger motion tracking. We visualize the real hand with the corresponding tracking by the
leap sensor (ground truth) and our systemmm4Arm (mmWave radar). Tracking bymm4Arm closely
follows the leap ground truth and the real hand. Samples in (f), and (g), indicate that the tracking is
consistent even when the fingers are moving. The overall results suggest that mm4Arm can track
the 3D finger motion pattern with good accuracy.

Overall Accuracy vs Users: Fig. 13 depicts the accuracy as a function of different users averaged
across all joint angles. While the multi-user model where the training data is generated from 9
users and tested on an unknown user performs well with a median error of 8.47◦, the tail errors
and the deviation can be large. Domain adaptation in mm4Arm can dramatically cut down the tail
errors in addition to improving the median error to 5.73◦ (location error of 4.07mm), thus leading
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Fig. 13. mm4Arm with domain adaptation outperforms multi-user model for all users: (a) Error in degrees (b)

Error in millimeters

to overall better accuracy, which is comparable to vision based systems [29, 82]. Note that the
location error is calculated by averaging the joint location difference of predicted joint location and
the ground truth joint location. The ground truth joint locations can be fetched from Leap API[8].
The predicted joint locations can be calculated by predicted joint angles, which is the output of
our model, assuming we have the information of users’ finger lengths. The accuracy is consistent
across users, gender, body sizes, etc.
Non-Line-of-Sight Setting and Clothing: Fig. 14a (last bar) depicts a setting where a user

is wearing a long sleeve jacket (Hanes Full-Zip Eco-Smart Hoodie [5]) so that the forearm is not
directly visible to the mmWave radar. The accuracy does not affect much because the thickness of
the clothing material is typically much smaller to cause any significant attenuation of mmWave
signals. Similarly, Fig. 14b shows the non-line of sight setting where the hand is hidden behind a
room divider wall (YASRKML 3 Panel Room Divider [19]), with a distance of 3ft between the radar
and the hand. The chosen material is similar to typical materials used for partitioning indoor spaces.
The median error under this setting is 5.97◦ whereas the median error under line-of-sight setting at
the same distance was 5.73◦. This indicates the basic feasibility of sensing under non-line-of-sight
conditions. Therefore, the sensing device can be embedded into materials and environments thereby
enhancing the ease of deployment.
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Fig. 14. (a) The accuracy remains stable when users wear long sleeve cloth (b) mm4Arm is robust to Non-Line-of-

Sight conditions

Performance Analysis over an Application in Gesture Recognition: mm4Arm performs
3D tracking of finger motion in a generic context and independent of any application. The tracking
results can be used for any application. We evaluate the feasibility of mm4Arm over a real-world
application in recognition of alphabets in American Sign Language (ASL) as defined in [2]. The
classification was performed by comparing the R21 space of joint angles of the users with the joint
angles corresponding to each gesture class. The gesture class with the minimum Euclidean distance
from the user’s finger joint angles is declared as the inferred gesture. Fig. 15 depicts the confusion
matrix of the classification. Evidently, most gestures are classified correctly with an overall accuracy
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Fig. 16. (a) Accuracy over sessions with variations in arm position/orientation (b) Accuracy over different

heights of the forearm relative to radar (c) Accuracy over environmental settings.

of 92.23%. Gestures such as 𝐴 and 𝑆 are misclassified sometimes because their hand-poses are
similar. This demonstrates the feasibility of using mm4Arm in real-world applications.
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Fig. 15. Confusion Matrix of classification.

Robustness to Variation in Arm Position, Height,

and Orientation: The ML models need to be robust to
natural variation in arm position, height, and orientation.
We evaluate such robustness in Fig. 16a with users across
9 sessions at distances of 1-3ft over 3 environments in Fig.
12. The domain adaptation data for test sessions come
from a different environment (and hence different session)
than the training environment. As discussed in the user-
study methodology, users exit the study space after each
session before coming back to start a new session. This
introduces natural variations in arm position, height, and orientation across sessions. Yet, the
accuracy is stable across all sessions, thus indicating thatmm4Arm is robust to the above variations.
Furthermore, across these sessions, Fig. 16b provides a breakup of accuracies over different heights
of the forearm measured relative to the radar. The height is measured from the wrist joint. When
the radar is pointing directly at the wrist joint, the height is 0, and increases as we move downwards
from the wrist to elbow. The accuracy is robust to the height of the arm because the training data
incorporates such diversity.
Robustness to Environmental Setting: Fig 16c depicts the accuracy breakup over different

settings. Since mm4Arm eliminates other multipath components before further processing steps
(Section 5.1), there would be almost no impact of multipath interference on the accuracy. The
accuracy is consistent across different settings.
Accuracy vs Distance: Fig 17a depicts that the accuracy is almost similar for 1-3ft. However,

beyond that distance, the accuracy starts to degrade gracefully. While the median errors do not
show much degradation the accuracy starts decreasing in the tail. With the increasing distance of
the user, the SNR of the forearm reflection decreases which results in higher tail errors.

Accuracy vs Fingers: Fig. 17b depicts the accuracy for the four fingers and thumb. The accuracy
is averaged over𝜙𝑚𝑐𝑝,𝑓 /𝑒 ,𝜙𝑝𝑖𝑝 , and𝜙𝑑𝑖𝑝 for the four fingers. For the thumb, the accuracy is computed
over 𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑡𝑚,𝑓 /𝑒 , and 𝜙𝑖𝑝 . The ML models can accurately predict the motion of all fingers. The
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Fig. 17. Accuracy vs (a) Distance (b) Fingers (c) Finger Joints (d) abduction/adductions and flex/extensions

accuracy of thumb is slightly higher because of a smaller range of motion.
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Fig. 19. (a) Accuracy comparison of different domain adaptation techniques. (b) Accuracy vs size of training

data. (c) Latency of Execution and (d) Power Consumption on Smartphones
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Fig. 18. Transfer of model from left hand to

the right hand.

Accuracy vs Finger Joints: Fig. 17c depicts the ac-
curacy as a function of the three finger joints ś 𝜙𝑚𝑐𝑝,𝑓 /𝑒 ,
𝜙𝑝𝑖𝑝 , and 𝜙𝑑𝑖𝑝 . mm4Arm tracks all finger joints with con-
sistent performance. Fig. 17d depicts the accuracy as
a function of flex/extensions and abduction/adductions.
Abduction/adduction angles have higher accuracy than
flex/extensions because of a limited range of motion.

Transferring Model from Left Hand to Right hand:

Fig. 18 depicts the accuracy when the model trained for
the left hand is transferred for inferences on the right hand.
Even without domain adaptation, the direct use of a model trained on the left hand provides good
accuracy for inference on the right hand. After domain adaptation with small training data from
the right hand (90s), the accuracy is comparable to the left hand. This opens up possibilities of
developing ML models for amputees with missing fingers. A model can first be learnt from the
hand without amputation, which can then be transferred to the hand with amputation.
Comparison of Domain Adaptation Strategies: Fig. 19a depicts the comparison of three

domain adaptation strategies discussed in Section 5.3. Because of the high-level similarity in
forearm-vibration pattern across users, it turns out that fine-tuning the whole model is feasible
and achieves the best accuracy with stable convergence even with limited domain adaptation data.
Therefore, mm4Arm adopts a strategy that updates the whole network during domain adaptation.

Accuracy vs Size of Training Data: Fig. 19b depicts the accuracy variation with the size of
training data formm4Armwith domain adaptation in comparison to a baseline of the user dependent
model. With only 5% (90 s) of training data as the user dependent model, the mm4Arm with domain
adaptation achieves a performance close to the user dependent model. Thus, mm4Arm can adapt to
a practical setting with limited training data.

Comparison with Vision: To give an idea of how mm4Arm performs compared to some other
solutions, we comparemm4Armwith SOTA camera based techniques ś Vision1 [29] and Vision2 [82]
ś as shown in Fig. 20. We note that mm4Arm’s accuracy is comparable to camera-based approaches
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Table 1. Scope of mm4Arm in the context of key prior works. To our best knowledge, mm4Arm is the first

work that performs 3D hand pose tracking with 21 degrees of freedom using RF signals with benefits as

highlighted in the table.

System Sensing Band

Robustness

to Lighting

and Ambience

Non Line

of Sight

21 DoF

Tracking

Google Soli [117] mmWave (60 GHz) ✓ ✓ ✗

mmASL [102] mmWave (60 GHz) ✓ ✓ ✗

RFWash [55] mmWave (60 GHz) ✓ ✓ ✗

SignFi [77] WiFi (5 GHz) ✓ ✓ ✗

WiSee [92] WiFi (5 GHz) ✓ ✓ ✗

FingerIO [83] Ultrasound (18-20 kHz) ✓ ✓ ✗

LLAP [118] Ultrasound (48 kHz) ✓ ✓ ✗

GANerated [81] Visible Light ✗ ✗ ✓

MediaPipe [126] Visible Light ✗ ✗ ✓

Leap [8] Visible Light and Infrared ✗ ✗ ✓

mm4Arm (This paper) mmWave (60 GHz) ✓ ✓ ✓

while offering other benefits over cameras such as not being privacy-invasive, agnostic to lighting
conditions, and the ability to work under basic occlusions, thus allowing the mm4Arm system to be
embedded in everyday devices and environments.
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Fig. 20. Comparison with Vision

System Profiling: Latency, Power Consumption,

and Processing Overhead: Fig. 19c depicts the latency
of mm4Arm’s ML models on modern smartphones - Sam-
sung S20 and OnePlus 9 Pro ś with TensorFlowLite. The
latency figures denote the overall time spent in processing
2 seconds of input sensor data using the encoder-decoder
architecture. The latency is under 20ms on both smart-
phones which indicates low processing overhead. We use
Batterystats and Battery Historian[13] tools for profiling
the energy of the TensorflowLite model. We compare the
difference in power between the following two states. (i) The device is idle with screen on. (ii) The
device is making inferences using TensorflowLite model. Depicted in Fig. 19d, the idle display-screen
on discharge rate is 3.85%, 3.40% per hour for two phones. The discharge rates while executing the
ML models is also summarized in the figure. Since the encoder-decoder processes data in chunks of
2s, it will incur a delay of atleast 2s if we process the data only once in 2s. Processing the model once
in 2s will result in a discharge rate of 8.19%, 7.97% per hour for the two phones. Towards making it
real-time, we make a modification where at any given instant of time, previous 2s segment of data
is input to the network to obtain instantaneous real-time results. This provides real-time tracking
at the expense of power. Depicted in Fig. 19d, this entails continuous/redundant processing thus
increasing the discharge rate to ≈ 20.77%, 19.96% per hour for the two phones. The low-power
mode trades off real-time performance (2s delay) for power savings. Depending on requirements of
real-time latency or energy efficiency, a user can choose between the two modes.

8 RELATED WORK

Table 1 provides a brief overview of mm4Arm in the context of key prior work. In the table, 21 DoF
Tracking refers to the ability to track all finger joints which have a total of 21 degrees of freedom
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(DoF) as elaborated in Section 2.2. The related work falls under three categories as elaborated below.
We compare and contrast the need for mm4Arm with respect to each of these areas.

Vision: Depth cameras like kinect[9] and leap [8] sensors can track fingers. They have revolu-
tionized the gaming industry by gesture interfaces. Recently, even monocular RGB cameras are
able to capture 3D motion of fingers by exploiting advances in ML together with the availability of
large-scale training data [28, 51, 82]. While such works are truly transformative in nature, vision-
based approaches can be privacy-invasive and susceptible to changes in lighting, background, and
resolution. Digits [57] uses wrist-mounted infrared cameras for 3D finger pose tracking. Similarly,
DorsalNet [120] uses wrist-mounted visual cameras for 3D finger motion tracking. FingerTrak
[49] has innovatively designed wearable thermal cameras to track 3D finger motion but has issues
with background temperature stability and the shifting of the camera on the hand as noted by the
authors. In contrast to approaches based on external cameras, or wearable cameras, we believe
mm4Arm’s approach provides a solution that is completely passive with robustness to lighting,
resolution, and background conditions. Furthermore, mm4Arm can track through materials and
non-line-of-sight conditions, allowing the system to be embedded into devices and environments
Radio Frequency Reflections: RF signals have been used for human body motion sensing

[21, 105, 123]. They are also used to track the motion of the hand and classify discrete gestures by
using a combination of wireless channel state information (CSI), and Doppler shifts [64, 78, 103].
mmWrite [98] performs handwriting recognition using mmWave radars. RFWash [55] detects
hand wash hygiene using mmWave radars near bathroom mirrors. SignFi [77] uses CSI from WiFi
APs for sign language recognition. ExASL [101] tracks point clouds computed from range-doppler
spectrum and angle of arrival spectrum of mmWave radars. This is used to classify upto 23 discrete
gestures used in ASL. Google Soli [117] and works in [99, 121, 129] uses reflections from mmWave
signals to track up to 11 finger motion gestures. mm4Arm differs from above works in two ways:
(i) In contrast to gesture and activity classification where the search space is limited to 10 to 50
predefined discrete classes, mm4Arm’s search space is a continuous space of 3D finger motion
with 21 degrees of freedom (DoF). The 3D finger locations predicted by mm4Arm can serve as
inputs to any gesture classification problem ś independent of a specific application. (ii) mm4Arm

senses vibrations in the forearm for 3D finger motion tracking, which results in robust tracking in
comparison to reflection from fingertips that are not stable (details in Section 4).
Wearable Sensing: Sensor embedded gloves that use a combination of sensors like IMU, flex,

capacitive, pressure, etc are popular [1, 3, 22, 34, 68]. However, wearing gloves precludes the
user from performing natural and dexterous activities with fine precision as studied in recent
works[100]. Localization and human body tracking projects exploit IMU, and WiFi sensors [21,
33, 116, 122, 130]. Similarly, IMU, WiFi, and acoustic signals have also been used for hand gesture
recognition [88, 104, 113, 132]. FingerIO [83], FingerPing [125] use acoustic signals for finger
gesture detection. uWave[73] uses accelerometers for user authentication and interaction with a
mobile device. Tomo [128] uses electrical impedance tomography with 8 electrodes on the arm for
performing classification of 8 gestures. Interferri [52] uses acoustic transducers for classification of
11 hand gestures Capacitative sensing has been systematically investigated by Capband [112] for
recognition of 15 hand gestures. ElectroRing [56] attaches electrodes on the index finger and IMU
sensors for detecting six different pinch-like finger gestures. DeepASL [41] uses wearable camera
for ASL translation of sentences with 56 commonly occurring ASL words. ThumbTrak [109] detects
12 finger gestures by measuring relative distance between thumb and other fingers using proximity
sensors. ZeroNet [76] extracts training data from videos to classify 50 hand gestures. In contrast to
gesture and activity classification, as noted earlier,mm4Arm performs continuous 3D finger motion
tracking. AuraRing [89], tracks the index finger precisely using a magnetic wristband and ring
on index finger. In contrast to AuraRing, mm4Arm tracks all fingers. With a combination of deep
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learning techniques based on CNN, RNN, etc, prior works on EMG sensing perform classification
of discrete hand poses [36, 40, 95, 97, 108] or track a predefined sequence of hand poses [95, 108].
The Myo armband has been used for 3D finger motion tracking [74, 75]. However, EMG sensors
need calibration and warming of the skin to be in proper contact with the electrodes which can
even take up to 5 minutes during each instance of wearing, leading to usability issues [11, 111, 119].
In contrast to using wearable devices, mm4Arm’s RF-based sensing is passive, since the user does
not need to wear any sensor on the body.

9 APPLICATIONS, LIMITATIONS, AND FUTURE WORK

■ Prosthetic Devices: A key benefit of mm4Arm lies in the ability to sense finger motion directly
from forearm vibrations instead of sensing from the fingers. Prior research has shown that subjects
with amputation in the hand will still retain forearm muscular activity [35, 42, 85, 87], which
manifests into forearm vibrations. Therefore, we plan to exploit the findings in this paper for
the development of prosthetic devices for amputees by detecting forearm vibrations. However,
because of missing fingers, it is non-trivial to generate training data that map phase patterns into
corresponding 3D joint angles of various fingers. Towards handling this challenge, we plan to
explore a mirrored bilateral training [85] scheme. At a high level, the forearm muscular activity
(and the corresponding vibrations) are known to be similar in both hands for performing similar
finger motion activities [114]. Therefore, an ML model trained with the non-amputee hand (without
missing fingers) while inducing bilateral activation can potentially be used for performing inferences
on the hand with missing fingers (amputated hand). The results in Fig. 18 shows the basic feasibility
of such an approach, since the model trained on one hand can be used for performing inferences
on the other hand. However, we leave a thorough investigation for future work.
■ Touchless Interaction for IoT applications: We believe mm4Arm can enable a number of

touchless user interfaces such as typing on a virtual keyboard or gesture-based user interfaces. This
is particularly useful for interaction with devices with small form factors such as a smartwatch,
miniature IoT devices, game controls, robotic home assistants, mobile spectroscopy, etc. Security-
based applications can be enabled where a user can lock and unlock an IoT device with a signature
based on 3D finger motion pattern.
■ Smart Assistants for Deaf People:We envision a future application in accessibility. Voice

assistants like Amazon Alexa and Google Home are popular, but inaccessible to the deaf community.
The population of the deaf community is upward of 10 million in the US and about 466 million
globally [6, 80, 86]. In this context, we believe touchless and fluid interaction enabled by mm4Arm

with 21 DoF 3D finger motion can enable deaf people to interact with voice assistants by issuing
complex commands like a natural language without being limited to a set of predefined gestures.
■ Robotic Teleoperation: Complex and unstructured robotic operation, especially in an un-

regulated environment may require human intelligence in addition to mechanical sturdiness and
robustness of a robot. This might include applications ranging from controlling a home assistant
robotic avatars or a robotic avatar in a dangerous industrial setting [39] in tasks including grasping
and manipulating objects in complex ways. Towards this end, we believe 21 DoF finger motion
tracking in mm4Arm can provide a solution for robotic avatar control, which is particularly useful
if the control is desired from anywhere, anytime.
■ Tracking Multiple Users Simultaneously:While this paper focuses on tracking a single

user, in principle, the algorithms presented could track concurrent changes from multiple forearms
as long as they occur at different distances from the radar. The reflections from different users will
fall in different range bins after the range-FFT (Section 3, Fig. 5). These reflections can be isolated
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from other multipath reflections (Section 5.1), and the phase variations of all users can be analyzed
for tracking finger motion. We will conduct more studies in the future to validate this approach.
■ Alternative ways of mapping forearm vibrations to finger motion: We considered

designing heuristics to map forearm vibrations to finger motion. To the best of our knowledge,
there is no closed form mapping between muscles, forearm vibrations and finger motions, and we
believe the neural network could learn the complex mapping above, for example, WR-Hand [74]
tracks 3D hand poses by inference EMG data to neural network. We plan to explore alternative
methods of doing this in the future.
■ Thick obstacle object in NLoS experiments:We did our non-line-of-sight(NLoS) exper-

iments using a dividing wall that is commonly used in office settings (YASRKML 3 Panel Room
Divider[19]), which is thinner than typical walls used to separate rooms. We plan to explore the
experiment in separate rooms with a thick wall in between in the future.
■ Potential weighting in loss functions: Regarding the Loss function(Equation 11), We are

inspired by prior computer vision works[82], who have a similar loss equation as ours. However,
different weightings in the loss function might potentially optimize mm4Arm’s accuracy, and we
will explore it in the future.
■ Size of Sensing Device: The current experimental setup is bulky. However, we note that the

actual mmWave chip is only 2cm×2cm in size, and the dimensions of the antenna is 2.5cm×3cm.
This can be integrated into a compact PCB with a SoC microcontroller to stream the range-FFT
results from the radar to a smartphone. The development board used in mm4Arm is only for the
‘prototypying phase’ as this is the standard procedure in many IoT applications to extensively test
the prototype before rolling out on a compact PCB [24]. Our future work will include testing the
feasibility of such a fabrication to create a smaller sensing device.

10 CONCLUSION

Because of the ability to sense the sense environment around us, mmWave signals are being
increasingly considered for sensing applications in addition to high-speed networking. Through a
combination of high-fidelity electromagnetic simulations and real-world measurements, this paper
shows the feasibility of sensing forearm vibrations for 3D finger motion tracking using mmWave
signals. Anatomical constraints of finger motions were fused with ML advances in encoder-decoder,
Resnets, and domain adaptation in achieving reliable accuracy with low training overhead. The
inference is done with low processing and energy overhead on smartphones. Despite progress, we
believe we have only scratched the surface. Opportunities exist for developing IoT applications on
top of mm4Arm in the areas of touchless user interfaces, accessibility, prosthetic devices, etc.
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