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This paper presents iSpyU, a system that shows the feasibility of recognition of natural speech content played on a phone during
conference calls (Skype, Zoom, etc) using a fusion of motion sensors such as accelerometer and gyroscope. While microphones
require permissions from the user to be accessible by an app developer, the motion sensors are zero-permission sensors, thus
accessible by a developer without alerting the user. This allows a malicious app to potentially eavesdrop on sensitive speech
content played by the user’s phone. In designing the attack, iSpyU tackles a number of technical challenges including;: (i) Low
sampling rate of motion sensors (500 Hz in comparison to 44 kHz for a microphone). (ii) Lack of availability of large-scale
training datasets to train models for Automatic Speech Recognition (ASR) with motion sensors. iSpyU systematically addresses
these challenges by a combination of techniques in synthetic training data generation, ASR modeling, and domain adaptation.
Extensive measurement studies on modern smartphones show a word level accuracy of 53.3 — 59.9% over a dictionary of
2000-10000 words, and a character level accuracy of 70.0 — 74.8%. We believe such levels of accuracy poses a significant threat
when viewed from a privacy perspective.
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1 INTRODUCTION

There is a surge in Internet-of-Things (I0oT) devices in applications including smart-homes, industrial automation,
self-driving cars [22, 71] with rich sensing capabilities. However, such a rich ecosystem of IoT sensors are often
considered “double-edged swords" since they leak private information [9, 18, 47, 89]. To understand what level of
leakage is appropriate, the key question boils down to: How much information can be inferred from a given sensor
data? While this question is a subject of an active area of research, emerging advances in hardware, software,
and machine learning warrant constant attention to information leakage. In this context, this paper asks the
following question: Can motion sensor data (also called as IMU - Inertial Measurement Unit) from accelerometer
and gyroscope be used to eavesdrop on continuous speech content played on a smartphone (during skype, zoom calls,
interaction with voice assistants, etc.)? If so, it could impose a serious privacy threat. A malicious app disguised
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as an activity tracker can eavesdrop on sensitive speech content. Unlike microphones which require explicit
permissions from the user for access by app developers, motion sensors (accelerometer and gyroscope) have
unrestricted access, thus providing a side channel for eavesdropping speech.

Detailed in the threat model in Section 4, accelerometers and gyroscopes are zero-permission sensors on popular
mobile operating systems like Android, thus allowing their free use by developers without alerting the user. When
speech content is played on a smartphone, these sensors can record the vibrations, thus causing information
leakage from the loudspeaker to the motion sensors. As shown in prior works, an adversary can disguise an app
(for example, as a fitness tracking app) for eavesdropping on speech content [3, 6, 47, 89], which will be used
for performing the attack by exploiting the above leakage. In particular, recent android smartphones such as
OnePlus 9 Pro, Samsung S20 and Huawei P20 provide unrestricted access to sensor data with sampling rates
upto 500 Hz when sampled in SENSOR_DELAY_FASTEST mode [4, 6]. This covers a key range of human speech
frequencies, thus allowing a malicious app developer to eavesdrop speech content and compromise the privacy
of users. Given that Android OS has a market share of about 72% worldwide , we believe this is a critical concern
related to speech privacy [48].
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Fig. 1. Overall Architecture of iSpyU for spying smartphone speakers via motion sensors (accelerometer and gyroscope):
Synthetic training data generated from large scale speech datasets is combined with small scale training data from real-world
motion sensors — this generates iSpyU’s speech recognition models.
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Exploiting the above vulnerability, we propose iSpyU (IMU based Spying), a system that demonstrates the
feasibility of an automatic speech recognition (ASR) attack for converting such motion sensor vibrations into text.
The COVID-19 pandemic has forced people to embrace remote working. Many companies, including Facebook
and Twitter, plan for permanent remote working jobs even after the pandemic ends [66]. Given that smartphones
are actively involved in many virtual video/audio conferencing calls (Zoom, Skype, etc) to deliver the speech
content from the call, we believe the ability to eavesdrop on spoken natural languages and convert them into text
is a critical concern.

Prior works in this area include Gyrophone [47], Spearphone [3], and AccelEve [6]. Gyrophone uses gyroscope
to detect 11 digits with an accuracy of 26%. Spearphone classifies 58 words spoken in isolation with 67% accuracy
using accelerometers. AccelEve can classify 10 digits and 26 alphabets with 55% accuracy. However, the attack
capabilities shown in prior works made unrealistic assumptions with the attack only being limited to digits,
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Table 1. Scope of iSpyU in the context of key prior works on motion sensors. iSpyUs+ is a version of iSpyU where we assume a smaller
dictionary size of 2000 words at test time for decoding each sentence. To our best knowledge, iSpyU is the first work on continuous speech
recognition with ASR over thousands of words in the dictionary.

‘ System ‘ Sensor ‘ Source of Sound ‘ Recognition Task ‘ Dictionary Size ‘ Accuracy ‘
Gyrophone [47] Gyroscope External Loudspeaker (Subwoofer) Isolated Words 11 (digits) 26%
SpearPhone [3] Accelerometer Smartphone loudspeaker Isolated Words 58 (keywords) 67%
AccelEve [6] Accelerometer Smartphone loudspeaker Isolated Words 36 (10 digits + 26 alphabets) 55%
iSpyU Accelerometer + Gyroscope Smartphone loudspeaker Continuous Speech (ASR) 9950 words 53.3%
iSpyU+ Accelerometer + Gyroscope Smartphone loudspeaker Continuous Speech (ASR) 2000 words 59.9%

alphabets, or certain words spoken in isolation, the privacy threat was not considered serious enough. In contrast
to detecting tens of digits or keywords spoken in isolation, iSpyU spies on naturally spoken continuous speech
with a dictionary size & 10000 words. Although iSpyU is still comparable to their respective previous work
setting, we believe the ability to perform ASR on a large vocabulary is a new contribution in iSpyU that has not
been explored before. With this capability, an adversary can potentially launch a massive attack. For example,
insurance companies could infer health status of several of their customers in automated ways, eliminating the
need to manually process each client’s data. Advertising companies can similarly learn customer interests in
automated ways and place targeted advertisements on the site massively. We believe such an eavesdropping of
real-world conversations is of critical concern when speech privacy is of interest.

To summarize, iSpyU differs from prior works in the following ways (overview in Table 1): (i) In contrast to
detecting isolated keywords or digits, iSpyU performs ASR on motion sensor data to convert natural spoken
languages into text — first such attempt to our best knowledge. Since humans mostly communicate in sentences
instead of single words, we believe iSpyU performs a more realistic attack than prior works.

(ii) In contrast to 50-100 specific keywords used in prior works, iSpyU’s dictionary space is much larger: ~ 10000
words [57]. This can cover a majority of words used in natural conversation, thereby making the attack stronger.
(iii) In contrast to using accelerometer and gyroscope separately, iSpyU fuses them together and evaluates the
capabilities offered by individual sensors, and with fusion.

Performing an end-to-end ASR on motion sensors is challenging for many reasons: (i) The sensor sampling rate
is low, whereas human speech frequencies can range upto 8kHz. (ii) Unlike online audio datasets for training
speech-based ASR, there is no large-scale training data available for developing ASR models for motion sensors.
(iii) Therefore, iSpyU generates synthetic training data from online speech datasets. This introduces a domain
adaptation problem due to differences in distribution between synthetic and real motion sensor data. (iv) Sentences
in a natural conversation include words that blend seamlessly into each other, thereby making it challenging to
identify them using motion sensor data. (v) The sensor data is inherently noisy. The spectral distribution differs
from that of typical audio.

Towards handling the above challenges, iSpyU exploits many opportunities. (i) iSpyU fuses accelerometer and
gyroscope data together towards harvesting the best information possible from a limited sampling rate. (ii) iSpyU
creates synthetic motion sensor data for training by performing signal processing transformations on speech
samples from large corpus of online speech datasets [57] (iii) iSpyU then performs fine-tuning of ASR models
trained with synthetic data to systematically handle the residual differences in distributions of synthetic and real
data. In particular, deep-learning based ASR models have millions of parameters. Fine-tuning these layers directly
requires a lot of training data for convergence. Therefore, iSpyU introduces tunable Linear Hidden Networks
(LHN) layers into the ASR model with a fewer set of parameters capable of effective fine-tuning. (iv) iSpyU
designs machine learning models based on attention-mechanism, and performs weakly supervised learning using
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an appropriate sequential probability thus obviating the need to segment words in a sentence. Furthermore,
language models are incorporated that can fill in the gaps in sensing information based on the context from
surrounding words. (v) Preprocessing techniques like spectral subtraction are exploited to handle noisy data.

Fig. 1 depicts the overall architecture. The ASR model is trained on synthetic motion sensor data generated from
online speech datasets [57]. The synthetic model thus created (shown in red dotted box) is fine-tuned using
small scale real sensor data from a smartphone to generate an ASR model (shown in green dotted box) suitable
for converting motion sensor data into text. The attacker does not need any training data from the victim’s
smartphone but generates their own training data for fine-tuning.

iSpyU is implemented on OnePlus 9 Pro, Samsung Galaxy S20, and Huawei P20 smartphones and tested over
various surfaces used in daily life such as table, carpet, hand (even while walking), sofa, floor, etc. Because the
speaker and IMU share the same motherboard, there is a strong direct channel between the two. Therefore, the
impact of dampening by external surfaces in contact with the phone is negligible.

The ASR models were implemented using PyTorch and trained on a Nvidia Quadro RTX 8000 GPU. The training
data is based on synthetic datasets derived from the popular LibriSpeech dataset. Given that LibriSpeech data
uses sophisticated vocabulary than a typical everyday conversation, it is known to be a popular benchmark for
testing ASR applications including Baidu’s Deep Speech [1] and voice assistants such as Amazon Alexa [72].
Testing with an independent and diverse set of users and sentences was conducted. The accuracy at the word
level varies between 53.3 — 59.9% over a dictionary of 2000 — 9950 words. At the character level, the accuracy can
be higher (70.0 — 74.8%) since incorrect words can be close matches to the ground truth. While the accuracy is
not ideal for a usability related ASR application such as a voice assistant, it might be of critical concern when
privacy is of interest. For instance, these levels of accuracy are known to be sufficient enough to even hold a
basic conversation by inferring missing words from context [39, 40, 42, 43], thus potentially revealing sensitive
information about the victim’s location, mood, health status, political inclination, etc. Inspection of raw sentence
decodings (examples in Sec. 7) suggests that sensitive information about the context of communication can be
inferred thus compromising privacy. Furthermore, some of the wrong words are close matches to correct words
(Friday was decoded as Friday’s). While decoding in iSpyU does not cross boundaries of sentences, we sketch
ideas that exploit Natural Language Processing (NLP) in Sec. 8 which could potentially exploit context across
sentences for enhancing the accuracy in the future.

Considering the above possibilities, the contributions in iSpyU can be summarized as follows:

(i) Design of an eavesdropping attack with motion sensors to spy on continuous speech on phone loudspeakers. In
contrast to prior work, our dictionary size is 100 fold increase from less than 100 words in prior work to 10000 in
our paper. (ii) Design of synthetic training datasets to efficiently train deep learning based ASR models. The strategy
adopted by iSpyU in using a combination of large quantities of synthetic training data plus small quantity of real
world data achieves a sweet-spot in the trade-off between training overhead and accuracy. (iii) Fusion of attention
mechanisms, weakly supervised learning, and language models for performing ASR on motion sensor data with
insufficient information. Thus we can focus on continuous speech and obviate the need to segment a sentence
into individual words during training or inference. (iv) Efficient domain adaptation of ASR models trained with
synthetic data for improving the accuracy of inferences on real sensor data. iSpyU introduces tunable Linear Hidden
Networks (LHN) layers into the ASR model with a fewer set of parameters capable of effective fine-tuning. (v)
Implementation and evaluation on off-the-shelf smartphones.
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2 RELATED WORK

Table 1 provides an overview of key related work, the details are elaborated below.

2.1 Side-Channel Attacks on Mobile Sensors

Mole [89] uses smartwatch accelerometer to spy on contents of a user’s typing. S3 [18] detects drawings on a tablet
using an apple pencil by exploiting variations in magnetic fields sensed by the magnetometer. Accelerometer
sensors are also known to reveal passwords as entered on the touchscreen of a phone [56]. The smartphone
magnetometers are even shown to be capable of identifying the operating systems and the pattern of applications
in a nearby desktop by monitoring the spinning of hard-drives which are made of magnetic materials [9]. More
recently, magnetometer sensors are exploited to spy on applications on a smartphone [30]. In contrast to these
works, iSpyU performs an attack on spying speech contents from the accelerometer signals.

2.2 Spying on Speech Content

Gyrophone [47] detects speech content from an external loudspeaker (subwoofer) using gyroscope sensors
placed on the same surface (for example, shared table). Classification of 11 digits (0-9 and "oh") is shown with
the best accuracy under speaker-independent case being 26%. Similarly, Speechless [2] shows the sensitivity of
smartphone accelerometers to loudspeakers but does not perform word classification or ASR. Spearphone [3]
classifies 58 words spoken in isolation with 67% accuracy using accelerometers. AccelEve[6] can classify 10 digits
and 26 alphabets with 55% accuracy. AccelWord [95] shows the feasibility of detecting the wakeup keywords of
voice commands such as “Okay Google", and “Hi Galaxy" using accelerometers. PitchIn [23] shows the feasibility
of eavesdropping ambient speech by fusing data from multiple non-acoustic sensors (accelerometers, gyroscope,
geophone, etc). Evaluated over 40 words, enhancing the sampling rate to 8 kHz by above fusion is needed to
reach an accuracy of 50%, whereas the accuracy is around 5% even with a sampling rate of 1000 Hz. Work in [5]
shows the feasibility of detecting digits and four specific phrases using motion sensors. In contrast to such works,
to our best knowledge, iSpyU is the first work to show the limits of performing end-to-end ASR on continuous
speech over a large dictionary of ~ 10000 words. Since humans communicate in sentences instead of single words,
we believe iSpyU performs a more realistic attack over a large dictionary of words. In addition to smartphones,
other forms of attacks have been explored. LidarPhone [69] uses lidar sensors on vacuum cleaning robots to spy
on speech within a room. Lamphone[53] analyzes vibration on a light bulb due to sound pressure variations
using electro-optical sensors. Visual Microphone [15] records sound vibrations on objects in the environment
using cameras. In contrast, iSpyU shows the feasibility of spying on natural speech content on a smartphone
loudspeaker.

2.3 ASR Models

HMMs were popular in the early days of ASR [64]. Since the rise of deep learning, hybrid DNN-HMM models have
emerged that use a DNN encoder to extract features and a HMM decoder for outputting labels [38]. Connectionist
Temporal Classifcation (CTC) [21] revolutionized ASR since it provides a way of weakly supervised learning with
dramatically low overhead of labeling or segmenting the speech data. It also relaxes independence assumptions
made by HMM models to provide robust recognition. Recently, attention-based models have been proposed for
vision and NLP tasks [11, 46, 88] that exploit stronger spectro-temporal relationships not only between various
parts of the audio input, but also between inputs and currently decoded outputs. iSpyU incorporates such an
attention-based ASR model but customizes it for working with motion sensor data.
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2.4 Domain Adaptation

Transfer-learning-based domain adaptation is popular in vision and speech processing. For example, AlexNet
model [36] pretrained on ImageNet database [16] was fine-tuned for classifying images in medical domain[96],
remote-sensing [24] and breast cancer [54]. Similarly, a pre-trained BERT language model [17] was fine-tuned
for tasks such as text-summarizing [94], question answering [63], etc. This significantly reduces the burden of
training for a new task. In a similar spirit, we use a pretrained model from synthetic motion sensor data. While
this provides a good enough base model to begin with, we adapt the model with real sensor data. As discussed in
Sec. 5, our domain adaptation trains only a few parameters to significantly decrease the overhead of training data
generation.

3  OVERVIEW OF MOTION SENSORS

We provide a brief overview of the motion sensors.

3.1 Motion Sensors and Vibrations

3.1.1  Accelerometer. A micro electro mechanical system (MEMS) capacitive accelerometer is depicted in Fig. 2(a).

A proof-mass is suspended by a spring system in between an array of fixed electrodes. Each mass provides the

moving plate of a variable capacitance formed by an array of interlaced fingers [45]. When the accelerometer is in

motion, the proof-mass resists the motion due to inertia as shown in Figure. 2(b). This causes variation in relative

distances between the proof-mass and fixed electrodes. This displacement induces a differential capacitance
Sensing Axis

Fixed Electrode 1 Fixed Electrode 2 Fixed Electrode 1 Fixed Electrode 2

) Proof Mass
Fixed Support (includes fingers)

Fig. 2. A capacitive accelerometer (a) Accelerometer in rest (b) Accelerometer under Motion.

between the moving and fixed silicon fingers which is proportional to the applied acceleration.

3.1.2  Gyroscope. Fig. 3 depicts the high-level overview of a MEMS gyroscope. A proof mass is suspended
between fixed electrodes and set to vibrate in a specific direction as indicated in the figure. When the gyroscope
undergoes rotational motion, this introduces a Coriolis force [14] proportional to the angular velocity. This force
is in a direction perpendicular to both the direction of vibration and the axis of rotation as indicated in the figure.
This force moves the mass as shown in Figure 3(b) relative to the fixed electrodes. By measuring the change in
capacitance, the Coriolis force, and hence the angular velocity can be estimated.

3.2 Impact of Speech on Motion Sensors

Accelerometer and gyroscope sensors are key components of applications in motion tracking including virtual
and augmented reality, localization, sports analytics, etc [51, 91]. iSpyU performs a side-channel attack on these
sensors. When a speech content is played by a smartphone speaker, this will induce vibrations in the sensors.
Fig. 4 shows an example of the accelerometer and gyroscope readings when an audio content saying "A golden
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Coriolis force and capacitance change

Vibration direction
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Fig. 3. (a) Components of a capacitive gyroscope (b) Gyroscope under motion

fortune and a happy life" is played on the speaker. Evidently, the accelerometer and gyroscope sensors are able
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Fig. 4. (Top) Audio content for "A golden fortune and a happy life" and the spectrogram. (Middle) Corresponding accelerometer
signal and the spectrogram (Bottom) Corresponding gyroscope signal and the spectrogram.

to capture the vibrations. iSpyU shows the limits and bounds of decoding speech content using such vibration
leakage.

In addition to the sensitivity of the motion sensor hardware to vibrations, the sampling rate is another critical
factor that determines the feasibility of decoding speech content. Table 2 summarizes the sampling rates available

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 197. Publication date: December 2022.



197:8 « Zhanget al.

Table 2. Android sampling rates in different settings

Setting Delay | Sampling rate
SENSOR_DELAY _NORMAL | 200ms 5 Hz
SENSOR_DELAY UI 20ms 50 Hz
SENSOR_DELAY_GAME 60ms 16.7 Hz
SENSOR _DELAY FASTEST - CPU dependent

in Android. Specifically, under the setting of SENSOR_DELAY_FASTEST, recent smartphones such as OnePlus
9 Pro, Samsung Galaxy S20, Huawei P20, Google Pixel 4, etc, can support a high sampling rate upto 500Hz [4, 6].
A natural question is: Is it possible to capture human speech with 500 Hz? The fundamental frequency of vocal
cord vibrations for a male speaker varies between 85-180 Hz, whereas, for a female speaker, it varies between
165-255 Hz [7]. While the 500 Hz sampling rate sufficiently covers this frequency range (0-250 Hz), thus opening
up opportunities, it is not sufficient to provide perfect intelligibility [78]. Fig. 5 shows the importance of various
frequencies in the intelligibility of speech signals. Evidently, the higher frequency components that involve the
use of consonants are critical for higher intelligibility. Unfortunately, with a sampling rate of 500 Hz, the higher
frequency components can only be sensed in aliased form on the motion sensors. iSpyU’s ASR models (Sec. 5)
will propose ideas for extracting speech content from such aliased signals.

40

10
500 1k 2k 4k 8k

125 250

Intelligibility (%)
n
3

Frequency (Hz)

Fig. 5. Relative importance of speech frequencies [78]

4 THREAT MODEL

We elaborate on the threat model used in iSpyU. The overall threat model (depicted in Fig. 6) is a stronger version
of the threat model considered in prior works such as SpearPhone [3], GyroPhone [47], and AccelEve [6]. iSpyU’s
threat model differs from prior works with the capability to spy on natural conversations with upto 10000 words
in the dictionary. Also, it has been shown in prior works that an adversary can disguise an app (for example, as a
fitness tracking app) for eavesdropping on speech content [3, 6, 47, 89], which will be used for performing the
attack. Unlike microphones, the motion sensors are zero permission sensors (even with latest Android 12), thus
allowing the spying app to capture the data without alerting the user. The spying app can have access to the
motion sensors with sampling rates up to 500 Hz on recent phones [6] without special permissions from the user.
While this covers a key range of human speech frequencies (discussed in Sec. 3), with the increasing trend in
CPU speed, we expect that the sampling rates may go up in the future, thus making the attack stronger [49, 50].
With these capabilities, an attacker can potentially spy on speech contents of a remote caller during video/audio
conferencing (Zoom, Skype, etc) with the victim. With the advent of COVID-19 pandemic, and a thrust towards
permanent remote working jobs in many companies including Facebook, Twitter, etc [66], we believe this is of
critical concern because most users rely on online video/speech conferencing for conducting daily work activities.
Smartphones/tablets are among the popular devices for participating in online conferencing. In addition, with
the rising popularity of voice assistants (Google Assistant, Siri, etc) on smartphones, the responses of the smart
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assistant during interaction with the user can also be a target of the spying attack. The above cases involve
communication in a natural language such as English. The attacker will develop ASR models for using the motion
sensor data to convert such spoken natural language content into text. In developing the ASR model, the attacker
does not need labeled training samples from the victim’s smartphone. The attacker will synthesize training data
(details in Section 5) from online speech datasets to create a basic ASR model. The attacker will then fine-tune the
model with small amounts of labeled sensor dataset from their own phone. Finally, the ASR model thus developed
is used to launch the attack by converting the motion sensor data into text.

— Speech Reverberation )
= (Aculmmm-
(Sga) 9""“"’"'

No Perm|55|on ~

Required ! ‘\)1
{ Mlcrophone} - > \!! . ¢
Permission Required

Fig. 6. Threat model of iSpyU.

5 ASR WITH MOTION SENSORS

We elaborate on various modules in the architecture of iSpyU as depicted in Fig. 1.

5.1 Synthetic Training Data Generation

The robustness of ASR models depend heavily on large-scale training datasets with diversity in speakers, genders,
accents, etc. Unlike speech domain, there is a dearth of large-scale training data for motion sensors. Thus, we
design synthetic training data as follows.

5.1.1  Subsampling. LibriSpeech audio data is sampled at 16 kHz. However, the sampling rate of the motion
sensors is only 500 Hz. The high-frequency data superimposes onto lower frequencies in aliased form. Towards
emulating this, iSpyU subsamples the speech data at 500 Hz before feeding it to the ASR model. While subsampling
loses information, there are spectral dependencies across speech components [33] that can be leveraged to infer
speech content from such lossy information.

5.1.2  Synthetic Noise Modeling. Although we employ preprocessing techniques based on filtering, and spectral
subtraction to eliminate noise in the sensor data (detailed in Sec. 5.3), a residual noise still persists. Towards the
creation of synthetic data that best matches the nature of real data, we add systematic noise to the synthetic data
based on the distribution of the residual noise in the real sensor data. We first measure the noise distributions
for accelerometer and gyroscope data. We then measure the signal strength of sound vibrations when speech is
played on the phone. Using this, the signal-to-noise ratio (SNR) for the sensor data is computed. Finally, we add
noise to the synthetic data such that the SNR of the synthetic data matches with the real data. Fig. 7 shows an
example of synthetic accelerometer data and the corresponding real data.

5.2 Speech Detection

We first show the feasibility of distinguishing speech segments from intervals where there is silence or human
motion activities like walking, running, etc. Evidently, based on results in Fig. 4, the occurrence of speech signal
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Fig. 7. (Top) Synthesized accelerometer data. (Bottom) Real Accelerometer data (noise subtracted).

is very apparent not only because of a high SNR but also because of a rich spectro-temporal pattern. We build a
shallow neural network to classify the following three activities - silence, motion activity (walking, running, etc),
speech. The data is processed in chunks of 50ms with a windowed approach with sliding length of 20ms (60%
overlap across successive chunks). We achieve a perfect accuracy in speech detection because of the following
reasons: (i) Unlike microphone which can be polluted by ambient noise, the IMU sensors are not affected by
ambient noise through air medium, but only influenced by loudspeaker vibration which is transferred to IMU via
shared motherboard (solid medium). Therefore, it is easier to distinguish speech from the hardware noise and
there is no influence of ambient noise. In addition, recent conferencing apps like Skype and Zoom incorporate
sophisticated signal processing algorithms for background noise elimination and speaker voice isolation [55, 86]
thereby enhancing the speech quality. (ii) A typical spoken sentence is atleast 2-3 second long thereby making it
an extremely rare event to have false negatives continuously over this range. (iii) The human motion activities
tend to occur in the lower frequencies below 30 Hz [62], thus making it easier to identify them. This facilitates
identification of speech occurrences in the motion sensor data. iSpyU is only activated whenever speech segments
are detected. Furthermore, once speech segments are identified, iSpyU applies a high pass filter at 80 Hz as
described in Section 5.3 because eliminating these frequencies removes some low frequency noise and human
motion activities without affecting speech recognition performance and intelligibility [78] (results discussed with

Fig. 11(c)).

5.3 Preprocessing and Noise Subtraction

We perform the following preprocessing techniques on the sensor data for improving the robustness of ASR
models.

5.3.1 Spectral Subtraction. We perform background noise elimination using spectral subtraction techniques
popular in speech processing [10]. At a high-level, the average signal spectrum and the average noise spectrum
are first estimated and then subtracted from each other, which is shown to eliminate additive stationary noise
[69, 84]. Fig. 8 shows an example of the accelerometer signal before and after spectral subtraction. Evidently, the
signal appears cleaner after spectral subtraction.
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Fig. 8. (Top) Raw accelerometer signal. (Bottom) Spectral subtracted signal.

5.3.2  High Pass Filtering. The fundamental frequency of the voiced speech of a typical adult male and female
will vary from 85-180 Hz, 165-255 Hz respectively . Thus, we apply a high pass filter at 80 Hz to eliminate the DC
offsets and low-frequency noise without affecting ASR. This will also eliminate effects on the sensor data due to
human motion - particularly if the phone is in the hand.

5.4 Feature Extraction

In the context of audio signals, extraction of rich spatio-temporal features before performing deep learning has
shown to create robust models with smaller training data [19]. The popular Mel-Frequency Cepstral Coefficients
(MFCC) [34] features are derived from filter banks [19]. More recently, the direct use of filter banks instead
of MFCC is gaining in popularity because of a number of advantages. MFCC attempts to decorrelate features
through a process of whitening so as to make them more suitable for conventional machine learning algorithms
based on Gaussian Mixture Models (GMM), and Hidden Markov Models (HMM). Such a decorrelation step with
Discrete Cosine Transforms (DCT) also results in loss of information. With the advent of deep learning, and the
ability to handle correlated information, filter banks are gaining in popularity in most deep learning based ASR
systems. We briefly discuss filter banks here as well as adapting the filters in the context of iSpyU for performing
ASR with motion sensor data with a smaller frequency range.

In conventional ASR, the audio data is divided into frames of sizes 25ms. However, in the context of motion
sensor data, we use a frame size of 50ms, so as to increase the resolution of the FFT stages to be discussed later.
This is particularly important since the motion sensor data has a much smaller range of frequencies (0-250Hz)
in comparison to speech data (0-16KHz). For each such 50ms frame, a hamming window w is then applied as
depicted below.

2mn
w(n) = 0.54 — 0.46cosN” (1)

where 0 < n < N — 1, N is the size of the window. A N-point FFT (also called as Short Term Fourier Transform
(STFT))is now performed on each frame. The power spectrum (periodogram) is computed next based on the
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below equation.
_ |FFT(x)]?
- N

P (2

where x; is the i*" frame of the signal.

Finally, the filter banks are computed from the periodograms. Here, the linear frequency scale is first converted to
a logarithmic scale (Mel scale). The below equation captures this.

f
= 25951 1+ —— 3
m 0g10(1+ 700) (3)

Using such a non-linear scale, several filters with varying center frequencies, and width are used to extract fbank
features as shown in Fig. 9. The equations depicting these filters are enumerated below.

f =700(10™/%75 — 1)

0fork < f(m-1)

_k=flm-1) _
H (k) = T 70m D for f(m—1) < k < f(m) @
Fomit=pom for f(m) <k < f(m+1)

0fork > f(m+1)

Here, H(k) denotes the response of the k*” filter bank. Each fbank filter integrates the energy within its respective
frequency range as a single feature value. While conventional ASR typically uses 40 such fbank features to cover
a larger frequency range, iSpyU adapts the sizes and widths of these filters appropriately to focus on the 250Hz
of the motion sensor data. iSpyU uses 10 filters as shown in the figure. These fbank features form the input to the
ASR models.
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Fig. 9. Fbank filters extracting features from the motion sensor spectrum.

5.5 ASR Model

Fig. 10(a) shows the high-level overview of the ASR model designed with attention mechanism popular in
computer vision and speech processing [11, 46, 59, 85]. The input to the model includes a sequence of fbank
features extracted from the motion sensor data (which includes gyroscope and accelerometer data), denoted as:
X = {x1, x2, .x;..x7}. Here, x; denotes the fbank features extracted at the ith time step where the fbank features
from accelerometer and gyroscope are fused in concatenated form as a vector. The output is a sequence of words
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Fig. 10. (a) iSpyU’s ASR model. (b) LHN layers cause efficient domain adaptation

y = {y1, Y2, ....yx } with k < T. Given the time-step is very small to accommodate a full spoken word [35, 77], it
is a common convention in ASR literature to note that the number of output words is less than the number of
time-steps [11, 13]. While phonemes and graphemes are other possibilities for modeling the output unit instead
of words, modeling directly based on words has attracted recent attention due to the simplified ASR pipeline by
avoiding additional pronunciation lexicon. This aids in a faster decoding process with competitive performance
[27, 37, 93]. The model computes a probability of i*” word as a function of the entire input and the previously
decoded words in the sentence, denoted as p(y;|x, y<;). We now elaborate on the various components of this
model.

5.5.1 Encoder. The encoder processes the fbank features using Bidirectional Long Short-Term memory (BLSTM)
[70] layers to convert the input audio into compact feature representations that capture the rich spatiotemporal
relationships in the motion sensor input. The pyramidal architecture with subsampling layers is included with
the following benefits: (i) Avoids overfitting. (ii) Allows efficient training with fewer parameters. (iii) The fewer
parameters via sub-sampling provide leverage for increasing the depth of the network. The deeper architecture
allows the learning of complex spatiotemporal relationships. We have 3 layers in the model with a subsampling
factor of two at each layer, thus reducing the size of the input by a factor of 8. The output of the i" time step at

the j*" BLSTM layer can be represented as:
W = BLSTM(h!_, [W) ' k') (5)

We now elaborate on the decoder that converts the encoder outputs from the final layer to a sequence of words.
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5.5.2  Decoder. We first explain the action of the decoder without the language model, and fuse the language model
into the decoder in the next subsection. The decoder uses an attention-based Long Short-term Memory (LSTM)
network as depicted in Fig. 10(a). At each step, the decoder produces the conditional probability distribution
of the output word dependent on all the previously decoded words. The conditional probability of i*" word, y;
depends on the decoder state s;, decoder context, ¢;, the entire encoder output h, and all previously decoded
words y<;. Mathematically, this can be represented as :

c; = AttentionContext(s;, h)

si = LSTM2(s;-1,i-1,Ci—1) (6)
p(yilx, y<i) = WordDistribution(s;, c;)

At each of the time steps, the context vector produced by the AttentionContext function extracts the motion
sensor vibration content from the encoder output needed for decoding the next word. The context vector
has access to the entire encoder output, and thus has the ability to exploit rich relationships across time but
ultimately narrows down the focus to a small part of the encoder output relevant for decoding the next word.
The AttentionContext function is further elaborated below:
eiu =< $(si), Y (hu) >
_ exp(ei,u)
C Y expeiw) (7)

Cci = Zai,uhu
u

h,, denotes the encoder output at the u!” time-step. LSTM2 denotes a two-layer LSTM network. ¢ and i denote
multilayer perceptron (MLP) networks.

iu

5.5.3 Language Model. iSpyU incorporates a Recurrent Neural Network Language Model (RNNLM) [29] into the
ASR training framework as shown in the decoder part in Fig. 10(a). The RNNLM outputs the probability of the
word y“M given all previous words in the sentence denoted by - p(y-M|yEM, yEM, . .yEM). The RNN consists of an
input layer and a hidden recurrent layer. The output layer computes softmax probabilities of the next word given
all previously seen words in the sentence. The RNNLM is first trained using sentences in the LibriSpeech dataset.
After this, during the training of the ASR model, the trained RNNLM is included so as to achieve robustness in
prediction, through a process called cold-fusion [80].

hM = so ftmax (y-™)

gi =o(Wl[s;, hiLM] +b)
s¢F = [singi o hiM]

p(ilx y<i) = softmax(sc™)

®)

Here s¢F denotes the counterpart to s; from Equation 6 with the cold-fusion update.

Loss Function: The model parameters are trained to maximize the log probability of correct sentences, based on
the following loss function where ij;_; represents the ground truth of previous words. This loss function jointly

0= mgxzi:logP(yilx <i; 0) 9)

with the ASR model exploits advances in representation learning and weakly supervised learning, thus obviating
the need to segment a sentence into individual words during training or inference. This dramatically decreases
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the overhead of generating training labels. The loss function defined in Equation 9 processes a whole sentence
for recognition, which is popular in many SOTA works in ASR on sentences with speech data [52]

Decoding and Inference: During inference, we maximize the probability of the most likely sequence of words ¥.
y=arg m;;tx logP(y|x) (10)

To counter the bias in the model for short sentences, the scores for a hypotheses s(y|x) is normalized by the

length of each sentence |y|. as follows:

logP(ylx)
lyle

Beam search [82] is adopted where top-K (with K=5) sentences are explored at each step of a word decoding.

s(ylx) = (11)

5.6 Domain Adaptation

The synthetic training data does not completely model the real-world motion sensor data because of residual
errors in modeling related to sub-sampling and noise distribution estimations. Nevertheless, the ASR model
trained on synthetic data provides a sufficiently reasonable base model (evaluated in Section 7) to bootstrap the
process of training. This model is then fine-tuned with small-scale training data from real-world motion sensors
to further improve the robustness of the model.

Fine-tuning the ASR model directly is not feasible because millions of parameters are combined into each layer,
thus leading to convergence issues when fine-tuned with small-scale real-world sensor datasets. Therefore, iSpyU
adds small layers of Linear Hidden Networks (LHN) at the input, encoder, and decoder levels of the original ASR
model as depicted in Fig. 10(b). Such layers have fewer parameters and they can efficiently capture the difference
in distribution between the synthetic and real-world motion sensor data. To be more specific, we introduced the
LHN layers at three places: (i) Before the encoder (ii) Between the encoder and decoder (iii) At the end of the
decoder before final inference. The intuition was to adapt the distributions before the encoder input, decoder
input, and the final output layers to a distribution that each of these layers are expecting. However, we settled
upon current design based on cross-validation approach by enabling/disabling LHN at the three places identified
above. The LHN layers use a linear feed forward layer. The LHN layers are in the shape of a square matrix U
with dimensions of 120 X 120 (before the encoder), 512 X 512 (between encoder/decoder), and 9950 X 9950 (at the
end of the decoder respectively). This is a more effective strategy than retraining a few layers because each of the
layers have large number of parameters entailing high training overhead [20, 25]. Depending on the domain shift,
this strategy is capable of capturing accurate information for domain adaptation with minimal training.

6 EVALUATION METHOD

6.1 Implementation

iSpyU is implemented on a combination of desktop and smartphone devices. The ML model is implemented with
PyTorch packages and the training is performed on a desktop with Intel i7-8700K CPU, 16GB RAM memory,
and NVIDIA Quadro RTX 8000 GPU. We use Adam optimizer with a learning rate of 103 with decay starting
from 10 epochs and the decay rate is 0.85. To avoid overfitting, we apply L2 regularizer with a parameter 107°,
and dropouts with a parameter of 0.4. The model is first trained with synthetic motion sensor data generated
from LibriSpeech [57] (discussed next) which took 55 hours on the GPU. The model is then finetuned using
motion sensor data collected from smartphones which took 0.43 hours on the GPU. By setting the sensor delay as
SENSOR_DELAY_FASTEST in the Android SensorManager API [4], we extract data at a sampling rate of 500Hz
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without any special permission from the user. With the improvement in CPU and battery performance, higher
sampling rates might be possible in the future, thus increasing the privacy threat [6].

6.2 Dataset

iSpyU builds on LibriSpeech dataset [57], consisting of 983.1 hours of speech data sampled at 16 kHz. This
includes 292367 sentences over a dictionary of 9950 words as spoken by 1201 female and 1283 male speakers
with 8-30 minutes per speaker. The sentences vary in length from 2-61 words. The dataset is derived from about
8000 audiobooks of the LibriVox [31] project. This includes a broad variety of topics in fiction, history, crime,
adventure, politics, religion, etc. Thus, we expect that a model trained from this dataset will capture a variety of
sensitive contexts in human communication.

6.3 Data for Training

Approximately 98% of the entire LibriSpeech data is converted into synthetic motion sensor data (as discussed
in Sec. 5.1) to bootstrap the training process. This includes 2338 speakers, 1210 males, 1128 females, and a total
of 281241 sentences. Given that LibriSpeech includes more sophisticated vocabulary than a typical everyday
conversation, it is considered a popular benchmark for many ASR applications [58] including Baidu’s DeepSpeech
[1] and voice assistants such as Amazon Alexa [72].

6.4 Data for Domain Adaptation

About 1.5% of the LibriSpeech dataset is used for domain adaptation. This includes 104 speakers, 53 males, 51
females, and a total of 7681 sentences. We play the audio samples corresponding to this data on the smartphone
and record the measurements from the motion sensors. This generates labeled training dataset with motion
sensor recordings and their respective textual transcriptions. Evaluated in Fig. 12(a), increasing the size of data
for domain adaptation beyond this point has diminishing returns.

6.5 Data for Testing

For testing, we use 16 new speakers, 8 males, 8 females, that spoke 498 new sentences of length 3-40 words on
various topics including daily conversation, history, politics, sports, religion, hobbies, etc. The speakers are native
with an average speaker rate of 152 words per minute. Our study protocol complies with the local IRB at our
institute. The experiments are conducted under noisy conditions with a typical indoor noise level between 50-60
dB (shared office) both at the speaker’s side and the receiver’s side. We also make the following observations
regarding the experimental setting: (i) Noise at the receiver end does not have any impact on performance
because the main source of vibration in the motion sensors is the motherboard connecting the speakers and
IMU. The air channel has negligible impact on the motion sensors, which is also consistent with the observation
in prior-work [3, 6]. (ii) Modern conferencing tools such as Skype and Zoom already incorporate sophisticated
noise suppression techniques [55, 86] to enhance the speech quality of the speaker. The motion sensor data
was recorded during these Skype sessions for spying on speech content. The data is simultaneously collected
on different phones by having all phones participate in a Skype conference call. Therefore, the data from all
volunteers are collected on all phones. Accuracy across users, sentences, qualitative decoding, etc, are discussed
here.

6.6 Metrics of Evaluation

To validate the accuracy of iSpyU, we use the standard WER metric [92] that is popular in ASR systems, as
outlined below:
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Table 3. Representative examples from iSpyU’s recognition of continuous speech.

# Ground Truth Decoding by iSpyU
1 he ONLY got mild fever he FINALLY got mild fever
2 very carefully my mom removed this powder placing it ALL TOGETHER in a very carefully my mom removed this powder placing it “** ALTOGETHER in a
dish WHERE she mixed it with a spoon dish SO she mixed it with a spoon
3 A KICK from the tall boy behind urged stephen to ask A difficult question THE TOOK from the tall boy behind urged stephen to ask WHAT difficult question
4 well what can’t be done by main focus in exam must BE DONE by circumvention well what can’t be done by main focus in exam must ** PRESENT by circumvention
5 beware of making that mistake beware of making that mistake
6 THAD THE FAITH in me *** THAT CLIMB MOUNTAINS I WAS A FACE in me BUT MOVED NOT IN
B IF YOU dressed in SILK and *** GOLD FROM TOP TO TOE YOU could not LOOK any NICER | WAS HE dressed in SICK and BOY AND SAT FOR A PLACE AND could not HAVE any *****
THAN IN YOUR little RED CAP MERCY BUT BEYOND little “** REDS
8 on FRIDAY party WILL be held all THE afternoon * AFTER LUNCH on FRIDAY’S party WOULD be held all THAT afternoon I COULD BE
9 I have A conference tomorrow and I need all the documents ready T have THE conference tomorrow *** I need *** the documents ready
10 He IS IN bad mood these days and DESPISES his country life HIS ** ** bad mood these days and DESPISE his country life
WER S+I+D
N (12)

WAcc =1- WER

A decoded sentence by iSpyU is compared with the original reference sentence (ground truth). Here, Substitution
(S) denotes the number of cases where a word in the reference sentence was replaced by another word in the
decoded sentence. Insertion (I) denotes the number of new words inserted into the decoded sentence which do not
appear in the reference sentence. Deletion (D) denotes the number of words in the reference sentence that do not
appear in the decoded sentence. Finally, N = S + C + D, is the number of words in the reference sentence, where
Correct (C) denotes the number of words that appear in both the reference and decoded sentences. We define the
word accuracy (WAcc) of iSpyU to be 1 — WER. Similar to WER, the character error rate (CER) is defined based
on equation 12, but the insertions, substitutions, deletions, and correct words are computed at the character level
instead of the word level. We define the character accuracy (CAcc) of iSpyU to be 1 — CER.

7 PERFORMANCE RESULTS

We present a systematic evaluation. Various special cases are discussed under appropriate subsections. We
compare three versions of iSpyU. (i) iSpyU: Uses a combination of large scale synthetic data and small scale real
data for developing the ASR model from Sec. 5. (ii) Top-5: A version of iSpyU, where during each stage of the
beam search decoding, top-5 most probable words are considered, and the decoding is counted in the C metric of
equation 12 as long as the any of these top-5 words can be classified as C. (iii) iSpyU+ : A version of iSpyU where
we assume a smaller dictionary size of 2000 words at test time for decoding each sentence. Note that the ASR
model is still trained with 9950 words since cutting down the dictionary size at training time dramatically cuts
down the number of available sentences for training. Prior research has shown the ability to detect the topic of
the conversation (sports, politics, religion, etc) by analyzing a sequence of sentences [28, 61]. Knowing the topic
allows us to narrow down the search space of the dictionary leading to higher accuracies. While detecting the
topic with a sequence of sentences recorded by motion sensors is outside the scope of this work, we evaluate the
gain in accuracy if this was possible.

7.1 Qualitative Results

We begin by providing representative examples of sentences decoded by iSpyU as shown in Table 3. The ground
truth and the inferred sentences are aligned [12] with each other so as to compute errors and mismatches. The
capitalized words indicate a mismatch between the ground truth and the inference by iSpyU, whereas, “****"
indicates a missing word during the alignment. Words that match correctly appear in lower cases. We note that
the context of the message is clear for most of these sentences. In some cases, the mismatches are very close
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(for example, Friday — Friday’s, Red — Reds, All Together — Altogether, etc). Sentence 5 is an example of a
perfect inference whereas sentences 6 and 7 are examples that are very erroneous. Nevertheless, we believe there
is sufficient leakage of sensitive context from most sentences which poses significant privacy threat.
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7.2 Accuracy over Users

Fig. 11(a) shows the W Acc for iSpyU as a function of different users. The average W Acc is 53.3%. Given that the
model has been trained from a diverse distribution of users including thousands of males and females, the model
is robust across a variety of users. The accuracy is also consistent across genders (Fig. 11(b)).

7.3 Expected Improvement based on Context

Fig. 11(a) depicts the accuracy of iSpyU+. With a smaller dictionary, iSpyU+ can enhance the WAcc to 59.9%.
Fig. 11(a) also depicts the top-5 accuracy (Top-5) which can be higher, 64.2%. This suggests scope for further
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optimizations. For example, if prior information about the context of the sentence was available, iSpyU could
refine the probabilities of the decoded words to extract more accurate decodings.

7.4 Accuracy over Sentences

Fig. 13(a) shows the distribution of accuracy across sentences and Fig. 13(b) shows the variation as a function of
the length of the sentence. The accuracy does not degrade with the increasing length of the sentence. Longer
sentences have slightly higher accuracy because the attention-based models are able to better exploit context
within the same sentence. The normalization step introduced in Equation 11 also helps achieve consistent accuracy
for longer sentences.
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Fig. 13. (a) Distribution of accuracy across sentences (b) Accuracy variation across number of words in sentences

7.5 Accuracy vs Surface of Phone Placement

We evaluate iSpyU on different surfaces, depicted in Fig. 11(c). When the phone is in the hand, we ask the user
to walk and perform simple motion activities. Note that such human motion does not impact the results under
handhold setting due to the use of the high pass filter (Sec. 5.3). We find that the accuracy on carpet/hand is
slightly lower than floor/table mainly because of lightly damped vibrations from a soft surface. Because the
speaker and motion sensors share the same motherboard, they have a strong channel between them, therefore the
dampening effect due to external surfaces only induce minor variations. There is consistent leakage of information
across all common surfaces.

7.6  Accuracy over Sound Volume

Fig. 11(d) depicts the accuracy of iSpyU as a function of sound volume. The SNR of motion sensor data captured
at different volume levels on average are as follows: 50% — 3.62dB, 60% — 4.33dB, 70% — 4.72dB, 80% — 5.52dB,
90% — 6.06dB, 100% — 6.92dB. Because of decreasing SNR with decreasing volume, there is a graceful degradation
in accuracy over decreasing volume. Evidently, the threat is maximum at full volume, typically used in video
conferencing calls like Skype and Zoom for clear and comprehensible speech [87]. However, there is a non-trivial
leakage of information across other volume levels.

7.7 Accuracy vs Size of Training Data

Fig. 12(a) depicts the accuracy as a function of the size of real motion sensor data used for domain adaptation.
Evidently, the WAcc quickly jumps to 27.7% from 5.1% with only 10% of the fine-tuning dataset. Beyond that, the
accuracy reaches close to 50.2% at 70% of the fine-tuning dataset and saturates thereafter. The CAcc follows a
similar trend. This demonstrates the ability in iSpyU to enhance the accuracy of the model trained by synthetic
datasets with small-scale real-world datasets.
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Fig. 14. (a) Individual accuracies of accelerometer and gyroscope in comparison to the accuracy with fusion of the two
sensors (b) The smartphone placement angle doesn’t impact the performance of iSpyU because the speaker and IMU are
housed on the same motherboard hence and their relative orientation does not change with the phone orientation.

7.8 Accuracy vs Size of Dictionary

With access to prior information about the context (topic of conversation in politics, religion, etc), the accuracy
can improve. Fig. 12(b) shows the accuracy over the size of the dictionary. The original iSpyU ASR model is
unchanged (trained with 9950 words) but we choose smaller dictionary search-spaces (2000-8000) during test
time that include all words in a given test sentence. Narrowing down the search space enhances the accuracy.

7.9 Accelerometer vs Gyroscope

Fig. 14a shows the accuracy when only accelerometer (acc-only) or only gyroscope (gyro-only) is used for the
attack. The accuracy when both sensors are used is also shown (acc + gyro). The individual sensors can still sustain
reasonable accuracy levels. The accelerometer has a slightly higher accuracy (W Acc, 47.2%) than the gyroscope
(WAcc, 29.6%) because accelerometer signals have a higher SNR. Nevertheless, the gyroscope signal contains
non-trivial information associated with the vibration leakage, which when combined with the accelerometer
data results in an overall higher accuracy (WAcc - 53.3%).

7.10 Impact of Placement Angle

Fig. 14b depicts the performance of iSpyU as a function of the smartphone placement angle with respect to the
horizontal surface. Evidently, the orientation of the smartphone does not affect the accuracy. To further validate
this claim, Fig. 11(c) (last bar) evaluates a situation where the user holds the phone in the hand in an arbitrary
orientation and walking while participating in a conference call. The orientation of the phone changes naturally
during this experiment. Even under these conditions, the accuracy of iSpyU is consistent. This is because the
IMU and the speaker are housed on the same motherboard, and their relative orientation is the same even when
the smartphone is leaning with arbitrary orientation, thus having negligible impact on the performance.

7.11  Accuracy vs Sampling Rates

Similar to 500 Hz, a separate training and domain adaptation was done at 200 Hz to create an ASR model at 200
Hz. Fig. 15(a) depicts the comparison between the two. As expected, the accuracy is higher at 500 Hz. Given the
trend in increased CPU speed and battery performance of mobile OS [49, 65], a higher accuracy of the attack
is expected at higher sampling rates in the future. We believe this is certainly worthy of investigation from a
security perspective. We also note that at a lower sampling rate of 200 Hz, the attack is much weaker. While
switching to a lower sampling rate might be one possible defense, there are certain applications that benefit from
higher sampling rates. The tradeoffs are discussed in Sec. 8.
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Fig. 15. (a) As expected, the accuracy increases with sampling rate. (b) The attack is feasible on multiple smartphones.

7.12  Accuracy over Phone Models

Towards evaluating the threat posed by iSpyU on different phone models, we compare the performance difference
across different phones. The results are depicted in Fig. 15(b). The variation across phones are indicative of the
differences in SNR between the speaker and the motion sensors of the phone models. Nevertheless, there is
non-trivial leakage of information across phone models, which suggests significant risk to a wider community of

users.
7.13 Multiphone Domain Adaptation

Figure 16 depicts the performance when the model developed for one phone is domain adapted for inference on
a different phone. Evidently, this process improves the overall accuracy on average by 3.2% (overall accuracy
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Fig. 16. Model developed for one phone is domain adapted for inference on a different phone: This process only requires 5
hours of training data to achieve an accuracy similar to domain adapting from a model trained from synthetic IMU data. It
decreases the overhead of domain adaptation by 50%.

~ 56.5%) in comparison with domain adaptation over model trained entirely on synthetic data. Also, domain
adapting the model from one phone for inference on a different phone requires only 5 hours of data to achieve
a similar level of performance as domain adapting from a model trained on synthetic data. This decreases the
overhead of collecting domain adaptation data by 50%. We believe this decreases the barrier for attack on different
phones since only 5 hours of training data is required on each phone which can be collected relatively easily. In
contrast, collecting 960 hours of data on multiple different phone models can make the bar for attacking higher
since newer smartphones are replacing older ones in hundreds of millions each year [73, 74].

7.14  The Role of the Language Model

Described in Section 5.5, iSpyU incorporates a RNN-based language model during the training process of the
ASR model via the principle of cold-fusion. The goal is to enhance the accuracy of the inference by exploiting the
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Table 4. The Role of the Language Model

Audio | IMU (iSpyU)
w/o lang. model | 83.2% 51.1%
w lang. model | 84.6% 53.3%

context of the previously occurring words in the sentence. Table 4 analyses the performance of the language
model and the acoustic model separately and when acting in conjunction. The language model accuracy is 55.98
pp! (ppl = perplexity as defined in [60] is a measure of the predictive power of a language model), whereas the
accuracy of the acoustic model alone without the language model is 51.2%. The accuracy when both models are
used in conjunction is 53.3%. In contrast, for performing ASR with audio, the accuracy without the language
model is 83.2%, and the accuracy with the language model is 84.6%. We note that the accuracy boost offered by
the language model is slightly higher for iSpyU than normal audio, because a typical audio already captures a
wide range of the acoustic spectrum that contains sufficient information for performing ASR.

7.15 The Role of Synthetic Data and Domain Adaptation

_IWAcc —e—Synthetic Data (WAcc)

I CAcc |—4—Synthetic Data (CAcc)
9 gg <80
< =70
350 360
g £50
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Fig. 17. (a) Synthetic data substantially decreases training overhead (b) The accuracy as a function of the size of synthetic
training data

Fig. 17a depicts the accuracy under the following four cases of training and testing. (i) Real + Real: We begin
with a model trained entirely using small-scale real data, and tested with real data. Such a model outputs random
words for any input. This results in erroneous insertions and deletions that make the WER in equation 12 go
above 100% thus resulting in a negative accuracy (WAcc). Small-scale training data is not sufficient to create a
stable model that generalizes well. (ii) Synth + Real: This is the other extreme where a model trained entirely using
synthetic training data is tested with real data. This provides a stable model with low but non-trivial accuracy.
The WACcc is 5.1%, and the CAcc is higher at 26.7%. Given 9950 words in the dictionary, this clearly indicates a
performance that is significantly better than random guessing. The synthetic data generates a model that is stable
enough to bootstrap the training process for domain adaptation. (iii) Adapt + Real: This denotes a model trained
with synthetic data and fine-tuned with small-scale real data, and tested with real data. The model achieves a
dramatically higher accuracy (WAcc = 53.3%, CAcc = 70.0%) than the two extremes in previous settings. (iv)
Synth + Synth: Finally, this denotes the accuracy of a model trained and tested with synthetic data (W Acc = 58.2%,
CAcc = 73.3%). This is the upper bound of achievable accuracy where the distributions of training and test data
match perfectly. Evidently, with only 1.5% of real data in comparison with original LibriSpeech data, iSpyU in
case (iii) above, achieves an accuracy close to this upper bound. The character level accuracies CAcc are higher
than the corresponding word-level accuracies because some of the incorrect words could be close matches to the
correct words. Finally, we also show the accuracy in iSpyU as a function of the size of synthetic training data in
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Fig. 17b. Evidently, close to 460 hours of training data is still required to achieve atleast 30% of accuracy, and
appears to taper off with an accuracy of 53.3% when the size of training data is 960 hours. These results indicate
the critical role of synthetic training data and the effectiveness of domain adaptation with small-scale training
data in achieving a good tradeoff between training overhead and performance.

Table 5. Various combinations of data for training, domain adaptation, and testing. Negative accuracies indicate the model
did not converge with WER > 100%

Accuracy (%)

Accuracy (%)

Training Data Domain Adapt Data Audio Test Data | IMU Test Data
Synth IMU (960 hr) No Domain Adapt Random (—1.9%) 5.1%
Synth IMU (960 hr) Real IMU (10 hr) Random (—3.2%) 53.3%

Audio (960 hr) No Domain Adapt 85.8% Random (—2.2%)

No Pretraining

Real IMU Data (10 hr)

Random (—24.6%)

Random (—19.3%)

Audio (960 hr)

Real IMU Data (10 hr)

Random (—9.5%)

1.8%

7.16 Performance Gap between Audio Based and Motion Sensor Based ASR

Table 5 depicts the ASR performance on audio and motion sensor data for various combinations of training and
domain adaptation data. The performance of the ASR model trained and tested on audio data is 85.8%, which is
the upper bound of achievable performance in iSpyU since the synthetic IMU data for training is derived from
the same audio dataset (LibriSpeech). In contrast, iSpyU achieves a best performance of 53.3% when trained with
synthetic IMU data and domain adapted with small quantities of real IMU data. Even though the performance
is lower than pure audio based ASR we believe this is non-trivial since the motion sensor data has a much
lower sampling rate than audio. Moreover, we believe the accuracy is still worthy of concern when privacy is of
interest since it can still leak sensitive context of the communication (Examples in Table 3). Many of the other
combinations of training and testing resulted in random accuracy (negative) as indicated in the table because the
model did not converge. The only other combinations that yielded a somewhat non-random accuracy (considering
a dictionary size of 10000 words where a random accuracy is 0.01%) include: (i) Training with Synthetic data and
no domain adaptation yields an accuracy of 5.1%. This provides a basic model to bootstrap the process of domain
adaptation. (ii) Training with audio data and domain adaptation with small amount of real data yields an accuracy
of 1.8%. Under the constraints of performing ASR with limited quantities of real IMU data, we believe the overall
results validate the critical importance of both synthetic IMU data and the domain adaptation with real IMU data
as that is the only condition under which the accuracy is reasonable enough to decode meaningful sentences.

7.17 Comparison with Prior Work

Table 6 depicts the comparison of iSpyU with prior work. Given that iSpyU is designed to perform ASR on
large vocabulary whereas many of the prior work perform recognition on a smaller vocabulary (1-100), and at
a lower sampling rate, we downscale iSpyU to similar sampling rates (120 Hz) and vocabulary sizes for a fair
comparison with such prior works. The new experimental results are summarized in Table 6. While iSpyU is still
comparable to prior work in their respective settings, we believe the ability to perform ASR on large dictionaries
is a new contribution in iSpyU that has not been explored before. Equipped with such an ability, an adversary
can potentially launch large scale attacks. For example, insurance companies could infer health status of several
of their customers in automated ways without manually processing each customers data. Advertising companies
can similarly learn customer interests in automated ways and launch targeted ads on a massive scale. Therefore,
our hope is to shed light on such vulnerabilities via ASR as a part of this work. Finally we note that reconstruction
of speech like AccelEve and AccEar [26] needs manual recognition of reconstructed audio as admitted by authors

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 197. Publication date: December 2022.



197:24 « Zhanget al.

Table 6. Experimental Comparison with Prior Work. The star * marked results of iSpyU were conducted at a sampling rate of
120 Hz for a fair comparison with SpearPhone

Digits Keywords Digits + Automatic Speech Speech Recon-
System (10 Classes) | (58 Classes) Alphabets | Recognition (ASR) struction for
(36 classes) (9950 classes) Manual Recognition

SpearPhone [3] 75.8% 69.5% - - -
Gyrophone [47] 28.7% - - - -

AccelEve [6] 76.3% - 61.7% - Yes

AccEar [26] - - - - Yes
iSpyU (This paper) 80.1%" 71.6%" 93.2% 53.3% -

of these papers. Based on experiments, performing ASR on reconstructed speech resulted in a poor performance
for the task of ASR. This is because of domain shift between typical audio and the speech extracted using deep
learning on motion sensor data, which still exhibit differences in distributions with some residual errors in the
process of speech recovery with a low sampling rate motion sensor data. A similar observation regarding the
general problem of domain shift in speech recognition been made in [44]. Towards handling such challenges,
iSpyU designs an end-to-end pipeline by solving challenges of limited training data using synthetic data creation,
signal processing, domain adaptation, etc.

7.18 Comparison between Attention-based BiLSTM and Transformer

Fig. 18 depicts the performance between attention-based BiLSTM as currently implemented in iSpyU, and
an upgraded version of iSpyU that uses state of the art Transformers (iSpyU-trans) for performing ASR. The

[ liSpyU
HliSpyU-Trans

1234567 8 910111213141516
User ID

Fig. 18. Comparison between attention-based BiLSTM and transformer

architecture of the transformer model is depicted in Fig. 19. On average, transformers enhance the performance
in iSpyU by 1.6% which is consistent with performance improvement achieved for speech recognition [79].

7.19 Resource Consumption - Power Consumption, CPU, and Network

The ML model is resource intensive and might raise the suspicion about the attack. Therefore, the adversary
can choose to offload the relatively low bandwidth sensor data to perform the analysis offline’. This leaves the
basic attack footprint low because the adversary only needs to collect and offload the sensor data. Given this is
a side-channel attack and not a usability application like a voice-assistant, we believe there is no requirement
of real-time latency. Therefore, the adversary can offload the data at a time of his convenience (for example
they could camouflage with legitimate app data). Accordingly, we profile the iSpyU app as shown in Fig. 20 on

10ffline execution of the ML model takes 5.72s seconds for 1 minute of speech on average on the desktop configuration defined in Section 6
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Fig. 19. iSpyU-trans is an upgraded version of iSpyU that uses the Transformer based architecture for performing ASR. The
notations of variables in the model is same as the definition in Section 5.5. For domain-adaptation, we introduce LHN layers
before encoder, between encoder and decoder, and after decoder in a similar manner to Fig. 10(b).
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Fig. 20. (a) Power Consumption (b) Network Usage (c) CPU Activity

various smartphones. We first characterize the power consumption during collecting and offloading of sensor
data. For profiling the power on a smartphone, we use Batterystats and Battery Historian [8] tools. We compare
the difference in power between three states: (i) The device is idle with screen on. (ii) The device is running a
Skype video conferencing app. (iii) The device is running the Skype app with iSpyU in the background for spying
on the Skype call by collecting and offloading sensor data to the server. The idle display-screen on discharge rate
is 3.63% per hour while the discharge rates for various modes are shown in Fig. 20(a). Evidently, iSpyU adds little
to the power consumption when compared with an already running Skype app being used for the conferencing
call while the attack is happening. Similarly, Fig. 20(b) shows the network activity with WiFi where iSpyU adds
negligible traffic to an already running video/audio conferencing call. Finally, Fig. 20(c) shows the CPU activity,
where iSpyU’s share is negligible. Therefore, we believe that iSpyU’s resource consumption maintains a low
profile.
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Fig. 21. Smartphone vibrator can induce noise for defending and mitigate the attack threat from iSpyU

7.20 Defense Strategies

A potential defense strategy is to exploit the vibrator in the smartphone to add small amounts of noise to confuse
the ASR model. Prior works have shown that a vibration motor of a smartphone can produce frequencies upto
250 Hz [68]. This can potentially jam most of the frequencies in the motion sensor data. Fig. 21 provides a
performance evaluation regarding the same. Even with lower amplitudes of vibrations, we can observe that the
word accuracy is sufficiently degraded to mitigate the attack from iSpyU. We discuss these results and other
potential strategies for defense in Section 8.

8 DISCUSSION AND FUTURE WORK

8.1 Summary of Results

(i) Visual inspection of qualitative results (samples in Table 3) suggest leakage of sensitive context of commu-
nication. (ii) The accuracy varies between 53.3% — 59.9% at the word level and 70.0 — 74.8% at the character
level. (iii) The accuracy is consistent across users and genders. (iv) The attack is feasible on commonly used
surfaces of phone placement: handheld, table, carpet, sofa, floor, etc. Because the speaker and IMU share the
same motherboard, they have a strong channel between them. Thus any dampening due to external surfaces is
negligible. (v) In the handheld setting, the accuracy is immune to human motion activities because iSpyU uses a
high pass filter (Section 5.3) with the motion sensor data. (vi) The accuracy with fusion of accelerometer and
gyroscope is better, even though each sensor in isolation provides non-trivial leakage of information. (vii) iSpyU
has been evaluated on multiple smartphones: Samsung 520, OnePlus 9 Pro, Huawei P20, with consistent leakage
across all platforms.

8.2 Implications on Privacy Leakage

iSpyU achieves an accuracy of 53.3 — 59.9% on detecting words in continuous speech over a dictionary of ~
10000 words. While the accuracy can be considered low for applications like voice assistants (Amazon Alexa, Siri,
etc.), we believe these levels of accuracy are of critical concern when privacy is of interest. For example, even
experienced lip readers from the deaf community can only detect about 30 — 40% of words correctly. However
they can still sustain a basic level of communication by inferring the incorrect words from context [39, 40, 42, 43].
Therefore, even if the sentences are not fully decoded correctly, we believe the attacker can gain sensitive
information such as location (sentence 9 in Table 3), health status (sentence 1), emotional state (sentence 10),
political inclination, etc., of the victim with accuracy levels supported by iSpyU.
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8.3 Scope for Enhancing the Attack Accuracy

While the ML models in iSpyU consider sentences one at a time, recent NLP research suggests opportunities
in improving the accuracy by looking at multiple sentences together instead of one sentence at a time by
incorporating contextual information across sentences, speaker, gender, etc [32]. iSpyU plans to incorporate such
optimizations in future.

8.4 Defense Strategies

The OS can impose stricter access control to the motion sensors or alert the user when an application is requesting
access to motion sensors. However this can also affect usability with applications like secure NFC communications,
touch location sensing for Ul etc, that rely on high-frequency vibrations recorded by motion sensors [41, 67, 90].
An alternative to restricting free access to the motion sensor data could be the following. The vibration sensor
can be used to produce noisy vibrations [67] such that the accuracy of the ASR model in iSpyU is reduced. We
evaluate this strategy in Fig. 21 which indicates that even small amounts of vibrations can effectively mitigate
the threat posed by iSpyU. Another possibility for defense would be to use speaker isolation pads between the
loudspeaker and the motion sensors [3, 75, 76]. We believe the tradeoffs between usability and security need to
be carefully considered while designing a defense.

8.5 Unsupervised Domain Adaptation

iSpyU only needs 1.5% of labelled real training data. We believe this is not a big overhead in the context of a
security application, particularly because there is no need for any training data from the victim’s phone. However,
we will explore unsupervised domain adaptation to customize a pretrained model without requiring any labelled
training data. This will make the attack easier as well as rapidly extensible to multiple languages. Adversarial
domain adaptation [83] is of interest. Here, an unsupervised game theoretic strategy is used to transform the
distribution of the feature representations from one domain into the distribution of the source domain where the
model was trained. If successful, the model trained on the source domain (synthetic data) is directly useful for
performing inferences on the target domain (real data). Similarly, other architectures for learning such feature
transformations have been proposed [81] which are relevant for future investigation.

9 CONCLUSION

This paper shows the feasibility of attacking motion sensors for eavesdropping speech content of a phone speaker.
iSpyU incorporates a fusion of techniques from automatic speech recognition, domain adaptation, synthetic
training data generation, and signal processing to deal with challenges of low-training datasets, low-sampling
rate, and noisy data to achieve an ASR accuracy of 53.3 — 59.9% over a dictionary of 2000-9950 words. The
evaluation results demonstrate robustness across different users, surfaces, and gender. The raw decodings reveal
information about the context. We believe this is of critical concern when privacy is of interest. In addition to an
application in security, the proposed techniques in iSpyU will be useful for performing motion sensor based ASR
in smart-earphones for futuristic applications.
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