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Abstract—Ubiquitous finger motion tracking enables a
number of exciting applications in augmented reality, sports
analytics, rehabilitation-healthcare, haptics etc. This paper
presents NeuroPose, a system that shows the feasibility of
3D finger motion tracking using a platform of wearable
ElectroMyoGraphy (EMG) sensors. EMG sensors can sense
electrical potential from muscles due to finger activation,
thus offering rich information for fine-grained finger motion
sensing. However converting the sensor information to
3D finger poses is non trivial since signals from multiple
fingers superimpose at the sensor in complex patterns.
Towards solving this problem, NeuroPose fuses information
from anatomical constraints of finger motion with machine
learning architectures on Recurrent Neural Networks (RNN),
Encoder-Decoder Networks, and ResNets to extract 3D finger
motion from noisy EMG data. The generated motion pattern
is temporally smooth as well as anatomically consistent.
Furthermore, a transfer learning algorithm is leveraged to
adapt a pretrained model on one user to a new user with
minimal training overhead. A systematic study with 12 users
demonstrates a median error of 6.24° and a 90%-ile error
of 18.33° in tracking 3D finger joint angles. The accuracy is
robust to natural variation in sensor mounting positions as
well as changes in wrist positions of the user. In addition,
this paper validates the feasibility of mirrored bilateral
training approach with applications in prosthetic devices.
Finally, NeuroPose is comprehensively evaluated on both low-
end and recent smartphones with a processing latency of
0.019s and low energy overhead.

Index Terms—Human centered computing, electromyog-
raphy, accessibility, representation learning.

[. INTRODUCTION

3D finger pose tracking enables a number of exciting
applications in sports analytics [6]], healthcare and reha-
bilitation [103]], sign languages [20], augmented reality
(AR), virtual reality (VR), haptics [95] etc. Analysis of
finger motion of aspiring players can be compared to
experts to provide automated coaching support. Finger
motion stability patterns are known to be bio-markers for
predicting motor neuron diseases [33]. AR/VR gaming
as well as precise control of robotic prosthetic devices are
some of the other applications that benefit from 3D finger
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pose tracking [77]], [18].

Web-based augmented/virtual reality applications are
becoming popular [45]], [62] leading to standardizations
of WebXR APIs [112]. Examples include remote surgery,
virtual teaching (body-anatomy, sports, cooking etc), mul-
tiplayer VR gaming. These applications involve augment-
ing the context of the user (location, finger-pointing
direction etc.) with information from the web (on-screen-
viewport, textual-information, haptic stimulation etc.).
Finger motion tracking is a common denominator of such
applications.

Motivated by the above applications, there is a surge in
recent works [[76], [26] in computer vision that track 3D
finger poses from monocular videos. Given they do not
require depth cameras, the range of applications enabled
is wide. However, vision based techniques are affected by
issues such as occlusions and the need for good lighting
conditions to capture intricate finger motions.

In contrast to vision, the main advantage of wearables
is in enabling ubiquitous tracking without external infras-
tructure while being robust to lighting and occlusions.
While data gloves [2], [5], [1] with IMU, flex, and capaci-
tative sensors have been popularly used for finger motion
tracking, it is shown that gloves hinder with dexterous
hand movement [92]. As alternatives to putting sensors
on fingers, sensing at wrist with surface acoustic [117],
capacitative [[104], bioimpedance [119]], ultrasonography
[73], wrist pressure[37] etc., has been explored, but
the sensing is only limited to tens of gestures. Beyond
discrete gestures, infrared [56]] and thermal cameras [49]
mounted on wrist have been explored for continuous 3D
pose tracking, but has limitations on hand motion (details
in Section. . In contrast, we explore using ElectroMyo-
Graphy (EMG) sensors worn like a band on the forearm
(Fig.[5) with the following advantages: (i) Captures infor-
mation directly from muscles that activate finger motions,
thus offering rich opportunities for continuous 3D finger
pose sensing (ii) A user does not need to put sensors
on fingers and thus she is able to perform activities
requiring fine precision (iii) Tracking is independent of
ambient conditions of lighting or presence of objects in
the background. (iv) EMG sensors can measure emotions
(like fear) and muscle strain to make VR tasks on safety
(fire, construction etc) and physical-activities (e.g. rock
climbing) more realistic [42], [116]. (v) Additionally, a
unique motivation for ElectroMyoGraphy (EMG) based
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Fig. 1: A comparison between a real image, a depth camera, and NeuroPose. Tracking of fine grained hand poses can enable
applications like: (a) Word recognition in sign languages (b) Augmented reality by enhancing the tracking output. A short demo

is here [[15].

tracking over vision and other wearable systems (such as
IMU) is that EMG signals from amputees can be used for
controlling prosthetic limbs with potential to significantly
improve their accessibility needs, the feasibility of which
is shown in prior work for index finger motions, wrist
motions, gestures etc [81]], [80]. Even though the fingers
might be missing, studies have shown that the subjects
with amputations are capable of generating neuromuscu-
lar potentials that is responsible for a particular pattern
of finger motion [41]], [35], [80l, [81]. However, gen-
erating training data can be a challenge for such cases.
Our preliminary result in Section [V]| discusses a mirrored
bilateral training approach for generating training data for
amputees for 3D finger motion tracking. The results are
promising with applications in development of prosthetic
devices with finer control.

Despite the benefits, EMG sensors are not as popular
as smartphones or smartwatches. Thus the user needs to
carry a separate EMG band with her. Nevertheless, we be-
lieve there are motivating applications (prosthetic devices
for amputees, sports coaching, augmented reality) where
a user can selectively wear the device when needed in-
stead of constantly wearing it. The prospects of adoption
of EMG sensing for AR/VR is on the rise (led by Facebook
(110, [3]) because EMG can pick strong/unambiguous
signals of minute finger motion. Thus, we believe under-
standing the limits and bounds of sensing can help de-
velop interesting applications and use-cases encouraging
better social adoption.

Prior works on EMG based finger motion tracking are
limited to tracking a few hand gestures [91]], [36], [40],
[90], [98], or tracking hand poses over a set of discrete
gesture related motions [90], [98]]. They do not provide
free form 3D pose tracking for arbitrary hand motion.
This paper proposes a system called NeuroPose that fills
this gap in literature by designing a EMG wearable-based
3D finger pose tracking technology. Towards this end,
NeuroPose uses an off the shelf armband consisting of 8
EMG channels (Fig. for capturing finger motion and
converting it into 3D hand pose as depicted in Fig.
Using only two of the eight channels might increase the
comfort of wearing the sensor with a modest loss in
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accuracy.

Briefly, the EMG sensors capture neural signals propa-
gating through the arms due to finger muscle activations.
Each finger muscle activation generates a train of neuron
impulses, which are the fundamental signals captured by
the sensors (more details in Sec. [III). Given such EMG
sensor measurements, tracking the 3D pose is non-trivial
and introduces a number of challenges: (i) Human hand
is highly articulated with upto 21 degrees of freedom
from various joints. The complexity of this search space
is comparable to tracking joints in the skeletal model of
a human body. (ii) Impulses from multiple fingers are
mixed in complex non-linear patterns making it harder
to decouple the effect of individual fingers from the
generated sensor data. (iii) The strength of the captured
signals depends on the speed of motion, and finger pose.
(iv) The nature of captured data varies across users due
to variations in body sizes, anatomy etc. (v) The sensor
data is noisy due to hardware imperfections.

In handling the above challenges, NeuroPose exploits a
number of opportunities. (i) Finger motion patterns are
not random but they follow tight anatomical constraints.
Fusion of such constraints with the actual sensor data
dramatically reduces the search space. (ii) Innovation
in machine learning (ML) algorithms that explicitly and
implicitly fuse such constraints with sensor data have
been exploited. In particular, NeuroPose explores architec-
tures in Recurrent Neural Networks (RNN) [[75]], Encoder-
Decoder[22]], ResNets[48] in achieving a high accuracy.
(iii) A transfer learning framework based on adaptive
batch normalization is exploited to learn user dependent
features with minimal overhead for adapting a pretrained
model to a new user for 3D pose tracking.

NeuroPose is implemented on a smartphone and runs
with a latency of 0.019s, with low power consumption.
A systematic study with 12 users achieves an accuracy of
6.24° in median error and 18.33° in the 90%-ile case. The
accuracy is robust to natural variation in sensor mounting
positions as well as changes in wrist positions of users.
Performance comparison across both low-end and more
recent smartphone platforms demonstrates a competitive
performance across a wide spectrum of devices. Further-
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more, we show the applicability of NeuroPose in real world
use cases such as finger-spelling classification in American
Sign Language (ASL). Our contributions are summarized
below:

(1) NeuroPose shows the feasibility of fine grained 3D
tracking of 21 finger joint angles using EMG devices for
arbitrary finger motions. In contrast to discrete gesture
classification for a particular application, such a generic
tracking can provide continuous joint angles which can be
used for any application like sports analytics, AR/VR, sign
language recognition, etc.

(2) Fusion of anatomical constraints with sensor data
into machine learning algorithms for higher accuracy. While
the search space of 3D finger motion is very large, we
also note that different fingers and their joint motion is
not completely independent and exhibit relationships with
each other. NeuroPose incorporates this dependency in the
machine learning models for narrowing down the search
space and enable accurate tracking.

(3) Implementation across diverse smartphone platforms
and extensive evaluation over diverse users. The accuracy is
consistent across diverse users and provides a low latency
performance with less power consumption on modern sport
phones.

(4) Evaluation of a mirrored bilateral training [80)]
scheme with a potential future application for developing
prosthetics for amputees with missing fingers. Through a
combination of machine learning model design for noise
reduction and real world experiments, we validate that
the training data captured from one hand can be applied
for inferences on the other hand. We believe this facili-
tates an easy alternative for collection of training data for
prosthetic devices where labelling might be challenging
because of missing fingers.

The rest of the paper is organized as follows. We begin
with a brief overview of the human hand and it’s anatomy.
The muscles of interest and how they are captured by
the EMG sensor is also explained. We also discuss the
mirrored bilateral motion in the context of amputees
and how it is incorporated in the paper. The hardware
platform of the EMG sensor is discussed next. After this,
we discuss the encoder decoder based machine learning
model that converts the EMG data into 3-D hand poses.
Representation learning and contrastive loss function are
introduced to handle noise during the mirror bilateral
training for amputees. Finally, we evaluate the paper
based on a systematic user study to validate the feasibility
of 3-D hand motion tracking as well as mirrored bilateral
training for amputees.

II. RELATED WORK

Vision: Depth cameras including kinect[[8] and leap mo-
tion [[7]] sensors have revolutionized the gaming industry
by gesture interfaces. Use of depth camera is one way
to capture finger motion. However, advances in machine
learning, availability of large training datasets as well as
techniques for creation of synthetic datasets have enabled
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precise tracking of finger motion even from monocular
videos that do not contain depth information [76], [26],
[52]. DeepFisheye [84] uses fish eye cameras combined
with deep learning to track finger tips with high precision.
While such works are truly transformative in nature, we
believe wearable based solutions have benefits over vision
based approaches which are susceptible to occlusions,
lighting, and resolution. In addition, wearable devices of-
fer ubiquitous solution with continuous tracking without
the need of an externally mounted camera. Digits [56]
uses wrist mounted infrared cameras for 3D finger pose
tracking. Similarly, DorsalNet [[114] uses wrist mounted
visual cameras for 3D finger motion tracking. The dorsal
hand region including the motion of bones, muscles, and
tendons are analyzed with a two stream convolutional
neural network for precise 3D motion tracking. However,
the camera needs to sit high enough on the wrist or even
reach palm to capture full range of finger motion. Most
recently, FingerTrak [[49] has innovatively designed wear-
able thermal cameras that can track 3D finger motion.
However, the authors bring-up the following aspects in
their paper: (i) If the background temperature is similar
or higher (sun, heater etc.), the tracking may not be
robust. (ii) In the current prototype, the arm position of
the user has to be on the table without which the cameras
can shift and affect the tracking results. In contrast,
our work explores the use of EMG sensors, which is
robust to background conditions as well as changes in
wrist position, with a unique potential for applicability to
developing prosthetic devices for amputees.

Finger Motion Tracking by Radio Frequency Reflections:
Prior works have explored WiFi signals to track motion of
hand and classify discrete gestures by using a combination
of wireless channel state information (CSI), and doppler
shift measurements [63], [74], [96]. SignFi [70] is an
innovative work that uses wireless channel measurements
from WiFi APs for sign language recognition. EXASL [93]]
tracks point clouds computed from range-doppler spec-
trum and angle of arrival spectrum of mmWave reflections
from the hand. This is used to classify upto 23 discrete
hand motion gestures used in ASL. Google Soli [111]
exploits reflections from mmWave signals in combination
with deep convolutional and recurrent neural networks
to track 11 finger motion gestures. In contrast to discrete
gesture classification in the above works, NeuroPose per-
forms continuous 3D finger motion tracking. In additon,
while the above approaches are limited by range of
coverage of mmWave and WiFi signals, NeuroPose offers
a more ubiquitous tracking.

Sensor Gloves: Gloves with embedded sensors such as
IMU, flex sensors, and capacitative sensors have been used
for finger pose tracking in a number of applications in-
cluding sign language translation, gaming, user interface
etc [20]. Work in [43]] tracks 3D hand pose using an array
of 44 stretch sensors. Works [32], [65] extract hand pose
using gloves embedded with 17 IMU sensors. Flex sensors
have been successfully used in commercially available
products such as CyberGlove [2], ManusVRGlove [5],
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5DT Glove [1] etc. However, wearing gloves in hands
may hinder dexterous and natural hand movements. This
precludes the user from performing activities that require
fine precision as studied in recent works[92]].

IMU, Wrist Bands, and Wearable Sensing: IMU and
WiFi sensors have been used in a number of localization
and human body tracking projects [110], [31l, [19],
[115], [120]. IMU, WiFi, and Acoustic signals have also
been extensively used for hand gesture recognition to
enable a number of applications [121]], [105], [82], [97].
uWave[l67]] uses accelerometers for user authentication
and interaction with a mobile device. FingerlO [78],
FingerPing [[117] use acoustic signals for finger gesture
detection. WiFi based hand/finger gesture detection has
been explored [63], [74], [96] that use wireless channel
and doppler shift measurements for hand gesture recogni-
tion. WiSee [88] uses Doppler shifts from WiFi reflections
for applications such as controlling devices in a smart-
home, gaming etc. SignFi [[70] is an innovative work that
uses wireless channel measurements from WiFi APs for
ASL recognition. Capband [[104] uses capacitative sensing
for recognizing 15 hand gestures. In contrast, NeuroPose
develops algorithms for generic finger motion tracking.
ElectroRing [55] attaches elctrodes on the index finger
and combines them with IMU sensors for detecting six
different pinch-like finger gestures. ThumbTrak [102] de-
tects 12 finger gestures by placing 9 proximity sensors on
the thumb and measuring the distance from the thumb to
the other fingers and palm. ZeroNet [68] extracts training
data from videos to classify 50 different hand gestures.
Specifically while prior works can only distinguish multi-
finger gestures, NeuroPose performs free form 3D finger
motion tracking. AuraRing [83]], a recent work, tracks the
index finger precisely using a magnetic wristband and ring
on index finger. In contrast, NeuroPose tracks all fingers.

ElectroMyoGraphy: The use of EMG signals for hand
pose tracking is an active area with decades of re-
search. Prior works perform classification of discrete hand
poses[91]l, [36], 401, [90l, [98] or tracking of a pre-
defined sequence of hand poses [90], [98] using EMG
sensors with a combination of deep learning techniques
based on CNN, RNN etc. Work in [29] can classify multi
finger gesture sequences using a 4 channel EMG sensor.
A number of popular features based on spectral power
magnitudes, hudgins’ time domain features, correlation
coefficients etc have been used in conjunction with SVMs,
nearest neighbors, and linear discriminant analysis based
algorithms to show the feasibility of gesture classification.
Work in [23]] uses Myo armband similar to the one used
in this paper to classify 5 gestures such as fist, wave-in,
wave-out, open, and pinch etc. A shallow feed forward
neural network with 3 layers has been used to perform
this classification. Work in [[69]] shows that muscle synergy
can be exploited to reduce the dimensions of feature
vectors in EMG based gesture classification. Evaluated
over five hand activities such as open, close, pinch, valgus,
and grasp, the recorded EMG data from the forearm have
been compressed using non negative matrix factorization
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to extract synergistic myo-electrical activities. The com-
pressed feature set has shown to demonstrate a higher
recognition rate. Work in [94] uses forearm EMG signals
to control a robotic arm. A set of 9 gestures are detected
to contral a 6 degree of freedom robotic arm. Ensembled
bagged trees, SVM, and neural networks have been used
to perform the classification. Works [[99] can track joint
angles for arbitrary finger motion, but requires a large
array of more than 50 EMG sensors placed over the
entire arm. Work in [81] tracks joint angles using EMG
sensors but only for one finger. In contrast to these works,
NeuroPose performs accurate tracking of continuous finger
joint angles for arbitrary finger motions with only sparse
EMG sensors.

Mirrored Bilateral Training: Work in [80] estimates the
force on contralateral arm using EMG signals measured
from the other arm. A multilayer perceptron (MLP) based
algorithm has been used to make the association between
EMG signals and the associated force in the arm. Based
on several experiments with tens of individuals , this
paper shows that an accurate estimation of forces in
the contralateral limb can be done based on the EMG
signal from the other arm, thus showing promise. Sim-
ilarly, work in [81]] shows the feasibility of estimation
of flex and extension joint angles of one finger based
on EMG data collected from the other hand. A number
of features such as zero crossings, mean absolute value,
waveform length, slope changes etc has been applied
on EMG data. Furthermore, a state space model with
parameters estimated from contralateral arm is used to
estimate the joint angle of one finger on the other arm.
The results show an estimation error under 1 degree
thus indicating sufficient promise. Work in [41] com-
pares training via mirrored EMG from contralateral arm
with training by mimicking gestures on the same arm
with potential amputation. Evaluated over more than 20
gestures, a better performance is achieved by mirroring
on the contralateral arm instead of mimicking with the
same arm that may have amputation. The main challenge
with mimicking is identified as the inability to estimate
force involved in motion as well as misalignment over
time with between the imitation and the actual gesture.
Work in [54] can perform wrist motion classification using
mirrored bilateral training. Based on the EMG data from
the contralateral arm, and employing techniques based on
artificial neural networks for pattern classification, upto
70% in accuracy has been shown in terms of classification
of 4-6 wrist motion gestures. All of the above works show
promise in the technique of mirrored bilateral training.
In contrast to these works which either track discrete
gestures or continuous motion of one finger, NeuroPose
shows the feasibility of mirrored bilateral training for
continuous estimation of 21 degrees of freedom involved
in 3D hand pose estimation.

ITII. BACKGROUND

We begin with a brief overview of: (i) the anatomi-
cal model of the human hand (ii) the neuro-muscular
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interactions during finger muscle activations and how
it manifests as EMG sensor data. (iii) Mirrored bilateral
training scheme for generating training data for amputees
with missing fingers.

A. Hand Skeletal Model

The human hand consists of four fingers and a thumb
which together exhibit a high degree of articulation.
Fig(a) depicts the skeletal structure of the hand with
various joints that are responsible for complex articulation
patterns that generate 3D hand poses. Fig. [2(b) shows a
simplified kinematic view. The four fingers consist of MCP
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Fig. 2: (a) Anatomical details of the hand skeleton [30] (b)
Kinematic structure and joint notations [66] (c) Finger motions
include flex/extensions and abduction/adductions [86]]

(metacarpophalangeal), PIP (proximal interphalangeal),
and DIP (distal interphalangeal) joints. The joint angles
at PIP (6,:,) and DIP (04;,) joints exhibit a single degree
of freedom (DoF) and can flex or extend (Fig[2(c)) the
fingers towards or away from the palm. In addition
to flexing, the MCP joint can also undergo adduction
and abduction (side-way motions depicted in Figc)),
and thus possesses two DoFs, denoted by 0,,c,,f/e, and
Omep,aa Tespectively. Thus, each of the four fingers posses
four DoF. The thumb on the other hand exhibits a
slightly different anatomical structure in comparison to
the other four fingers. The IP (interphalangeal) joint can
flex or extend with a single DoF (6;,). The MCP and
TM (trapeziometacarpal) joints possesses both flex and
abduction/adduction DoF, thus the thumb has five DoF -
Oip> Omep, £ /e> Omep,aas Otm, £ /e> @0 Oty 4. The other 6 DoF
comes from the motion of palm including translation and
rotation. We ignore the motion of the palm in this paper
and only focus on tracking fingers which together have
21 DoF — modeled as 21 dimensional space (R?'). Thus,
NeuroPose’s goal is to track this R?! dimensional space to
capture the 3D finger pose.
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The various joint angles responsible for finger articula-
tion exhibit a high degree of correlation and interdepen-
dence [66], [30]. Some of the intra-finger constraints are
enumerated below:

2
adip = gopzp 1)
1
eiP = Egmcp,f/e (2)
1
Gmcp,f/e = kapipa 0<Ek< 5 (3)

Equation |[1| suggests that in order to bend the DIP
joint, the PIP joint must also bend under normal finger
motion (assuming no external force is applied on the
fingers). Likewise, Equation[2]is a constraint on the thumb
joints. Similarly, the range of motion for PIP is very much
limited by the MCP joint (Equation [3). The generic range
of motion constraints for other fingers are enumerated
below:

_150 S emcp,aa S 150
0° < B4p < 90°
0° < fpip < 110°

4

Clearly, abduction/adduction angles have a smaller
range of motion compared to flex/extensions. In addition
to these constraints, there are complex inter-dependencies
between finger joint motion patterns which cannot be
captured by well formed equations. However, our ML
models will be able to automatically learn such constraints
from data and exploit them for high accuracy tracking.

B. Electromyography Sensor Model

Electromyography sensors can detect electrical poten-
tial generated by skeletal muscles due to neurological ac-
tivation. Such signals can provide information regarding
temporal patterns and morphological behaviour of motor
units that are active during muscular motion [100]. Not
only are the signals useful for detecting and predicting
body motion induced by the muscles but also useful for
diagnosis of various neuromuscular disorders and under-
standing of healthy, aging, or fatiguing neuromuscular
systems.

Muscles of Interest: We now provide a brief overview
of muscular involvement during finger motions. Several
muscles are involved in performing finger motions. Fig.
a) and (b) depict the anatomical structure of the human
arm. Extensor Pollicis Longus extends the thumb joints
whereas Abductor Pollicis Longus and Brevis performs
thumb abductions. Extensor Indicis Proprius extends the
index finger. Extensor Digitorum extends the four medial
fingers and Extensor Digiti Minimi extends the little finger.
Volar interossei and Dorsal interossei group of muscles
are responsible for adduction and abduction respectively
of index, ring, and little fingers towards/away from the
middle finger. They are connected to proximal phalanx
and the Extensor digitorum. NeuroPose mainly focuses on
such muscles that perform finger actions. Other muscles
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that are involved in large scale motion and supporting
strength include Supinator for forearm motion, Anconeus
and Brachioradiali for elbow joint, Extensor Carpi Ulnaris,
Extensor Carpi Radialis Longus and Brevis for wrist joint
etc.

Feasibility of Tracking the Muscles of Interest:
Among the targeted muscles of interest, although some
of them appear close to the skin surface, some of them
are deep (such as Extensor Indicis). Therefore, a natural
question to ask is: Is surface EMG alone sufficient to capture
all such muscles of interest? To verify this, we conduct
a simple experiment where we flex and extend each of
the five fingers, and observe the activity on the EMG
channels. Depicted in Fig. [4 all fingers show noticeable
activity on the EMG channels for flex/extensions (the
activity on channel number 1 is shown per conventions in
Fig. [B]) For sake of brevity, we provide one example for
abduction/adduction in Fig. [{(f) for abducting/adducting
all fingers together however, we note that each finger
individually generates a noticeable pattern for abduc-
tion/adduction motions. An important observation from
the figures is that the muscle group responsible for motion
of index finger — Extensor Indicis, a non-surface muscle
group relative to sensor placement in Fig. |5/ — also gen-
erates a noticeable spike in the EMG channel data (Fig.
[4(b)). This is also validated by prior research related to
deep muscle activity [[59]]. These signals must be carefully
analyzed further to capture the precise magnitude of
finger joint angles, particularly when multiple fingers are
simultaneously in motion. Towards the end, we begin by
describing the interference pattern on the EMG sensors
by signals from different muscle groups. Separating out
the individual finger motions from such EMG sensor data
will be discussed in Section

Biological Model: We now provide a brief description
of the biological model of EMG signals generated due to
muscle activations (illustration in Fig. (c)). Muscles con-
sist of fundamental units called muscle fibres (MF) which
are the primary components responsible for contraction.
Activation of an MF by the brain results in propagation of
an electrical potential called action potential (AP) along
the MF. This is called motor fibre activation potential
(MFAP). The MFs are not excited individually but are
activated together in groups called motor units. Groups
of motor units coordinate together to contract a single
muscle. Individual MFAPs cannot be detected separately,
instead summation of all MFAPs within the motor unit
generates a signal called as motor unit action potential
(MUAP) as shown in the below equation

N
MUAP;(t) = > MFAPi(t — 7,)s;,

i=1

)

where 7; is the temporal offset, INV; is the number of fibres
in motor unit j, and s; is a binary variable indicating
whether or not the muscle fibre is active. The temporal
offset depends on the location of the muscle fibre. The
number of observed MFAPs within a MUAP also depends
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on location of EMG electrode because the potential gener-
ated by far away fibres are typically detected in attenuated
form at the electrode. A similar muscle action can result in
different shape of the generated MUAP signal depending
on the previous state of the muscle as well as the temporal
offset 7; which can vary.

The above equation represents a single instance of fir-
ing, but the motor units must fire repeatedly to maintain
the state of muscle activation. Continuous muscle activa-
tions can generate a train of MUAP impulses separated by
inter discharge intervals (IDI), as depicted in the below
equation

M,
MUAPT;(t) = > MUAP;(t — 6;1,), (6)
k=1
where M; is the number of times the jth motor unit fires,
d, is the kth firing time of the jth motor unit.

Finally, the electric potential detected at an EMG elec-
trode is the superimposition of signals by spatially sep-
arated motor units and their temporal firings patterns
dependent on their respective IDIs. This spatio-temporal
superimposition is depicted in the below equation where
n(t) is the noise term, and N,, is the number of active

motor units. N,,

EMG(t) =Y MUAPT;(t) + n(t).
k=1

(7)

While in theory, the EMG signal is composed of activation
from every single muscle fibre, in practice the electrode
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can only detect the signals from fibres closer to the
electrode because the signals attenuate below noise level
with distance. Our EMG sensor platform described next
exploits multiple electrodes to capture activations of all
fibres involved in finger motion. Once the EMG data is
captured, the core technical challenge is in decomposing
the signals into activations responsible for individual joint
movements. Towards this, we introduce ML algorithms in
Section |V| for signal decomposition.

C. Mirrored Bilateral Motion

An important application of EMG devices is in develop-
ing prosthetic devices for amputees with missing fingers.
However, because of missing fingers, it is non-trivial to
generate training data that maps EMG signal pattern into
corresponding 3D joint angles of various fingers. Towards
handling this challenge, we explore a mirrored bilateral
training [80] scheme. In this subsection, we introduce
the biological foundations of mirrored bilateral training
as well as provide high level details on exploiting this
opportunity for generating training data for amputees.

A unilateral motion such as a motion with the right
hand induces involuntary muscle activation in the con-
tralateral part of the human body such as the left hand.
This is called as mirrored bilateral motion and the corre-
sponding activity in electromygraphy signals is called as
mirrored electromyography (MEMG). MEMG has been con-
sistently observed in both healthy and pathological cases
over a number of simple and complex motor activities in
daily life. This is known to happen because of a motor
overflow that causes the involuntary muscular activity
due to interhemispheric communication within the brain
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during motion activities [72]]. Such interhemispheric com-
munication leads to bilateral activation of motor relevant
brain regions. Although the evolution in humans have
gone through an ontogenetic learning process that de-
couples both hands to be independent of each other, the
MEMG activity is said to be a remnant of the basic mirror
movement mode of the central nervous system [107].
This facilitates mirrored motions under voluntary setting
where both hands can move synchronously in nearly iden-
tical fashion. As elaborated later in this section, NeuroPose
will exploit this property in an application for developing
prosthetic devices for amputees.

A transradial amputation is one where a part of the
arm is missing below the elbow beyond a certain point
along the radial bone. Such an amputation might occur
because of a number of reasons including injury, tumor,
frostbite, infection etc. A number of prosthetic devices
have been proposed for such cases. This includes cosmetic
prosthetic devices which do not move but used solely for
the purpose of appearance [34]. On the other hand, a
body powered prosthesis is attached to the body by a
series of wires [50]. Moving the body in different ways
will move the prosthetic device for performing different
activities. Finally, a myoelectric prosthesis is the most
advanced form of prosthetic device. EMG signals from the
brain can be used to control the prosthetic hand resulting
in an effect that is similar to a real hand [27]].

At a high level, transradial amputees will still retain
the neuromuscular structure that is responsible for precise
finger motion. Even though the fingers might be missing,
studies have shown that the subjects with amputations
are capable of generating neuromuscular potentials that is
responsible for a particular pattern of finger motion [41]],
(35[, [80l, [81l. By identifying the appropriate patterns,
an external prosthetic device can be attached to produce
those actions thus providing an experience that is close
to a real hand.

While mapping the EMG signals to finger patterns for
able bodied individuals is easy because machine learning
models can be trained to map the EMG signals to finger
motions, the same is not feasible with amputees. The lack
of a finger precludes training data that maps the EMG
signals to the motion of that finger. One possibility to
handle this challenge is to let the amputee emulate a
few predefined finger motion patterns (flicking a finger
etc), and record the EMG signals to be used for training
[41]. However, the action of the amputee might differ
from the predefined finger pattern in temporal alignment,
bio-mechanical coupling as well as the intensity of force
applied, thus resulting in poor quality of training data.
Mirrored bilateral motion as described earlier can be
exploited as an opportunity to handle this challenge. The
neural activation patterns are known to be similar in
both hands for performing similar finger motion activities
[[107]. Therefore, a machine learning model trained with
the non-amputee hand (without missing fingers) while
inducing bilateral activation can potentially be used for
performing inferences on the hand with missing fingers
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(amputated hand). Thus, appropriate control signals can
be generated for controlling the prosthetic device at-
tached to the amputated hand. NeuroPose exploits this
opportunity and provides insights into the feasibility of
such a mirrored bilateral training approaches for prosthet-
ics capable of performing fine grained 3D finger motion
instead of discrete gestures.

IV. PLATFORM DESCRIPTION

(@) (b)
Fig. 5: (a) 8 channel Myo armband (b) Myo armband in action

Our platform includes a MYO armband depicted in
Fig. [5| worn on the arm. It consists of 8 EMG chan-
nels, as well as Inertial Measurement Unit (IMU) sensors
of accelerometers, gyroscopes, and magnetometers. The
data is streamed wirelessly over bluetooth to a desk-
top/smartphone device. NeuroPose is implemented on
smartphones (OnePlus 9 Pro, Samsung S20, Sony Xperia
Z3) that capture the EMG data and provide finger motion
tracking results. The MYO sensor is low-cost, and appears
to be solidly built. Although the MYO armband fits per-
fectly aesthetically on the arm it might seem intrusive
for some users. Towards minimizing the intrusiveness of
the platform, NeuroPose’s implementation with only a 2-
channel EMG data offers a low-intrusive option with a
modest loss in accuracy (Section [VI).

Skin Temperature Calibration: The EMG amplitude
may be slightly affected by skin temperature variations
[113]. The surface Myo platform warm ups the contacted
muscle [10] slightly. This helps the sensor to form a
stronger electrical connection with the muscles to min-
imize the effects of temperature.

Other Platforms: We note that unlike smartwatches
or smartphones, there is no globally acceptable platform
for EMG sensing yet. Facebook has recently acquired
patents related to MYO armband [11]], [3] for devel-
oping finger tracking technology for its thrust towards
AR/VR applications. Other form factors ranging from arm-
bands, tattoos, and arm-gloves have been proposed by
both academia and industry with no consensus on what
is best [16], [87], [91], [36], [99]. Therefore, the ML
models developed in this paper may not apply directly
to a hardware of different form factor than what is used
here. While there are uncertainties about what platforms
will gain wide spread adoption, our goal is to show that
enough information exists in surface EMG data for contin-
uous tracking of arbitrary finger motions. Furthermore, by
showing the right applications and use-cases, we believe

. '© 2022 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o&gllgyublications/rights/index.html for more information.
Authorized licensed use limited to: Penn State University. Downloaded on February 04,2023 at 22:30:29 UTC from IE

we can influence the process of convergence of hardware
platforms.

V. CORE TECHNICAL MODULES

We explore multiple ML models for 3D finger motion
as elaborated in this section.

A. Encoder Decoder Architecture

In order to generate plausible finger pose sequences
with spatial constraints across fingers, as well as tempo-
rally smooth variations over time, we design an encoder-
decoder network as illustrated in Fig. [6] Specifically,

NG
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Fig. 6: Encoder Decoder Architecture used in NeuroPose:

Residual Block

the network captures a holistic view of a large interval
of time-series sensor data instead of a single sensor
sample. This enables the network to enforce and learn
the key spatio-temporal constraints as well as consider
historical EMG data while making hand pose inferences.
The network accepts 5s of sensor data and outputs the
corresponding 3D hand pose sequence. The various com-
ponents of the architecture are elaborated next.

Encoder: The encoder-decoder model maps a sequence
of input EMG data to a sequence of 3D finger poses.
Unlike discrete classes, the output space of the model is a
continuous domain R2!. Among these 21 dimensions, 5 of
the dimensions (64, for four fingers and 6,, for thumb)
can be directly computed using Equations Thus, the
actual output of the network is only 16 dimensions — R'6,

While one possibility is to build a network with a series
of convolutional layers, this will increase the number of
parameters in the network, thus causing issues not only in
compute complexity and memory but also in convergence.
Thus, the encoder uses a series of downsampled convo-
lutional filters. This captures a compact representation
of the input which will later be used by the decoder in
generating 3D hand poses.

The input z to the encoder is a multi-channel EMG data
of dimensions T' x 8, where we choose 7" = 1000, which
at a sampling rate of 200Hz translates to a duration of
5s. The encoder consists of a series of CONV-BN-RELU-
MAXPOOL layers, which are elaborated below: (i) The
CONV sub-layer includes 2D convolutional filters that
perform a basic convolution operation[61]. The CONV
sub-layer extracts spatio-temporal patterns within EMG
data to learn features representative of finger motions.
(ii) This is followed by a batch normalization (BN) sub-
layer whose role is to accelerate convergence of the model
by controlling huge variations in the distribution of input
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that passes from one layer to the next [51]]. (iii) The
BN module is followed by an activation sub-layer, which
applies an activation function to the output of the BN
layer. We chose a Rectified Linear Unit (ReLU) activation
function [21]]. While non-linearities are critical in training
a deep neural network, among possible alternatives ReLU
is popular because of its strong biological motivation,
practicality of implementation, scale in-variance, better
gradient propagation etc. We also add dropouts [[108] fol-
lowing RELU activations. They serve as an adaptive form
of regularization which knocks off some of the parameters
of the network with a random probability of 0.05. (iv)
Finally, max-pooling is applied to the output so as to
downsample the feature size toward reaching a compact
feature representation of the EMG data. Max pooling is
done by applying a max filter to non-overlapping sub-
regions of the initial representation. For example, a max-
pool filter of size 2x 2 applied to an input of size 100 x 100,
will slide a non-overlapping window of size 2 x 2 and
extracts the maximum element from the input at each
overlap resulting in an output of size 50 x 50.

The first of the CONV-BN-RELU-MAXPOOL layers ap-
plies 32 2D-CONYV filters of size 3 x 2, and down samples
the feature sizes by 5 and 2 over temporal and spatial
(EMG channels) domains. Similarly, the filter sizes and
number of filters of the other layers is depicted in Figlf]
The second and third layers down-sample by (4 x 2), and
(2 x 2) over time and space. Thus, the final output of the
encoded representation is of dimensions 25 x 1 x 256. The
decoder processes this encoded data to obtain finger joint
angles.

Residual Blocks: A natural question to ask is: Why
not increase the depth of the network to extract stronger
feature representations? Unfortunately, deeper networks
are harder to optimize and they also pose challenges in
convergence. ResNets[48] proposed a revolutionary idea
of introducing skip connections between layers so as to
balance this tradeoffs between stronger feature represen-
tations and convergence. The skip connections, also called
as residual connections provide shortcut connections be-
tween layers as shown in the middle of the network
in Fig. [6] Suppose, y, and z, denote the intermediate
representations at different layers in the network, with y
being deeper than x with a few layers in between. Then,
the skip connections are denoted by the below equation.

y=fla,W)+a (8)

f(z,W;) denotes the intermediate layers between «z,
and y. Because of the existence of a shortcut path between
y and z, the representation at x is directly added to
f(x,W;). Therefore, the network can choose to ignore
f(x, W), and exploit the shortcut connection y = « to first
learn a basic model. As the network continues to evolve,
it will exploit the deeper layers (f(x,W;)) in between
shortcut connections to learn stronger features than the
basic model. As shown in Fig. [6] we incorporate ResNets
in between the encoder and decoder part of the network.
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As evaluated in Sec. [V]] this design choice plays a critical
role in achieving a high accuracy.

Decoder: The decoder maps the encoded represen-
tations into 3D hand poses. The decoder uses upcon-
volutional layers to upsample and increase the size of
the encoded representation to match the shape of the
output. The decoder network consists of a series of CONV-
BN-RELU-UPSAMPLE layers. Each such layer consists of
following sub-layers. (i) The CONV layer tries to begin
making progress towards mapping the encoder represen-
tations into joint angles. The job of (ii) BN sub-layer, and
(iii) RELU activation sub-layer is similar to their roles
in the encoder. (iv) The upsampling sub-layer’s job is to
increase the sampling rate of the feature representations.
Upsampling (with nearest neighbor interpolation method
[47]) across multiple layers will gradually increase the
size of the compact encoder features to match the size of
the output.

The size and number of conv filters in the decoder at
each layer is shown in Fig. [6] The three layers of the
decoder upsample by factors of (5 x 4),(4 x 2),(2 x 2) re-
spectively on temporal and spatial domains thus matching
the output shape of 1000 x 16 at the last layer. Finally, the
decoder output is subject to a Mean Square Error (MSE)
loss function as elaborated next to facilitate training.

Loss Functions and Optimization: In all equations
below, § denotes the prediction by the ML model, whereas
6 denotes the training labels from a depth camera (leap
sensor [7]]).

i=4
lossmcp,f/e = Z(ei,mcp,f/e - Hi,mcp,f/e)z C))
i=1
=4 R
lOSSm‘p = Z(Hwip — ei,pip)Q (10)
i=1
i=4 R
lOSSmcp,a/a = Z(ei,mcp,aa - ei,mcp,aa)2 (11)
i=1

The above equations capture the MSE loss in predic-
tion of joint angles of MCP (flex/extensions and adduc-

tion/abduction), and PIP joints of the four fingers.

) 2
lOSSthumb = (oth,mcp,aa - eth,mcp,aa) +

) 2 ) 2
(eth,mcp,f/e - eth7mcp,f/e) + (Gth,,tm,aa - oth,,tm,aa) +

(éth,tm,f/e - eth,mcp,f/e)Q
(12)

The above equations capture the MSE loss in the MCP
and TM joints of the thumb.

1088 smoothness = H(Vét - vo;—l)”% (13)

The above equation enforces constant velocity smooth-
ness constraint in the predicted joint angles where 6;
above is a representative vector of all joint angles across
all fingers at a time step ¢.

The overall loss function is given by the below equation.

loss = 10SSpep £ /6 + 10SSmep.aat
p.f/ P, (14)

losspip + lossthumb + losssmoothness
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Note that the loss function does not include 64;, or
0;, because we compute them directly from anatomical
constraints: Equations

Finger motion range constraints: As described in
Section [[I]], each finger joint has a certain range of motion
for both flex/extensions and abduction/adductions. In
order to apply these constraints, we first normalize the
predicted output of a joint angle by dividing it by the
range constraint (for example, by 90° for 64;,). We then
apply the bounded ReLU activation (bReLU) function [64]
to the last activation layer in our network. The bReLU
adds an upper bound to constrain its final output. The
bReLU outputs are multiplied again with their range
constraints such that the unit of the output is in degrees.
The bReLU, in conjunction with other loss functions based
on temporal constraints (Equation facilitates predict-
ing anatomically feasible as well as temporally smooth
tracking results.

B. Transfer Learning with Semi Supervised Domain Adap-
tation

For the encoder-decoder model proposed above, train-
ing separate models for each user will be burdensome.
Therefore, we explore domain adaptation strategies to
pretrain a model with one (source) user and fine-tune it
to adapt to new users with low training overhead.

Transfer-learning based domain adaptation is popular
in vision and speech processing. For example, AlexNet
model [60] pretrained on ImageNet database [38] was
fine-tuned for classifying images in medical domain [[122]],
remote-sensing [46] and breast-cancer [79]. Similarly, a
pre-trained BERT language model [39] was fine-tuned for
tasks such as text-summarizing [118]], question answering
[[89] etc. This significantly reduces the burden of training
for a new task. In a similar spirit, we use pretrained model
from one user and fine-tune it for a different user to
significantly decrease the training overhead (Fig. [17|(a))
without losing much of accuracy.

At a high level, we exploit domain adaptation at the
Batch Normalization (BN) layers. Given the sufficient suc-
cess of BN layers in accelerating convergence by minimiz-
ing covariate shift [51]] with a relatively fewer number of
parameters, we exploit them towards domain adaptation
as well. The success of this approach has already been
shown in other domains such as computer vision [28]],
[711.

Our domain adaptation process is performed as enu-
merated below: (i) We generate a model for one user by
extensively training the model with labelled data from
that user — known as the pretrained model. (ii) We collect
small training data with only few labels from the new (tar-
get) user. Instead of developing the model for the target
user from scratch, we initialize the model weights to be
same as the pretrained model. (iii) We make all layers
in the model untrainable except the Batch Normalization
(BN) layers. Using the few labels from the target user, we
update the BN layers to minimize the loss function. This
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is called fine tuning. The model thus generated will be
used for making inferences on the target user.

Finetuning the BN layers help with domain adaptation
because of their ability to contain wide oscillations in
the distributions of input fed from one layer to the next.
Given the sufficient success in BN layers (with only a few
parameters) for accelerating convergence by minimizing
covariate shift [51]], we exploit them towards domain
adaptation as well. The BN layers will learn to sufficiently
transform the distribution from target user to a distribu-
tion of the source user on which the model is pretrained
on. If successful, the pre-trained model from the source
user can be used for performing inferences on the target
user with the finetuning steps discussed here. As discussed
in Section V1] this results in reduction of training overhead
on the target user by an order of magnitude.

C. RNN Architecture
Output: Hand Poses
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Fig. 7: RNN alternative explored in this paper.
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The encoder-decoder model proposed above has a
holistic view of a relatively long interval (5s) of sensor
data, and thus can exploit complex spatio-temporal re-
lationships. However, in order to ensure real-time per-
formance with this model, we need to constantly process
previous 5s of data at any given instant. Although this can
ensure real-time performance, the power consumption
can be higher due to redundant computations. Therefore,
we explore an alternative model with Recurrent Neural
Networks (RNN) to obtain real-time performance without
redundant computation.

Our model is presented in Fig[7] The generated EMG
sensor data is not only dependent on muscle contractions
to maintain the current finger pose but also dependent
on the force exerted in the muscles to move the fingers
to a new position. Such temporal dependencies can be
systematically modeled with a recurrent neural network
(RNN). Each RNN unit accepts as inputs one sample of
an eight channel EMG data as well as previous hidden
state. In particular, we use the Long Short Term Memory
(LSTM) variant of RNN because of its ability to handle
vanishing/expanding gradients [85] and selectively for-
getting/remembering features from past. It outputs an
R'6 dimension finger joint angles and a new hidden state
to be used as input in the next iteration of the RNN unit.
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During training, the outputs are subjected to MSE loss
functions, as well as temporal constraints identical to ones
used in encoder-decoder architecture. We use truncated
backpropagation through time (TBPPT [53]) in training
with a truncation of 64 time units.

D. Representation Learning for Mirrored Bilateral Training

As discussed in Section the neuromuscular inter-
actions are such that an amputated hand still preserves
the muscular activation and exhibits strong similarities
to the muscular activity in the non amputated hand.
Therefore, the training data, labels, and models developed
from the non amputated hand can be used for performing
inferences on the amputated hand. To handle any residual
differences in neuromuscular activity between amputated
and non amputated hand, we develop an architecture
based on representation learning to further improve the
accuracy. Fig. |8 depicts the high-level architecture of
the representation learning framework used in Neuro-
Pose. The raw sensor input z! is first transformed into
two variants (2} and %) based on data augmentation
techniques. The transformations add perturbations to the
data while still retaining the overall pattern. z{ and
x% are then fed as input to the neural network that
extracts representations hi and h% as shown in the self-
supervised stage of the figure. Finally, the representations
are projected into a latent space before comparing them
using a contrastive loss function that attempts to maximize
the similarity between ! and y while minimizing the
similarity between y* and y7, where k # j. Since such a
network tries to enforce similarity among representations
even though the inputs have been perturbed by data
augmentation techniques, it is known to learn efficient
representations. Finally, the representations thus learned
are fine tuned with labeled data for predicting the 3D
finger motion joint angles. Evaluated in Section [V] using
the representations enhances robustness of adaptability of
a model trained from a non amputated hand for inference
on the amputated hand.

Data Augmentation: Towards learning self-supervised
representations, we employ data augmentation tech-
niques to our ML model. This helps avoid overfitting as
well as teaches the algorithm to look for stable features
that measure similarity. The architecture in Fig. |8 needs
two data augmentation techniques at a given instant of
time. We take a combination of two from the following
three techniques: (i) Temporal masking: We mask parts of
the input data along time axis so as to help our model in
capturing the temporal dependencies in the sensor data.
Such strategy is popular in natural language processing
such as BERT [39]] where words are masked in a sentence
to force the language model to predict these words,
thus facilitating learning of efficient representations of
sentences. Inspired by BERT, we add temporal masking
along time as an data augmentation technique. (ii) Noise
Addition: We add Gaussian noise to the input data to
create augmented versions of the sensor data. Such a
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process of adding randomness and enforcing similarity
between differently augmented copies of the input will
teach the model to look for stable features and also help
it to avoid overfitting issues. We believe this also help
facilitate the mirrored bilateral training process where
the training and test data come from different hands,
with potential noise between them. (iii) DTW based data
augmentation: The speed of hand motion is one of the
metrics that can vary across time and users. Various parts
of the finger motion might be performed at a faster
or slower pace. Towards making the ML models robust
to such variations, we augment the training data by
stretching and compressing different parts of the data
using DTW [24]] based algorithm with different factors.

Contrastive Loss Function: The encoded representa-
tions h are passed through a projection head as shown in
Fig. [8] resulting in an output y = p(h) where p represents
the action of the projection head. We apply the contrastive
loss function on y that maximizes the similarity between
two differently augmented copies of the same input. The
contrastive loss function is applied on y whereas we use
representations h in the later phases for prediction of 3D
finger motion. The reasons for such a design choice are
as follows. (i) Since the contrastive loss function’s main
goal is to maximize the similarity between differently
augmented versions of the same input, it might lose some
information during the process. (ii) On the other hand,
the encoded representation h is one level before the
projection head, and it offers the best trade-off between
capturing high-level robust representations without losing
much information.

The mathematical form of the contrastive loss function
that enforces similarity between differently augmented
samples of the same input 2* is given by:

exp(sim(yi,y5)/7)
N . X X )
SN Ly exp(sim(yi, yi) /1)
’I.LT'U

' = —log

(15)
o) = Tl o]

Here, (yi,y5) represents the output of the projection
head from Fig. |8] that acts on differently augmented
versions x%,x% of the same input 2°. Given a batch of N
input examples {z?, Vi € [1, N]}, we have 2N similarity
examples of the form {(z},2%), Vi € [1,N]}. For each
similarity pair of the form (z%,z%), we have 2(N — 1)
dissimilar pairs of the form {(z%,27),i # j}. 1,.; indicates
dissimilar pairs when i # j, and 7 denotes a temperature
parameter that controls the penalty strength on dissimilar
samples [[109]. In our experiments, we set 7 to 0.2 to
encourage the model to have tolerance for similar samples
within a batch. Both similar and dissimilar pairs are
considered in evaluating the contrastive loss function in
Equation thus training the network to maximize the
similarity between similar pairs as well as minimize the
similarity between dissimilar pairs. The similarity metric
sim(u,v) is also indicated in Equation

Prediction of 3D Finger Joints from Self-Supervised
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Fig. 8: Architecture for self-supervised and fine-tuning stages (DA = Data Augmentation)

Representations: The representations h learned above
based on the architecture in Fig. [8|are used for estimating
3D finger joint angles. This is indicated as the fine-tune
stage in Fig.|8| The input EMG data is first passed through
the encoder-decoder which extracts representations h. For
predicting the finger joint angles using h, we follow a
widely used evaluation protocol [58] which can be used
as a proxy indicator for the efficiency of self-supervised
learning. Specifically, a simple linear model with two
fully-connected layers takes the representations h and
predicts joint angles. The weights of the linear model are
trained on top of the encoder-decoder network (encoder-
decoder’s weights are frozen after self-supervised stage in
Fig.|8) in a supervised fashion.

VI. PERFORMANCE EVALUATION

Our experiments are designed to comprehensively test
the robustness to sensor positions, usability, and accu-
racy of NeuroPose over users, joint angles etc. We also
compare various ML models, overall training cost as well
as perform system level measurements for efficiency of
implementation on smartphones.

A. User Study

We conduct a study with 12 users (8 males, 4 females).
The users are aged between 20-30, and weigh between
47-96kgs.

Data Collection Methodology: Our study was
approved by the IRB committee at our institute
(STUDY00014754, Pennsylvania State University). The
users wear the Myo armband as shown in Figl5| on the
left hand in a position where it fits naturally, with channel
number 4 on top. The users were then instructed to
perform random finger motions that include flexing or
extending of fingers as well as abduction or adduction
thus incorporating all range of possible hand poses. Under
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the guidance of a study team member, we let the users
practice finger motions before the study to ensure that
the user moves all fingers over the entire range of motion.
This ensures good convergence of the ML models as well
as generalizability to arbitrary finger motions. There are
no discrete classes of gestures. The motion patterns are
entirely arbitrary thus making the data collection easier,
because people don’t need to remember a sequence of
gestures, they can perform any gesture freely.

Labels for Training and Testing: The collected data in-
cludes 8 EMG channels from the Myo sensor as well as the
fingers’ 3D co-ordinates and joint angles captured by leap
motion sensor [7]. While the Myo sensor provides EMG
data for 3D pose tracking, the leap sensor data serves as
the ground truth for validation as well as provides labels
for training NeuroPose’s ML models. These labels include
joint angles for each finger. The benefit of using leap
is it can automatically generate the ground truth labels
without having to have human annotation. The EMG and
leap data were synchronized using Coordinated Univer-
sal Time (UTC) timestamps. Since NeuroPose performs
continuous finger tracking instead of identifying discrete
gestures, we use MSE (instead of cross-entropy) between
predicted joint angles (from Myo) and leap (ground truth)
for training and testing.

® .o . @ ®
1TRAA

Normal Up
Fig. 9: Wrist Configuration Map

Training Data Collection : Fig.[10|shows qualitative re-
sults from NeuroPose. Each user participates in 12 separate
sessions with each session lasting for 3 minutes, with suf-
ficient rest between sessions. For the first 5 sessions, both
the sensor position and the wrist position are not changed
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Fig. 10: Comparison of pose tracking results between depth camera (ground truth) and NeuroPose.

(wrist maintained at the “normal” position depicted in
Fig.[9). For the each of the last 6 sessions, we remove and
remount the sensor, to validate robustness of NeuroPose to
natural changes in sensor position and orientation during
typical usage. For the 6" session, we let the user place
the wrist still in the normal position. However, for the last
6 sessions, we let the user place the wrist in 4 different
configurations (up, down, bend, mobile) as indicated in
Fig. [9} In the mobile configuration, the wrist was moved
up and down including rotations of the wrist within the
tracking range of the leap sensor. Users perform up, down,
bend, down, up for sessions 7-11 respectively. For the last
session, the users perform the mobile configuration. The
position of the leap sensor was adjusted using a tripod
so that it can capture the ground truth. This data is used
for developing four kinds of models. (i) User-dependent
model: A model for each user that requires 900 seconds of
training data from the first 5 sessions of that user. Though
this model might reach higher accuracy, it requires lots
of data from the user side. (ii) Model with domain
adaptation:To build a model with more generalization,
we propose model with domain adaptation, a model for
each user where a pre-trained model from a different
user is taken and fine-tuned using techniques in Section
such that only a small fraction (90 seconds) of user-
specific training data is used for developing a model
for the user. (iii) Model without domain adaptation
or user-independent model: Here, we use the trained
model from one user directly to perform inferences on a
new user without any training data from the new user.
(iv) Multi-user model: This is also a user-independent
model. Here, we train a model based on training data
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from multiple users. The trained model is directly used
for inferences on a new user without any training data
from the new user. For example, for user No.1, we will
train the model with the input of data from users No.2 -
No.12.

Test Data: Using the models developed above, we
evaluate the joint angle prediction accuracy over test
cases that include the last 6 sessions where (i) The sensor
has been removed and remounted on the user’s arm with
different sensor rotation angles and positions. (ii) The
wrist position is completely different from the one used
to train the models.

Hyperparameters of NeuroPose: The hyperparameters
include learning rate, L2 regularization factors, kernel
sizes for convolutional layers, dropout rates, the number
of resnet blocks, and the number of convolutional filters
per convolutional layer. The above parameters were var-
ied using a grid search as follows: learning rate in the set
of {107°,1074,1073,1072}, L2 regularization rate were
varied in the set {0.001,0.005,0.01,0.05}, kernel sizes
{2,3,4,5}, dropout rates {0.01,0.05,0.1,0.2}, number of
resnet blocks {3, 5,7}, number of convolutional filters in
the deep convolutional layers as {32, 64, 128, 256}. We use
randomized cross-validation to tune the hyperparameters
for the model, and run multiple cross-validation programs
on a campus GPU cluster concurrently.

Learning Curve: Fig. shows the learning curve of
NeuroPose. The Loss value of both of the training and
validation are high due to the L2 regularization at the
beginning stage (first 50 epochs), and after that, both loss
values decrease sharply. While the training loss is then
continuously decreasing, the validation loss is converging
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and varying within a certain small range. We also find out
that having the residual blocks in between the encoder
and decoder will not only decrease the loss values, but
also make the validation loss line closer to the training
loss line, which means over-fitting problem will be re-
duced.
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Fig. 11: learning curve

B. Implementation

NeuroPose is implemented on a combination of desktop
and smartphone devices. The ML model is implemented
with TensorFlow [17]] packages and the training is per-
formed on a desktop with Intel i7-8700K CPU, 16GB
RAM memory, and Nvidia GTX 1080 GPU. We use the
Adam optimizer[57] with a learning rate of 1le-3, 3; of
0.9 and B2 of 0.999. To avoid over-fitting issues that
may happen in the training process, we apply the L2
regularization[25]] on each CONV layer with a parameter
of 0.01 and also add dropouts[108] with a parameter of
0.05 following each RELU activations. Once a model is
generated from training, the inference is done entirely
on a smartphone device using TensorFlowLite [44]. We
perform implementation on three brands of smartphones.
This includes two recent brands of smartphones (OnePlus
9 Pro, Samsung S20), and an older model of smartphone
(Sony Xperia Z3).

C. Performance Results

If not stated otherwise, the reported results are under
the following conditions: (i) Averaged across the test
cases where the sensor has been removed and remounted,
as well as the wrist position is different from one used dur-
ing training. (ii) Uses the model with domain adaptation as
described above that requires approximately 90 seconds
of training data from each user. The user-independent
case is separately evaluated under model without do-
main adaptation (Fig. [14|(a)), and multi-user models (Fig.
[12). The performance of user-dependent models are also
shown separately (Fig. . (iii) Combines the Encoder-
Decoder architecture (including ResNets) in Section @
with semi supervised domain adaptation in Section
because that is the best performing design with minimal
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training overhead for different users. The RNN design
presented in Section|[V-C|is evaluated separately (Fig.[18).
(iv) The errors reported are for flex/extension angles as
they are prone for more errors with a high range of
motion. The errors for abduction/adduction are discussed
separately (Fig. b)). (v) The error values are in degrees
and we choose to show the median and error bars because
it gives a quick information about the data distribution.
The error bars denote the 10" percentile and the 90"
percentile errors.

Qualitative Results: A short demo is provided in this
url[[15].

The predicted hand pose matches closely with reality
for a number of example applications including holding
virtual objects, ASL signs, pointing gestures etc. Figs.
[10(a) to (c) include static positions, whereas Figs. [10[(d)
to (g) capture the pose while in motion. Fig. (h) is an
example of an error case. Our inspection of error cases
suggests that in most cases, NeuroPose is following the
trend in the actual hand pose, albeit with a small delay.
This delay introduces errors. Another observation is that
the ground truth’s (leap depth sensor) detected range
of motion for thumb is slightly limited. Extreme thumb
motion between Figs a) and (b) causes only a small
deviation of the thumb in the leap sensor results. Nev-
ertheless, NeuroPose’s prediction of thumb angles match
closely with the leap sensor (ground truth).

Accuracy over Users: Fig[12] shows the breakup of
accuracy across users over all joint angles. Although the
direct use of a model trained from 11 users (multi-
user model) and tested on a new user (without domain
adaptation) performs reasonably well with a median error
of 9.38° degrees, the 90% — ile errors can be huge.

[ |90%-ile
error bars

I multi-user model
[ Iwith domain adapt.

N
o o o

Error in Degrees
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Fig. 12: Domain adaptation significantly reduces errors over
users

On the other hand, semi-supervised domain adaptation
techniques not only decreases the median error to 6.24°
but also cuts down 90%-ile tail error bars dramatically.
The accuracy is robust with diversity in users, their body
mass indices, gender etc.

TABLE I: Robustness to change in sensor position within a day

[ [ Position 1 | Position 2 | Position 3 | Position 4 | Position 5 | Position 6

10%-ile Error in Degrees 1.03 1.07 1.07 1.12 1.08 1.04

50%-ile Error in Degrees 6.09 6.27 6.30 6.37 6.22 6.16
90%-ile Error in Degrees 17.63 19.20 18.57 18.63 18.86 17.88

Representative Tracking Results over Time: Figure
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shows some representative cases for the comparison
between Leap and NeuroPose over time. Evidently, Neu-
roPose follows the ground truth accurately, even under
sharp changes in the finger angle. This is because the
machine learning models can exploit the spatio-temporal
relationships within the EMG channels and the finger
motion constraints for accurate tracking. These results are
consistent with the demo [15]], thus providing a stable
accuracy of joint angle tracking over time.
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Fig. 13: (a) NeuroPose vs Leap (Index Finger) (b) NeuroPose
vs Leap (Little Finger)

Robustness to Natural Variations in Sensor Posi-
tion and Orientation: We evaluate robustness to nat-
ural variations in sensor position by removing the sen-
sor and remounting. Table. [I| shows the accuracy when
the sensor position was changed 6 times by removing
and remounting (these are the last six sessions of data
collection phase). While the sensor was worn naturally
during each remounting, minor variations in the sensor
mounting position and orientation is expected across
sessions. Evidently, the accuracy is consistent across all
positions. In addition, we followed up with all the users
over 4 more days to evaluate the robustness over time,
temperature, humidity etc. Table. [[I| shows the accuracy
when the sensor position change happens across multiple
days (with a random wrist position).

TABLE II: Robustness to change in sensor position across days

l [ Day 1 [ Day 2 | Day 3 [ Day 4 |

10%-ile Error in Degrees 1.01 1.12 1.03 0.61
50%-ile Error in Degrees 5.91 6.52 6.30 5.71
90%-ile Error in Degrees | 17.73 | 20.09 | 18.06 | 21.33

The model that was initially trained continues to pro-
vide consistent accuracy over time thus enhancing the
usability of NeuroPose. We hypothesize that the robustness
comes due to three reasons (i) With a snugly fit sensor,
its position and orientation changes only by a few mm.
The “channel number four” among the 8 EMG channels is
clearly marked on the sensor making it easier for the user
to maintain the same orientation across multiple sessions
of wearing. (ii) Based on the muscle structure map in Fig.
[3|which extends from elbow to wrist, the relative positions
of the target muscles and the sensor changes only slightly.
(iii) The Myo sensor warms up the muscles to ensure
good contact with electrodes and also maintain the skin
temperature to ensure the EMG data has a higher quality
[12], we believe this helps in robustness for temperature
change over days.

Robustness to Wrist Position and Mobility: Fig.[14|(a)
shows how the accuracy is consistent despite changes in
wrist positions. Users were asked to place their wrist in 4
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Fig. 14: (a) Robustness to change in wrist positions (b) There
is a graceful degradation in accuracy over finger speed

different positions as shown in Fig. [9] NeuroPose can track
finger motions accurately even when the wrist is moving.
We hypothesize that regardless of the state of the wrist,
ML algorithms always track the muscles responsible for
finger motion. The muscles activated for finger motions
is independent of the state of the wrist.

Accuracy over Fingers: Table[lll] provides a breakup
of joint angle accuracy over various fingers. For each
finger, the accuracy is computed over 0,c, ¢ /e, Opip, Odip
angles. For the thumb, the accuracy is computed over
Omep,f /e Otm, £ /e, Oip- Overall, the results suggest that Neu-

TABLE III: Accuracy is consistent across fingers

\ [ Thumb | Index [ Middle | Ring | Little |

10%-ile Error in Degrees 0.68 1.03 1.13 1.12 0.83
50%-ile Error in Degrees 3.81 6.48 6.70 6.04 4.73
90%-ile Error in Degrees 10.53 24.28 22.70 17.63 | 15.59

roPose can track all of the fingers with reasonable accu-
racy. Although the median error of the index finger is
similar to other fingers, one reason why the 90%-ile error
is higher could be because the Extensor Indicis muscle re-
sponsible for index finger motion is a non-surface muscle.
Nevertheless, we believe the tracking results of the index
finger is promising.

Impact of Finger Speed: Fig[I4{(b) provides a break
up of accuracy over various finger speeds. Even at a high
finger speed of 90 deg/s there is only a graceful degra-
dation of accuracy suggesting the efficacy of NeuroPose in
tracking highly dynamic hand poses. This is because the
underlying EMG sensor can capture the electric potentials
generated by the skeletal muscles in finer detail.

Accuracy over Flex/Extension Joint Angles: Fig[15|(a)

[=-MCP joint angle
—PIP joint angle
|—DIP joint angle
0 10 20 30
Error in Degrees

|=—Abduction/Adduction

|= -Flex/Extensions
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[—8 channels
= =4 channels
=2 channels
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Fig. 15: (a) Accuracy over MCP, PIP, and DIP joints (b) Accuracy
over abduction/adductions and flex/extensions (c) Accuracy vs
intrusiveness (number of EMG channels)

shows the accuracy breakup between the three flex angles
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= Omep,f/e> Opip, and Ogq;,. Evidently, NeuroPose maintains
similar accuracy for all joint angles. Fig[15[(b) depicts
that the error in abduction/adduction is smaller than
flex/extension angles. This is because the range of motion
is very limited in abduction/adduction angles.

Intrusiveness and Accuracy Trade-offs: Fig(c) il-
lustrates the accuracy over number of EMG channels.
As expected, the best results are achieved with all 8
channels. However, the error when only using 4 or even
2 channels (shown in Fig. offers a reasonable trade-
off between accuracy/intrusiveness. Evidently, the median
accuracy with 4 and 2 channels is comparable to the
case with 8 channels, even though the tail errors are
higher. This suggests the promise in further decreasing
the intrusiveness of the system.

Training Overhead: Fig[17|(a) shows the accuracy as
a function of amount of training data. Evidently, with
domain adpatation strategies proposed in NeuroPose, even
a small fraction (1% - 5% or 9 — 45 seconds) of training
data is sufficient to generate a model that is as accurate
as a model that uses 90% (or 13.5 minutes) of training
data without domain adaptation. This demonstrates the
ability in NeuroPose to quickly generate a model for a new
user with an order of magnitude lesser training overhead
than training from scratch.

User Dependent Training: Although NeuroPose per-
forms semi-supervised domain adaptation to generate a
model for a new user without extensive training, we
evaluate the performance when extensive training is
performed for each user to generate her own model.
Fig[17[(b) summarizes the result. User dependent training
can improve the median error by 1.52°, the domain
adaptation techniques adopted by NeuroPose is close to
this performance.

Accuracy Breakup by Techniques, Comparison to
Prior Work: Fig[18| shows the CDF of error comparisons
over various techniques and prior work. Prior work-
1[90] includes an LSTM architecture augmented with
a Gaussian process for modeling the error distribution
and performs hand pose tracking over a specific set of
seven discrete gestures. Prior work-2 [98] uses a RNN
architecture with a Simple Recurrent Unit (SRU) and ex-
tends [90]] with experiments over six specific wrist angles.
Although the algorithms are trained and tested over dis-
crete gestures in the original works, our implementation
of these algorithms over arbitrary finger motion gives
a median error of 18.95,14.18 respectively, with a long
tail reaching upto 57.31,54.49 in the 90%-ile respectively.
On the other hand, our LSTM architecture that imposes
temporal smoothness constraints across multiple hand-
poses brings down the median accuracy to 10.66, and
the 90%-ile accuracy to 35.45. The basic Encoder-Decoder
architecture performs slightly better with a median ac-
curacy of 14.40 and a 90%-ile accuracy of 32.52. Finally,
NeuroPose which exploits deeper features by combining
ResNets with Encoder-Decoder architecture outperforms
the other techniques dramatically both in the median case
and in the tail. The median accuracy is 6.24 and a 90%-ile
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accuracy is 18.33.

Latency Comparison over Phone Models: Fig. [19((a)
shows the comparison of latency over three different
phone models - Sony Xperia Z3, Samsung Galaxy S20,
OnePlus 9 Pro. Latency estimates indicate the time
elapsed between the actual finger motion and the avail-
ability the tracking results in NeuroPose. The NeuroPose
(encoder-resnet-decoder) model takes 5 second sequence
of EMG data as input. The inference latency of processing
each 5s of data using TensorflowLite on the three different
brands of smartphones are 0.067s, 0.012s, and 0.019s
respectively. At each instant, by processing the previous 5s
of data as input, the model can provide an output in 0.067
seconds even in the worst case of scenario of an older
smartphone model (Sony Xperia Z3). This shows how the
machine learning models are lightweight thus ensuring re-
altime performance even on low-end smartphones. How-
ever, the encoder-resnet-decoder model will incur a cost of
redundant processing to provide real-time performance —
we will discuss the tradeoffs (Fig. (b) (©)). Furthermore,
Fig. (a) depicts the average per-sample processing
latency of different techniques — LSTM, encoder-decoder
and encoder-resent-decoder (NeuroPose) across all three
brands of smartphone models — for relative comparison.
The LSTM has a higher processing latency due to the
sequential nature of the model with strong dependen-
cies on previous hidden states. In contrast, the encoder-
decoder models can exploit parallelism over the entire 5s
segment of data. While the increase in latency with LSTM
in comparison to encoder-decoder architecture is ~ 2z for
newer smartphones (OnePlus 9 Pro, Samsung S20), the
increase in latency can be upto 5x for older smartphones
(Sony Xperia Z3).

Power Consumption Analysis: The MYO sensor con-
sumes 40mW of power [13]], which lasts a day of constant
usage. For profiling the energy of the TensorflowLite
model, we use Batterystats and Battery Historian[[14]]
tools. We compare the difference in power between the
following two states across all three smartphone models
(i) The device is idle with screen on. (ii) The device
is making inferences using TensorflowLite model. The
idle display-screen on discharge rate 3 — 5% per hour
while the discharge rates for various models is shown in
Fig. (b). The power consumption is very low across
all brands of phones. Since the encoder-resnet-decoder
processes data in chunks of 5s, it will incur a delay of
atleast 5s if we process the data only once in 5s. Towards
making it real-time, we make a modification where at
any given instant of time, previous 5s segment of data
is input to the network to obtain instantaneous real-time
results. This provides real-time tracking at the expense
of power. Depicted in Fig. (c) this entails continu-
ous/redundant processing thus increasing the discharge
rate to ~ 20% across all phones. The low-power mode
trades off real time performance (5s delay) for power
savings. Depending on requirements of real-time latency
or energy-efficiency, a user can choose between the two
modes. The above presented measurements on latency

Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3223600

Myo Armband sensor The way users wear Myo

@
3

o

&

[ Wuser dependent [Muser dependent
[[Jwith domain adapt. [[with domain adapt.

90%le
error bars

90%
error bars
£,
v
4

N

3
o
> o 3

Error in Degrees
8

Error in Degrees

o
o o

9 18 45
Training Data in Seconds

90 180 360 630 900

12 3 45 6 7 8 9101112
Users

Fig. 17: (a) Domain adaptation minimizes training overhead by
an order of magnitude (b) Performance of domain adaptation
is close to user dependent training

1r e =
- -
0.8 - P
’
4
,5 0.6 | ;
Oogal / prior work-1
: I.. ——prior work-2
o — -RNN-arch.
0.2 rf1e eax Enc-Dec
0 —Enc-Dec + Resnet
0 20 40 60 80

Error in Degrees
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and power consumption show the ability of NeuroPose to
perform effectively on a range of embedded smartphone
operating systems.

Mirrored Bilateral Training: The right and left hands
are mirror images of each other. Thus, the model built
from one hand might be usable for the other hand (dis-
cussed in Section [[II-C), provided that the EMG channel
numbers are replaced by their corresponding mirror im-
ages (For example, from Figl5] the mirror of channel 5
is channel 3. The exact mirrors of each EMG channel
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Fig. 16: 2-channel model and 4-channel model compared to 8-channel model for Myo armband sensor

4-channel model

is illustrated in Fig. [20). To validate this, we perform
more experiments where users perform arbitrary finger
motions with mirrored bilateral training. The training
data from the left hand was then used for performing
inferences on test data from the right hand. The ideas
in self-supervised learning from Section have been
used for processing the sensor data to further reduce
the noise due to difference in distribution of data across
two hands. Figl2T] shows the performance. The results

) J
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Sensor Channel Mapping

Fig. 20: Mapping of EMG channels for doing inference on the
right hand with training data from left hand
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Fig. 21: Model learnt for the left hand is easily adopted for
inferences on the right hand with MBT (MBT means Mirrored
Bilateral Training, and SSL means self-supervised learning)

of a direct transfer of a left-handed model to the right
hand even without the self supervised representation
learning is also promising as indicated in the figure.
However, with self-supervised representation learning in
Section the errors decrease further. We believe this
provides a basic validation of mirrored bilateral training
(801, and has applications in collecting training data
for amputees where training labels cannot be obtained
for the hand with missing fingers. Prior research has
also shown sufficient neuro-muscular activity is retained
despite amputation [41]], [35], [80], [81]. Thus, given
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the encouraging results on mirrored bilateral training with
NeuroPose, we believe there is promise in extending this
work towards developing prosthetic devices for amputees
with missing fingers.

Performance Analysis over an Application in Gesture
Recognition: NeuroPose performs 3D tracking of finger
motion with a number of applications in augmented re-
ality, virtual reality, sports analytics, sign language recog-
nition etc. We evaluate the feasibility of NeuroPose over
a real world application in recognition of alphabets in
American Sign Language (ASL) shown in Figure (a).
Four users were recruited to wear the Myo armband and
perform the 26 ASL alphabets 10 times each. Training
data was collected from one user who performed these
same gestures. For each gesture, we have the accuracy
defined as follows:

NCorrect

(16)

Accuracy =
Nrotal

where Ngorreet 1S the number of times the gesture was
detected correctly, and Nr.q; is the total number of the
gesture’s occurrences in the experiments. The classifica-
tion was performed by comparing the R2! space of joint
angles of the test users with that of the training data.
The gesture in the training database with the minimum
euclidean distance is declared as the inferred gesture. Fig.
[22[b) depicts the confusion matrix of the classification.
Evidently, most gestures are classified correctly with an
overall average accuracy of 80.22%. Gestures such as A
and S are miss classified sometimes because their hand-
pose is similar. This demonstrates the feasibility of using
NeuroPose in real world applications.
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Fig. 22: (a) ASL alphabets (b) Confusion matrix of NeuroPose’s
performance in ASL alphabet classification

VII. DISCUSSION AND FUTURE WORK

Unsupervised Domain Adaptation: NeuroPose only
needs 90s of training samples from a new user to cus-
tomize a pretrained model to the user. However, we will
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explore unsupervised domain adaptation to customize a
pretrained model without requiring any labelled training
data. Adversarial domain adaptation [[106] is of interest.
Here, an unsupervised game theoretic strategy is used to
transform the distribution of the feature representations
from the new user into the distribution of the source
user on whom the model was trained. If successful, the
model trained on the source user is directly useful for
performing inferences on a new user. Similarly, other
architectures for learning feature transformations to adapt
the feature representations from a source user to a new
users have been proposed [101]] which are relevant for
future investigation.

Tracking Fingers while Holding Objects in Hand:
When holding an object, signals from certain muscles that
support strength will interfere with muscles responsible
for finger motion. While we believe there are enough
applications in augmented reality and prosthetics where
a user does hold an object, we will carefully refine
NeuroPose’s algorithms to minimize the interference from
additional muscle signals when a user is holding an object.

VIII. CONCLUSION

This paper shows the feasibility of 3D hand pose track-
ing using wearable EMG sensors. A number of applica-
tions in Augmented Reality, Sports Analytics, Healthcare,
and Prosthetics can benefit from fine grained tracking of
finger joints. While the sensor data is noisy and involves
superimposition of signals from different fingers in com-
plex patterns, we exploit anatomical constraints as well
as temporal smoothness in motion patterns to decompose
the sensor data into motion pattern of constituent fingers.
These constraints are incorporated in an encoder-decoder
machine learning model to achieve a high accuracy over
diverse joint angles, different type of gestures etc. The
feasibility of mirrored bilateral training has been shown
for 3D finger motion tracking with potential to develop
prosthetic devices for amputees. Semi supervised adap-
tation strategies show promise in adapting a pretrained
model from one user to a new user with minimal training
overhead. Finally, the inference runs in realtime on a
smartphone platform with a low energy footprint.
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