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Abstract— This paper considers the problem where a group
of mobile robots subject to unknown external disturbances
aim to safely reach goal regions. We develop a distributed
safe learning and planning algorithm that allows the robots
to learn about the external unknown disturbances and safely
navigate through the environment via their single trajectories.
We use Gaussian process regression for online learning where
variance is adopted to quantify the learning uncertainty. By
leveraging set-valued analysis, the developed algorithm enables
fast adaptation to newly learned models while avoiding collision
against the learning uncertainty. Active learning is then applied
to return a control policy such that the robots are able to
actively explore the unknown disturbances and reach their
goal regions in time. Sufficient conditions are established to
guarantee the safety of the robots. A set of simulations are
conducted for evaluation.

I. INTRODUCTION

Intelligent robots are becoming ubiquitous in our life,
such as autonomous driving, precision agriculture and emer-
gency response. Artificial intelligence is a key component to
achieve the vision of long-term autonomy. The decisions of
the robots may have profound effects on surrounding objects
and unwanted outcomes could cause damages physically or
monetarily [1]. Hence, safety becomes a vital issue that must
be examined before widely deploying intelligent robots.

Safe machine learning aims to solve certain learning tasks
and meanwhile ensure robots’ safety. It can be categorized
into offline learning and online learning. For offline learning,
models are trained using a fixed set of data, and the training
is usually formulated as optimization problems where objec-
tive functions and constraints reflect safety considerations.
Interested readers are referred to Section 3 of paper [2].

When robots encounter changes of environments, online
learning is desired to ensure mission completion. Notice that
the learning errors could be large during the initial learning
phase when training data is limited. It is therefore important
and challenging to keep the robots safe during the entire
learning process. By learning tasks, related literature can be
categorized into four classes: (1) exploration [3], where the
objective is to learn about the uncertainties of a dynamic
model or an environment; (2) optimization [4], where deci-
sion variables are selected to optimize an unknown objective
function; (3) reinforcement learning (RL) [2], where the
objective is to find an optimal control policy to maximize
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aggregate return; (4) control [5], where the objective is
to derive a control policy to achieve certain specifications,
such as stabilization and goal reaching. These works usually
define safety as hard constraints. Safety is achieved if the
constraints are satisfied throughout the learning process.

This paper studies safe control, which aims to synthesize
a control policy by online learning uncertainties and steer a
system to a goal region. Paper [5] considers general nonlinear
dynamics and derives the backup policy against system
uncertainties by solving a two-player zero-sum differential
game. Paper [6] determines the switching law based on
the estimates of the region of attraction of a given backup
policy for a robot with control-affine dynamics. Robust
model predictive control (MPC) is applied over a linear time-
invariant system in [7] to determine the switch between a
learning-based controller and a backup controller. Backup
policies are appended as the terminal solution to a robust
MPC in [8] such that a robot can never go beyond the safe
region during exploration. Paper [9] combines a model-free
RL-based controller with a model-based controller utilizing
control barrier functions to guarantee safety and improve
system performances online. The aforementioned papers
only consider single robots and static state constraints (e.g.,
static obstacles), whereas in multi-robot systems, from the
perspective of each single robot, the state constraints are
dynamic due to the motion of the other robots, analogous
to moving obstacles.

Contribution statement. We consider the problem where
a group of mobile robots with general nonlinear dynamics
subject to unknown external disturbances aim to safely
reach goal regions. We propose dSLAP, the distributed Safe
Learning And Planning framework, which enables the robots
to online learn about the disturbances, update their safe
actions that avoid collisions against the learning uncertainty,
and actively collect data to better reach the goals. Our
contribution is summarized as follows:

• Our motion planner has two stages. First, built on set-
valued analysis, a distributed safe motion planner allows
for fast adaptation to the sequence of dynamic models
resulted from online Gaussian process regression. The
planner constructs a directed graph through connecting
a robot’s one-step forward sets, and then truncates the
graph by removing the control inputs leading to colli-
sions. Second, a distributed model predictive controller
selects safe control inputs balancing moving towards the
goals and actively learning the disturbances.

• Our two-stage motion planning is in contrast to the
classic formulation [10] [11] of optimal multi-robot mo-
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tion planning, whose solutions solve collision avoidance
and optimal arrival simultaneously and are known to
be computationally challenging (PSPACE-hard [12]).
Instead, the computational complexity of dSLAP is
independent of the number of the robots.

• We derive sufficient conditions to guarantee the safety
of the robots in the absence of backup policy.

Monte Carlo simulation is conducted for evaluations.
Notations. We use superscript (·)[i] to distinguish the local

values of robot i. Define the distance metric ρ(x, x′) ≜ ∥x−
x′∥∞, the point-to-set distance as ρ(x,S) ≜ infx′∈S ρ(x, x

′)
for a set S, the closed ball centered at x ∈ Rnx with radius
r as B(x, r) ≜ {x′ ∈ Rnx |ρ(x, x′) ⩽ r}, and shorthand B
the closed unit ball centered at 0 with radius 1.

Below are the implementations of common procedures.
Element removal: Given a set S and an element s, procedure
Remove removes element s from S; i.e., Remove(S, s) ≜
S \ {s}. Element addition: Given a set S and an element s,
procedure Add appends s to S, i.e., Add(S, s) ≜ S ∪ {s}.
Nearest neighbor: Given a state s and a finite set S, Nearest
chooses a state in S that is closest to s; i.e., Nearest(s,S)
picks y ∈ S, where ρ(s, y) = ρ(s,S).

II. PROBLEM FORMULATION

In this section, we introduce the model of the multi-robot
system, describe the formulation of the motion planning
problem, and state the objective of this paper.

Mobile multi-robot system. Consider a network of robots
V ≜ {1, · · · , n}. The dynamic system of each robot i is
given by the following differential equation:

ẋ[i](t) = f [i](x[i](t), u[i](t)) + g[i](x[i](t), u[i](t)), (1)

where x[i](t) ≜ [x
[i]
q (t)T , x

[i]
r (t)T ]T ∈ X ⊆ Rnx is the state

of robot i at time t, x[i]q ∈ Xq ⊆ Rnq is the location of the
robot, x[i]r ∈ Xr ⊆ Rnr , nr = nx−nq , is the rest part of the
state (e.g., heading angle and velocity), u[i](t) ∈ U ⊆ Rnu is
its control input, f [i] denotes the system dynamics of robot
i, and g[i] represents the external unknown disturbance. We
impose the following assumption:

Assumption II.1. (A1) (Lipschitz continuity). The system
dynamics f [i] and the unknown disturbance g[i] are
Lipschitz continuous.

(A2) (Compactness). Spaces X and U are compact. ■

Assumption (A1) implies that f [i] + g[i] is Lipschitz
continuous. Choose constant ℓ[i], which is larger than the
Lipschitz constant of f [i] + g[i] and constant m[i], which is
larger than the supremum of f [i] + g[i] over X and U .

Motion planning. We denote closed obstacle region by
XO ⊆ Xq , goal region by X [i]

G ⊆ Xq \XO, and free region at
time t by X [i]

F (x
[¬i]
q (t)) ≜ Xq \

(
XO

⋃
∪j ̸=iB(x[j]q (t), 2ζ)

)
,

where ¬i ≜ V \{i} and ζ > 0 is the size of the robots. Each
robot i aims to synthesize a feedback policy π[i] : Xn → U
such that the solution to system (1) under π[i] satisfies
x
[i]
q (t

[i]
∗ ) ∈ X [i]

G , x[i]q (τ) ∈ X [i]
F (x

[¬i]
q (τ)), 0 ⩽ τ ⩽ t

[i]
∗ <∞,

where t[i]∗ is the first time when robot i reaches X [i]
G . That

Fig. 1: Implementation of dSLAP over one iteration

is, each robot i needs to reach the goal region within finite
time and be free of collision.

Problem statement. This paper aims to solve the above
multi-robot motion planning problem despite unknown func-
tion g[i]. Since the unknown function g[i] is learned online,
each robot i should quickly adapt its motion planner in
response to the newly learned models. Since function f [i]

and the estimates of function g[i] are nonlinear in general,
the motion planner will be adapted by a numerical algorithm.

III. DISTRIBUTED SAFE LEARNING AND PLANNING

In this section, we propose the dSLAP framework (Algo-
rithm 1). Figure 1 shows one iteration of the algorithm in
robot i. In each iteration k, the robot executes two modules
in parallel. One is the computation module where robot
i sequentially performs system learning (SL), safe motion
planning that includes dynamics discretization (Discrete),
obstacle collision avoidance (OCA) and inter-robot collision
avoidance (ICA), and active learning (AL) that synthesizes
control policy π[i]

k . The other is the control module where the
control policy π[i]

k−1, computed in iteration k − 1, is applied
for all t ∈ [kξ, (k + 1)ξ), where ξ is the discrete time unit.

Algorithm 1: The dSLAP framework

Input: X , U , XO, X [i]
G , κ, pinit, p̄, k̃, τ̄ , ξ, φ, ψ, δ,

r
[i]
k , ℓ[i], m[i];

Init: p1 ← pinit; π
[i]
0 ,∀i ∈ V;

for k = 1, 2, · · · , k̃ do
for i ∈ V (Computation module) do
D[i]
k ← CollectData;

µ
[i]
k , σ

[i]
k ← SL(D[i]

k );
Xpk ,Upk , hpk ← Discrete(pk);
X [i]
safe,k ← OCA;
X [i]
safe,k ← ICA;

π
[i]
k ← AL(X [i]

safe,k);
pk+1 ← min{pk + 1, p̄};

for i ∈ V (Control module) do
Execute(π[i]

k−1, [kξ, (k + 1)ξ));

A. System learning

In this section, we introduce the SL procedure for learning
the external disturbance g[i]. In each iteration k, each robot i
first collects a new dataset D[i]

k through the CollectData pro-
cedure, which returns D[i]

k ≜ {g[i](x[i](τ), u[i](τ)) + e[i](τ),

x[i](τ), u[i](τ)}(k−1)ξ+δτ̄
τ=(k−1)ξ , where e[i](τ) ∼ N (0, (σ

[i]
e )2Inx

)
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is robot i’s local observation error, δ is the sampling
period, and τ̄ is the number of samples to be obtained.
Then robot i independently estimates g[i] using Gaussian
process regression (GPR) [13]. By specifying prior mean
function µ0 : X × U → Rnx , and prior covariance function
κ : [X × U ] × [X × U ] → R>0, GPR models g[i] as a
sample from a Gaussian process prior GP(µ0, κ) and predicts
g[i](x[i], u[i]) ∼ N (µ

[i]
k (x[i], u[i]), (σ

[i]
k (x[i], u[i]))2).

B. Safe motion planning

Safe motion planning is a multi-grid algorithm utilizing
set-valued analysis. Inspired by [10] [11], we propose a new
set-valued dynamics to discretize robot dynamics (1). We use
the set-valued dynamics to approximate the one-step forward
set and construct a directed graph. We then identify safe
states and remove control inputs which lead to collision.

Dynamics discretization. As in [10] [11], treating the
estimation errors of g[i] as adversarial inputs, we ap-
proximate system (1) using the following discretized set-
valued dynamic system: Γ[i]

k (x[i], u[i]) ≜ [x[i] + ϵ
[i]
pk

(
(f [i] +

µ
[i]
k )(x[i], u[i])+γσ

[i]
k (x[i], u[i])B

)
+α

[i]
pkB]∩Xpk , where ϵ[i]pk

is the temporal resolution, α[i]
pk ≜ 2hpk + 2ϵ

[i]
pkhpkℓ

[i] +

(ϵ
[i]
pk)

2ℓ[i]m[i] is the dilation term, hpk is the spatial reso-
lution, Xpk is the discrete state space, Upk is the discrete
control space such that u[i] ∈ Upk , and pk is the discretization
parameter at iteration k. Through Discrete, robot i sets

hpk ≜ 2−pk ,Xpk ≜ hpkZnx ∩ X ,Upk ≜ hpkZnu ∩ U . (2)

Set temporal resolution as ϵ[i]pk ≜ ϵ[i] = λ[i]ξ, where λ[i] is
the constant that ensures each iteration k with duration ξ can
be partitioned into an integer number of small intervals with
duration ϵ[i]. Further augmenting the dilation term α

[i]
pk with

hpk , we define the one-step forward set of duration ϵ[i] by

FR[i]
k

(
x[i], u[i]

)
≜
[
x[i] + ϵ[i](f [i](x[i], u[i]) + µ

[i]
k (x[i], u[i]))+

(ϵ[i]γσ̄
[i]
k + α[i]

pk
+ hpk)B

]
∩ Xpk ,

where σ̄[i]
k ≜ supx[i]∈X ,u[i]∈U σ

[i]
k (x[i], u[i]). Finer discretiza-

tion, corresponding to a larger pk, provides better approxi-
mation of the dynamic model, whereas coarser discretization
returns solutions faster. Hence, we increment the discretiza-
tion parameter at each iteration to refine the discretization
while feasible solutions are synthesized at lower resolution.
We set a maximum p̄ to prevent prolonged computation due
to unnecessarily fine discretization.

Obstacle collision avoidance (Algorithm 2). Procedure
OCA aims to identify the safe states of the set-valued
dynamic system and remove the control inputs that lead to
collision with the obstacles. Informally, a state is safe if there
is a controller that can keep the robot from colliding with
the obstacles when the robot starts from the state. Otherwise,
the state is unsafe. Then procedure OCA consists of two
steps. First, it identifies the unsafe states where their one-
step forward sets are too close to the obstacles. Second,
UnsafeUpdate (Algorithm 3) searches the remaining unsafe

Algorithm 2: Procedure OCA

X [i]
unsafe,k,0 ← ∅;

for x[i] ∈ Xpk do
U [i]
pk(x

[i])← Upk ;
if ρ(x[i]q ,XO) > m[i]ϵ[i] + hpk then

for u[i] ∈ U [i]
pk(x

[i]) do
if Collision(FR[i]

k (x[i], u[i]), k) == 1
then

Remove(U [i]
pk(x

[i]), u[i])
else

for y[i] ∈ FR[i]
k (x[i], u[i]) do

Add(BR[i]
k (y[i], u[i]), x[i])

if ρ(x[i]q ,XO) ⩽ m[i]ϵ[i] + hpk or U [i]
pk(x

[i]) = ∅
then

Add(X [i]
unsafe,k,0, x

[i]);
X̄ [i]
unsafe,k,0 ← UnsafeUpdate(X [i]

unsafe,k,0, k) ;
X [i]
safe,k ← Xpk \ X̄

[i]
unsafe,k,0;

Return X [i]
safe,k;

states backward and removes the control inputs leading to the
unsafe states and the obstacles.

The first step is accomplished by the outer for-loop in
OCA. In particular, for each state x[i] ∈ Xpk that is
sufficiently distant from the obstacles, collisions are checked
over all the one-step forward sets FR[i]

k (x[i], u[i]) with inputs
u[i] ∈ Upk . This is done by procedure Collision, where

Collision(FR[i]
k (x[i], u[i]), k) returns 1

if ∃y[i] ∈ FR[i]
k (x[i], u[i]) such that

ρ(x[i]q ,XO) ⩽ m[i]ϵ[i] + hpk ; otherwise, returns 0.

The control input is removed if the corresponding one-step
forward set collides with the obstacles. Otherwise, the set
BR[i]

k , the one-step ϵ[i]-duration backward set of y[i] applied
u[i], is constructed as follow

∀x[i] ∈ BR[i]
k (y[i], u[i]), y[i] ∈ FR[i]

k (x[i], u[i]).

If all the control inputs in U [i]
pk(x

[i]) are removed, state x[i]

is identified as unsafe and included in the set X [i]
unsafe,k,0,

together with the states that are within m[i]ϵ[i] + hpk of the
obstacles. Notice that the distance m[i]ϵ[i] + hpk represents
an over-approximation of the distance the robot can reach
within one time step with size ϵ[i] on Xpk . This distance
prevents the robot from “cutting the corner” of the obstacles
due to the discrete approximation.

In the second step, robot i runs procedure UnsafeUpdate
to iteratively remove all the control inputs that lead to identi-
fied unsafe states. Robot i’s set of unsafe states X̄ [i]

unsafe,k,0 is
then completed. For each state in Xpk \X̄

[i]
unsafe,k,0, we have

U [i]
pk(x

[i]) ̸= ∅ and any control u[i] ∈ U [i]
pk(x

[i]) can ensure
collision avoidance with the obstacles for one iteration.

Inter-robot collision avoidance (Algorithm 4). Procedure
ICA aims to remove the control inputs that lead to collision
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Algorithm 3: UnsafeUpdate(X [i]
unsafe,k,j , k)

X̄ [i]
unsafe,k,j ← X

[i]
unsafe,k,j ;

Flag ← 1;
while Flag == 1 do
X [i]
new ← X [i]

unsafe,new;
Flag ← 0;
for y[i] ∈ X [i]

new do
for u[i] ∈ Upk do

for x[i] ∈ BR[i]
k (y[i], u[i]) do

Remove(U [i]
pk(x

[i]), u[i]);
if U [i]

pk(x
[i]) == ∅ and

x[i] ̸∈ X̄ [i]
unsafe,k,j then

Add(X̄ [i]
unsafe,k,j , x

[i]);
Flag ← 1;

Return X̄ [i]
unsafe,k,j ;

Algorithm 4: Procedure ICA

X [i]
k ←
x
[i]
q (kξ) + (2ξm[i] + 2ζ +m[i]ϵ[i] + 1

2α
[i]
pk + 3hpk)B;

Broadcast(X [i]
k );

for j ∈ V , j ̸= i do
if j < i then
X [i]
unsafe,k,j ←

[
[X [j]
k +ϵ[i]γσ̄

[i]
k B]∪Xr

]
∩Xpk ;

X̄ [i]
unsafe,k,j ←
UnsafeUpdate(X [i]

unsafe,k,j , k);
X [i]
safe,k ← X

[i]
safe,k \ X̄

[i]
unsafe,k,j ;

Return X [i]
safe,k;

with the robots with higher priority. It treats the robots
with higher priority as moving obstacles and removes the
control inputs that lead to these obstacles. First, each robot
i broadcasts its reachability sets X [i]

k within an iteration
at the beginning of each iteration k. Upon receiving the
messages from robot j with higher priority, i.e., j < i,
robot i identifies a new set of unsafe states X [i]

unsafe,k,j

induced by X [i]
k in the discrete state space Xpk . Second,

robot i invokes procedure UnsafeUpdate to remove all the
control inputs leading to the newly identified unsafe states.
Robot i then updates the set of the safe states X [i]

safe,k by
removing the new unsafe states X̄ [i]

unsafe,k,j . For each state
x[i] ∈ X [i]

safe,k, U [i]
k (x[i]) ̸= ∅ and any control u[i] ∈ U [i]

k (x[i])
ensures collision avoidance with the obstacles and the robots
with higher priority. In the worst case, a robot removes all
the states in its own state space, where the computation
complexity is independent of the number of robots.

C. Active learning and real-time control (Algorithm 5)

In this section, we utilize the safe control inputs obtained
above and synthesize a model predictive controller (MPC)
to actively learn the disturbance g[i] and approach the goal.

Algorithm 5: AL

Procedure π[i]
k (x[i](t));

w[k]← e−ψk;
x̂[i](t)← Nearest(x[i](t),X [i]

safe,k);
(u

[i]
∗ (t), · · · , u[i]∗ (t+ φϵ[i]))← solve MPC in (3);

Return u
[i]
∗ (t);

First, state x[i](t) is projected onto X [i]
safe,k; the pro-

jection is x̂[i](t) ≜ Nearest(x[i](t),X [i]
safe,k). Second,

we capture the objective of goal reaching using dis-
tance ρ(x̂[i](t + φϵ[i]),X [i]

G ), where φ ∈ N is the dis-
crete horizon of the MPC formulated below. Then the
objective of exploration is described by a utility func-
tion r

[i]
k (x̂[i](t), u[i](t)); candidate utility functions, e.g.,

r
[i]
k (x̂[i](t), u[i](t)) = σ

[i]
k (x̂[i](t), u[i](t)), are available in

[14]. Next, the safety constraint is honored by choosing
control inputs from the safe control set U [i]

k (x̂[i](t)). Lastly,
the dynamic constraint is approximated by the one-step
forward set FR[i]

k . Formally, the controller π[i]
k : X → U

is synthesized by solving the finite-horizon optimal control:

min (1− w[k])ρ(x̂[i](t+ φϵ[i]),X [i]
G )

+ w[k]

t+φϵ[i]∑
τ=t

r
[i]
k (x̂[i](τ), u[i](τ)), (3)

where the decision variables are u[i](t) ∈
U [i]
k (x̂[i](t)), · · · , u[i](t + φϵ[i]) ∈ U [i]

k (x̂[i](t + φϵ[i])),
subject to x̂[i](τ + ϵ[i]) ∈ FR[i]

k (x̂[i](τ), u[i](τ)) and
τ ∈ {t, t + ϵ[i], · · · , t + (φ − 1)ϵ[i]}. To ensure the
robot eventually reaches the goal, we select the weight
w[k] ≜ e−ψk for some ψ > 0 such that w[k] diminishes.

The above finite-horizon optimal control problem is solved
once for every time duration ϵ[i], and the returned control
input is fixed for a duration ϵ[i]. Specifically, consider a

sequence {t[i]k+1,n}
n̄
[i]
k+1

n=0 ⊂ [(k+1)ξ, (k+2)ξ], where t[i]k+1,0 =

(k + 1)ξ, t[i]k+1,n = t
[i]
k+1,n−1 + ϵ[i] and n̄

[i]
k+1 ≜ ξ/ϵ[i].

Procedure π[i]
k (x[i](t

[i]
k+1,n)) solves the above finite-horizon

optimal control problem at n = 0, 1, · · · , n̄[i]k+1 − 1. The
solution has the form (u

[i]
∗ (t

[i]
k+1,n), · · · , u

[i]
∗ (t

[i]
k+1,n+φϵ

[i])),
and π

[i]
k (x[i](t

[i]
k+1,n)) = u

[i]
∗ (t

[i]
k+1,n) is returned. For all

t ∈ [t
[i]
k+1,n, t

[i]
k+1,n+1), we have u[i](t) = u

[i]
∗ (t

[i]
k+1,n). The

controller execution is performed in Algorithm 1.

D. Performance guarantees
In this section, we provide the performance guarantees

for dSLAP. To obtain theoretic guarantees, we assume that
g[i] is correctly specified by a known Gaussian process. For
notational simplicity, we assume g[i] ∈ R. Generalizing to
multi-dimensional can be done by applying the union bound.

Assumption III.1. (Specified process). It satisfies that g[i] ∈
R and g[i] ∼ GP(µ0, κ). ■

That is, function g[i] is completely specified by a Gaussian
process with prior mean µ0 and kernel κ. This assumption is
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common in the analysis of GPR (Theorem 1, [15]). Theorem
III.2 below shows that the safety of the robots lasts until the
end of an iteration with high probability if they are around
the set of safe states at the beginning of the iteration.

Theorem III.2. Suppose Assumptions II.1 and III.1 hold. If
B(x[i](kξ), hpk−1

) ∩ X [i]
safe,k−1 ̸= ∅ , k ⩾ 1, for all i ∈ V ,

then dSLAP renders x[i]q (t) ∈ X [i]
F (x

[¬i]
q (t)) ∀t ∈ [kξ, kξ+ξ)

with probability at least 1− |V||Xp||Up|e−γ
2/2. ■

IV. SIMULATION

In this section, we conduct Monte Carlo simulations to
evaluate the dSLAP algorithm. The simulations are run in
Python, Linux Ubuntu 18.04 on an Intel Xeon(R) Silver 4112
CPU, 2.60 GHz with 32 GB of RAM.

Simulation scenarios. We evaluate the dSLAP algorithm
using Zermelo’s navigation problem [16] in a 2D space
under the following scenario: A group of robots are initially
placed evenly on the plane and switch their positions at the
destinations. The robots are immediately retrieved once they
reach the goals. This example is also used in [17] [18] to
demonstrate complicated multi-robot coordination scenarios.

Dynamic models. Consider constant-speed boat robots
with length L = 1.5 meters (m) moving at speed v = 0.5

meters/seconds (m/s). For each robot i, let x[i]q,1 and x[i]q,2 be
the coordinates on a 2D plane, x[i]r be the angle between the
heading and the x-axis, and u[i] be the steering angle. The
state space is given by X = [0, 100] × [0, 100] × [−π, π].
External wind disturbance ν is applied at x[i]q,1 such that
the system dynamics has the following form: ẋ[i]q,1(t) =

2 cosx
[i]
r (t), ẋ[i]q,2(t) = 2 sinx

[i]
r (t), ẋ[i]r (t) = 0.5

1.5 tanu
[i](t).

The control u[i] takes discrete values and the control space
is U = {±0.3π,±0.15π, 0}.

Parameters. The kernel of GPR is configured as κ(z, z′) =
0.0025 exp(−∥z−z′∥2

2

2 ), which is 0.0025 times the RBF ker-
nel in the sklearn library. The factor 0.0025 is selected such
that the supremum of the predictive standard deviation is
0.05, or 10% of the robots’ speed. This can be selected based
on the prior knowledge of the variability of the disturbance.
Other parameters are selected as γ = 1, pinit = 4, p̄ = 5,
k̄ = 200, τ̄ = 20, ξ = 8, q = 2, ψ = 1, δ = 0.1, and
r
[i]
k = −σ[i]

k , which are determined according to the desired
confidence level and the computation capability of the robots.

A. Multi-robot maneuver.

Wind fields and initial configurations. We evaluate dSLAP
using 30,000 scenarios generated as follows. We randomly
generate 2D spatial wind fields, with average speed ν in
different ratios of the robots’ speed, i.e., ν = rwv, rw > 0,
and standard deviation 2% of the robots’ speed, using the
Von Karman power spectral density function as described
in [19]. This wind model is used to test multi-robot navi-
gation in [19] [20]. A sample with rw = 0.2 is shown in
Figure 2a. We randomly generate 60 different wind fields
for each rw ∈ {0.1, 0.2, · · · , 1}. We deploy n robots with
10 different initial configurations in the simulation, where

n ∈ {1, 2, 4, 6, 8}. Figure 2b shows one configuration of 8
robots’ initial states and goal regions, and the corresponding
trajectories under dSLAP in the wind field in Figure 2a.
The circular disks are the goal regions of the robots and the
red rectangle is the static obstacle. Other configurations are
generated by different permutations and removals of robots
from that in Figure 2b.

(a) A sample of wind field ex-
perienced by the robots

(b) Trajectories of the robots

Fig. 2: A sample of wind fields and robot trajectories

Ablation study. To the best of our knowledge, this paper
is the first to consider extreme scenarios where backup
policies are absent, in contrast to [5]–[9]. Hence, we com-
pare dSLAP with its three variants, Vanilla, Robust and
Known, that do not learn the wind disturbances. Vanilla
assumes g[i] = 0, ∀i ∈ V , whereas Robust assumes
supx[i]∈X ,u[i]∈U |g[i](x[i], u[i])| ⩽ r̂wv and thus ẋ[i] ∈
f [i](x[i], u[i]) + r̂wvB, where r̂w > 0. We adopt r̂w = 0.1
such that Robust has the same level of conservativeness as
dSLAP before collecting any data. The benchmark Known
is obtained by running the dSLAP framework with the
disturbances exactly known, which is equivalent to dSLAP
with an infinite amount of data.

Results. The average safe arrival rates of dSLAP, Robust,
Vanilla and Known among the 30,000 cases are shown
in Figure 3a. From Figure 3a, we can see that dSLAP’s
performance is superior to those of Robust and Vanilla.
This is due to the fact that dSLAP online learns about the
unknown disturbances and adjusts the policies accordingly.
On the other hand, Robust (or Vanilla) only captures part
of (or none of) the disturbances through the prior esti-
mates, which can be unsafe when the disturbances exceed
the estimates. Furthermore, we can observe that the safe
arrival rate for dSLAP decreases linearly with respect to
the number of robots. This corresponds to the probability
1− |V||Xp||Up|e−γ

2/2 in Theorem III.2. Notice that the gap
between Known and dSLAP is small. This indicates that
dSLAP enables safe arrival in most feasible cases. Figure
3b compares the average safe arrival times among dSLAP,
Robust and Known. We exclude the comparison with Vanilla
since its safe arrival rate is far lower than the other three
while safety is this paper’s top priority. The arrival times of
the three algorithms are comparable. This indicates dSLAP
improves safe arrival rate without sacrificing arrival time, i.e.,
being more conservative.

Run-time computation. This section shows the wall com-
putation time of dSLAP when the robots are deployed in the
wind field in Figure 2a with configuration in Figure 2b, as an
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ID Total time SL Discrete+OCA ICA AL
time Percentage time Percentage time Percentage time Percentage

1 5.71±0.45 0.84±7.87e−3 14.73±1.08 4.26±0.12 74.91±3.95 6.03e−3±1.85e−3 0.11±9.44e−3 0.61±0.32 10.26±5.07
2 5.93±0.47 0.81±0.01 13.70±1.03 4.21±0.06 71.32±5.10 0.06±0.03 1.08±0.59 0.85±0.41 13.90±6.38
3 5.69±0.34 0.82±1.43e−3 14.48±0.88 4.14±0.04 73.10±3.90 0.14±0.01 2.56±0.32 0.58±0.32 9.87±5.08
4 5.18±0.14 0.82±2.03e−3 15.85±0.43 4.01±0.04 77.37±1.98 0.16±0.09 3.07±1.76 0.20±0.15 3.70±2.81
5 5.90±0.35 0.82±0.01 13.96±0.65 4.30±0.08 73.10±3.41 0.23±0.03 3.96±0.51 0.54±0.27 8.98±4.10
6 5.66±1.29 0.88±0.16 15.7±0.65 4.55±1.08 80.26±1.58 0.13±0.11 2.57±2.23 0.10±0.13 1.46±1.64
7 5.94±0.99 0.88±0.10 14.96±0.82 4.49±0.65 75.85±2.69 0.19±0.10 3.39±2.03 0.38±0.38 5.79±5.19
8 5.94±1.14 0.88±0.13 14.90±0.55 4.65±0.83 78.53±1.30 0.29±0.07 5.02±1.62 0.12±0.22 1.56±2.45

TABLE I: Computation time (seconds) for each robot in one iteration

(a) Percentage of safe arrivals (b) Average time of safe arrivals

Fig. 3: Ablation study of dSLAP

# of robots 1 2 4 6 8

Wall time 5.837±
0.085

5.843±
0.118

5.830±
0.102

5.832±
0.129

5.839±
0.119

TABLE II: Wall clock time (seconds) per iteration

example. Table I presents the average plus/minus one stan-
dard deviation of computation time for one iteration for each
component of dSLAP and the corresponding percentages
(%) of the total computation time. Discrete+OCA consumes
most of the computation resources because a discrete set-
valued approximation of the continuous dynamics over the
entire state-action space is constructed through these two
procedures, especially in OCA. Table I shows that the
computation costs of the other procedures are mostly sub-
second. Table II shows that the average wall time plus/minus
one standard deviation per iteration versus the number of
robots deployed. This implies that the computation time
within each robot is independent of the number of the robots.

V. CONCLUSION

We study the problem where a group of mobile robots
subject to unknown external disturbances aim to safely reach
goal regions. We propose dSLAP that enables the robots to
quickly adapt to a sequence of learned models resulted from
online GPR, and safely reach the goal regions. Sufficient
conditions to ensure the safety of the system is derived. The
developed algorithm is evaluated by Monte Carlo simulation.
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