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Accordingly, adaptive methods (Duchi et  al., 2011; Hinton et  al., 2012; Kingma and 
Ba, 2014; Dauphin et al., 2015; Ward et al., 2019) are particularly helpful when training 
deep neural networks, and are becoming the state-of-the-art (Li and Orabona, 2019). The 
first popular adaptive method, AdaGrad (Duchi et al., 2011), significantly outperforms the 
vanilla SGD. From there various extensions have been proposed, such Adam (Kingma and 
Ba, 2014), which further improved the optimization of deep neural networks (Reddi et al., 
2019; Dozat, 2016). The work in Dauphin et al. (2015) shows that adaptive methods can 
be used to design preconditioners, which help in escaping saddle points. However, several 
conditions must be met in order to guarantee convergence, such as for RMSProp (Hinton 
et al., 2012) and Adam, which can be non-convergent even in convex settings (Zou et al., 
2019). Furthermore, the variance of such adaptive step-sizes tends to be too large in the 
early stages of training. Thus, they would require some sort of warmup heuristic, which 
does not guarantee consistent improvements for various machine learning settings (Liu 
et al., 2019).

Inspired by the success stories of adaptive methods and the potential of accelerated 
convergence rate of HB using Polyak optimal hyper-parameters, we propose a novel adap-
tive HB method1. Our proposed method estimates the Polyak’s optimal hyper-parameters 
at each iteration. This task does not require any significant increase in computational 
complexity.

1.1 � Related work

There has been a lot of attention towards accelerated (Beck, 2017; Ghadimi & Lan, 2016) 
and adaptive optimization techniques (Hu et  al., 2009; Huang et  al., 2020), which were 
shown to yield great performance results for large-scale systems, such as deep neural net-
works (Krizhevsky et al., 2012; Huang et al., 2017). Much of the success of momentum-
based optimizers can be attributed to their convergence properties. The convergence anal-
ysis of momentum-based optimization methods has been explored under the context of 
convex (Ghadimi et al., 2015; Ochs et al., 2015) and non-convex (Ochs et al., 2014; Gadat 
et al., 2018) optimization problems for smooth functions, and non-smooth functions (Mai 
and Johansson, 2020). Thus in this section, we briefly go over the convergence analyses of 
selected HB results, and their close variants—our literature review is by no means compre-
hensive. We then go on to explore the advantages and convergence properties of adaptive 
optimizers.

1.1.1 � Convergence analysis of HB for convex objective functions

The local convergence rate of the HB method was originally established for convex func-
tions near a twice-differentiable local minimum with Lipschitz continuous gradients, and 
found to have a local accelerated linear rate of convergence when equipped with Polyak 
optimal hyper-parameters (Polyak, 1964). A global convergence analysis was then pre-
sented in Ghadimi et al. (2015), where they showed that if the hyper-parameters of the HB 
method are chosen within appropriate intervals, and the gradients are Lipschitz continuous, 

1  The main results in this paper are presented in the ICML 2021 workshop on “Beyond First Order Meth-
ods in Machine Learning”. However, unlike the work in this paper, the objective function is approximated 
by time-varying positive quadratic function where the proofs are developed accordingly.
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