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SignNet Il: A Transformer-Based Two-Way
Sign Language Translation Model

Lipisha Chaudhary ™, Tejaswini Ananthanarayana,
Enjamamul Hoq, and Ifeoma Nwogu, Senior Member, IEEE

Abstract—The role of a sign interpreting agent is to bridge the communication gap between the hearing-only and Deaf or Hard of
Hearing communities by translating both from sign language to text and from text to sign language. Until now, much of the Al work in
automated sign language processing has focused primarily on sign language to text translation, which puts the advantage mainly on
the side of hearing individuals. In this article, we describe advances in sign language processing based on transformer networks.
Specifically, we introduce SignNet Il, a sign language processing architecture, a promising step towards facilitating two-way sign
language communication. It is comprised of sign-to-text and text-to-sign networks jointly trained using a dual learning mechanism.
Furthermore, by exploiting the notion of sign similarity, a metric embedding learning process is introduced to enhance the text-to-sign
translation performance. Using a bank of multi-feature transformers, we analyzed several input feature representations and discovered
that keypoint-based pose features consistently performed well, irrespective of the quality of the input videos. We demonstrated that the
two jointly trained networks outperformed their singly-trained counterparts, showing noteworthy enhancements in BLEU-1 - BLEU-4
scores when tested on the largest available German Sign Language (GSL) benchmark dataset.

Index Terms—Sign language translations, dual learning, transformer model, metric embedded learning
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1 INTRODUCTION

ACCORDING to the World Health Organization, there are
approximately 430 million Deaf and Hard of Hearing
community (DHH) individuals around the world [26]. Sign
language, a visio-spatial natural language, is the primary
mode of communication for many DHH individuals. Simi-
larly, according to the World Federation of the Deaf, there
are over 200 sign languages, and around 70 million deaf
people using them worldwide [39]. Interpreting sign lan-
guage can be challenging for non-signers, and the inability
to freely communicate to a large percentage of the popula-
tion in their natural language can be challenging for DHH
individuals. In addition, the lack of readily available resour-
ces to aid general sign understanding makes these issues
even harder. Al research on automating Sign Language
Translations (SLT) can play a critical role in bridging this
communication gap between hearing-only and signing-only
individuals.

With the recent successes in neural machine translation
(NMT) and video-based activity recognition methods, Al
researchers have begun extending these methods to SLT.
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However, many of these initial works only convert from
sign language to text, a relatively easier Al problem to solve.
This inadvertently puts the advantage mainly on the side of
the hearing individuals who can receive information in their
natural modality of speech (readily converted to from text).
Such systems do not provide as much of an advantage for
the DHH individuals, whose natural mode of communica-
tion involves receiving information in the form of signs.

A true sign language interpreting agent should be capa-
ble of understanding sign language and translating to text
as well as in the reverse direction. To this end, we propose a
transformer-based two-way sign language translation
model, SignNet II, an initial step towards facilitating two-
way sign language communication. The model exploits the
notion of the duality of the sign language interpretation
problem to learn from both source-to-target and target-to-
source translations.

The contributions of this work include (i) the computa-
tional justification of pose points for real-life sign language
understanding, (ii) the introduction of a metric embedding-
based loss function to improve the text-to-sign translation,
and (iii) the use of a dual learning approach to enhance both
source-to-target and target-to-source translations.

In Section 2 we describe the related works in the progres-
sion of automated SLT as well as the role of transformers in
this research area. We discuss the challenges of SLT, briefly
introduce the standard benchmark dataset for SLT as well
as our own real-life, unconstrained American Sign Lan-
guage (ASL) dataset. We justify our choice of representative
features in Section 3. Section 5 presents SignNet II, our pro-
posed two-way SLT model, describing the one-way baseline
models as well as their coupled learning process. Section 6
describes the training scheme along with experiments and
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results. Lastly, Section 7 presents our conclusions and dis-
cusses some of the limitations and next steps in trans-
former-based SLT research.

2 SIGN LANGUAGE AND THE ROLE OF
TRANSFORMERS IN ITS MACHINE TRANSLATION

In this section, we discuss the challenges of making the
jump from performing NMT on written/spoken languages
to involving a rich, complex visual language such as sign
language. We discuss the progression of sequence models
for SLT until the State of The Art (S0TA) models, including
transformers.

2.1 Why is Automated SLT Challenging?

According to [20], a plethora of challenges are encountered
when hearing-only individuals attempt to learn a sign lan-
guage as a second language. These challenges, as described
below, are also inherited when we attempt to use NMT sys-
tems designed for spoken/text-based languages for visual-
spatial languages.

Typically, spoken languages are linearly one-directional,
where one word occurs after another. In contrast, sign lan-
guage is three-dimensional and multi-directional, i.e., two
or more signs can be produced simultaneously and can
interact with one other at the same time. For example, in a
conversation involving a narrative about two people, Jack
and Jill, the signer can place Jack in a spatial 3D position
located close to the signer, called his signing space [18], on
the left-hand side. Similarly, he can place Jill in a similar 3D
position on the right side. The signer can thus tell the story
by referring to the 3D spatial locations as Jack and Jill inter-
act in the narrative via produced signs. Also, grammatical
constructs such as past and future tenses are represented by
altering the 3D pose of the signer. For example, a signer
may lean forward when signing the same phrase to indicate
an event in the future versus one currently occurring.

Sign production is another computational challenge since
traditional NMT systems were designed to produce only
text. Altering such systems to produce meaningful 3D signs
successfully is not trivial and will require a visual
component.

The notion of receptive finger-spelling in sign lan-
guage understanding can also be exacting on the NMT
system. Finger-spelling is the process of spelling out
words by using handshapes that correspond to the let-
ters in the word. The set of handshapes used to spell
words is known as a “manual alphabet”. Finger spell-
ings are often used for spelling out the names of people
and places or for unusual words for which there is no
sign. Another challenge with sign language processing
is its differing word order, grammar rules, and struc-
ture, from its spoken counterpart.

Gloss is the system of written words, symbols, and other
annotations that represent how to produce signs in a given
sign language. Gloss is the transcribed form of sign lan-
guage, which includes various notations to account for the
facial and body grammar involved in the signs. Unfortu-
nately, not all signs have a direct meaning in the spoken
equivalent. An example of a gloss in American Sign
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Language (ASL) and its interpretation in spoken/written
English [24] is shown below:

ASL Gloss. YESTERDAY PRO-1 INDEX-[at] WORK HAP-
PEN SOMEONE! MAN CL:1-"walked_past_quickly” I
NEVER SEE PRO-3 BEFORE.

Interpretation. Yesterday at work, a stranger (some guy
I've never seen before) rushed past me.

It is important to note that DHH individuals do not use
gloss in their daily lives. It is only an intermediary reporting
and research tool.

2.2 Neural Machines for Continuous Sign Language
Translation

Sign Language (SL) analysis often involves working
either with isolated sign gestures or with continuous
signs. Continuous sign language can therefore be
defined as sequential unsegmented sign gestures where
the start and end boundaries for each gesture is not
clearly annotated. Prior to the advent of neural models,
statistical machine translation (SMT) involved translat-
ing a sentence S from a source language to a target lan-
guage sentence 7', using statistical models learned over
large corpa of examples. SMT therefore aimed to maxi-
mize Pr(S|T). Although SMT models out-performed the
classical MT systems, their performance was still not
optimal due to the narrow focus on sentence-to-sen-
tence translation, where the larger context was not con-
sidered. Also, SMT models were often comprised of
several small sub-components that needed to be tuned
separately.

Neural machine translation (NMT) involves translating
sentences in the source language to the corresponding sen-
tence in the target language using neural networks.

2.2.1 Sequence-to-Sequence NMT Models

Early NMT models typically consist of encoder-decoder
architectures, where the encoder abstracts a sentence from a
source language into a fixed-length vector, the embedding,
and the decoder uses this to generate the translation in the
target language. NMT models, unlike their predecessors,
jointly train the encoder and decoder.

One of the earlier NMT works by [19] was comprised of
probabilistic continuous sentence-level translation models.
[34] used a multilayered Long Short-Term Memory (LSTM)
to encode an input sequence to a fixed-length vector and
then used another multilayered LSTM to decode the target
sequence from the vector. This was one of the first versions
of the NMT encoder-decoder architecture. [12] showed that
encoder-decoder performance deteriorated with increasing
input sequence length, due to the constraints imposed by
the fixed-length vector. [6] addressed this limitation by
introducing the attention mechanism over the decoder
LSTMs. The input sentence was encoded into a sequence of
vectors, and the attention mechanism adaptively selected a
subset of these vectors when decoding the translation. This
allowed the model to handle longer sentences. Similar
works using the attention mechanism for the NMT include
[25], [40].

One of the earlier works in continuous sign language
translation was by [15], who introduced a hierarchical
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Fig. 1. A sequence-to-sequence encoder-decoder model with attention for sign language to text translation.

bidirectional deep recurrent neural network (HB-RNN) and a
probabilistic framework based on Connectionist Temporal
Classification (CTC) for word-level and sentence-level ASL
recognition'. [38] introduced a hybrid model which consisted
of a temporal convolution module, a bidirectional gated recur-
rent unit module, and a fusion module. The model was
designed to capture both short-term transitions in sign videos
and longer-term context transitions, with the results being
fused for better performance. [13] proposed an approach that
treated the sign translation problem directly as an NMT task,
using sequence-to-sequence RNNs with attention. They also
introduced the first continuous SLT dataset, the German
RWTH-PHOENIX-Weather2014T, which now serves as the
benchmark dataset for continuous sign language understand-
ing. [28] used a 3D residual convolutional network (3D-
ResNet) to extract visual features and applied CTC to learn
the mapping between the sequential sign features and the
gloss of the output text sentence. They also tested their results
on the RWTH-PHOENIX-Weather2014T dataset. [43] used a
2-layer LSTM encoder-decoder model for Chinese sign lan-
guage translation with body, hand, and facial features as the
input features. [21] introduced a Korean sign language dataset
and developed a multi-layer gated recurrent unit (GRU)
encoder and a multi-layer GRU decoder for translating sign
language videos into Korean using keypoints extracted from
the face, hands, and body parts.

The sequence-to-sequence encoder-decoder model (as
shown in Fig. 1) includes an encoder which reads the input

sequence of vectors x = (z1, ..., z7) so that:

he = f(as, her) (1)
and the encoder embedding c is given as:

c=q(hy,...,h7) (2

1. CTC requires similar word ordering between the source and tar-
get languages, hence we refer to the task here as recognition (using
Gloss) and not translation (no Gloss and differing word order)

where f and ¢ are recursive neural functions such as LSTM.
h: is the hidden state at time ¢.

The decoder defines a probability over the translation y
as:

T T
p(Y) :Hp(yt|y17"'7ytfl7c):Hg(ytflystyc) (3)
t=1 t=1

where s, is the hidden state of the decoder RNN and g is a
nonlinear function whose output is the probability of ;.

When attention mechanism is introduced into the
RNN, the context vector ¢; takes all encoder hidden units
(h,...,hp) as an input to compute the probability distri-
bution of source language words for every word the
decoder wants to generate. By utilizing this mechanism,
it is possible for the decoder to capture somewhat global
information rather than sole inference based on one hid-
den state.

The context vector is given as:

T
c; = E ajjhj
J=1

(4)
The weight «;; of each input hidden unit h; is given by:
T

o;; = exp(e;;) Z exp(e;r)
k=1

(5)

where ¢;; = a(si — 1, h; estimates how well the inputs at
position j match with the output at position i.

2.2.2 Transformer-Based NMT Models

The transformer models first introduced by [37] extend the
encoder-decoder attention mechanism of sequence-to-
sequence models without the use of RNNs.

Given a source sequence X =x,...,Iy and a target
sequence y = yi, .. .,yy, the goal of the transformer is to
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Fig. 2. A basic transformer model for sign to text translation, showing the encoder-decoder components and one of multiple attention modules

expanded.

induce alignment such that:

lyl
P(Y|X) = HP(yz|y1, .

t=1

sy Yt—1, X) (6)

The transformer consists of a stack of encoder layers,
which generate context sequence representations e =
ej,...,ey of the source sequence and a stack of decoder
layers.

At every time step ¢, the decoder uses the output from
the encoder along with the token representations s/~! from
[, the previous layer, to compute the probability distribution
over the vocabulary of the target language.

The representations of the encoder and decoder are
combined in the multi-head attention mechanism (Fig. 2).
Encoder embeddings are projected to keys (where the key
matrix is given by K" € Rx| x d}) and values (where the
key matrix is given by V" € Rx| x d,) in each head of the
multi-head attention mechanism; d;, and d, are the dimen-
sions of the key and values vectors respectively.

For the decoder, the the token representation si~! is pro-
jected to a query vector ¢! € RZ, and d, is the dimension of
the query vector. The output for each attention head can be
computed as:

x|

h _ h ,h
%= E:“t,j”j
=

(7)

where

hKT
o' = softmax (qt )
Vi

At every decoding step ¢, there is a vector of attention
scores a. The attention matrix is the stack of attention
scores for every time step. This process occurs concurrently
in multiple attention heads and each head computes z!,
which are eventually all concatenated to obtain the attention
at time ¢. The results from the attention heads can thus be
used to calculate final alignments.

Unlike the standard RNN where sequence of inputs are
fed one at a time, the transformer takes all the inputs
together and the order of inputs are preserved using a posi-
tional encoding parameter.

PE(pos,Qi) = Sin(pos/lOOO()Qi/dmodel)

PE(y059i11) = cos(pos/ 100002/ dmodet) (8)
where pos is the position of the input in the sequence of
inputs and i represents embedding dimension. This notion
of embedding the order of the input sequence via positional
encoding revolutionized the analysis of time series data
with neural machines by maintaining the position and order
of input sequences (essential for the grammar of any lan-
guage) and by allowing for variable length inputs.

Other earlier works that extended the standard trans-
former model include the Generative Pre-Traning (GPT)
models - GPT-1 [29], GPT-2 [30], and GPT-3 [8]. The models
initially perform unsupervised training with a transformer
model using large unlabeled datasets, and then perform
supervised learning for text-related tasks such as text classi-
fication, sentence similarity, question answering, next-word
prediction, and text summarization.

Specifically, in sign language analysis, [9] modified the
transformer model for sign language recognition and trans-
lation using CTC loss. The input features used in this model
were trained on a CNN-LSTM-HMM architecture [22]
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Fig. 3. Datasets: the top row shows examples of frames from the RWTH-
PHOENIX-Weather2014T GSL video dataset and the bottom row shows
examples from the ASLing ASL video dataset.

where gloss labels were incorporated and a hidden
Markov model (HMM) was used to align the signs to their
glosses. They evaluated their recognition and translation
approaches on the PHOENIX14T benchmark dataset. [42]
used varying numbers of layers in the transformer to per-
form a 2-phase sign-to-gloss and gloss-to-text translation.
[23] presented a hierarchical feature learning method for
input signs by feeding sign segments at multiple scales to a
transformer model, thus reducing any errors caused by
inaccurate sign segmentations. When evaluated on the
PHOENIX14T benchmark dataset, this model outperformed
other existing models where gloss was not used as an inter-
mediary step to translation. Motivated by this performance
improvements in using multi-scale input features for SLT,
as well as the recent successes in multimodal fusion-based
learning models ([37] and [5], [36]), [1] introduced a set of
fusion-transformers to jointly encode three different scales
of the input sign sequences and decode with a standard sin-
gle transformer decoder. Again, when evaluated on the
standard German benchmark dataset, their fusion model
yielded new State of The Art (SoTA) performance. [4] pre-
sented a detailed survey of the current state of the research
on transformer-based continuous sign language translation
architectures, detailing the performances with different
input features when tested on various sign languages - Ger-
man, Chinese and American.

Lastly, [31] presented a continuous sign language genera-
tion architecture using transformers and mixture density
networks. One main contribution of this work was the intro-
duction of a counter decoding method, which allowed for
continuous sequence generation and no end of sequence
token was required.

3 DATASETS

We perform this evaluation on two sign language datasets,
(i) the RWTH-PHOENIX-Weather2014T benchmark dataset,
consisting of 7096 training, 519 validation, and 642 test sam-
ples all annotated with the sign glosses, and (ii) the more
realistic, daily life based American sign language dataset
(ASLing) introduced by [2]. This dataset consists of 1027
training and 257 testing samples also annotated with the
sign glosses. The video samples were collected at 10 frames
per seconds and were annotated by 7 signers. We do not

. st
o st

Fig. 4. Two-dimensional PCA projections of the Word2Vec embeddings
of the English translations of RWTH-PHOENIX-Weather2014T dataset
texts (in blue) plotted alongside the projections of the embeddings of the
ASLing dataset texts (in red). (Image best viewed in color).

use the gloss information in any of the analyses described in
this work. Fig. 3 shows examples from the two datasets.

In the benchmark dataset, the data was collected in a con-
strained and controlled environment, where the signers
were professional weather report interpreters on television.
All signers were of the same race and dressed in dark cloth-
ing against a uniform light background. In all the signing
videos, the camera position was approximately constant, in
similar lighting conditions, and set to fully display the
upper body including the hands and faces of the signers.

The ASLing dataset was collected from DHH college stu-
dents on the Rochester Institute of Technology campus. The
signers were given a basic set of instructions on how to col-
lect data using their cell phone cameras. They were required
to record the sign interpretations of the textual phrases pro-
vided in the instructions. No specific instructions were
given regarding their clothing, the nature of the back-
ground, or environmental lighting conditions. They were
only instructed to capture their upper body, including
hands and face.

3.1 Analysis
Fig. 3 visually highlights the differences in the two datasets
we consider in this evaluation. The ASLing dataset was
intentionally collected in less controlled settings to more
closely resemble real-life situations, where signing and
hearing individuals interact in a myriad of unconstrained
environments. For example, the rightmost ASL image in the
bottom row of Fig. 3 shows a signer whose shadow is
actively moving in the background as she records her video;
there is also a lighting source in the image, creating uneven
lighting conditions on the recorded video. Lastly, the sub-
ject appears closer to the camera than expected.

We first translated the ground-truth texts in RWTH-
PHOENIX-Weather2014T to English, then obtained the
word2vec embeddings for the two datasets and projected
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them into a 2D space using PCA. The results are shown in
Fig. 4.

While the RWTH-PHOENIX-Weather2014T dataset (shown
in blue), which focuses on weather-related topics, spans only a
narrow region in the word embedding space, the ASLing data-
set, which covers a myriad of topics, spans a significantly wider
range in the embedding space. The sentence repetition and
word repetition are shown in Fig. 5

Both datasets were created to serve different purposes.
While the RWTH-PHOENIX-Weather2014T serves as a
focused, well-controlled benchmark dataset to qualify and
rate newly developed SLT algorithms, ASLing is a more
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naturalistic dataset, serving as a test-bed for implementa-
tions planned for deployment in real-life settings.

4 CRoOSS-FEATURE FusiON BASED TRANSFORMER
MODEL

In this section, using a bank of nine cross-modal transform-
ers as shown in Fig. 6, we develop a multimodal encoder
system that embeds the interactions between three separate
input features.

Three different features are served as inputs to the cross-
attention block after adding the positional encoding infor-
mation. These inputs are passed through a 1D convolutional
network before passing to the next stage.

4.1 Methodology
We consider three commonly used visual representations
from the input sign videos. The first representation is a
2048-dimensional visual embedding obtained from a CNN
ResNet50 [17] architecture pre-trained on ImageNet [14].
Next, using OpenPose [10], we extract two-dimensional
(z,y) key points from the input videos - 25 body keypoints,
21 hand keypoints for each hand, and 70 face keypoints
resulting in a total of 137 points. Lastly, we compute the
dense optical flow [33], [35] from pairs of consecutive
frames in the input videos. Similar to the RGB frames, we
extract a 2048 dimension vector for each optical flow frame.

We perform this experiment in an attempt to discover the most
effective single visual feature useful for sign language understand-
ing. We accomplish this by visualizing our cross-modal trans-
former attention weights.

If we consider one (of the three) cross-attention blocks in
Fig. 6, Equation (9) describes how the attention for the two
cross-feature transformer models attending on the CNN

I |
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Fig. 6. Cross-modal bank of transformer encoders with single standard decoder. (Image best viewed in color).
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(1)
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PT: i saw him draw it while he
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(a)

(b)

(c)

Fig. 7. Attention visualization (best viewed in color). (a) best test sample from the GSL dataset, (b), (c) best test samples from the ASL dataset. (1)
ResNet50 based fused features, (2) optical flow based fused features, (3) OpenPose based fused features. BLEU-1 - BLEU-4 scores were close to

100% for the test samples chosen here.

features as the base feature is calculated:

QenvKlp
vy,
Qenv Kl
Vdy,

where Qcny (CNN feature modality), Kop (OpenPose fea-
ture modality), and Vpp (OpenPose feature modality) act as
the query, key, and value inputs, respectively, for the first
cross-feature transformer and Qcyy (CNN feature modal-
ity), Kor (optical flow modality), and Vpr (optical flow
modality) act, respectively, for the second.

The cross-attentions for the other blocks 2 and 3 are simi-
larly calculated with their respective base features. Then,
the outputs from each cross-feature transformer block are
fed into its own self-attention block as shown in Fig. 6.
Finally, the outputs of all the self-attention blocks are fused
and passed to a linear layer to learn their projections.

The decoder, in the standard fashion, takes the word
embeddings as input and performs masked-multi head
attention by masking the future words. The encoder embed-
ding (from the linear layer) is fed to the multi-head attention
block in the decoder, where it learns the encoder-decoder
attention and predicts the words after passing through a
feed-forward network, linear, and softmax layers.

) Vor

) Vor 9

Cross_attention; = so ftmam(

Cross_attentions = so ftm(m(

4.2 Experiments

The Cross-Feature Fusion based transformer model is
trained on 1027 ASLing (ASL) samples and tested on 257
held out samples. Adam optimization is used with a learn-
ing rate of 1e~"* and a weight decay rate of 1le~%. The maxi-
mum length of frames in each batch is chosen as the input
sequence length for the encoder, and the decoder is fixed at
a maximum caption length of 30, based on the average
length of the captions. Cross-Feature Fusion based trans-
former models were trained for 70 - 150 epochs. Other opti-
mal model settings used are encoder-decoder embedding
size of 512, along with 3 encoder and decoder layers, and 8
multi-head attention blocks.

We test our cross feature model on the low-resource
ASLing (ASL) dataset. Further, we train our Cross-Feature
Fusion based transformer model using all three feature
inputs. We perform similar experiments on the German
Sign Language (GSL) dataset. To measure the performance
of the Cross-Feature Fusion model using Bilingual

Evaluation Understudy (BLEU) [27]. DUe to the constarints
on the number of samples for ASLing dataset, we use the
model that was already trained on GSL and fine tuned the
ASLing data.

4.3 Attention Visualization

To evaluate the contribution of each of the input features,
we selected the test sample that gave the best Bilingual
Evaluation Understudy (BLEU) scores for the RWTH-
PHOENIX-Weather2014T (GSL) and the ASLing (ASL)
datasets. The attention map is shown in Fig. 7. The attention
weights from the last layer of each of the three cross-modal
encoders are read off, and the attention heatmaps are
plotted.

The frames of the video under consideration are shown
at the bottom of the heatmaps. The three different heatmaps
corresponding to the three feature bases are shown where:
(1) is ResNet50 based fused features, (2) is an optical flow-
based fused feature, and (3) is OpenPose based fused
features.

Observation. The quality of the input frames significantly
affects the features selected for processing. Because
ResNet50 works directly on the RGB images, when the qual-
ity of the input frames is poor, as in many ASLing frames,
RESNet50 performs the worst. Irrespective of the quality of
the input frames, OpenPose-fused features consistently per-
form well across both datasets. For the controlled and con-
strained GSL dataset, ResNet50 CNN features perform well.
This is consistent with several of the works reporting state-
of-the-art results on the benchmark datasets, such as [23],
currently the best performing model on the benchmark
RWTH-PHOENIX-Weather2014T dataset.

In summary, going forward, we will use only keypoint-based
features for dual learning sign language analysis, as these have
been shown to be most versatile and reliable for varying levels of
input video quality. We investigate pose-to-text and text-to-pose,
where pose is the sign language representation

5 SIGNNET Il MODEL: DUAL LEARNING TWO
TRANSFORMER-BASED NETWORKS

We present a two-way SLT model, SignNet II, learned using
a dual learning paradigm [16], [41]. Dual learning for NMT
involves the two parallel models, a primal model and a
dual model, and is useful for co-learning the parameters of
the two models in turn. Although dual learning has been
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Fig. 8. SignNet II: Two-way Sign Language Translation trained the dual learning paradigm. The top network is the pose-to-text branch, and the bottom
network is the text-to-pose branch. The direction of the arrows indicates the forward propagation and the predictions made. The backward propaga-
tion of losses will simply be in the reversal direction. Details on how the dual co-learning is accomplished are given in Section 5.3 (Best viewed in

color).

useful for learning from unlabeled data, we use it to regular-
ize the learning from our annotated data in a supervised
fashion. Our two base models are (1) a sign/pose-to-text
model and (2) a text-to-sign/pose model, and dual learning
is used to refine them. SignNet II architecture, shown in
Fig. 8, depicts the co-learning paradigm.

We briefly describe the two baseline models, especially
focusing on their loss structures, and then present the dual
learning formulation.

5.1 SignNet II: Pose-to-Text (P2T)

The top network in Fig. 8 performs the pose-to-text transla-
tion. We obtain the input 3D pose features by lifting the
original 2D OpenPose joint keypoints [11] using an algo-
rithm introduced by [44]. We use the key points from hand,
finger, and upper body joints, resulting in fifty 3D joint loca-
tions, to give a vector of size 150 for each frame.

The input representation can be denoted as POSE =
{[(9601 ) Zol) (271491 » Y1491 » 2149 )] [(Io\ yYon s Zov)

o (@149, Y1aoy 2149V)]} where (:L“l/, y“, Zi; ) represents the ' it
3D joint in frame j and N is the number of frames in the
input sequences.

To retain the input ordering information, we follow a
similar pattern [37] and implement positional encoding for
our input joints representation. We learn temporal depen-
dencies across the entire sequence by correlating (or attend-
ing-to) all the frames with respect to a single frame,
continuously, for all frames. This way, we learn the context
alignment between the source and target.

To this end, we perform context learning between
frames by initially computing the dot product of one
frame (Q) with all other frames (K) of the video under
consideration. To avoid exploding values after taking the
dot product, we scale by Vd [13711. Finally, to retain the
context 1nformat10n Jelevant to each frame, softmax acti-
vation (softmax( )V) is applied on the frames (V).
The resulting embeddmgs are then passed through a lin-
ear layer for enhanced features.

We follow a similar pattern on the decoder side, ini-
tially obtaining word embeddings for each word, adding
positional information, and then learning the context
between the words. Additionally, we learn the mapping
between the frames and the words by taking the context
information from the encoder and performing a scaled
dot product with word-based attention. These embed-
dings are then passed onto a linear layer and softmax to
predict continuous text.

5.1.1 Translation Loss (Lpyr)

The primary task of the P2T branch of the 2-way interpreta-
tion model is to generate a written/spoken language sen-
tence S = (wy,...,wy) given a sign video V, as defined
previously. The translation process discussed here aims to
learn p(S|V). Going from pose to sentences, in the decoding
phase, we have:

U U
p(S|V) = Hp(wi|w¢71) = HZW (10)
i=1 i=1
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where U is the length of the sentence and Z = (Z;;) =
[21,...,2y]" is the probability distribution of the sentence
when translated. Z; is the probability of word w; having a
word label &, given w;_;.

Lpor =1—-p(S"|V) an
where ST is the ground truth sentence corresponding to
video V, comprised of the aggregation of the ground truth
probability of words during the decoding phase.

5.2 SignNet II: Text-to-Pose (T2P)

The bottom part of Fig. 8 performs the text-to-pose transla-
tion. The workings of this block are similar to the P2T net-
work explained above. Here, input 3D pose points are fed
to the network. The encoder learns the context between dif-
ferent words of the input phrase, and the decoder learns the
context between frames individually and between frames
and words. The output of this network is the sequence of
predicted poses.

5.2.1 Metric Embedded Learning for Pose Similarity

We are interested in ensuring that the predicted pose-based
signs in the T2P arm of the 2-way SLT architecture predict
continuous poses that are as similar as possible to the
ground-truth signs and as distant as possible to other signs
in the same batch.

To accomplish this, we have:

I£(B) = S(D)IP = If(B) = f(S)]* <0

d(B,T) d(B,S)

12)

where B is a baseline sign, T is a true sign required to be as
similar to B as possible, S is a false sign (not as similar to
the baseline), and d(.) is the distance function.

To avoid the trivial solution where our function f(.) will
produce zero or one where f(B)= f(T), we introduce a
margin similar to [32] to impose a stronger constraint. The
resulting distance function d(B,T),S) is given in Equa-
tion (13):

d(B,T,S) = max( (d(B,T) — d(B, S) +«),0 ) (13)
We refer to the loss derived based on this distance as the
pose similarity metric-based loss function, given in Equa-
tion (14), which is useful for enhancing the performance of
the T2P branch of the 2-way SLT training mechanism.

Choosing the similarity metric samples: While any ran-
dom choice can readily satisfy d(B,T)+a < d(B,S), the
underlying neural network will simply not learn if it gets it
right too many times. If the choice of samples is made such
that d(B,T) ~ d(B, S), the network is forced to work hard to
learn the differences. This seemingly simple choice signifi-
cantly increases the efficiency of the learning algorithm. We,
therefore, select our samples in the following manner:

Consider a batch || B|| = 4, where we are interested in cal-
culating the similarity loss for the first sample ¢ = 1. The
baseline here is the ground-truth sign which we will refer to
as BY. The truth T is the network prediction for sample i.
Lastly, the false value S is the ground-truth for any other
sample j # i € {B}, where j is randomly selected.

5.2.2 Sign Similarity Metric-Based Loss (Lrsp)

Lrsp, is calculated in the lower branch of the 2-way mecha-
nism shown in Fig. 8. This loss was introduced to reduce
the risk of the network confusing similar signs. While train-
ing for efficient pose generation we use Dynamic Time
Warping (DTW) [7] as our evaluation metric and optimize
the network for the lowest DTW score.

The sign similarity based loss over all samples can be
given as:

(14)

M
=3 d(B9, T, 50
[

Justification: There is only a finite number of valid poses that
make up a valid sign, meaning there is often significant
overlap between signs in the same batch. Without the strong
constraint to separate truth and false examples, the network
tends to readily confuse signs when predicting them from
input text.

Lrap,

5.2.3 L, Regression Loss (Ltap,)

The objective here is to learn the probability p(V'|S) of pro-
ducing a sequence of sign-poses V = (sy,...,sp) over T
time steps, given a spoken/written language sentence S =
(w1, ..., wy) having U words. Similar to the translation loss
Lpsr described previously, this L, regression loss is also
computed from the output of the decoder, although this
occurs in the T2P branch of the model. Given the text sen-
tence S as the inputs, the completed decoder output
sequence of pose-signs can be expressed as 5.7 = §1,..., 87.
The Mean Squared Error (MSE) loss between the predicted

sequence, 1.7, and the ground truth,s{T is given as:
¢
Lpor = Liyse = Z st —d1r) (15)
i=1
5.3 Dual Learning

We use a dual learning mechanism motivated by [16] to
jointly refine the model parameters for both the networks in
SigNet II. We perform supervised dual learning because we
have annotated data for both the P2T and T2P branches.
The goal is to better utilize our two sets of annotated train-
ing data by enhancing probabilistic correlations within the
two models.

Let us define a sign phrase as x and its textual translation
as y. For a bilingual sign-text sentence pair (x,y), ideally
p(x,y¥) = p(X)p(x|y) = p(y)p(y|x). If the two models are only
trained apart, it becomes challenging to satisfy p(x)p(x]y) =
p(y)p(y|x); hence a joint training of the two models can be
performed as:

v—y)
— log p(x|y; 0)—z)

Lpr, = (log p(x) + log p(y|x; €

—log H(y) (16)

where we p(x) and p(y) can be viewed as empirical statistics
of the data. During our implementation, we approximate
these statistics as the data induced scores 74 and rp defined
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below. Details of the dual learning implementation of are
given in Algorithm 1.

Before the first iteration starts, the two baseline transla-
tion models, P2T and T2P, are pretrained by back-propagat-
ing the losses described previously. In the first iteration, the
P2T network acts as a forward translation step and T2P as
the backward translation step whose inputs are text predic-
tions from P2T. The losses back-propagated in backward
network are also weighted by the effects of the forward
translation performance.

In the next iteration, the models are reversed so that T2P
becomes the forward translation while P2T becomes the
backward one. Similarly, the forward pose predictions now
act as inputs to the backward P2T network, and weighted
losses are back-propagated. This completes one full loop of
the dual learning mechanism. The process is repeated until
both sets of losses converge.

Algorithm 1. SigNet II Dual Learning

Data: 3D OpenPose points P, Pose translations 7', initial
two translation model T4 for Pose-to-Text & T for
Text-to-Pose, hyperparameter o«

1: repeat

2: Create samples S with poses s4 from P and sp from T’

3: foreach sample S4 € S do

4 Set My =Ty, Mp=Tg

5: Set fw_loss = Lpor = 1 — p(ST|V)
p |

7

Set bk_loss = Lrop = S0 d(BW, T, 50))
Predict N phrases from Pose-to-Text translation model

M 4 Set the Pose-to-text reward:
(fw- 1055772 fw_loss))

e
9: for Eachnin Ndo

8 ry=

(fw_loss;— fw_ loss)

10: Predict n poses using Text-to-Pose translation model
Mp
11: Set the Text-to-Pose reward:
12: (bw_lossANZ bw_loss))
\/\ IZL 1 (bw_loss; —bw. loss)

13: Compute the final reward, r, = @ x4 + rp * (1 — )
14: end
15:  Compute the stochastic gradient for My :
16: 64 = %Z(fw,loos * T por)
17:  Compute the stochastic gradient for

Mp:0p =+ > (bw_loos (1 — a))
18: Update models M, & Mp

19: Set My =Tp, Mg =Ty
20: end

We sampled the training data from both the sets of
inputs P and T. We denote Pose-to-Text model as model 74
and Text-to-Pose model as T5. We assume that we have two
well-trained T and Tz, meaning each gives a different pre-
dicted output which is the input of the other. For the first
pass, we consider Ty to be model "A’, M, or as the anchor
model, for each of the pose samples model M, predicts the
corresponding phrases. We compute the loss considering
this operation to be the forward translation step using Sec-
tion 5.1.1. For the backward translation, we compute the
loss using the outputs from model Tz and leverage the total
loss Section 5.2.2 function.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

(fw-losses — 4 > (fw-losses))

ry=
\/%_1 le] (fw_losses; — fw,losses)2

- (bw-losses — —Z(bw losses)) (18)

rp =
\/ﬁ le (bw_losses; — bw_losses)

(17)

The predicted text are considered to be the initial transla-
tion output for which we compute the reward variable 74
shown in Equation (17) (line 8 of 20). We predict the final
output of the first pass and calculate it's immediate reward
function rp using the formulation shown in Equation (18)
(line 12 of 20). We mathematically compute both the
rewards by achieving the forward and the backward losses
obtained from the first pass. We calculate the final reward
value which is linear summation of both the forward r4 and
backward rp rewards, r, = o *rpop + rpor * (1 — ). We
then compute the gradients of the rewards with reference to
both the models in the network. The model parameters are
updated based on the computed gradients, and the second
pass reverses the roles of the models.

6 EXPERIMENTS AND RESULTS

6.1 Metrics

We evaluate our SigNet II model using Bilingual Evaluation
Understudy [27]. This metric is especially used to evaluate
automatic machine translation mechanisms. BLEU-4 evalu-
ates the performance of 4-gram words i.e., four consecutive
words, while BLEU-1 evaluates the individual word-based
performance i.e., 1-gram. We tested our dual learned P2T
and T2P models on the benchmark German Sign Language
(GSL) dataset Section 3 and used BLEU as the evaluation
metric to gauge their final performance.

6.2 Training Schedule

The SignNet II model was trained on the benchmark Ger-
man Sign Language dataset. For training, we selected an ini-
tial learning rate of le-7 with a weight decay rate of 1e-3.
The encoder embedding dimension of 512 was used with 2
layers of encoder and decoder each and 4 multi-head atten-
tion for pose-to-text and 2 multi-head attention blocks for
text-to-pose. A grid search was done for both the branches
(pose-to-text & text-to-pose) to select the optimal hyper-
parameter values. The SignNet II pose-to-text model has
approximately 2.67 million parameters and text-to-pose
model has 17.04 million parameters. The model were devel-
oped using Pytorch framework. We utilized Nvidia RTX
3090 Ti processor with 24 GB memory for training.

6.3 Discussion

Both the P2T and T2P models were trained individually,
while the SigNet II jointly trained both the models. We used
only the GSL dataset to train and test our model because
unlike ASLing, GSL has a significantly larger number of
samples. We evaluated the P2T arm by passing the test set
through the top branch of the SigNet II model shown in
Fig. 8. Table 3 shows the pose-to-text translation results after
applying the dual learning algorithm. We compared our
results with [1], [13], [23] as these make use of single feature
inputs to evaluate their models. We refer to single feature
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TABLE 1
Statistics on the Benchmark GSL and Our Collected ASL
Datasets
GSL (benchmark)  ASLing (ours)
# training samples 7096 1017
# testing samples 693 254

# signers 9 7
Average # signs per signer 859 183
Same user in train and test Yes Yes

TABLE 2
Cross-Feature Fusion Based Transformer Model on Both ASL
and GSL Datasets

Experiment Test
type
BLEU-1

22.39

BLEU-2
15.96

BLEU-3
13.56

BLEU-4
12.25

Cross-
Feature
Fusion
based
transformer
model
(ASLing
(ASL))

Cross- 27.33 18.18 13.26 10.46
Feature

Fusion

based

transformer

model

(GSL)

input as using only one feature, in this case, keypoint-based
pose feature. On the other hand, Section 4 describes the use
of multi-features (CNN, OpenPose, optical flow features) to
perform the same task of pose-to-text. We achieved a score
of 39.17 for BLEU-1 and 12.34 for BLEU-4, which is a signifi-
cant increase in performance when compared to other
models.

For text-to-pose translation using the dual learning algo-
rithm, we show the results in Table 4. Saunders et al. [31]
trained their text-to-pose model using Mean Squared Error
(MSE) loss to compare the ground truth sequences with
the predicted poses. But SignNet II used a metric-based
embedding loss in addition to the MSE loss and improved
the BLEU score performance.

Out of the total 8000+ data samples available, we could
only use about 10% of the samples to train our model. This
was due to the fact that while training the dual learning
algorithm, we simultaneously worked with two heavily
parameterized models, which turned out to be computa-
tionally expensive. This 10% was randomly selected and
was repeated multiple times with different batches. How-
ever, based on the result trends we observed, we believe
that given a sufficient amount of resources we will con-
tinue along this performance trajectory.

The evaluation in this paper does not provide evidence
that these results are immediately useful to sign language

TABLE 3
Translation Performance on Predicted Text Using Dual Learning

Experiment Test
type
BLEU-1

27.10

BLEU-2
15.61

BLEU-3
10.82

BLEU-4
8.35

Conv2d-
RNN [13]
Conv2d-
RNN [13] +
Luong
Attention
[25]
Conv2d-
RNN [13] +
Bahdanau
Attention
[12]
Feature
scaling
(OPy) [1]
TSPNet-
Single 8
[23]
TSPNet-
Single 12
[23]
TSPNet-
Single 16
[23]
Baseline
P2T (ours)
SigNet II:
Dual
Learning
P2T for T2P
(ours)

29.86 17.52 11.96 9.00

32.24 19.03 12.83 9.58

21.83 13.85 10.34 8.28

30.29 17.75 12.35 9.41

29.02 17.03 12.08 9.39

32.52 20.33 14.75 11.61

38.87 23.67 16.11 11.67

39.17 24.57 16.94 12.34

P2T - Pose-to-Text.

users. Furthermore, according to [3] in their experiment
“Human as an oracle”, they compared how well a human
expert signer could translate a sign language video versus
translating the corresponding animation, created using
OpenPose skeletons. Their results on 340 ASL videos
showed very poor translation, with a BLEU-4 score of
nearly zero. This suggests that although sign dynamics are

TABLE 4
Translation Performance on Predicted Poses Using Dual

Learning

Experiment type Test
BLEU-1 BLEU-2 BLEU-3 BLEU-4

PT G2P (MSE only) [31] 31.8 19.19 13.51 10.43
PT T2P (MSE only) [31] 31.36 19.04 13.54 10.51
SignNet T2P (ours w/o 36.19 20.77 13.27 8.8
metric-based loss)
Singly trained T2P 36.79 21.79 14.77 10.66
(ours - MSE + metric
loss)
dual learning T2P (ours  38.26 22.48 14.80 10.21

- MSE + metric loss)

T2P - Text-to-Pose.
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successfully captured with pose data, additional embodi-
ment of a signing agent will be needed for improved sign
language understanding.

7 CONCLUSION

In this article, we introduced a novel transformer based dual
learning algorithm, SignNet II, a promising step towards
facilitating 2-way sign language interpretation. We presented
a multi-feature cross-attention transformer-based architec-
ture, and its output attention maps indicated that keypoint-
based pose features were the most versatile and reliable for
analyzing different input videos of varying quality. Hence,
this became our single feature of choice for dual learning.

Our results showed that using dual learning for complex
tasks such as sign language translations can be useful in
boosting the performances of the models. When compared
to the SoTA models, SignNet II showed improvements in
the BLEU scores for 2-way sign language translations. We
have taken a step towards constructing a model that jointly
trains complex translation models, but given adequate
resources, SignNet II has the potential to continue to
improve model performance.
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