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5 Abstract—The role of a sign interpreting agent is to bridge the communication gap between the hearing-only and Deaf or Hard of
6 Hearing communities by translating both from sign language to text and from text to sign language. Until now, much of the AI work in
7 automated sign language processing has focused primarily on sign language to text translation, which puts the advantage mainly on
8 the side of hearing individuals. In this article, we describe advances in sign language processing based on transformer networks.
9 Specifically, we introduce SignNet II, a sign language processing architecture, a promising step towards facilitating two-way sign

10 language communication. It is comprised of sign-to-text and text-to-sign networks jointly trained using a dual learning mechanism.
11 Furthermore, by exploiting the notion of sign similarity, a metric embedding learning process is introduced to enhance the text-to-sign
12 translation performance. Using a bank of multi-feature transformers, we analyzed several input feature representations and discovered
13 that keypoint-based pose features consistently performed well, irrespective of the quality of the input videos. We demonstrated that the
14 two jointly trained networks outperformed their singly-trained counterparts, showing noteworthy enhancements in BLEU-1 - BLEU-4
15 scores when tested on the largest available German Sign Language (GSL) benchmark dataset.

16 Index Terms—Sign language translations, dual learning, transformer model, metric embedded learning

Ç

17 1 INTRODUCTION

18 ACCORDING to the World Health Organization, there are
19 approximately 430 million Deaf and Hard of Hearing
20 community (DHH) individuals around the world [26]. Sign
21 language, a visio-spatial natural language, is the primary
22 mode of communication for many DHH individuals. Simi-
23 larly, according to the World Federation of the Deaf, there
24 are over 200 sign languages, and around 70 million deaf
25 people using them worldwide [39]. Interpreting sign lan-
26 guage can be challenging for non-signers, and the inability
27 to freely communicate to a large percentage of the popula-
28 tion in their natural language can be challenging for DHH
29 individuals. In addition, the lack of readily available resour-
30 ces to aid general sign understanding makes these issues
31 even harder. AI research on automating Sign Language
32 Translations (SLT) can play a critical role in bridging this
33 communication gap between hearing-only and signing-only
34 individuals.
35 With the recent successes in neural machine translation
36 (NMT) and video-based activity recognition methods, AI
37 researchers have begun extending these methods to SLT.

38However, many of these initial works only convert from
39sign language to text, a relatively easier AI problem to solve.
40This inadvertently puts the advantage mainly on the side of
41the hearing individuals who can receive information in their
42natural modality of speech (readily converted to from text).
43Such systems do not provide as much of an advantage for
44the DHH individuals, whose natural mode of communica-
45tion involves receiving information in the form of signs.
46A true sign language interpreting agent should be capa-
47ble of understanding sign language and translating to text
48as well as in the reverse direction. To this end, we propose a
49transformer-based two-way sign language translation
50model, SignNet II, an initial step towards facilitating two-
51way sign language communication. The model exploits the
52notion of the duality of the sign language interpretation
53problem to learn from both source-to-target and target-to-
54source translations.
55The contributions of this work include (i) the computa-
56tional justification of pose points for real-life sign language
57understanding, (ii) the introduction of a metric embedding-
58based loss function to improve the text-to-sign translation,
59and (iii) the use of a dual learning approach to enhance both
60source-to-target and target-to-source translations.
61In Section 2 we describe the related works in the progres-
62sion of automated SLT as well as the role of transformers in
63this research area. We discuss the challenges of SLT, briefly
64introduce the standard benchmark dataset for SLT as well
65as our own real-life, unconstrained American Sign Lan-
66guage (ASL) dataset. We justify our choice of representative
67features in Section 3. Section 5 presents SignNet II, our pro-
68posedQ1 two-way SLT model, describing the one-way baseline
69models as well as their coupled learning process. Section 6
70describes the training scheme along with experiments and
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71 results. Lastly, Section 7 presents our conclusions and dis-
72 cusses some of the limitations and next steps in trans-
73 former-based SLT research.

74 2 SIGN LANGUAGE AND THE ROLE OF

75 TRANSFORMERS IN ITS MACHINE TRANSLATION

76 In this section, we discuss the challenges of making the
77 jump from performing NMT on written/spoken languages
78 to involving a rich, complex visual language such as sign
79 language. We discuss the progression of sequence models
80 for SLT until the State of The Art (SoTA) models, including
81 transformers.

82 2.1 Why is Automated SLT Challenging?
83 According to [20], a plethora of challenges are encountered
84 when hearing-only individuals attempt to learn a sign lan-
85 guage as a second language. These challenges, as described
86 below, are also inherited when we attempt to use NMT sys-
87 tems designed for spoken/text-based languages for visual-
88 spatial languages.
89 Typically, spoken languages are linearly one-directional,
90 where one word occurs after another. In contrast, sign lan-
91 guage is three-dimensional and multi-directional, i.e., two
92 or more signs can be produced simultaneously and can
93 interact with one other at the same time. For example, in a
94 conversation involving a narrative about two people, Jack
95 and Jill, the signer can place Jack in a spatial 3D position
96 located close to the signer, called his signing space [18], on
97 the left-hand side. Similarly, he can place Jill in a similar 3D
98 position on the right side. The signer can thus tell the story
99 by referring to the 3D spatial locations as Jack and Jill inter-

100 act in the narrative via produced signs. Also, grammatical
101 constructs such as past and future tenses are represented by
102 altering the 3D pose of the signer. For example, a signer
103 may lean forward when signing the same phrase to indicate
104 an event in the future versus one currently occurring.
105 Sign production is another computational challenge since
106 traditional NMT systems were designed to produce only
107 text. Altering such systems to produce meaningful 3D signs
108 successfully is not trivial and will require a visual
109 component.
110 The notion of receptive finger-spelling in sign lan-
111 guage understanding can also be exacting on the NMT
112 system. Finger-spelling is the process of spelling out
113 words by using handshapes that correspond to the let-
114 ters in the word. The set of handshapes used to spell
115 words is known as a “manual alphabet”. Finger spell-
116 ings are often used for spelling out the names of people
117 and places or for unusual words for which there is no
118 sign. Another challenge with sign language processing
119 is its differing word order, grammar rules, and struc-
120 ture, from its spoken counterpart.
121 Gloss is the system of written words, symbols, and other
122 annotations that represent how to produce signs in a given
123 sign language. Gloss is the transcribed form of sign lan-
124 guage, which includes various notations to account for the
125 facial and body grammar involved in the signs. Unfortu-
126 nately, not all signs have a direct meaning in the spoken
127 equivalent. An example of a gloss in American Sign

128Language (ASL) and its interpretation in spoken/written
129English [24] is shown below:
130ASL Gloss. YESTERDAY PRO-1 INDEX-[at] WORK HAP-
131PEN SOMEONE! MAN CL:1-”walked_past_quickly” I
132NEVER SEE PRO-3 BEFORE.
133Interpretation. Yesterday at work, a stranger (some guy
134I’ve never seen before) rushed past me.
135It is important to note that DHH individuals do not use
136gloss in their daily lives. It is only an intermediary reporting
137and research tool.

1382.2 Neural Machines for Continuous Sign Language
139Translation
140Sign Language (SL) analysis often involves working
141either with isolated sign gestures or with continuous
142signs. Continuous sign language can therefore be
143defined as sequential unsegmented sign gestures where
144the start and end boundaries for each gesture is not
145clearly annotated. Prior to the advent of neural models,
146statistical machine translation (SMT) involved translat-
147ing a sentence S from a source language to a target lan-
148guage sentence T , using statistical models learned over
149large corpa of examples. SMT therefore aimed to maxi-
150mize PrðSjT Þ. Although SMT models out-performed the
151classical MT systems, their performance was still not
152optimal due to the narrow focus on sentence-to-sen-
153tence translation, where the larger context was not con-
154sidered. Also, SMT models were often comprised of
155several small sub-components that needed to be tuned
156separately.
157Neural machine translation (NMT) involves translating
158sentences in the source language to the corresponding sen-
159tence in the target language using neural networks.

1602.2.1 Sequence-to-Sequence NMT Models

161Early NMT models typically consist of encoder-decoder
162architectures, where the encoder abstracts a sentence from a
163source language into a fixed-length vector, the embedding,
164and the decoder uses this to generate the translation in the
165target language. NMT models, unlike their predecessors,
166jointly train the encoder and decoder.
167One of the earlier NMT works by [19] was comprised of
168probabilistic continuous sentence-level translation models.
169[34] used a multilayered Long Short-Term Memory (LSTM)
170to encode an input sequence to a fixed-length vector and
171then used another multilayered LSTM to decode the target
172sequence from the vector. This was one of the first versions
173of the NMT encoder-decoder architecture. [12] showed that
174encoder-decoder performance deteriorated with increasing
175input sequence length, due to the constraints imposed by
176the fixed-length vector. [6] addressed this limitation by
177introducing the attention mechanism over the decoder
178LSTMs. The input sentence was encoded into a sequence of
179vectors, and the attention mechanism adaptively selected a
180subset of these vectors when decoding the translation. This
181allowed the model to handle longer sentences. Similar
182works using the attention mechanism for the NMT include
183[25], [40].
184One of the earlier works in continuous sign language
185translation was by [15], who introduced a hierarchical
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186 bidirectional deep recurrent neural network (HB-RNN) and a
187 probabilistic framework based on Connectionist Temporal
188 Classification (CTC) for word-level and sentence-level ASL
189 recognition1. [38] introduced a hybrid model which consisted
190 of a temporal convolution module, a bidirectional gated recur-
191 rent unit module, and a fusion module. The model was
192 designed to capture both short-term transitions in sign videos
193 and longer-term context transitions, with the results being
194 fused for better performance. [13] proposed an approach that
195 treated the sign translation problem directly as an NMT task,
196 using sequence-to-sequence RNNs with attention. They also
197 introduced the first continuous SLT dataset, the German
198 RWTH-PHOENIX-Weather2014T, which now serves as the
199 benchmark dataset for continuous sign language understand-
200 ing. [28] used a 3D residual convolutional network (3D-
201 ResNet) to extract visual features and applied CTC to learn
202 the mapping between the sequential sign features and the
203 gloss of the output text sentence. They also tested their results
204 on the RWTH-PHOENIX-Weather2014T dataset. [43] used a
205 2-layer LSTM encoder-decoder model for Chinese sign lan-
206 guage translation with body, hand, and facial features as the
207 input features. [21] introduced a Korean sign language dataset
208 and developed a multi-layer gated recurrent unit (GRU)
209 encoder and a multi-layer GRU decoder for translating sign
210 language videos into Korean using keypoints extracted from
211 the face, hands, and body parts.
212 The sequence-to-sequence encoder-decoder model (as
213 shown in Fig. 1) includes an encoder which reads the input
214 sequence of vectors x ¼ ðx1; . . . ; xT Þ so that:

ht ¼ fðxt; ht%1Þ (1)
216216

217 and the encoder embedding c is given as:

c ¼ qðh1; . . . ; hT Þ (2)
219219

220where f and q are recursive neural functions such as LSTM.
221ht is the hidden state at time t.
222The decoder defines a probability over the translation y
223as:

pðyÞ ¼
YT

t¼1

pðytjy1; . . . ; yt%1; cÞ ¼
YT

t¼1

gðyt%1; st; cÞ (3)

225225

226where st is the hidden state of the decoder RNN and g is a
227nonlinear function whose output is the probability of yt.
228When attention mechanism is introduced into the
229RNN, the context vector ci takes all encoder hidden units
230ðh1; . . . ; hT Þ as an input to compute the probability distri-
231bution of source language words for every word the
232decoder wants to generate. By utilizing this mechanism,
233it is possible for the decoder to capture somewhat global
234information rather than sole inference based on one hid-
235den state.
236The context vector is given as:

ci ¼
XT

j¼1

aijhj: (4)

238238

239

240The weight aij of each input hidden unit hj is given by:

aij ¼ expðeijÞ
XT

k¼1

expðeikÞ (5)

242242

243where eij ¼ aðsi% 1; hj estimates how well the inputs at
244position jmatch with the output at position i.

2452.2.2 Transformer-Based NMT Models

246The transformer models first introduced by [37] extend the
247encoder-decoder attention mechanism of sequence-to-
248sequence models without the use of RNNs.
249Given a source sequence x ¼ x1; . . . ; xjxj and a target
250sequence y ¼ y1; . . . ; yjyj, the goal of the transformer is to

Fig. 1. A sequence-to-sequence encoder-decoder model with attention for sign language to text translation.

1. CTC requires similar word ordering between the source and tar-
get languages, hence we refer to the task here as recognition (using
Gloss) and not translation (no Gloss and differing word order)
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251 induce alignment such that:

P ðyjxÞ ¼
Yjyj

t¼1

P ðytjy1; . . . ; yt%1; xÞ (6)

253253

254

255 The transformer consists of a stack of encoder layers,
256 which generate context sequence representations e ¼
257 e1; . . . ; ejxj of the source sequence and a stack of decoder
258 layers.
259 At every time step t, the decoder uses the output from
260 the encoder along with the token representations sl%1

t from
261 l, the previous layer, to compute the probability distribution
262 over the vocabulary of the target language.
263 The representations of the encoder and decoder are
264 combined in the multi-head attention mechanism (Fig. 2).
265 Encoder embeddings are projected to keys (where the key
266 matrix is given by Kh 2 Rjxj& dk) and values (where the
267 key matrix is given by Vh 2 Rjxj& dv) in each head of the
268 multi-head attention mechanism; dk and dv are the dimen-
269 sions of the key and values vectors respectively.
270 For the decoder, the the token representation sl%1

t is pro-
271 jected to a query vector qqqqqqqht 2 Rd

q , and dq is the dimension of
272 the query vector. The output for each attention head can be
273 computed as:

zzzzzzzht ¼
Xjxj

j¼1

aaaaaaah
t;jvvvvvvv

h
j (7)

275275

276 where

aaaaaaah
t ¼ softmax

qqqqqqqhtK
>

ffiffiffiffiffi
dk

p
" #

278278

279

280At every decoding step t, there is a vector of attention
281scores aaaaaaah

t . The attention matrix is the stack of attention
282scores for every time step. This process occurs concurrently
283in multiple attention heads and each head computes zzzzzzzht ,
284which are eventually all concatenated to obtain the attention
285at time t. The results from the attention heads can thus be
286used to calculate final alignments.
287Unlike the standard RNN where sequence of inputs are
288fed one at a time, the transformer takes all the inputs
289together and the order of inputs are preserved using a posi-
290tional encoding parameter.

PEðpos;2iÞ ¼ sinðpos=100002i=dmodelÞ
PEðpos;2iþ1Þ ¼ cosðpos=100002i=dmodelÞ (8)

292292

293where pos is the position of the input in the sequence of
294inputs and i represents embedding dimension. This notion
295of embedding the order of the input sequence via positional
296encoding revolutionized the analysis of time series data
297with neural machines by maintaining the position and order
298of input sequences (essential for the grammar of any lan-
299guage) and by allowing for variable length inputs.
300Other earlier works that extended the standard trans-
301former model include the Generative Pre-Traning (GPT)
302models - GPT-1 [29], GPT-2 [30], and GPT-3 [8]. The models
303initially perform unsupervised training with a transformer
304model using large unlabeled datasets, and then perform
305supervised learning for text-related tasks such as text classi-
306fication, sentence similarity, question answering, next-word
307prediction, and text summarization.
308Specifically, in sign language analysis, [9] modified the
309transformer model for sign language recognition and trans-
310lation using CTC loss. The input features used in this model
311were trained on a CNN-LSTM-HMM architecture [22]

Fig. 2. A basic transformer model for sign to text translation, showing the encoder-decoder components and one of multiple attention modules
expanded.
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312 where gloss labels were incorporated and a hidden
313 Markov model (HMM) was used to align the signs to their
314 glosses. They evaluated their recognition and translation
315 approaches on the PHOENIX14T benchmark dataset. [42]
316 used varying numbers of layers in the transformer to per-
317 form a 2-phase sign-to-gloss and gloss-to-text translation.
318 [23] presented a hierarchical feature learning method for
319 input signs by feeding sign segments at multiple scales to a
320 transformer model, thus reducing any errors caused by
321 inaccurate sign segmentations. When evaluated on the
322 PHOENIX14T benchmark dataset, this model outperformed
323 other existing models where gloss was not used as an inter-
324 mediary step to translation. Motivated by this performance
325 improvements in using multi-scale input features for SLT,
326 as well as the recent successes in multimodal fusion-based
327 learning models ([37] and [5], [36]), [1] introduced a set of
328 fusion-transformers to jointly encode three different scales
329 of the input sign sequences and decode with a standard sin-
330 gle transformer decoder. Again, when evaluated on the
331 standard German benchmark dataset, their fusion model
332 yielded new State of The Art (SoTA) performance. [4] pre-
333 sented a detailed survey of the current state of the research
334 on transformer-based continuous sign language translation
335 architectures, detailing the performances with different
336 input features when tested on various sign languages - Ger-
337 man, Chinese and American.
338 Lastly, [31] presented a continuous sign language genera-
339 tion architecture using transformers and mixture density
340 networks. One main contribution of this work was the intro-
341 duction of a counter decoding method, which allowed for
342 continuous sequence generation and no end of sequence
343 token was required.

344 3 DATASETS

345 We perform this evaluation on two sign language datasets,
346 (i) the RWTH-PHOENIX-Weather2014T benchmark dataset,
347 consisting of 7096 training, 519 validation, and 642 test sam-
348 ples all annotated with the sign glosses, and (ii) the more
349 realistic, daily life based American sign language dataset
350 (ASLing) introduced by [2]. This dataset consists of 1027
351 training and 257 testing samples also annotated with the
352 sign glosses. The video samples were collected at 10 frames
353 per seconds and were annotated by 7 signers. We do not

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377378use the gloss information in any of the analyses described in
379this work. Fig. 3 shows examples from the two datasets.
380In the benchmark dataset, the data was collected in a con-
381strained and controlled environment, where the signers
382were professional weather report interpreters on television.
383All signers were of the same race and dressed in dark cloth-
384ing against a uniform light background. In all the signing
385videos, the camera position was approximately constant, in
386similar lighting conditions, and set to fully display the
387upper body including the hands and faces of the signers.
388The ASLing dataset was collected from DHH college stu-
389dents on the Rochester Institute of Technology campus. The
390signers were given a basic set of instructions on how to col-
391lect data using their cell phone cameras. They were required
392to record the sign interpretations of the textual phrases pro-
393vided in the instructions. No specific instructions were
394given regarding their clothing, the nature of the back-
395ground, or environmental lighting conditions. They were
396only instructed to capture their upper body, including
397hands and face.

3983.1 Analysis
399Fig. 3 visually highlights the differences in the two datasets
400we consider in this evaluation. The ASLing dataset was
401intentionally collected in less controlled settings to more
402closely resemble real-life situations, where signing and
403hearing individuals interact in a myriad of unconstrained
404environments. For example, the rightmost ASL image in the
405bottom row of Fig. 3 shows a signer whose shadow is
406actively moving in the background as she records her video;
407there is also a lighting source in the image, creating uneven
408lighting conditions on the recorded video. Lastly, the sub-
409ject appears closer to the camera than expected.
410We first translated the ground-truth texts in RWTH-
411PHOENIX-Weather2014T to English, then obtained the
412word2vec embeddings for the two datasets and projected

Fig. 3. Datasets: the top row shows examples of frames from the RWTH-
PHOENIX-Weather2014TGSL video dataset and the bottom row shows
examples from the ASLing ASL video dataset.

Fig. 4. Two-dimensional PCA projections of the Word2Vec embeddings
of the English translations of RWTH-PHOENIX-Weather2014T dataset
texts (in blue) plotted alongside the projections of the embeddings of the
ASLing dataset texts (in red). (Image best viewed in color).

CHAUDHARY ETAL.: SIGNNET II: A TRANSFORMER-BASED TWO-WAYSIGN LANGUAGE TRANSLATION MODEL 5
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413 them into a 2D space using PCA. The results are shown in
414 Fig. 4.
415 While the RWTH-PHOENIX-Weather2014T dataset (shown
416 in blue), which focuses on weather-related topics, spans only a
417 narrow region in the word embedding space, the ASLing data-
418 set, which covers amyriad of topics, spans a significantlywider
419 range in the embedding space. The sentence repetition and
420 word repetition are shown in Fig. 5
421 Both datasets were created to serve different purposes.
422 While the RWTH-PHOENIX-Weather2014T serves as a
423 focused, well-controlled benchmark dataset to qualify and
424 rate newly developed SLT algorithms, ASLing is a more

425naturalistic dataset, serving as a test-bed for implementa-
426tions planned for deployment in real-life settings.

4274 CROSS-FEATURE FUSION BASED TRANSFORMER

428MODEL

429In this section, using a bank of nine cross-modal transform-
430ers as shown in Fig. 6, we develop a multimodal encoder
431system that embeds the interactions between three separate
432input features.
433Three different features are served as inputs to the cross-
434attention block after adding the positional encoding infor-
435mation. These inputs are passed through a 1D convolutional
436network before passing to the next stage.

4374.1 Methodology
438We consider three commonly used visual representations
439from the input sign videos. The first representation is a
4402048-dimensional visual embedding obtained from a CNN
441ResNet50 [17] architecture pre-trained on ImageNet [14].
442Next, using OpenPose [10], we extract two-dimensional
443ðx; yÞ key points from the input videos - 25 body keypoints,
44421 hand keypoints for each hand, and 70 face keypoints
445resulting in a total of 137 points. Lastly, we compute the
446dense optical flow [33], [35] from pairs of consecutive
447frames in the input videos. Similar to the RGB frames, we
448extract a 2048 dimension vector for each optical flow frame.
449We perform this experiment in an attempt to discover the most
450effective single visual feature useful for sign language understand-
451ing. We accomplish this by visualizing our cross-modal trans-
452former attention weights.
453If we consider one (of the three) cross-attention blocks in
454Fig. 6, Equation (9) describes how the attention for the two
455cross-feature transformer models attending on the CNN

Fig. 5. Top: Word repetition frequency for unique utterances. Bottom:
Sentence repetition frequency. Y -axis represents the log10 scale.

Fig. 6. Cross-modal bank of transformer encoders with single standard decoder. (Image best viewed in color).

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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456 features as the base feature is calculated:

Cross attention1 ¼ softmax

"
QCNNKT

OPffiffiffiffiffi
dk

p
#
VOP

Cross attention2 ¼ softmax

"
QCNNKT

OFffiffiffiffiffi
dk

p
#
VOF (9)

458458

459 where QCNN (CNN feature modality), KOP (OpenPose fea-
460 ture modality), and VOP (OpenPose feature modality) act as
461 the query, key, and value inputs, respectively, for the first
462 cross-feature transformer and QCNN (CNN feature modal-
463 ity), KOF (optical flow modality), and VOF (optical flow
464 modality) act, respectively, for the second.
465 The cross-attentions for the other blocks 2 and 3 are simi-
466 larly calculated with their respective base features. Then,
467 the outputs from each cross-feature transformer block are
468 fed into its own self-attention block as shown in Fig. 6.
469 Finally, the outputs of all the self-attention blocks are fused
470 and passed to a linear layer to learn their projections.
471 The decoder, in the standard fashion, takes the word
472 embeddings as input and performs masked-multi head
473 attention by masking the future words. The encoder embed-
474 ding (from the linear layer) is fed to the multi-head attention
475 block in the decoder, where it learns the encoder-decoder
476 attention and predicts the words after passing through a
477 feed-forward network, linear, and softmax layers.

478 4.2 Experiments
479 The Cross-Feature Fusion based transformer model is
480 trained on 1027 ASLing (ASL) samples and tested on 257
481 held out samples. Adam optimization is used with a learn-
482 ing rate of 1e%03 and a weight decay rate of 1e%03. The maxi-
483 mum length of frames in each batch is chosen as the input
484 sequence length for the encoder, and the decoder is fixed at
485 a maximum caption length of 30, based on the average
486 length of the captions. Cross-Feature Fusion based trans-
487 former models were trained for 70 - 150 epochs. Other opti-
488 mal model settings used are encoder-decoder embedding
489 size of 512, along with 3 encoder and decoder layers, and 8
490 multi-head attention blocks.
491 We test our cross feature model on the low-resource
492 ASLing (ASL) dataset. Further, we train our Cross-Feature
493 Fusion based transformer model using all three feature
494 inputs. We perform similar experiments on the German
495 Sign Language (GSL) dataset. To measure the performance
496 of the Cross-Feature Fusion model using Bilingual

497Evaluation Understudy (BLEU) [27]. DUe to the constarints
498on the number of samples for ASLing dataset, we use the
499model that was already trained on GSL and fine tuned the
500ASLing data.

5014.3 Attention Visualization
502To evaluate the contribution of each of the input features,
503we selected the test sample that gave the best Bilingual
504Evaluation Understudy (BLEU) scores for the RWTH-
505PHOENIX-Weather2014T (GSL) and the ASLing (ASL)
506datasets. The attention map is shown in Fig. 7. The attention
507weights from the last layer of each of the three cross-modal
508encoders are read off, and the attention heatmaps are
509plotted.
510The frames of the video under consideration are shown
511at the bottom of the heatmaps. The three different heatmaps
512corresponding to the three feature bases are shown where:
513(1) is ResNet50 based fused features, (2) is an optical flow-
514based fused feature, and (3) is OpenPose based fused
515features.
516Observation. The quality of the input frames significantly
517affects the features selected for processing. Because
518ResNet50 works directly on the RGB images, when the qual-
519ity of the input frames is poor, as in many ASLing frames,
520RESNet50 performs the worst. Irrespective of the quality of
521the input frames, OpenPose-fused features consistently per-
522form well across both datasets. For the controlled and con-
523strained GSL dataset, ResNet50 CNN features perform well.
524This is consistent with several of the works reporting state-
525of-the-art results on the benchmark datasets, such as [23],
526currently the best performing model on the benchmark
527RWTH-PHOENIX-Weather2014T dataset.
528In summary, going forward, we will use only keypoint-based
529features for dual learning sign language analysis, as these have
530been shown to be most versatile and reliable for varying levels of
531input video quality. We investigate pose-to-text and text-to-pose,
532where pose is the sign language representation

5335 SIGNNET II MODEL: DUAL LEARNING TWO

534TRANSFORMER-BASED NETWORKS

535We present a two-way SLT model, SignNet II, learned using
536a dual learning paradigm [16], [41]. Dual learning for NMT
537involves the two parallel models, a primal model and a
538dual model, and is useful for co-learning the parameters of
539the two models in turn. Although dual learning has been

Fig. 7. Attention visualization (best viewed in color). (a) best test sample from the GSL dataset, (b), (c) best test samples from the ASL dataset. (1)
ResNet50 based fused features, (2) optical flow based fused features, (3) OpenPose based fused features. BLEU-1 - BLEU-4 scores were close to
100% for the test samples chosen here.
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540 useful for learning from unlabeled data, we use it to regular-
541 ize the learning from our annotated data in a supervised
542 fashion. Our two base models are (1) a sign/pose-to-text
543 model and (2) a text-to-sign/pose model, and dual learning
544 is used to refine them. SignNet II architecture, shown in
545 Fig. 8, depicts the co-learning paradigm.
546 We briefly describe the two baseline models, especially
547 focusing on their loss structures, and then present the dual
548 learning formulation.

549 5.1 SignNet II: Pose-to-Text (P2T)
550 The top network in Fig. 8 performs the pose-to-text transla-
551 tion. We obtain the input 3D pose features by lifting the
552 original 2D OpenPose joint keypoints [11] using an algo-
553 rithm introduced by [44]. We use the key points from hand,
554 finger, and upper body joints, resulting in fifty 3D joint loca-
555 tions, to give a vector of size 150 for each frame.
556 The input representation can be denoted as POSE ¼
557 f½ðx01 ; y01 ; z01Þ; . . .; ðx1491 ; y1491 ; z1491Þ); . . .; ½ðx0N ; y0N ; z0N Þ;
558 . . .; ðx149N ; y149N ; z149N Þ)g,where ðxij ; yij ; zijÞ represents the ith
559 3D joint in frame j and N is the number of frames in the
560 input sequences.
561 To retain the input ordering information, we follow a
562 similar pattern [37] and implement positional encoding for
563 our input joints representation. We learn temporal depen-
564 dencies across the entire sequence by correlating (or attend-
565 ing-to) all the frames with respect to a single frame,
566 continuously, for all frames. This way, we learn the context
567 alignment between the source and target.

568To this end, we perform context learning between
569frames by initially computing the dot product of one
570frame (Q) with all other frames (K) of the video under
571consideration. To avoid exploding values after taking the
572dot product, we scale by

ffiffiffi
d

p
[[37]]. Finally, to retain the

573context information relevant to each frame, softmax acti-
574vation (softmaxðQKTffiffi

d
p ÞV ) is applied on the frames (V).

575The resulting embeddings are then passed through a lin-
576ear layer for enhanced features.
577We follow a similar pattern on the decoder side, ini-
578tially obtaining word embeddings for each word, adding
579positional information, and then learning the context
580between the words. Additionally, we learn the mapping
581between the frames and the words by taking the context
582information from the encoder and performing a scaled
583dot product with word-based attention. These embed-
584dings are then passed onto a linear layer and softmax to
585predict continuous text.

5865.1.1 Translation Loss (LP2T )

587The primary task of the P2T branch of the 2-way interpreta-
588tion model is to generate a written/spoken language sen-
589tence S ¼ ðw1; . . . ; wUÞ given a sign video V , as defined
590previously. The translation process discussed here aims to
591learn pðSjV Þ. Going from pose to sentences, in the decoding
592phase, we have:

pðSjV Þ ¼
YU

i¼1

pðwijwi%1Þ ¼
YU

i¼1

Zi;si (10)

594594

Fig. 8. SignNet II: Two-way Sign Language Translation trained the dual learning paradigm. The top network is the pose-to-text branch, and the bottom
network is the text-to-pose branch. The direction of the arrows indicates the forward propagation and the predictions made. The backward propaga-
tion of losses will simply be in the reversal direction. Details on how the dual co-learning is accomplished are given in Section 5.3 (Best viewed in
color).
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595 where U is the length of the sentence and Z ¼ ðZj;kÞ ¼
596 ½z1; . . . ; zU )> is the probability distribution of the sentence
597 when translated. Zj;k is the probability of word wj having a
598 word label k, given wj%1.

LP2T ¼ 1% pðST jV Þ (11)
600600

601 where ST is the ground truth sentence corresponding to
602 video V , comprised of the aggregation of the ground truth
603 probability of words during the decoding phase.

604 5.2 SignNet II: Text-to-Pose (T2P)
605 The bottom part of Fig. 8 performs the text-to-pose transla-
606 tion. The workings of this block are similar to the P2T net-
607 work explained above. Here, input 3D pose points are fed
608 to the network. The encoder learns the context between dif-
609 ferent words of the input phrase, and the decoder learns the
610 context between frames individually and between frames
611 and words. The output of this network is the sequence of
612 predicted poses.

613 5.2.1 Metric Embedded Learning for Pose Similarity

614 We are interested in ensuring that the predicted pose-based
615 signs in the T2P arm of the 2-way SLT architecture predict
616 continuous poses that are as similar as possible to the
617 ground-truth signs and as distant as possible to other signs
618 in the same batch.
619 To accomplish this, we have:

kfðBÞ % fðT Þk2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dðB;T Þ

% kfðBÞ % fðSÞk2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dðB;SÞ

* 0
(12)

621621

622 where B is a baseline sign, T is a true sign required to be as
623 similar to B as possible, S is a false sign (not as similar to
624 the baseline), and d(.) is the distance function.
625 To avoid the trivial solution where our function fð:Þ will
626 produce zero or one where fðBÞ ¼ fðT Þ, we introduce a
627 margin similar to [32] to impose a stronger constraint. The
628 resulting distance function dðB; T; SÞ is given in Equa-
629 tion (13):

dðB; T; SÞ ¼ maxð ðdðB; T Þ % dðB;SÞ þ aÞ; 0 Þ (13)
631631

632 We refer to the loss derived based on this distance as the
633 pose similarity metric-based loss function, given in Equa-
634 tion (14), which is useful for enhancing the performance of
635 the T2P branch of the 2-way SLT training mechanism.
636 Choosing the similarity metric samples: While any ran-
637 dom choice can readily satisfy dðB; T Þ þ a * dðB;SÞ, the
638 underlying neural network will simply not learn if it gets it
639 right too many times. If the choice of samples is made such
640 that dðB; T Þ + dðB;SÞ, the network is forced to work hard to
641 learn the differences. This seemingly simple choice signifi-
642 cantly increases the efficiency of the learning algorithm. We,
643 therefore, select our samples in the following manner:
644 Consider a batch kBk ¼ 4, where we are interested in cal-
645 culating the similarity loss for the first sample i ¼ 1. The
646 baseline here is the ground-truth sign which we will refer to
647 as BðiÞ. The truth T ðiÞ is the network prediction for sample i.
648 Lastly, the false value SðiÞ is the ground-truth for any other
649 sample j 6¼ i 2 fBg, where j is randomly selected.

6505.2.2 Sign Similarity Metric-Based Loss (LT2P )

651LT2P1 is calculated in the lower branch of the 2-way mecha-
652nism shown in Fig. 8. This loss was introduced to reduce
653the risk of the network confusing similar signs. While train-
654ing for efficient pose generation we use Dynamic Time
655Warping (DTW) [7] as our evaluation metric and optimize
656the network for the lowest DTW score.
657The sign similarity based loss over all samples can be
658given as:

LT2P1 ¼
XM

i

dðBðiÞ; T ðiÞ; SðiÞÞ (14)

660660

661Justification: There is only a finite number of valid poses that
662make up a valid sign, meaning there is often significant
663overlap between signs in the same batch. Without the strong
664constraint to separate truth and false examples, the network
665tends to readily confuse signs when predicting them from
666input text.

6675.2.3 L2 Regression Loss (LT2P2)

668The objective here is to learn the probability pðV jSÞ of pro-
669ducing a sequence of sign-poses V ¼ ðs1; . . . ; sT Þ over T
670time steps, given a spoken/written language sentence S ¼
671ðw1; . . . ; wUÞ having U words. Similar to the translation loss
672LP2T described previously, this L2 regression loss is also
673computed from the output of the decoder, although this
674occurs in the T2P branch of the model. Given the text sen-
675tence S as the inputs, the completed decoder output
676sequence of pose-signs can be expressed as ŝ1:T ¼ ŝ1; . . . ; ŝT .
677The Mean Squared Error (MSE) loss between the predicted
678sequence, ŝ1:T , and the ground truth,sT1:T is given as:

LP2T ¼ LLMSE ¼ 1

T

Xt

i¼1

ðsT1:T % ŝ1:T Þ2 (15)

680680

681

6825.3 Dual Learning
683We use a dual learning mechanism motivated by [16] to
684jointly refine the model parameters for both the networks in
685SigNet II. We perform supervised dual learning because we
686have annotated data for both the P2T and T2P branches.
687The goal is to better utilize our two sets of annotated train-
688ing data by enhancing probabilistic correlations within the
689two models.
690Let us define a sign phrase as x and its textual translation
691as y. For a bilingual sign-text sentence pair ðx; yÞ, ideally
692pðx; yÞ ¼ pðxÞpðxjyÞ ¼ pðyÞpðyjxÞ. If the two models are only
693trained apart, it becomes challenging to satisfy pðxÞpðxjyÞ ¼
694pðyÞpðyjxÞ; hence a joint training of the two models can be
695performed as:

LDL ¼ ðlog p̂ðxÞ þ log p̂ðyjx; ux!yÞ
% log p̂ðyÞ % log p̂ðxjy; uy!xÞ (16)

697697

698where we p̂ðxÞ and p̂ðyÞ can be viewed as empirical statistics
699of the data. During our implementation, we approximate
700these statistics as the data induced scores rA and rB defined
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701 below. Details of the dual learning implementation of are
702 given in Algorithm 1.
703 Before the first iteration starts, the two baseline transla-
704 tion models, P2T and T2P, are pretrained by back-propagat-
705 ing the losses described previously. In the first iteration, the
706 P2T network acts as a forward translation step and T2P as
707 the backward translation step whose inputs are text predic-
708 tions from P2T. The losses back-propagated in backward
709 network are also weighted by the effects of the forward
710 translation performance.
711 In the next iteration, the models are reversed so that T2P
712 becomes the forward translation while P2T becomes the
713 backward one. Similarly, the forward pose predictions now
714 act as inputs to the backward P2T network, and weighted
715 losses are back-propagated. This completes one full loop of
716 the dual learning mechanism. The process is repeated until
717 both sets of losses converge.

718 Algorithm 1. SigNet II Dual Learning

719 Data: 3D OpenPose points P , Pose translations T , initial
720 two translation model TA for Pose-to-Text & TB for
721 Text-to-Pose, hyperparameter a
722 1: repeat
723 2: Create samples S with poses sA from P and sB from T
724 3: for each sample SA 2 S do
725 4: SetMA ¼ TA,MB ¼ TB

726 5: Set fw loss ¼ LP2T ¼ 1% pðST jV Þ
727 6: Set bk loss ¼ LT2P ¼

PM
i dðBðiÞ; T ðiÞ; SðiÞÞ

728 7: Predict N phrases from Pose-to-Text translation model
729 MA Set the Pose-to-text reward:

730 8: rA ¼ ðfw loss% 1
N

P
ðfw lossÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N%1

PN

i¼1
ðfw lossi% !fw lossÞ2

q

731 9: for Each n in N do
732 10: Predict n poses using Text-to-Pose translation model
733 MB

734 11: Set the Text-to-Pose reward:

735 12: rB ¼ ðbw loss% 1
N

P
ðbw lossÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N%1

PN

i¼1
ðbw lossi% !bw lossÞ2

q

736 13: Compute the final reward, rn ¼ a , rA þ rB , ð1% aÞ
737 14: end
738 15: Compute the stochastic gradient forMA:
739 16: uA ¼ 1

N

P
ðfw loos , rP2T Þ

740 17: Compute the stochastic gradient for
741 MB: uB ¼ 1

N

P
ðbw loos , ð1% aÞÞ

742 18: Update modelsMA &MB

743 19: SetMA ¼ TB,MB ¼ TA

744 20: end

745 We sampled the training data from both the sets of
746 inputs P and T . We denote Pose-to-Text model as model TA

747 and Text-to-Pose model as TB. We assume that we have two
748 well-trained TA and TB, meaning each gives a different pre-
749 dicted output which is the input of the other. For the first
750 pass, we consider TA to be model ’A’, MA or as the anchor
751 model, for each of the pose samples model MA predicts the
752 corresponding phrases. We compute the loss considering
753 this operation to be the forward translation step using Sec-
754 tion 5.1.1. For the backward translation, we compute the
755 loss using the outputs from model TB and leverage the total
756 loss Section 5.2.2 function.

rA ¼
ðfw losses% 1

N

P
ðfw lossesÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N%1

PN
i¼1ðfw lossesi % !fw lossesÞ2

q (17)

rB ¼
ðbw losses% 1

N

P
ðbw lossesÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N%1

PN
i¼1ðbw lossesi % !bw lossesÞ2

q (18)

758758

759

760The predicted text are considered to be the initial transla-
761tion output for which we compute the reward variable rA
762shown in Equation (17) (line 8 of 20). We predict the final
763output of the first pass and calculate it’s immediate reward
764function rB using the formulation shown in Equation (18)
765(line 12 of 20). We mathematically compute both the
766rewards by achieving the forward and the backward losses
767obtained from the first pass. We calculate the final reward
768value which is linear summation of both the forward rA and
769backward rB rewards, rn ¼ a , rP2T þ rP2T , ð1% aÞ. We
770then compute the gradients of the rewards with reference to
771both the models in the network. The model parameters are
772updated based on the computed gradients, and the second
773pass reverses the roles of the models.

7746 EXPERIMENTS AND RESULTS

7756.1 Metrics
776We evaluate our SigNet II model using Bilingual Evaluation
777Understudy [27]. This metric is especially used to evaluate
778automatic machine translation mechanisms. BLEU-4 evalu-
779ates the performance of 4-gram words i.e., four consecutive
780words, while BLEU-1 evaluates the individual word-based
781performance i.e., 1-gram. We tested our dual learned P2T
782and T2P models on the benchmark German Sign Language
783(GSL) dataset Section 3 and used BLEU as the evaluation
784metric to gauge their final performance.

7856.2 Training Schedule
786The SignNet II model was trained on the benchmark Ger-
787man Sign Language dataset. For training, we selected an ini-
788tial learning rate of 1e-7 with a weight decay rate of 1e-3.
789The encoder embedding dimension of 512 was used with 2
790layers of encoder and decoder each and 4 multi-head atten-
791tion for pose-to-text and 2 multi-head attention blocks for
792text-to-pose. A grid search was done for both the branches
793(pose-to-text & text-to-pose) to select the optimal hyper-
794parameter values. The SignNet II pose-to-text model has
795approximately 2.67 million parameters and text-to-pose
796model has 17.04 million parameters. The model were devel-
797oped using Pytorch framework. We utilized Nvidia RTX
7983090 Ti processor with 24 GB memory for training.

7996.3 Discussion
800Both the P2T and T2P models were trained individually,
801while the SigNet II jointly trained both the models. We used
802only the GSL dataset to train and test our model because
803unlike ASLing, GSL has a significantly larger number of
804samples. We evaluated the P2T arm by passing the test set
805through the top branch of the SigNet II model shown in
806Fig. 8. Table 3 shows the pose-to-text translation results after
807applying the dual learning algorithm. We compared our
808results with [1], [13], [23] as these make use of single feature
809inputs to evaluate their models. We refer to single feature
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810 input as using only one feature, in this case, keypoint-based
811 pose feature. On the other hand, Section 4 describes the use
812 of multi-features (CNN, OpenPose, optical flow features) to
813 perform the same task of pose-to-text. We achieved a score
814 of 39.17 for BLEU-1 and 12.34 for BLEU-4, which is a signifi-
815 cant increase in performance when compared to other
816 models.
817 For text-to-pose translation using the dual learning algo-
818 rithm, we show the results in Table 4. Saunders et al. [31]
819 trained their text-to-pose model using Mean Squared Error
820 (MSE) loss to compare the ground truth sequences with
821 the predicted poses. But SignNet II used a metric-based
822 embedding loss in addition to the MSE loss and improved
823 the BLEU score performance.
824 Out of the total 8000+ data samples available, we could
825 only use about 10% of the samples to train our model. This
826 was due to the fact that while training the dual learning
827 algorithm, we simultaneously worked with two heavily
828 parameterized models, which turned out to be computa-
829 tionally expensive. This 10% was randomly selected and
830 was repeated multiple times with different batches. How-
831 ever, based on the result trends we observed, we believe
832 that given a sufficient amount of resources we will con-
833 tinue along this performance trajectory.
834 The evaluation in this paper does not provide evidence
835 that these results are immediately useful to sign language

836users. Furthermore, according to [3] in their experiment
837”Human as an oracle”, they compared how well a human
838expert signer could translate a sign language video versus
839translating the corresponding animation, created using
840OpenPose skeletons. Their results on 340 ASL videos
841showed very poor translation, with a BLEU-4 score of
842nearly zero. This suggests that although sign dynamics are

TABLE 3
Translation Performance on Predicted Text Using Dual Learning

Experiment
type

Test

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Conv2d-
RNN [13]

27.10 15.61 10.82 8.35

Conv2d-
RNN [13] +
Luong
Attention
[25]

29.86 17.52 11.96 9.00

Conv2d-
RNN [13] +
Bahdanau
Attention
[12]

32.24 19.03 12.83 9.58

Feature
scaling
(OP8) [1]

21.83 13.85 10.34 8.28

TSPNet-
Single 8
[23]

30.29 17.75 12.35 9.41

TSPNet-
Single 12
[23]

29.02 17.03 12.08 9.39

TSPNet-
Single 16
[23]

32.52 20.33 14.75 11.61

Baseline
P2T (ours)

38.87 23.67 16.11 11.67

SigNet II:
Dual
Learning
P2T for T2P
(ours)

39.17 24.57 16.94 12.34

P2T - Pose-to-Text.

TABLE 1
Statistics on theQ2 Benchmark GSL and Our Collected ASL

Datasets

GSL (benchmark) ASLing (ours)

# training samples 7096 1017
# testing samples 693 254
# signers 9 7
Average # signs per signer 859 183
Same user in train and test Yes Yes

TABLE 2
Cross-Feature Fusion Based Transformer Model on Both ASL

and GSL Datasets

Experiment
type

Test

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Cross-
Feature
Fusion
based
transformer
model
(ASLing
(ASL))

22.39 15.96 13.56 12.25

Cross-
Feature
Fusion
based
transformer
model
(GSL)

27.33 18.18 13.26 10.46

TABLE 4
Translation Performance on Predicted Poses Using Dual

Learning

Experiment type Test

BLEU-1 BLEU-2 BLEU-3 BLEU-4

PT G2P (MSE only) [31] 31.8 19.19 13.51 10.43
PT T2P (MSE only) [31] 31.36 19.04 13.54 10.51
SignNet T2P (ours w/o
metric-based loss)

36.19 20.77 13.27 8.8

Singly trained T2P
(ours - MSE + metric
loss)

36.79 21.79 14.77 10.66

dual learning T2P (ours
- MSE + metric loss)

38.26 22.48 14.80 10.21

T2P - Text-to-Pose.
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843 successfully captured with pose data, additional embodi-
844 ment of a signing agent will be needed for improved sign
845 language understanding.

846 7 CONCLUSION

847 In this article, we introduced a novel transformer based dual
848 learning algorithm, SignNet II, a promising step towards
849 facilitating 2-way sign language interpretation.We presented
850 a multi-feature cross-attention transformer-based architec-
851 ture, and its output attention maps indicated that keypoint-
852 based pose features were the most versatile and reliable for
853 analyzing different input videos of varying quality. Hence,
854 this became our single feature of choice for dual learning.
855 Our results showed that using dual learning for complex
856 tasks such as sign language translations can be useful in
857 boosting the performances of the models. When compared
858 to the SoTA models, SignNet II showed improvements in
859 the BLEU scores for 2-way sign language translations. We
860 have taken a step towards constructing a model that jointly
861 trains complex translation models, but given adequate
862 resources, SignNet II has the potential to continue to
863 improve model performance.
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