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Abstract—While several methods for predicting uncertainty
on deep networks have been recently proposed, they do not
always readily translate to large and complex datasets without
significant overhead. In this paper we utilize a special instance
of the Mixture Density Networks (MDNs) to produce an elegant
and compact approach to quantify uncertainty in regression
problems. When applied to standard regression benchmark
datasets, we show an improvement in predictive log-likelihood
and root-mean-square-error when compared to existing state-
of-the-art methods. We demonstrate the efficacy and practical
usefulness of the method for (i) predicting future stock prices
from stochastic, highly volatile time-series data; (ii) anomaly
detection in real-life highly complex video segments; and (iii)
the task of age estimation and data cleansing on the challenging
IMDb-Wiki dataset of half a million face images.

I. INTRODUCTION

In a standard regression problem, the goal is to learn an
optimal mapping (under some loss function) from a feature
space X to some target space Y; ie. we wish to learn
the function f : X — Y such that the loss function L is
minimized. In standard regression problems a point estimate
is typically predicted but there is no information about the
quality or confidence of that prediction. The main focus
of this work therefore, is to construct a regressor which
efficiently regresses onto a Gaussian distribution (param-
eterized by its mean and variance) on the target space.
The parameters of the target distribution can therefore shed
some insight into the quality of the prediction results. The
choice of a single Gaussian as the target distribution is in
standing with traditional statistics methods where when the
measurement errors occurring in regression problems are
assumed to follow a normal distribution.

Although transformative and highly successful and useful
in a wide range of applications of machine learning and Al,
many deep learning techniques only provide point estimates
and seldom provide a means to understand the inherent un-
certainty in the data. They are therefore frequently incapable
of expressing their own limitations. Although in classification
one can determine how far training samples are from decision
boundaries, this information is significantly different from
understanding the inherent limitations of the learning system.
Such limitations can potentially have disastrous impacts in
many important real-life scenarios.

For many areas of scientific study, especially in areas of
critical importance such as in medical image analysis for
patient diagnosis, this lack of uncertainty quantification is
highly problematic. The inability to understand and quantify
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Fig. 1. The three numbers below each image a/b/c correspond to: (a) the
target or actual age (as provided in the dataset), (b) the estimated age (as
predicted by our regression network) and (c) the uncertainty value reported
by the network (the higher the value, the more uncertain the prediction). The
top row shows sample faces on which the network reported the lowest error
values. The middle row shows faces on which were reported the highest
errors (empirically note the clearly wrong target labels); and the last row
shows faces on which the network reported the highest uncertainty.

the model’s confidence in its predicted values is a high source
of potential risk and liability [1]. For example, when faced
with a difficult diagnosis, the ability for a deep learning
system to report large uncertainties would allow for human
operators to intervene and review those specific cases. If
deep learning is to be widely used for critical applications
in practical settings, a key requirement would be the ability
to provide statistically meaningful uncertainty measurements
alongside their predictions.

Figure 1 shows not only the promising prediction results
of the regressor, but goes beyond the currently existing
limitation when a standard regressor is applied to a noisy,
real-world dataset, by providing measures of uncertainty
on the prediction. The architecture only performed poorly
when the ground truth was wrong (see the middle row
of Figure 1). These results demonstrate that our model is



capable of capturing epistemic uncertainty. Additionally, this
architecture’s uncertainty not only expressed how confident
the model was, but also how “clean” the data sample was.

In his 1994 Ph.D. thesis, Bishop [2] introduced Mixture
Density Networks (MDNs); where a neural network was used
to predict a probability distribution over the target value Y,
rather than a single point estimate. The MDNs trained with
a fixed number of mixtures of Gaussian components over
the course of the training scheme using the negative log
likelihood (NLL) as the loss function to the network. This
training scheme had the potential to address many of the
issues highlighted above, but probably due to limitations in
computing power in the 1990’s, MDNs did not gain as wide
popularity.

In this paper we present an elegant and simplified approach
to quantify uncertainty in large-scale regression problems.
We propose a compact training scheme that does not require
any significant additional overhead when compared with tra-
ditional training methods. Using the uncertainties produced
by the system, we address a series of real-world problems
such as explaining the behavior of specific stocks in the
market, prediction age from pictures of faces and detecting
anomalies in complex video segments. We also illustrate
how this can be utilized for cleaning datasets and removing
erroneous data autonomously.

II. PRIOR WORK

As uncertainty estimation for deep learning predictions is
immensely useful, much prior research has been conducted
in this area. Most deep neural networks based uncertainty
estimation methods can be grouped into two categories; (i)
the Bayesian neural network category, where a prior distri-
bution is imposed on the network weights and data is used
to update its posterior distribution. In these types of systems,
inference is done via Markov Chain Monte Carlo (MCMC)
based methods [3], [4] or variational methods [5]; (ii) the
other more general and broader statistical category involves
obtaining frequentist estimates of uncertainty, minimizing
KL divergences of distributions of in-domain and out-of-
domain samples, and using adversarial samples to build
uncertainty estimates.

We summarize the recent deep neural networks methods
of uncertainty estimation below:

a) Dropout as a Bayesian Approximation - MC
Dropout:  [6] This work formulates dropout, the regular-
ization technique in deep learning, as approximate Bayesian
inference. The paper demonstrates how training a neural
network with dropout is equivalent to doing approximate
variational inference in a probabilistic deep Gaussian pro-
cess. Hence, when dealing with the predictive distribution,
a prior distribution can be imposed over the weights so that
performing several forward passes through the network and
averaging them will be the same as doing Monte Carlo
integration to find the expected output value of the model
under the predictive distribution. Successful implementation
requires ensembling on the network leading to additional
computational expense, unlike our proposed framework..

b) Bayesian Deep Learning for Computer Vision:
[7] This work, a follow-up to [6], discusses two kinds of

uncertainties, epistemic and aleatoric. The authors demon-
strate how both uncertainty estimates can be obtained from
the same model, where MC Dropout is used for epistemic
uncertainty; the model itself predicts a variance term used to
handle aleatoric uncertainty of each input. They apply their
model to real-world image semantic segmentation problems.
Although successful, this model is designed strictly for CNN
based problems, whereas the framework we propose here
generalizes to any feature extraction network as shown in
this work.

c) Weight Uncertainty in Neural Networks - BayesBack-
prop: [8] This work learns a distribution over neural network
weights and applies the reparameterization trick to get a
variational approximation to the distribution over weights as
opposed to distribution over hidden units as done in VAE
papers. They used a scaled Gaussian mixture as the prior
and a diagonal Gaussian posterior distribution.

Other Bayesian Regression neural networks include [9]and
[10] utilizing a similar methodology to produce uncertainty.
As before, this requires storing and optimizing a distribution
for each parameter, and thus is computationally expensive.
Additionally, to determine a hypotheses and uncertainty,
one must sample the network utilizing techniques such as
variational inference [5] or MCMC [4].

We are performing ordinary regression on the distribution
parameters, where each of our weights and biases take on
a single value. Thus, we do not need to sample from our
network. This enables us to use our method on large scale
datasets of varying structures.

d) Separate Regressor: [11] One popular method
for quantifying uncertainty is to regress directly on the
uncertainty. Typically, two regressors are utilized: a value
regressor and an uncertainty regressor. These work separately
to predict their respective values. This method requires
the uncertainty regressor to learn the specifications of the
value regressor. Additionally, the training schedule must be
carefully designed to ensure that both regressors learn in
tandem. Furthermore, it is much easier (due to the complexity
of simultaneously optimizing two systems) for this system to
get stuck in a local optimum.

In our proposed approach we utilize a single network,
thereby allowing for various components of the value regres-
sor to interact with components of the uncertainty regressor
(and vice versa). This reduces the computational overhead
introduced by having two separate regressors. Furthermore,
as we are only training a single network, our training
schedule is significantly less complex.

e) Deep Ensemble Methods: [12] A departure from
the usual Bayesian modeling, there has been research into
using deep ensembles (an ensemble of deep learners) to
create multiple hypotheses and uncertainty can be inferred
from these hypotheses. While extremely promising, utilizing
this method requires one to train multiple deep learners
and evaluate multiple deep networks to generate uncertainty
resulting in a fairly computationally expensive process. We
avoid these issues by utilizing a single regressor. Since we
are only utilizing a single regressor, we only need to train,
evaluate, and store one regressor.



III. METHODOLOGY

A. Framing the Problem

Suppose we have samples {(z;, yl)}f\;l ~ D(X,Y) where
D(X,Y) is a joint probability distribution of X and Y. For
this paper, we assume that

D(va)X:mo :N(,U/mgazro)~ (1)

That is to say that each cross section of the joint probability
distribution function (PDF) degenerates into a normal distri-
bution. Furthermore, we assume that each output dimension
is conditionally independent of each other; thus, for all x,
Yz, 18 a diagonal matrix.

We wish to learn a mapping from X to means and standard
deviations, and by utilizing this mapping, we can determine
the uncertainty (both epistemic and aleatory) of our model.
We demonstrate the capability of capturing both of these
uncertainties in the experiments section. As our target distri-
butions are Gaussian, by estimating the distribution on each
target variable, we can generate the confidence intervals on
that target variable. Achieving such a mapping results in
uncertainty quantification as described above.

B. Approach

To learn the mapping described in Section III-A, we train
a regressor to output the parameters of our target distribution
with the following log-likelihood loss:

L=— /S / log(px (Y))p(X, Y)dS @

where p(X,Y) is the true joint distribution on X,Y and p,
is a Gaussian induced with parameters from the regressor.
A scheme which is optimal under this loss will also have a
minimal mean squared error on the target data points.

This loss under finite data degenerates into NLL loss:

N
L= log(ps ) f(2.9) = =Y log(pa, (4:)
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where f(xz,y) is the frequency with which (z,y) occurs in
the dataset. As our target distribution is a Gaussian,
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reaches its minimum. This loss is preferable over a multitude
of other losses (such as KL. Divergence) as it does not require
defining an auxiliary ground truth probability distribution.
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Regressor network

y § y \ y ¥ y § y \ y y y ¥

Feature extraction
network

Input data

Fig. 2. General architecture for the regressor.

C. Network Architecture

We model this regressor as a multi-component neural
network, which must output two values (assuming we are
regressing on a single target variable): the mean and standard
deviation (which can also be interpreted as an uncertainty).
Figure 2 shows an overview of the generalized architec-
ture with the various components. When applied on high-
dimensional numerical input data, the feature extractor can
be implemented as a deep neural network which embeds
the data into a lower dimensional space; when applied on
time series data, the feature extractor can be implemented
as some variant of a recursive neural network (RNN); and
when applied on complex natural images, a convolutional
neural network (CNN) can used for feature extraction.

We typically utilize two fully connected layers as the
regressor layer, where the number of nodes is determined by
the complexity of the output of the feature extraction layer.
The regressor network produces the mean and the standard
deviation, and the function Softplus (f(z) = In(1+e?)) is
applied to the standard deviation to ensure a valid probability
distribution is generated. We demonstrate the efficacy of the
architecture on different data types in Section IV

IV. EXPERIMENTS AND RESULTS

To evaluate the proposed method, we utilized it in a variety
of experiments described in the ensuing subsections. We
applied the method to a basic, well-known 2-dimensional
caloric dataset from Kaggle; to the standard benchmark
datasets commonly used to measure the quality of a regres-
sion algorithm; to highly volatile, stock prices using data
from 2015 to mid-year 2018; to video sequences to detect
anomalies in video segments and lastly, to the large-scale
image dataset, the IMDb-Wiki data for age estimation.

A. Caloric Dataset

As an initial test of our framework, we performed a
one dimensional regression utilizing one parameter, on
a “toy” dataset obtained from Kaggle (Exercise and
Calories). This dataset was used purely as a proof-
of-concept and for illustrative purposes. The goal was to



estimate how many calories an individual burned based on
body heat. We artificially added a small amount of noise
to discourage the network from memorizing the mean and
standard deviations of each input.

In Figure 3, we observe that this network successfully
converged to perform the distribution regression, thus demon-
strating that this network (at least for this problem) can
capture aleatory uncertainty (the randomness inherent in the
system).
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Fig. 3. Regression as described in section IV-A. The orange line is the
regression and the gray shaded region is the 30 confidence interval

B. Regression on benchmark datasets

We applied the method to the standard benchmark datasets
commonly used to measure the quality of a regression
algorithm and compared with the state-of-the-art techniques
described in Section II. As can be observed in Table I, with
the exception of the Yacht dataset where our technique was
under-par, we performed on-par with or out-performed all
other approaches in terms of NLL (negative log-loss), thus
demonstrating that our proposed method retained its regres-
sion abilities while adding on the ability to also quantify the
uncertainties associated with its predictions.

TABLE 1
COMPARISON OF DIFFERENT ARCHITECTURES PERFORMANCE FOR NLL
ON POPULAR BENCHMARK DATASETS. MEASUREMENTS COURTESY OF
DEEP ENSEMBLES PAPER BY LAKSHMINARAYANAN ET AL. [9].

Dataset [10] PBP [6] MC- [12] Deep Ours
Dropout Ensembles

Boston 2.57 £ 0.09 2.46 £+ 0.25 2.41 £ 0.25 2.23 + 0.05
Concrete 3.16 £+ 0.02 3.04 + 0.09 3.06 + 0.18 3.05 + 0.04
Energy 2.04 £+ 0.02 1.99 £+ 0.09 1.38 £+ 0.22 1.91 £ 0.02
Kin8nm -0.90 £ 0.01 -0.95 +0.03  -1.20 £+ 0.02  -1.18 + 0.02
Naval- -3.73 £0.01  -3.80 £ 0.05 -5.63 £ 0.05 -3.82 + 0.09
propulsion

Power plant 2.84 + 0.01 2.80 + 0.05 2.79 + 0.04 2.85 + 0.01
Protein 2.97 £ 0.00 2.89 £ 0.01 2.83 + 0.02 2.14 + 0.01
Wine 0.97 £+ 0.01 0.93 £ 0.06 0.94 £ 0.12 0.87 £+ 0.02
Yacht 1.63 £+ 0.02 1.55 £ 0.12 1.18 £ 0.21 4.06 £ 0.00
MSD 3.60 = NA v3.59 £ NA 3.35 £ NA 3.40 £ NA

C. Uncertainty measures on stock prices

To test for uncertainty in predictions in large, complex,
stochastic, highly volatile time series data, we applied the
methodology specifically on similar stocks from the en-
tertainment industry!. The family of stocks we evaluated

1One of the authors spent his summer internship at a financial organization
and specifically analyzed this family of stocks.

comprised of stocks from 215t Century Fox, Inc. (FOX),
Netflix, Inc. (NFLX), Time Warner, Inc. (TWX), Amazon.com,
Inc. (AMZN), Walt Disney Co. (DIS), Comcast Corpora-
tion (CMCSA). Stocks are classified as a family based on
their sector, industry, asset class and prices being highly
correlated with each other over an extended period of time.

Suppose we are given the stock close prices for n days
prior to day 7' : {x;}7."1 . We wish to predict the closing
price on day T xr. To do this, we predict to prescribe a
distribution onto 7 ~ N (ur,or).
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Fig. 4. The blue graph is the stock price chart for FOX while the red graph
is the measure of uncertainty estimated by the proposed network.
Image is best viewed in color

Data preparation, training schedule and results: We
downloaded the publicly available stock price information
for the family of stocks explained above. Data for the entire
family from 2015 till May 2018 was used as training data,
with the goal of predicting uncertainty for only the FOX
stocks from June 2018 till February 2019.

The network shown in Figure 2 was implemented with the
feature extraction layer being a gated recurrent unit (GRU)
with a look-back of 50 days. The training scheme involved
looking at the stock prices over a period of 50 days with
the goal of predicting price on the S51st day along with
the measure of uncertainty of the prediction. The resulting
uncertainties are shown in Figure 4.

To analyze the uncertainties resulting from the implemen-
tation, we set a threshold of 0.5 so that days on which the
uncertainty measure was above this threshold were flagged
as anomalous trading days. We provide a list of FOX-related
news 2 in that period and compare with the anomalous days
predicted by our network. The results are shown in Table II,
demonstrating that the proposed methodology successfully
picked up on anomalies in the stock market, by examining
the uncertainties in the network predictions.

D. Anomaly detection in video segments

In this experiment, we were specifically interested in
detecting anomalous behavior from surveillance videos. Al-
though our problem is largely unsupervised, we prescribe
the following supervised task: Given X;_j_1..—1, determine
(i, %) € Q such that P(X; 4 p|N (11, X)) is maximized. Note
that this problem is identical to the previous stock prediction
problem.

2News data was obtained from https://www.reuters.com/finance/stocks/
FOX/key-developments. We threw away many other events leaving those
related to where our uncertanties were high



TABLE II
THE LEFT COLUMN SHOWS TRUE DATES ON WHICH MAJOR EVENTS
OCCURRED AT 21ST CENTURY FOX; THE SECOND COLUMN SHOWS THE
CLOSEST DATE ESTIMATED BY OUR NETWORK AND THE LAST COLUMN
DESCRIBES THE EVENT IN THE NEWS.

of individuals in the images. The dataset is very noisy, where
multiple entries contain either no face or multiple faces. Also,
in some cases, the collection year was incorrectly extracted
from the webpage.

Although this dataset contained a similar distribution of

Real Date Network predictions News related to 21st Century FOX
05-17-18 05-31-18 Suzanne Scott named CEO Of FOX News
06-13-18 06-15-18 Comcast offers to buy 21st Century Fox
media assets for $65B in cash

10-19 till 10-19 till Walt Disney receives unconditional approval

10-20-18 10-22-18 from China For 21st Century Fox deal;
Amazon/Blackstone bid for Disney’s 22
regional sports networks;

11-26-18 11-26-18 Disney, Fox sued in U.S. for $1B over
Malaysia theme park

01-07-19 — 218t Century Fox announces filing of
registration statement on Form 10 for Fox

males to females it contained primarily individuals between
20 and 40 years old. Additionally, because the IMDb dataset
contained a random sampling of Hollywood actors, it was
primarily composed of young Caucasian individuals, thus,
having high implicit bias. We empirically demonstrated that
our method was still capable of correctly identifying under-
represented samples in spite of the imbalances in the data.

-2.3000

-0.000300 -2.3025

-2.3050

0000305 23075

-2.3100

-0.000310
-23125

-2.3150

0000315

-2.3175

0000320 -2.3200

[ 2000 000 8000 8000 [} 500 1000 1500 2000 2500

Fig. 5. Normal (top) and anomalous (bottom) data; where the x-axis is the
frame number and y-axis is the loss for each frame. Note the scale of the
graphs

Recall that we have a collection of normal time series X.
In addition, we have a time series sampled from an unknown
process. We wish to determine if this sample is anomalous.
Thus, we want to quantify the extent to which this sample
could have feasibly come from the process P.

We therefore utilized our Gaussian network framework
to develop an auto regressive model over the signals
in X. We applied the said model to Y and calculate
1 2 L5 (Ye—k—1:—1, Yi4 ). This loss on the entire
time series will be large if our regressive model expected a
fairly deterministic behavior but was “surprised”. We define
surprise as when the network expected a specific event
with relatively high probability (and low uncertainty) but
something completely different happens.

Data preparation, training schedule and results: We uti-
lized the UCF-Crime dataset [22], which comprised of 1900
files totaling 128 hours of video. These videos were down-
sampled to a resolution of 128 x 128.

We trained a CNN-LSTM-CNN network on the problem
illustrated above (predicting frame ¢+ P given frames t—k—1
to t — 1). We assumed for simplicity that each pixel was
independent of every other pixel (i.e. we constrained our
covariance matrix to be a diagonal matrix). Our network took
as input a video stream and output two images: u, o. We
utilized the NLL loss to train this network.

E. Age estimation from face images

To test how well this architecture works on large complex
datasets, we applied it on the nontrivial problem of age
estimation. Given an image of a face, the network was tasked
with predicting the age of the individual in the picture. Posed
as a general problem, this task is a challenging regression
problem.

We utilized the IMDb-Wiki Dataset [13]: a dataset of
half a million faces scraped from both IMDb and Wikipedia
(primarily IMDb), and tagged with the corresponding ages

Data preparation, training schedule and results: We did
not wish to excessively clean the data, but rather remove the
clearly wrong data. We did this by removing samples which
had individuals younger than three years old or older than
100 years old. Additionally, we removed images which were
smaller than 16 x 16 and then resized the remaining images
to 224 x 224. We did not remove any other data.

This network was trained using the pre-trained VGG16
CNN system [14] for feature extraction, utilizing an Adam
optimizer with a learning rate of 0.00005 and a batch size
of 8, for six epochs.

TABLE III
THE ACCURACY (BOTH MEAN ABSOLUTE ERROR AND NEGATIVE LOG
LIKELTHOOD) OF VARIOUS APPROACHES ON AGE ESTIMATION.

Method MAE | NLL

CNN + Regressor 7.54
CNN + Regressor + Uncertainty 7.57 3.63
CNN + Regressor + Uncertainty + Cleaning 5.22 3.53

The results of these experiments were very promising
(first row of Figure 1). Even on this noisy dataset, the
architecture only performed poorly when the ground truth
was wrong (see the middle row of Figure 1). These results
demonstrate that our model is capable of capturing epistemic
uncertainty. Additionally, this architecture’s uncertainty not
only expressed how confident the model was, but also how
clean the data sample was. Thus, this model often reported
high confidence if a sample was well represented within the
dataset. Empirically we can see that difficult samples (those
in a class with low representation, poor lighting, side facing
faces, ambiguous individual, multiple faces) obtained high
uncertainty. Images in the dataset which were incorrectly
scraped along with excessively noisy or incorrect data had
the highest uncertainty (see Figure ?? and Figure 6 below).
Additional predictions on face images are shown at the end
of the manuscript. This architecture can therefore be used to
evaluate the quality of samples, assuming a large portion of
the data is of good quality.

1) Determining the overhead of uncertainty quantifica-
tion: An error quantification network is often only appealing
if it does not have a significant impact on performance.
Thus, the quantification of the discrepancy of some error
metric (say RMSE) between a classical regressor with w
parameters and that of an uncertainty-aware regressor with
w parameters should be minimized. To this end, we trained
two networks utilizing the same initial configuration of
parameters and same number of parameters (except for the



Fig. 6. Examples of invalid face data from the IMDb-Wiki dataset (top 5%
uncertainty).

last layer) until convergence (one vanilla regressor and one
error quantification regressor).

Examining Table III, we can observe that the discrepancy
between the MAE of the uncertainty-agnostic regressor and
the uncertainty-aware regressor is negligible. Thus, comput-
ing the uncertainty does not provide any significant additional
overhead to this model. This final layer can therefore be
added to any regressor to provide uncertainty metrics.

2) Automated data cleaning: As described earlier, this
architecture can be utilized to determine the quality of a
sample by examining the uncertainty produced. After train-
ing, we identified the samples with the top 5% uncertainty
and removed them (note that we left the validation samples
unchanged). After removing these samples from our training
set, we obtained significantly better results on the validation
dataset (see the last row of Table III). Thus, this architecture
is uniquely well-suited for unclean datasets, and to improve
the performance of regressors.

V. CONCLUSION AND FUTURE WORK

We have presented a framework, which can be used
for any regression problem to indicate how uncertain the
network is about its predictions. In this work, we replace
the RMSE loss with one based on NLL which measures
the probabilistic distance between predicted 3’ and the true
y, where y' = p,,. Imagine placing a spherical Gaussian
centered at each prediction p at the start of training and
as training progresses, o is also updated by side effect. The
final o is the distributional uncertainty of the prediction being
made at p. Hence, by choosing a probabilistic loss function
such as NLL, we can tell how confident the network is, of
its predictions, with no extra computation.

We have shown this method of uncertainty quantification
to work well with large-scale and/or complex datasets, with-
out any additional overhead during training. This uncertainty
quantification aspect has been exploited to develop a data
cleaning procedure which improved the accuracy on an
unchanged validation set. Future work includes generalizing
this to arbitrary distribution regression and investigating
uncertainty for classification. Furthermore, we intend to
continue studying the data cleaning process to determine how
and when it can be utilized to boost performance on noisy,
real-life datasets.

Tables IV-VII in the supplementary materials show addi-
tional results from the age estimation problem.
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COLLECTION OF FACES WHICH THIS ARCHITECTURE SCORED WELL ON ACCORDING TO NLL (SMALL LOSSES).

TABLE IV

)
A
i
A
Image

Actual Age 20 21 24 22
Predicted Age 19.6 22.0 22.3 23.8 22.8
Uncertainty 3.1 32 7.5 7.8 3.6
Loss 2.07 2.12 2.97 2.98 2.27

TABLE V

COLLECTION OF FACES WHICH SCORED THE WORST ACCORDING TO NLL (HIGH LOSS). WE NOTE THAT FOR THIS ARCHITECTURE TO SCORE
POORLY ON A DATAPOINT, IT MUST BE RELATIVELY CERTAIN OF AN INCORRECT VALUE.

Image
Actual Age 92 82 67 70
Predicted Age 26.1 30.8 27.1 25.6 353
Uncertainty 7.9 6.4 59 6.6 7.2
Loss 37.9 35.0 25.7 25.2 23.7
TABLE VI
COLLECTION OF FACES WHICH THIS ARCHITECTURE WAS MOST CONFIDENT ABOUT (LOW UNCERTAINTY).
Image
Actual Age 24 24 20 23 22
Predicted Age 21.0 21.6 19.6 19.2 18.4
Uncertainty 32 3.2 3.1 32 3.0
Loss

TABLE VII

COLLECTION OF THE FACES FOR WHICH THIS ARCHITECTURE WAS NOT CONFIDENT (HIGH UNCERTAINTIES), EVEN IF THE LOSES WERE LOW

Image /
Actual Age 36 58 27 69 88
Predicted Age 55.3 62.0 69.6 76.4 83.9
Uncertainty 19.0 19.1 21.6 20.5 20.8
Loss 438 3.89 5.94 4.00 3.97




