2022 26th International Conference on Pattern Recognition (ICPR) | 978-1-6654-9062-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICPR56361.2022.9956037

2022 26th International Conference on Pattern Recognition (ICPR)
August 21-25, 2022, Montréal, Québec, Canada

Towards Understanding the Behaviors of Pretrained
Compressed Convolutional Models

Timothy Zee
Department of Computer Science
Rochester Institute of Technology

Rochester, New York
Email: tsz2759 @rit.edu

Abstract—We investigate the behaviors that compressed con-
volutional models exhibit for two key areas within Al trust: (i)
the ability for a model to be explained and (ii) its ability to be
robust to adversarial attacks. While compression is known to
shrink model size and decrease inference time, other properties
of compression are not as well studied. We employ several com-
pression methods on benchmark datasets, including ImageNet,
to study how compression affects the convolutional aspects of an
image model. We investigate explainability by studying how well
compressed convolutional models can extract visual features with
t-SNE, as well as visualizing localization ability of our models
with class activation maps. We show that even with significantly
compressed models, vital explainability is preserved and even
enhanced. We find with applying the Carlini & Wagner attack
algorithm on our compressed models, robustness is maintained
and some forms of compression make attack more difficult or
time-consuming.

I. INTRODUCTION

Small technological devices are becoming more capable
of creating high resolution images and videos, which are
routinely uploaded and downloaded to and from the cloud. For
example, the resolution of a single image taken by a standard
household security camera such as Ring®is 1920-by-1080 full
high definition (fHD).

But to use such images/videos in practical applications,
such as in an algorithm to detect a specific moving object,
an efficient solution would be to process the data locally on
a household device such as a phone or small computer, using
a compact machine learning architecture. Similar examples
can be made for creating intelligent applications for handling
personal images and videos on smart phones and similar de-
vices. Hence, there has been an urgent need for more compact,
compressed architectures with small enough footprint to be run
on smaller devices.

As neural networks continue to enter new domains, their
model structures and hardware requirements continue to in-
crease. However, advancing neural network architectures re-
sults in expanding in model capacities, thus making them
intractable for many small devices and mobile applications.
Techniques to compress neural networks to run on embedded
hardware is an active area of research. However, the properties
provided by compression techniques to neural models are not
well understood. Particularly, key properties such as model
robustness and explainability are not yet well understood.

978-1-6654-9062-7/22/$31.00 ©2022 IEEE

Manohar Lakshmana
Department of Computer Science
Rochester Institute of Technology

Rochester, New York
Email: mxv5801 @rit.edu

Ifeoma Nwogu
Department of Computer Science
University at Buffalo, SUNY
Buffalo, New York
Email: inwogu@buffalo.edu

In this work, therefore, we evaluate multiple compression
methods to better understand their behaviors when applied to
pretrained convolutional models. We accomplish this by (i)
observing changes in model performance after compression
in applied; (ii) investigating the resistance of the various
compressed models to adversarial attacks; and (iii) lastly, dis-
cerning their explainability properties after the convolutional
models are compressed.

II. RELATED WORK

Understanding how compression affects a neural network
model has been studied by many researchers in the machine
learning field and most of the techniques fall in to one or more
of the following categories: (i) pruning; (ii) quantization; (iii)
sparsity and low-rank approximation (iv) distillation and (v)
automated architecture engineering. The first two techniques
do not require the original baseline network to be retrained,
whereas the last three require some form of retraining.

One of the earlier works in weight pruning by Han et al.
[10] successfully reduced the network weight parameter by
almost a factor of 10 and with negligible loss in accuracy
using heuristics and iterative weight pruning. Other pruning
methods [5], [26], [6] were determined to be more selective in
their pruning techniques. Because weights are pruned arbitrar-
ily, these non-structured pruning methods result in irregular,
sparse matrices making it hard to parallelize the network
implementation. More structured pruning techniques involve
filter pruning, channel pruning, and filter shape pruning [24],
[13]. The resulting structured matrices were now full and
regular, overcoming the implementation limitations of the non-
structured methods. In a recent paper, Ma et al. [14] demon-
strated that structured pruning methods are more preferable
than non-structured ones in terms of storage overhead and
computational efficiency.

While pruning involves reducing the number of weights
in a network, weight quantization involves reducing the size
of those weights. This can be accomplished by reducing
the range of the weight values from a larger to a smaller
set. Neural networks are by nature superfluous and over-
parameterized, hence there is significant redundancies in the
models. One of the earlier works in quantized neural networks
by Vanhoucke et al. [21] involved a fixed-point implementation

3450

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

using 8-bit integer activations. Anwer et al. [2] quantized the
parameters of a pretrained network, layer by layer, using L,
error minimization, and retrained the entire network with the
quantized weights. They tested on MNIST and CIFAR-10,
and showed that quantization improved generalization, giving
higher classification results than the high precision networks,
while also reducing the memory storage by about one-tenth.
Other approaches explored different forms of quantization
including Huffman codes, binning parameters into buckets,
grouping connection weights with a hash function and vector
quantization of the fully connected layers [11], [4], [7]. Other
works in quantization include [25], [23].

Other forms of compression involve low-rank factorization
of convolutional filters where full-rank feature matrices are
factorized into single vectors (to be linearly combined), due
to the separability property of convolution [15]. Similarly,
distillation is a process where “knowledge” is transferred from
a large trained model to a smaller one by training it to mimic
the outputs of the larger model [14], [22].

Although we have discuss different compression paradigms
in this section, for the rest of the paper, we take a deep
dive into how standard convolution models behave when com-
pressed with pruning and quantization methods specifically.

III. COMPRESSION METHODS OF INTEREST

To analyze how compression affects convolutional models,
we employ pruning and quantization, two of the most popular
methods for model compression. In addition, to see how well
the observed behavior generalizes, we create a custom layer-
ablated model to simulate the effects of extreme compression
on a convolutional model. We also combine compression
methods for analysis with a pruning+quantization model. Each
method is discussed in further detail in the following sections.

A. Pruning

Pruning allows for ranking feature importance and cutting
synapses, nodes, or even whole filters from the layers of
a model. Li et al. [16] provide an implementation where
the Hessian of the parameters are taken along with the loss
function to find parameters that can be removed with little
to no degradation in model performance. Pruning can be
completed by ranking filters, F, and removing filters Fy: F2+n
until a threshold is reached:

~ R R . fin fout
F' = {F}, Fipr, s Bpy = sort(D Y [Flile,) (D
i=0 j=0
N ~
> (Fl®0))

Filters that have a low L1 rank are assumed to not provide
useful feature extraction in a model, and removal of these
filters does not significantly hurt performance. The same is true
from cutting synapses or nodes which have low ranks as they
are not helping shape predictions compared to high ranking

filters or nodes. Pruning filters can be done in multiple ways
such as removing entire filter blocks, removing entire channels
of filters, or only pruning element-wise in individual feature
maps. Pruning also varies with pruning for fully-connected
layers, which commonly is done by either removing entire
nodes, or cutting individual synapses between nodes. In this
work, we prune per-channel and per-synapse, allowing for
more flexibility over dropping entire filters or nodes.

B. Quantization

Quantization aims to shrink the size of the learnable pa-
rameters themselves, rather than cutting specific features of
a model. Typically, libraries like Tensorflow [1] and PyTorch
[18] use 32 bits of precision to represent weights in a model.
Quantization aims to reduce this representation significantly
to a smaller size such as 8 bits. To reduce model size
without degrading performance, quantization re-normalizes all
weights to the extreme bounds of the new representation size
(e.g. 8 bits of precision re-normalizes to [0, 255]), allowing
to maximize the fidelity the new parameters can represent.
Quantization in 8§ bits is shown in Algorithm 1 where the
model weight’s minimum and maximum, wMin and wMax,
are used in conjunction with the re-normalization extremes,
gMin and gMax, to quantize and dequantize model weights
with the scale factor, o, and zero point .

Algorithm 1 Methodology to quantize and dequantize a
model’s layer weights to 8-bits.

#Quantization
for 1 in model.layers do
wMin = min(l.weights); wMax = max(l.weights)
gMin = 0; gMax = 255
o[l] = (WMax - wMin) / (QMax - gMin)
p[l] = (@Min - wMin) / o[l
qWeights[1] = (data + u[l]) / o[l]
end for
#Dequantization
for 1 in model.layers do
deqWeights[l] = (qWeights[1] - u[1])
end for

C. Ablation

To further explore the behaviors of compression on convo-
Iutional models, we create a layer-ablated model that discards
most of the class-specific and least generalized model features.
While pruning is focused on cutting out model parameters, it
does so only second to preserving model accuracy. Pruning
is effective for removing unnecessary, over-saturated, or even
duplicated features while doing so with preserving high model
performance. With the ablation model, the goal is instead to
specifically target the most class-specific features and remove
them, forcing the model to use the most generalized convolu-
tional features during inference. This is completed by cutting
entire convolutional layers, rather than cutting select filters like
in pruning. We create the layer-ablated model to simulate over

3451

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

compressing convolutional layers to help better understand
compression’s behavior on CNNs.

To create the ablated model, we follow the steps in Algorithm
2, where 6 and represent the parameters and best found
parameters for the network, Net(X,#), optimized by mini-
mizing loss £ with labels Y. Ablating M layers removes the
last N — M convolutional layers from the model and once all
other layers are frozen, recovery training only helps the fully-
connected layers to learn to make the best use of the more
generic extracted filters.

Algorithm 2 Methodology to ablate a CNN’s N-M convolu-
tional layers.

Returns CNN that uses the 1 : (N —M) convolutional layers
during inference.
for e in EPOCHS do
6 = min(£) s.t. (Net(X, 6), Y)
end for
for I in Net(é).layers do
if I.dims == 4 and 1 > (N-M) then
l.ablate()
else
Lfreeze()
end if
end for
if 1.dims == 2 and 1.FIRST_FC then
Lreshape(flatten((1-1).outputs)
end if
for r in RECOVERY_EPOCHS do
6 = min(L) s.t. (Net(X, 6), Y)
end for

D. Pruning+Quantization

In our exploration of compressed convolutional behavior,
we also consider the case of multiple methods of compression
applied to the same model by creating a pruned+quantized
model. We first apply the previously mentioned pruning ap-
proach until a decreased performance threshold is reached, and
then applying the resulting network to 8-bit quantization.

IVv. EXPERIMENTS, RESULTS AND DISCUSSIONS
A. Model Architecture and Data

We build a VGG-style convolutional model for our exper-
iments. We use six convolutional layers to expand channel-
wise and therefore refer to this model as “VGG-6”. We
convolve with small filters using [3 x 3] filters for each layer of
convolution. Max pooling is used in every other layer starting
in the second layer to reduce dimensionality by cutting width
and height by half. Batch normalization is applied after the
convolution of every layer. After propagating through the six
convolutional layers, the model flattens data and passes it
through three fully-connected layers, flattening down to 2048
by 1024, 1024 by 512, and 512 to 10 with a SoftMax applied
to give normalized predictions at the output of the model.
We train these models on three standard benchmark datasets,

SVHN, CIFAR-10, and ILSVRC2012 (ImageNet). SVHN
and CIFAR-10 are standard RGB color datasets we use in
evaluating our VGG-6 model, while ImageNet allows us to
study the effects of compression as we scale up model and
data. To evaluate on ImageNet we apply the standard VGG-
16 model with batch normalization completed between each
layer.

B. Performance Metrics

Table II shows the performance results obtained from
applying the different compression techniques on our three
evaluation datasets. These results are discussed in detail in
Section IV-B3.

1) Our VGG-6 pruning and quantization: We apply both
pruning and quantization for our tests as they are the most
widely used compression models. Pruning cuts out unneces-
sary weights and forces the model to re-use weights and make
the most use out of them. We prune varying percentages of
weights to retain a model performance accuracy to about a
5% performance drop. We pruned all layers except the first
convolutional layers as they have been shown to be the most
vital to model performance [9]. This allowed us to shrink the
overall model (with the exception of the first convolutional
layers) by the following: 40% for SVHN, 20% for CIFAR-10,
and 20% for ImageNet. We allow 10 epochs, 20 epochs, and
9 epochs of recovery training after pruning respectively.

We also apply quantization, a method that shrinks the size of
weights and biases significantly. Our quantization implementa-
tion takes weights and biases, represented as datatype Float32
to 8 bits. In PyTorch, Float32 variables can represent the range
of [—23, 23!], whereas by compressing with quantization
to 8 unsigned bits, the new range becomes [0, 255]. Re-
normalization is then computed to fit to the new scale. At
inference, the range, i.e, (min, max) of all floating-point
tensors in the model are rescaled to improve latency.

2) Our VGG-6 Ablation: We create the layer-ablated
model, shown in Figure 1 by first training our VGG-6 network
to convergence. We then cut the last convolutional layer and
reshape first fully-connected layer to fit the correct flattened
dimensionality of the output of the new last convolution layer.
Retraining is now done only on the fully-connected layers as
they have been interrupted with this dimensionality change,
however all convolutional layers remain frozen. Retraining
only the fully-connected layer allows it to best use these
more generic filters to provide optimal performance. The new
inference pass of this model now uses the first N — M layers
of the model, forcing the model to use more generic features
over the class-specific features learned in the ablated layer.

While we only ablate one layer of convolution, that ablated
layer accounts for 16% of the total convolutional filters of
the model, reducing the model significantly. While pruning
intelligently removes unnecessary, over-saturated, or even du-
plicated features, we opt to blindly ablate the entirely layer of
the most class-specific features to further study compression’s
effects for an over-dramatized model.

3452

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

Data Set Model Accuracy | Model Size Time
SVHN Baseline 91.07% 9.87TMB 5.566s
SVHN Pruned 90.00% 9.87MB 5.180s
SVHN Quantized 90.38% 2.79MB 5.298s
SVHN Ablated 80.00% 8.11MB 9.740s
SVHN Pruned+Quant8 90.20% 2.79MB 4.925s
CIFAR-10 | Baseline 81.10% 9.87TMB 4.823s
CIFAR-10 | Pruned 74.80% 9.87MB 4.668s
CIFAR-10 | Quantized 81.90% 2.79MB 4.638s
CIFAR-10 | Ablated 75.00% 8.11MB 3.935s
CIFAR-10 | Pruned+Quant8 75.70% 2.79MB 4.506s
ImageNet | Baseline 73.37% 540MB | 2380.19s
ImageNet | Pruned 68.00% 540MB | 2378.77s
ImageNet | Quantized 73.46% 178MB | 2336.25s
ImageNet | Ablated 68.00% 531MB | 2358.03s
ImageNet | Pruned+Quant8 68.40% 178MB | 2307.82s

TABLE I: Compression evaluation of test accuracy, model size, and average inference time for SVHN, CIFAR-10, and ImageNet on the
baseline, pruned, quantized, ablated, and pruned+quantized model where quantized is done at 8-bits and inference time is computed by

taking the summation of inference time for 10,000 samples.

Fig. 1: Creating the layer-ablated model. The original model is trained
end-to-end until convergence, the last convolutional layer is removed,
and the first fully-connected layer’s dimensionality is adjusted to
fit the revised model. All the convolutional layers are then frozen,
and the model is re-trained to convergence (top). Re-training the
model now only affects the fully-connected section of the model.
The inference pass now uses the frozen convolutional layers and the
newly-trained fully-connected layers, making the model use the first
N — M convolutional layers of the baseline model (bottom).

3) Discussion on overall model performance: From the
results presented in Table II, we observe that with implement-
ing compression methods to retain within 5% of the baseline
accuracy, the model size on the filesystem is reduced for all but
the ablated compression model, and the quantized model has
the most reduction. The size of the ablation variant increases
only because of the structure of the VGG-6 model. When
the top convolution layer is ablated, the next layer with its
larger number of filters and feature maps is flattened, resulting
in a significantly larger number of nodes for the new fully-
connected layers. The deeper the original model, the less
impact this type of ablation will have on the physical model
size, as observed with VGG-16.

‘When the various models are run on different datasets, the in-
ference times for 10,000 samples are reduced for all compres-
sion models, even when more than one compression technique
is applied. In general, quantization improves performance
and reduces overall model size on the filesystem. Similarly,
Han et al. [10] showed that even when the sizes on file
of the compressed and baseline models are similar, because
of number of zero weights in the compressed model, the
number of FLOPs is reduced significantly between the baseline

models and their compressed variants. He et al. show that
on embedded systems, there are even more significant latency
gains that can be obtained with compressed models.

C. Explainability

To better understand the behavior that compression methods
have when applied to convolutional models, we also study
an increasingly important property of convolutional models,
model explainability.

Explainability methods leverage convolution’s ability to
represent spatially important data in images. Because the
convolution layers of the network preserve the spatial rela-
tionships among pixels, processes such as filter visualization,
class activation maps (CAMs) [28], etc are effective methods
for explainability. We review both t-SNE plots [20] and CAM
results for two datasets in this section, and the ensuing results
are discussed in detail in Section IV-C3.

1) T-distributed stochastic neighbor embedding (t-SNE) on
ImageNet: Convolution layers allow the forward propagation
of data to retain the pixel-level relationships with neighboring
pixels. Once a model is flattened and passed to a fully-
connected layer, valuable information is lost. Therefore, to
understand how compression affect’s convolutional models, we
visualize t-SNE on the embeddings of the model up until the
output of the first fully-connected layer of VGG-16. Accessing
data at this level allows us access to embeddings generated pre-
dominantly by convolutional filters. We pick only ten classes
from ImageNet to make the t-SNE visualization more human
understandable. The selected class labels are: trench, great
white shark, bald eagle, scorpion, aircraft carrier, ambulance,
balloon, desktop computer, gondola, table lamp. We apply the
default t-SNE parameters to all compression models, without
tuning for increased performance.

The 2-dimensional maps generated by t-SNE, visually pro-
vide some insight into the decision making processes of
convolutional models as we examine the maps from the
baseline and various compressed models. We are interested in
observing the clustering tendencies from the t-SNE plots, to
determine if convolution is still a strong feature extractor, even

3453

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

(a) Baseline (b) Pruned

(c) Quantized

(d) Ablated (e) Pruned+Quantized

Fig. 2: t-SNE Visualizations of each compressed model from the VGG-16 model on ten classes from the ImageNet dataset.

after significant compression. If t-SNE shows strong clustering
tendencies, this indicates that the convolutional aspects of
the network still have strong discriminability, hence, the key
requirements for explainability.

We generate t-SNE plots of the first fully-connected
layer for the baseline, pruned, quantized, ablated, and
pruned+quantized models and visualize them in Figure 2.

2) Class activation maps (CAMs): CAMs showcase the nat-
ural localization ability of convolutional models when trained
for classification tasks. We not only test how various compres-
sion methods affect the feature extraction from convolutional
layers (via t-SNE), but we also analyze how they affect the
natural localization performance.

To accomplish this, we take the VGG-6 model, train it to
fit the SVHN dataset, and then generate CAMs using guided
back-propagation. CAMs provide a heat-map over the “focus”
points of the network by traversing backwards through the
network via guided back-propagation, to re-map the positive
activations of the model back to the input space. From here,
the strength of these activations can be visualized as a heat-
map for easy understandability. We visualize the results from
four models when applied on SVHN: for the baseline, pruned,
quantized, ablated, and pruned+quantized models. The CAM
results can be seen in Figure 5.

3) Discussion on t-SNE and CAM results:

a) T-SNE: From the t-SNE maps shown in Figure 2,
applied on 10 classes fom ImageNet, we observe that no
compression methods applied does worse than the baseline
model. The quantized model shows the most distinct clusters
compared to the other models and the pruned model shows
more distinctive clusters than the baseline, probably due to
the removal of redundant filters.

b) CAM: We observe CAM samples obtained for SVHN,
the dataset selected for this test due to the distinct regions
of interest containing digits in the image. Using CAMs, we
expected the convolution model to focus mainly on the region
containing the digits as well as any distinctive local regions
distinguishing the particular digit being tested. As we observe
and show in Figure 5, the baseline model does not put any
strong emphasis on the region of the image containing the
digit. Although it highlights some regions of interest, these are
not intuitive for explainability. The quantized model consis-
tently appears to perform as expected, focusing on the region
of the digit and highlighting sub-regions in the image that can
potentially distinguish one digit from another. For example, on

the second row (containing 2), the region of the digit has strong
heat-map along the areas of curvature (distinguishing regions).
From an explainability perspective, this result is closer to what
we expected. The pruned and ablated models also behave as
expected although not as definitive as the quantized model.

D. Robustness

In addition to exploring how explainability is affected with
compression, we elect to study how robustness, another key
area in modern networks fairs with compression.

To analyze how compression methods affect a model’s sen-
sitivity to adversarial attacks, we apply the Carnili and Wagner
(C&W) L2 adversary attack [3]. C&W is considered the
standard benchmark for fooling samples in neural networks.
It works by not only minimizing the original class accuracy,
but aims to increase accuracy in all other classes, creating a
significantly stronger attack than the traditional fooling method
like in [8]. The traditional method only attempts to maximize
a target class so that the neural network will not predict the
original class, whereas C&W works on all other classes.

We train VGG-6 model with C&W L2 objective function
and then apply each compression technique; we then ana-
lyze the baseline, pruned, quantized and pruned+quantized
variations. To evaluate robustness, we randomly select 1000
samples from CIFAR-10 test dataset and create adversarial
samples by running the C&W L2 attack for 40 iterations. The
mathematical representation for C&W is shown in Equations
3 and 4.

while (o(X' < 7)) :

where :

A+ (1—=X)[p2 +e(A+1)
A =tanh(W) € [-1,1] 3)

(X)) =maz(max(oc(X')e,c #t) — (X)e, —7) (4)

The parameter 7 is a confidence threshold, used as a termi-
nation condition, that analyzes output of the model on the
adversarial data, o(X’). w represents the change of variables
for the equation (X + &) = (1/2)tanh(W + 1) such that
tanh(.) € [—1,1]. This change of variables is done because
-1 < (1/2)tanh(W + 1) < 1 forcing x + § to always
be a valid solution with 0 < z +d < 1 . f(z) is a
chosen objective function which was empirically found that
F(X") = max(max(o(X").,c #t)—o(X')., —7) was found

3454

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: SVHN class activation maps for selected samples on the original (far left) baseline (mid left), pruned (center), ablated (mid right),
and quantized models (far right).

Model Pre-fooled Acc | Post-fooled Acc | Pre-fooled conf | Post-fooled conf | Time (ms)
Baseline 81.10% 47.30% 98.16% 83.24% 8283ms
Pruned 74.80% 45.10% 95.30% 72.60% 5270ms
Quantized 81.90% 81.90% 98.04% 98.04% 1375ms
Pruned+Quantized 75.70% 75.70% 95.31% 95.31% 1222ms

TABLE II: Evaluation of foolability of the baseline, pruned, quantized, and pruned+quantized models on CIFAR10. Average pre- and post-
fooled accuracy on the test set as well as confidence and average time to fool is recorded. Each test is run with 1000 generated samples.

best for the L2 attack. The constant c is set to the smallest
value that performs best for xx where f(zx) <0 [3].

We first evaluate the average pre-fooled test accuracy and
average pre-fooled confidence in predictions. After fooling
via C&W, we re-evaluate the same 1000 samples to see how
well the models were able to hold up to attack (i.e how
strongly they naturally provide defensive capability against
the attack). We also track the average time it takes to fool a
sample from the compressed models. While C&W is known
to generate adversarial examples extremely well, we are
interested to see if compression can slow down its attack rate.

1) Discussion on C&W results: First, we find that none
of the three compressed models have worse defense against
C&W than the baseline model. Second, we find that when
quantization is applied either by itself or after pruning, the
C&W attack is not effective with the tested configuration. The
baseline model average accuracy decreases by 33.8% with
an average confidence drop of 14.92%. The pruned model
handles the attack slightly better at an average decrease in
performance of 29.7% and an average confidence drop of
22.7%. We find C&W runs about 1.57x quicker than the
baseline, making a pruned model more susceptible to time
sensitive attack.

Although the quantized model runs 40 iterations of C&W
much quicker than the baseline, being 6.02x quicker, and 6.78x
faster for pruned+quantized, it is irrelevant as the attack is
ineffective in our tests. We use the same parameters for all
tests, including an attack learning rate of 0.5e-4. To ensure
quantization is not just sensitive to this learning rate, we re-test
both the quantization and pruned+quantization model at attack
learning rate in the range [le-4, 0.5e-3] and find none of these
rates have any effect (once 8-bit quantization is performed).

V. CONCLUSION

Compression provides Al access to new landscapes running
on embedded or hardware constrained systems. While there
has been research in methodologies, understanding how mod-
els behave under compression has not been as well studied.

In this work, we have studied behaviors of compressed
convolutional models for two key areas, model explainability
and robustness. We employ two popular compression tech-
niques, pruning and quantization, along with a custom layer-
ablated model and a combination pruning+quantization model
to study these properties. We find via t-SNE maps that the
essential component of explainability, convolutional feature
distinguishability, is preserved among all compressed variants.
Using CAMs, we find localization ability within convolutional
models is preserved and even enhanced with compression.

To explore how compression affects robustness, we apply
C&W and find that even with significant compression, robust-
ness persists and in some cases can be used to help safeguard
against such attacks. The empirical findings in this paper,
especially relating to the success of quantization is consistent
with findings in Han et al. [11].

Going forward, we are interested in analyzing convolutional
model behavior on different types of hardware: CPU, GPU and
mobile GPU. Because quantization is still hardware restricted,
where gains can be tied to the hardware being used, it is
important to benchmark the work against commonly used
hardware and explore its limitations. Otherwise, given much
of empirical evidence from this study, it is imperative to
perform quantization (when possible) on large high-precision
networks, even for basic tasks. We are interested in furthering
the experiments conducted with model structures like those
with residual [12] or inception [19] modules. In addition,
we seek to expand the model defense study with compressed
image models with algorithms such as those in [27] and [17].

3455

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(31

(4]

(5]

(6]

(71

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, and C. C. et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2015, pp. 1131-1135.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). 1EEE,
2017, pp. 39-57.

W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in International conference
on machine learning. PMLR, 2015, pp. 2285-2294.

X. Dai, H. Yin, and N. K. Jha, “Nest: A neural network synthesis
tool based on a grow-and-prune paradigm,” [EEE Transactions on
Computers, vol. 68, no. 10, pp. 1487-1497, 2019.

X. Dong, S. Chen, and S. J. Pan, “Learning to prune deep neural
networks via layer-wise optimal brain surgeon,” in Advances in Neural
Information Processings and Systems (NeurIPS), 2017, pp. 4857-4867.
Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional
neural networks,” Pattern Recognition, vol. 77, pp. 354-377, 2018.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processings and Systems (NIPS), 2015, pp. 1135-1143.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 2016, pp. 1-14.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389-1397.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in Proceedings of the British
Machine Vision Conference. BMVA Press, 2014.

H. Li, J. Chen, H. Lu, and Z. Chi, “CNN for saliency detection with
low-level feature integration,” Neurocomputing, 2017.

J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft, “Nesterov
accelerated gradient and scale invariance for adversarial attacks,” in
International Conference on Learning Representations, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative- style- high- performance-deep-learning-library.

pdf

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUSs,” in =Deep Learning and Unsupervised Feature
Learning NIPS Workshop, year=2011.

[22]

(23]

[24]

[25]

[26]

[27])

(28]

3456

H. Wang, H. Zhao, X. Li, and X. Tan, “Progressive blockwise knowl-
edge distillation for neural network acceleration.” in International Joint
Conference on Artificial Intelligence IJCAI, 2018, pp. 2769-2775.

P. Wang, Q. Chen, X. He, and J. Cheng, “Towards accurate post-
training network quantization via bit-split and stitching,” in International
Conference on Machine Learning. PMLR, 2020, pp. 9847-9856.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” pp. 48574867, 2016.

J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4820-4828.

T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5687-5695.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in International Conference on Learning
Representations, 2018.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2921—
2929.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 05,2023 at 04:15:17 UTC from IEEE Xplore. Restrictions apply.

