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Tensor Network Based MIMO Volterra Model for
Lithium-ion Batteries

Yangsheng Hu, Raymond A. de Callafon, Ning Tian, and Huazhen Fang

Abstract— Accurate battery modeling is fundamental for
battery management system to function well and extract the
full potential from a battery without violating constraints. In
this paper, a Tensor Network (TN) based Volterra double-
capacitor (VDC) model for lithium-ion batteries is devel-
oped to improve the prediction performance of the non-
linear double-capacitor (NDC) model. It is shown that the
VDC model maintains the advantages of the NDC model to
account for the rate capacity effect and the voltage recovery
effect. In addition, the VDC model is capable of predicting
both static and dynamic nonlinearities simultaneously in a
more accurate way. To estimate the TN-cores in the VDC
model, a Bond Core Sweeping Algorithm is proposed and
shown to lead to a low-rank representation. A comparison
based on experimental data demonstrates that the VDC
model gives greater prediction accuracy than the NDC
model and Thevenin model, showing significant promise to
enhance future battery applications.

Index Terms— Batteries, equivalent circuit model (ECM),
system identification, tensor network (TN), Volterra model.

I. INTRODUCTION

RECHARGEABLE batteries have become a major driver

for applications ranging from portable consumer elec-

tronics to electric vehicles and microgrid applications. Among

them, lithium-ion batteries (LiBs), having a high power/energy

density, a long life span, high energy storage efficiency, and

environment friendliness, are attracting more and more atten-

tion in both research and application fields [1]–[5]. There are

roughly two major developed efforts in LiBs: one focuses on

the battery cell design, materials selection for electrodes and

electrolytes, pack structure optimization etc., to develop high-

performance batteries; the other one implements advanced bat-

tery management systems (BMS) to maximize the utilization

efficiency and safety for given types of batteries generally

based on estimation of the State-of-Charge (SoC), State-of-

Power (SoP), and State-of-Health (SoH).

Algorithms for BMS generally require mathematical models

that describe battery physics and dynamics. The exisiting

battery models mainly fall into two categories [6]: 1) electro-

chemical models, which leverage electrochemical principles

to capture the dynamics of lithium-ion intercalation and dif-

fusion as well as various associated processes [7]–[12], and
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2) equivalent circuit models, which are a network of circuit

components to describe a LiB’s electrical behaviors [2], [13]–

[18]. A brief comparison between the two models can be found

in [18], where a nonlinear double-capacitor (NDC) model

was proposed to bridge the gap between physical models and

ECM. The NDC model is a modification of a linear double-

capacitor model [19] while maintaining feature to account

for rate capacity effects and energy recovery effects. The

nonlinear mapping introduced in the NDC model is based

on the observation of the nonlinear SoC-OCV (Open Circuit

Voltage) curve. However, the SoC-OCV curve is a static

feature for the LiBs fully at rest and does not reflect the

full nonlinearity when the batteries are used dynamically. As

shown in the validation experiment for the identification 2.0

approach in [18], the resulting SoC-OCV curve identified by

the NDC model does not fully match the measured curve

when the training process was trying to capture both the static

and dynamic nonlinearities. Despite the less accurate static

prediction, the dynamic prediction was still improved by using

the NDC model. This observation provided the motivation for

this paper to propose a new model to account for the two types

of nonlinearities simultaneously.

Both electrochemical models and ECMs have physical ex-

planations for the underlying processes happening inside of

the battery during charging/discharging. However, due to the

limited knowledge about the complicated dynamic processes

involved in charging/discharging, it is impossible to model all

the processes. Pure data-driven modeling approaches such as

system identification or machine learning provide an alterna-

tive to first-principles modeling [20]–[24]. Instead of figur-

ing out the detailed electrochemical and physical processes,

data-driven modeling uncovers the underlying relationship

between the historical input/output data from the perspectives

of statistics and optimization. These techniques have been

demonstrated effective in different battery modeling applica-

tions [25]–[31]. However, a large amount of data is generally

required to guarantee the effectiveness of such models, which

can easily suffer overfitting problems.

On the other hand, from the perspective of formulating a

model, it will be very time-consuming to take into account

a complicated mix of electrochemical reactions and side pro-

cesses even if the expert knowledge is known. The prediction

accuracy heavily relies on the accuracy of first-principles

modeling and the estimation of the physical parameters is

not trivial. However, machine learning methods make use of

a wealth of data and can efficiently formulate an accurate

model to learn the input/output relationships from practical
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observations for effective prediction. From the perspective of

computational complexity, a full-scale electrochemical model,

e.g., the DFN model, is computationally expensive. However,

a machine learning model can usually be formulated into a

computationally efficient structure. This is very attractive for

battery applications.

In this paper, a hybrid combination of an ECM and tensor

network (TN) based supervised learning is used for battery

modeling to enable physics-informed data-driven learning of

the unknown nonlinear dynamics inherent to batteries. This

hybrid structure harnesses the combined strengths of a physics-

based model and a machine learning model. For the ECM part,

the linear double-capacitor model is used to extract the voltage

and SoC features within the battery. Note that the limitation is

that the features generated by the model may not be accurate

due to uncertainty of both modeling and measurement. These

features are then fed into a supervised learning framework

as shown in [32] to learn the nonlinear dynamics between

the raw input features and output terminal voltage. However,

compared to [32], this paper introduces a new modification

that encodes the input features further into a feature map

described by a Volterra model which can also be equivalently

written into a TN representation for better computational

efficiency. The reason for using TN representation is that it can

mitigate the curse of dimensionality encounterd by a normal

Volterra model with a large memory length and a high model

degree [33]. Thus, a TN representation allows the Volterra

model to capture more complex nonlinear dynamics from

the numerical perspective. In addition, we propose the Bond

Core Sweeping Algorithm, which uses the ε-truncated singular

value decomposition (SVD) [34], to ignore less significant

modes and seek the low-rank property intrinsic to data to avoid

overfitting.

A. Statement of Contributions

This paper presents the following contributions.

First, a novel TN-based Volterra double-capacitor (VDC)

model is developed. A linear double-capacitor model proposed

in [19] with the currents as the input signals is used as an

initial feature extractor. The raw features produced by the

linear double-capacitor model are then fed into a supervised

learning structure described by a TN-based Volterra model to

predict the output terminal voltages. The proposed VDC model

maintains some advantages of the linear double-capacitor

model such as capturing the rate capacity effect and the voltage

recovery effect. On the other hand, there are different sources

of the dynamic nonlinearities, including but not limited to

unmodeled dynamics varying with different SoC and C-rate.

The linear double-capacitor model or the NDC model, as an

approximation of the true dynamics inherent to a LiB, in-

evitably involves model mismatch. The proposed VDC model

then has an advantage over the NDC model proposed in [18] in

terms of accounting for both static and dynamic nonlinearities

simultaneously in a more accurate way by incorporating a

data-driven technique. In this paper, only discharging cases are

considered. The VDC model will facilitate real-time voltage

prediction with high accuracy and may benefit model-based

algorithm design in BMS, including SoP prediction, charging

control, etc. To our best knowledge, this study is the first

to apply TN-based Volterra techniques in the application of

battery modeling.

Second, a Bond Core Sweeping Algorithm is developed

to estimate the TN-cores of the proposed VDC model. The

proposed algorithm is developed by modifying the sweeping

optimization algorithm in [32]. The first major difference is

that a least squares technique is used to estimate each bond

core instead of using a gradient descent algorithm. The reason

is that the convergence of the gradient descent algorithm can

be rather slow for a problem in which the gradient is rank

deficient. This problem is encountered in our application.

The second major difference is that an ε-truncated singular

value decomposition is used when splitting the bond core into

two individual TN-cores. The advantage is that the model

complexity can be adjusted and simplified by emphasizing

on the low-rank estimation. Seeking a low-rank estimation is

important to avoid overfitting.

Third, experimental validation is performed to assess the

performance of the proposed VDC model. The approach to

generating the training data for a nonlinear dynamic battery

modeling is presented. The effect of the current magnitude and

SoC range swept by the training data on the model prediction

is also investigated. A comparison of the VDC model with the

NDC model is also given to show the efficacy of the proposed

VDC model.

Note that this work is a significant extension of our previous

work [35], in which the basic idea of using a TN-based

Volterra model to do nonlinear mapping is illustrated. The

parameter estimation for the TN representation of a more

general multi-input multi-output (MIMO) Volterra model is

developed in this paper. In addition, more experiments are

performed to validate the proposed algorithm, and the effect

of using partial data in a machine learning based method is

also investigated.

B. Organization

The remaining part of this paper is organized as fol-

lows. Section II presents the TN representation of a MIMO

Volterra model. The VDC model of battery dynamics and the

corresponding parameter estimation are proposed in Section

III. In addition, the approach to the acquisition of training

data is investigated. In Section IV, experimental validation is

performed to demonstrate the efficiency of the proposed model

and algorithm. Section V summarizes this paper.

II. MIMO VOLTERRA MODEL IN THE TN
REPRESENTATION

Denote the output signal as y(t) ∈ R
m and the input signal

u(t) ∈ R
p. The αth element of a vector x(t) is written as

x(α)(t). Assume that there is a nonlinear relationship between

u(t) and y(t) that can be described by a MIMO Volterra

model.
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A normal description of a discrete-time p-input m-output

Volterra system of degree d can be described as

y (t) = h0 +

d∑
i=1

M−1∑
k1,··· ,ki=0

p−1∑
α1,··· ,αi=0

hk,α
1:i φ

k,α
1:i (u (t)) (1)

where M is the memory length, φk,α
1:i (u(t)) ∈ R and hk,α

1:i ∈
R

m are the ith Volterra kernel function and corresponding

kernel coefficient. Specifically, φk,α
1:i and hk,α

1:i are the abbre-

viations of functions of {k1, α1; k2, α2; · · · ; ki, αi} such that

φk,α
1:i (u (t)) =

i∏
j=1

u(αj+1) (t− kj) (2)

hk,α
1:i = hi (k1, α1; k2, α2; · · · ; ki, αi) (3)

The kernel function φk,α
1:i (·) is a multiplication of different

degrees among the possibly different input components at

possibly different time instants. All kernel functions serve

as a feature map to map the input vector u(t) into a higher

dimensional space, which helps create nonlinear mappings

from the input u(t) to output y(t) by specifying the kernel

coefficients. This allows one to capture high order nonlinearity

and even coupled dynamics among different input channels

and past states. Thus, this model structure has great potential

for nonlinear system identification.

However, it should be noted that, for the generated high

dimensional space, the number of all the kernel coefficients is

1+
∑d

i=1 (pM)
i

and suffers from the curse of dimensionality

as the degree d goes up. Avoiding the choice of a large d
prevents an overburdened storage requirement for a computer,

but limits the model’s capability of capturing complex and

even coupled dynamics. On the other hand, even if the storage

demand is not a problem, recording every detailed kernel

coefficient may be unnecessary since not every kernel will

be dominantly active in practice, which motivates us to seek

a low-rank representation of (1).

TN representation can be used to address this issue. In

the following discussion, tensors refer to multidimensional

arrays. A d-way tensor is denoted using a boldface calligraphic

letter as T ∈ R
n1×n2×···×nd . Each entry of T is denoted as

T (i1i2···id) via d integer indices (i1i2 · · · id).
Definition 1: (The k-Mode Product [34]) For a tensor T ∈

R
n1×···×nk×···×nd and a matrix U ∈ R

pk×nk , the k-mode

product X = T ×k U is defined such that

X (i1···ik−1jik+1···id) =
nk∑

ik=1

U(jik)T (i1···ik−1ikik+1···id)

and X ∈ R
n1×···×nk−1×pk×nk+1×···×nd .

Definition 2: (Tensor Train (TT) Decomposition [34]) The

d-way tensor T can be represented by a linear TN such that

T (i1i2···id) =
∑

α0,··· ,αd

T (α0i1α1)

1 T (α1i2α2)

2 · · ·T (αd−1idαd)

d

where T1, · · · ,Td are called TT-cores. Each Tk is a 3-way

tensor of dimensions rk−1×nk×rk, where rk−1, rk are called

the TT-ranks and r0 = rd = 1.

Fig. 1: The illustration of identifying a TN based Volterra model.

Fig. 2: A linear Tensor Network.

Following the discussion and formulation in [33], one can

incorporate all the kernel coefficients into a (d + 1)-way

Volterra tensor V ∈ R
(pM+1)×···×(pM+1)×m such that the

Volterra system output can be simulated as

yT (t) = V×1 uT
t ×2 uT

t · · · ×d uT
t

= (V1×2 uT
t )(V2×2 uT

t ) · · · (Vd×2 uT
t )

(4)

where

ut =
[
1,uT (t) ,uT (t− 1) , · · · ,uT (t−M + 1)

]T ∈ R
pM+1

and {V1, · · · ,Vd} are the TN-cores of the Volterra tensor V .

The last core Vd ∈ R
rd−1×(pM+1)×m and the remaining Vi ∈

R
ri−1×(pM+1)×ri with r0 = 1. In fact, the TN-representation

used here is a generalization of the TT-decomposition with

rd = m. Once the TN-cores are obtained, one can simulate

the system using the second row of (4) without referring back

to its dual representation V , which suffers from the curse of

dimensionality.

The number of stored elements in the TN representation

{V1, · · · ,Vd} is at a magnitude of O((d − 1)r2(pM +
1) + mr(pM + 1)), which will greatly reduce the storage

requirement if the maximal TN-rank r = max{r1, · · · , rd}
is sufficiently small. Fortunately, a low value for the maximal

TN-rank r is very common in practical applications, as is the

case with battery modeling. Thus, (4) computed with the TN

representation {V1, · · · ,Vd} serves as a low-rank representa-

tion of (1). The corresponding computational complexity of

using (4) is approximately O(d(pM + 1)r2).
The process of identifying a TN based Volterra model

from input/output experimental data is illustrated in Fig. 1.

An illustration of decomposing a simple 3-way tensor of

dimension n1 ×n2 ×n3 into a combination of three low-rank

TN-cores is shown in Fig. 2.

Remark 1: In this paper, the second line in (4) will be

adopted to simulate a TN-based Volterra model prediction ŷ(t)
given estimated TN-cores {V1, · · · ,Vd} and input features

u(t). Also, the formulation of our proposed algorithm in the

following section allows the readers to rely on only the 2-

mode tensor product throughout the paper in addition to basic

linear algebra. For easy reference, (Vi×2 uT
t ) ∈ R

ri−1×1×ri
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can be squeezed into a matrix Mi ∈ R
ri−1×ri by ignoring the

second dimension and each component is computed as

Mi (αi−1, αi) =

pM+1∑
k=1

u
(k)
t V(αi−1kαi)

i

where 1 ≤ αi−1 ≤ ri−1 and 1 ≤ αi ≤ ri. A more numerically

efficient way is using matrix product during implementation

as shown in Algorithm 1 following a MATLAB fashion.

Algorithm 1: 2-Mode Tensor Product
Input: TN-core Vi, input vector ut in (4)

Output: The matrix representation Mi of (Vi×2 uT
t )

1 Vi ← permute(Vi, [2, 1, 3])
2 Vi ← reshape(Vi, [pM + 1, ri−1ri])
3 Mi ← reshape(uT

t Vi, [ri−1, ri])

III. BATTERY MODELING AND PARAMETER ESTIMATION

A. Linear and Nonlinear Double-Capacitor Model
The original linear double-capacitor model for a battery was

proposed in [19] and consists of two serial Resistor-Capacitor

circuits in parallel (i.e., Rb-Cb and Rs-Cs) and a resistor R0,

as shown in Fig. 3a. The resistor R0 represents the collected

instantaneous ohmic resistance. The Rs-Cs circuit corresponds

to the electrode surface region exposed to the electrolyte, while

the Rb-Cb to the bulk inner part of the electrode. The double-

capacitor structure can capture both the rate capacity effect

and the voltage recovery effect since it can model the charge

migration between the near-surface and bulk inner domains of

an electrode from the perspective of a single-particle model

(SPM) [36]–[38].

However, the linear double-capacitor model is unable to de-

scribe a defining characteristic of batteries, e.g., the nonlinear

SoC-OCV curve. Thus, the linear double-capacitor model is

working well only around a certain SoC range so that the linear

approximation is reasonable. In order to resolve this issue, the

NDC model was proposed in [18], where a nonlinear mapping

of Vs was introduced to approximate the SoC-OCV curve. A

parallel RC circuit R1-C1 was also introduced there to account

for the voltage transients related to the charge transfer on the

electrode/electrolyte interface and the ion mass diffusion in

the battery [39]. The NDC model is shown in Fig. 3b. Two

scenarios can be considered for the parameter estimation of the

NDC model: constant-current charging/discharging; variable-

current charging/discharging. Experiment validation illustrated

that the NDC model can have higher accuracy than other

different ECMs under comparison. Also, the basic NDC model

without the R1-C1 part is almost comparable to the full model,

especially if the value of R1C1 is small.

B. Hybrid Double-Capacitor Model Development
Despite the advantages of the NDC model, the validation

results in [18] indicate a space for further improvements: the

validation data show current-dependence of the parameters,

which is not considered by the model; the NDC model is

(a) The original linear double-capacitor model.

(b) The NDC model.

(c) The VDC model.

Fig. 3: Illustration of different double-capacitor models. The

components within the rectangle are treated as a whole. In (b),

h(·) is a nonlinear function. In (c), GSoC(s) is a linear filter

and y is the voltage prediction of the part within the rectangle.

estimated independently for constant and variable current

scenarios, and the model estimated for one scenario offers

less predictive accuracy for the other; the SoC-OCV curve

identification for the scenario of variable current matches the

true one with relatively limited accuracy since the identifia-

bility of this defining characteristic becomes less with many

parameters including the nonlinear mapping to be estimated

therein. As a final remark, the SoC-OCV curve is a static

feature for batteries when they are fully at rest. On the other

hand, if the nonlinear mapping is not optimized during training

the model and simply fixed as the SoC-OCV curve even for

the scenario of variable current, then the static prediction

error at rest will be reduced. However, the nonlinear transient

dynamics may not be well approximated since the nonlinear

mapping is not optimized from the discharging data. Thus,

the simple nonlinear mapping introduced in the NDC model

may not fully account for the nonlinear transient dynamics. In

addition, when the battery stops discharging, the true terminal

voltage transient takes a long time to reach the full rest state

whereas the predicted one by the NDC model arrives at the

steady state almost instantaneously. This phenomenon implies
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that additional dynamics can be modeled within the battery

after the discharging is stopped and before it achieves the fully

steady state.

Despite the limitation of the nonlinear mapping within the

NDC model, it still shows the potential to propose a new

structure to capture the static and dynamic nonlinearities in a

more accurate way. To improve the above mentioned points of

the NDC model, a hybrid double-capacitor model is proposed

in this paper as shown in Fig. 3c. A linear double-capacitor

is used to extract meaningful features of the batteries and

a multiple input single output (MISO) Volterra system is

followed to synthesize all important features to predict the

voltage. The proposed model is referred to as the VDC model

in the following discussion.

The state-space equation of the linear part in Fig. 3b or

Fig. 3c, which corresponds to a modified version of the linear

double-capacitor model appended with one R-C component,

is given by ⎡
⎣ V̇b (t)

V̇s (t)

V̇1 (t)

⎤
⎦ = A

⎡
⎣ Vb (t)

Vs (t)
V1 (t)

⎤
⎦+BI (t) (5)

similar to [18], where

A =

⎡
⎢⎣

−1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

0
1

Cs(Rb+Rs)
−1

Cs(Rb+Rs)
0

0 0 −1
R1C1

⎤
⎥⎦ , B =

⎡
⎢⎣

Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)
1
C1

⎤
⎥⎦

Note that I > 0 for charging, I < 0 for discharging, Vb =
Vs = 1V for SoC = 1, Vb = Vs = 0V for SoC = 0, and SoC

is computed as

SoC =
CbVb + CsVs

Cb + Cs
(6)

Additional dynamics, which is not captured by the NDC

model, can be attributed to the slow charge diffusion process

inside the battery. The battery becomes fully at rest when the

the process reaches its equilibrium. The additional and slow

dynamics is not obvious by using the cycling data with a high

switching frequency. This phenomenon can be modeled as SoC

dynamics formulated as a first-order transfer function model

GSoC(s) =
1

αs+ 1
(7)

shown in Fig. 3c. The time constant of the slow charge

diffusion process is accounted for by the parameter α. The

static gain of the first-order model is normalized to 1, since the

SoC as a whole within the battery remains the same whereas

it takes some time for all the charges to diffuse toward a

steady state. From the electrochemical perspective, it describes

the dynamics of the lithium concentration at the surface of

the particle around the average lithium concentration in the

solid. When the battery stops charging/discharging, Rs-Cs and

Rb-Cb are in the same loop and Vs and Vb will reach the

same equilibrium simultaneously. Thus, Vb provides no more

dynamic information than Vs. The introduction of the filter (7)

is necessary since it adds features for slow dynamics to the

input of the Volterra model besides Vs. The time constant

α requires to be adjusted during the parameter estimation.

Denote the output of GSoC(s) in (7) as SoCf (t) at the time

instant t.
The battery impedance is typically a function of SoC [40].

However, one can break it down into a constant part R0 due to

the materials of current collectors and the inside impedance

which is related to the SoC. The inside impedance can be

attributed to the SoC status.

The Vs is the reflection of the surface charge and related

to the major part of the terminal voltage. Different current

profile will affect the dynamic changing of Vs and SoCf . Thus,

the current dependence of the model parameters mentioned in

the experimental validation in [18] can be described by the

nonlinear interaction between Vs and SoCf .

Finally, the voltage Vs and SoC dynamics SoCf are selected

as the input features for the nonlinear mapping described by

the Volterra system. The transient voltage V1 due to charge

transfer and the constant resistance R0 are separated from

the nonlinear mapping. The input vector u(t) of the Volterra

system is given as

u (t) = [SoCf (t) , Vs (t)]
T

(8)

where Vs(t) and SoC(t) are obtained by simulating the linear

double-capacitor model in (5). One should be careful about

the initial state when simulating SoCf (t) using the filter

GSoC(s). For example, for a fully charged battery, the initial

SoC(0) = 1 and it should be set as the initial state of

GSoC(s) in SoCf (t) = GSoC(s)SoC(t). The other approach

is to filter the signal SoC(t) − 1 instead for a fully charged

battery if the initial state of GSoC(s) is set as zero, i.e.,

SoCf (t) = GSoC(s)(SoC(t)− 1).
Note that the VDC model consists of a linear double-

capacitor model and a Volterra system. The linear double-

capacitor model can be determined separately by parameter

estimation, where R0 along with other parameters within the

linear model will be determined. The linear part is the same

with the one in the NDC model and can be obtained from

the NDC model identification results. Then, given the linear

double-capacitor model and the input current signals, Vs and

SoC can be computed, although their accuracy can be affected

by uncertainty of both modeling and measurement. Finally, the

Volterra system serves as a nonlinear correction to improve the

voltage prediction.

The terminal voltage V (t) consists of V1(t), I(t)R0, and

the output y(t) of the nonlinear mapping described by the

Volterra system, i.e.,

y(t) = V (t)− I(t)R0 − V1(t) (9)

The Volterra model is capable of grasping the nonlinearity

and complex coupling among the input features. TN-based

representation makes it possible to capture nonlinearity of high

degree while seeking the low rank to simplify the parameter-

ization and prevent overfitting. Moreover, a Volterra system

is always bounded-input bounded-output stable, allowing a

reliable learning of parameters in battery applications.

Remark 2: It is worth coming up with a physics-informed

data-driven model. First, the parameters can be learned effi-

ciently from the practical data and the numerical complexity of

simulation is guaranteed if the model structure is appropriately



6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, XXXX 2021

constructed. Second, adding physics-informed components

makes the simulation more insightful and robust. Despite

the potential of an electrochemical model for high-fidelity

simulation, its physical parameters may not be identifiable

from experiment data and the numerical complexity increases

a lot if many processes are included. Also, it has no way to

handle the uncertainty due to unmodeled mechanisms, which

can be learned directly from practical data by data-driven

techniques.

C. The Bond Core Sweeping Algorithm
Given the input features u(t) and the output prediction y(t),

the next is to estimate the TN-cores {V1, · · · ,Vd} in (4).

Although a MISO Volterra system identification is required

for our application, the estimation algorithm will be presented

in terms of a MIMO one for general purpose. The idea of

sweeping optimization proposed in [32] is used in this paper.

However, the inherent ill-condition feature of the Volterra

structure in this paper will result in a very slow convergence

rate for the gradient method, which is used during sweeping

in [32]. Thus, the local optimization during sweeping will be

modified to compute a least-squares solution to handle the

ill-condition problem.

Note that the dual representation V , which suffers from

the curse of dimensionality, will not be referred to during the

whole estimation process. Instead, the TN-cores are optimized

directly, and the TN-ranks grow and shrink adaptively during

training to concentrate resources on the most useful correla-

tions within the data for learning.

The cost function to be minimized is

J =
1

2

N∑
t=1

m∑
l=1

(
f (l) (u (t))− y(l) (t)

)2

(10)

where f (l)(u(t)) := ŷ(l)(t) is the lth prediction output ŷ(t)
of the proposed Volterra model in (4). The outline of the bond

core sweeping algorithm is illustrated in Fig. 4. In order to

adaptively estimate the internal TN-ranks, two neighboring

TN-cores are merged into a bond core during each local

optimization whereas the other TN-cores are fixed. The local

optimization will sweep left and right to iteratively minimize

the cost function. The output branch will be moving along with

the bond core so that the parameters can be adjusted regarding

different outputs during each local optimization.

The original representation of TN-cores are shown in Fig.

4a. The sweeping algorithm starts from the rightmost. The

index order for each TN-core follows a counterclockwise

direction. All the TN-cores are randomly initialized as left

orthogonal to facilitate the numerical stability of the sweeping

algorithm which starts from the right most [41]. A TN-core

Vk ∈ R
rk−1×pu×rk is left orthogonal if it can be reshaped

into an rk−1pu × rk matrix Vk for which VT
kVk = Irk .

Thus, the rightmost TN-core is firstly modified by adding

one more dimension and isolating the output branch as shown

in Fig. 4b. Then, the rightmost two TN-cores {Vd−1,Vd}
are merged to formulate a bond core Bd−1 as shown in Fig.

4c. The bond core parameters are estimated by minimizing

the cost function (10) while fixing the other TN-cores. The

(a) The original Volterra TN structure.

(b) Isolate the output branch for the final TN-core.

(c) Combine the TN-cores {Vd−1,Vd} into a bond core Bd−1.

(d) Four fixed parts {w1(t),w2(t),w3(t),w4(t)} during the local opti-
mization to estimate an intermediate bond core Bk . Note that the output
branch is shifting along with Bk .

Fig. 4: Illustration of estimating the bond cores.

estimated bond core should be split up back into two updated

TN-cores. Similar steps are then implemented for the next

two TN-cores {Vd−2,Vd−1}. When the bond core sweeping

reaches the leftmost, the sweeping continues by changing to a

right direction. The sweeping procedures go left and right for

several iterations of local optimizations until the estimation

error is below a given threshold. In order to maintain the

original TN structure shown in Fig. 4a, the sweeping algorithm

should also stop at the rightmost finally. Thus, the termination

criterion for Algorithm 3 is: the cost in (10) for current

estimate is smaller than a given threshold while the bond core

to be updated at this iteration arrives at the right most, i.e.,

k = d− 1.

For simplicity of notations, denote pu = pM + 1. In

terms of an intermediate iteration shown in Fig. 4d where

the TN-cores {Vk,Vk+1} form the bond tensor Bk ∈
R

rk−1×pu×m×pu×rk+1 , the output prediction ŷ(t) can be com-

puted as

ŷT (t) = Bk ×1 w1(t)×2 w
T
2(t)×4 w

T
3(t)×5 w

T
4(t) (11)

where

w1 (t) =
(
V1 ×2 u

T
t

) · · · (Vk−1 ×2 u
T
t

)
w2 (t) = w3 (t) = ut

w4 (t) =
(
Vk+2 ×2 u

T
t

) · · ·(Ṽd ×2 u
T
t

) (12)

and Ṽd ∈ R
rd−1×pu×1 is a modified final TN-core with the

output branch on Vd ∈ R
rd−1×pu×m shifted to the bond core

Bk.

The local optimization is to fix the other TN-cores

{V1, · · · ,Vk−1,Vk+2, · · · ,Vd} and estimate the bond core

Bk from (11). Due to the ill-condition feature of the Volterra
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(a) Sweeping from right to left.

(b) Sweeping from left to right.

Fig. 5: Illustration of shifting the output branch during bond

core sweeping. The rectangular box drawn with dashed lines

is showing the pair of TN-cores to be merged into a bond core.

A tilde sign will be added over the notation of the TN-core

whose dimension is different from its original one.

model, the gradient method as in [32] is not used here.

Instead, one can solve the local optimization via least

squares. Similar ideas were also used in [33]. Denote B(l)
k ∈

R
rk−1×pu×1×pu×rk+1 as the lth sub-tensor of Bk correspond-

ing to the lth output, where l = 1, 2, · · · ,m. Also, denote the

pseudo-inverse operator as pinv(·). Then, Bk can be estimated

as

Bk (:, :, l, :, :) = B(l)
k

(13)

where

B(l)
k = reshape(vec(B(l)

k ), [rk−1, pu, 1, pu, rk+1])

vec(B(l)
k ) = pinv (W)Yl

W =

⎡
⎢⎢⎢⎣

wT
4 (1)⊗wT

3 (1)⊗wT
2 (1)⊗w1 (1)

wT
4 (2)⊗wT

3 (2)⊗wT
2 (2)⊗w1 (2)

...

wT
4 (N)⊗wT

3 (N)⊗wT
2 (N)⊗w1 (N)

⎤
⎥⎥⎥⎦

Yl =

⎡
⎢⎢⎢⎣

y(l) (1)
y(l) (2)

...

y(l) (N)

⎤
⎥⎥⎥⎦

(14)

and N is the number of available training data points. Note that

W only needs to be computed for once during each iteration.

Once the bond core Bk has been updated, one can split it up

into two new TN-cores and move the output branch to the next

TN-core. The SVD is used to collapse the bond core while the

TN-rank rk is updated by observing the number of dominant

singular values. In order to determine the dominant singular

values, an ε-truncated SVD [34], presented in Algorithm 2

following a MATLAB fashion, is performed with the sum of

squares of the truncated singular values not being greater than

a percentage of ε2 of the total one. The next step is then

to update the bond core Bk−1 if sweeping left or Bk+1 if

sweeping right. The implementation of splitting up the bond

core and shifting the output branch for both left and right

sweeping is illustrated in Fig. 5, and the complete algorithm

in a MATLAB fashion is summarized in Algorithm 3. Since

the algorithm is set to stop sweeping at the rightmost TN-core,

Vd should be permuted back to the original three-way tensor

with TN-rank rd = m in the final step.

Algorithm 2: ε-Truncated SVD
Input: Matrix B, expected amount ε in percentage to

be truncated

Output: Estimated rank r; truncated {L1,S1,Z1} via

SVD

1 [L,S,Z] ← SVD(B,‘econ’)

2 r ← numerical rank determined by removing at most ε
portion of insignificant singular values in S such that

their sum of squares is not greater than ε2‖S‖2F
3 L1 ← L(:, 1 : r)
4 S1 ← S(1 : r, 1 : r)
5 Z1 ← Z(:, 1 : r)

D. Acquisition of Training Data

We have proposed a VDC battery model to capture the

complex and coupled dynamics and the Bond Core Sweeping

Algorithm to estimate its parameters. In addition, the experi-

ments to acquire the training data should be carefully designed

to excite the major dynamics within the battery. An accurate

prediction of the static SoC-OCV characteristic is also desired

for the proposed model since the batteries are usually in a

storage state for most of its life time in practice. Thus, we

would like to train a model with both good dynamic and static

predictions.

In order to achieve an accurate dynamic prediction, the

model should be fed with data containing rich modes. This

requirement is also known as persistent excitation in the field

of system identification [20], [42]. A white excitation input

signal sweeping the whole working range is desired but not

practical in many applications. Instead, a relatively small data

set with several different variable-current profiles are sufficient

for the proposed VDC model, and this kind of training data

is denoted as Dynamic Training Data (DTD).

The proposed VDC model is a hybrid model with both

physically meaningful modeling and complexity-adjustable

nonlinear mapping. One advantage of the Volterra structure is

that the nonlinear mapping is always stable, and thus there is

no need to worry about a divergent prediction during validation

or in real-time battery monitoring. The adaptive adjustment
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Algorithm 3: Bond Core Sweeping Algorithm
Input: N input/output sampled data {u(t),y(t)} in

(8) and (9), memory length M , degree d,

expected accuracy ε in percentage

Output: TN-cores {V1, · · · ,Vd} in (4) minimizing

(10)

1 Initialization: Construct ut in (4); r0 ← 1, rd ← m;

initialize left orthogonal TN-cores {V1, · · · ,Vd} of

ranks 1, i.e., ri ← 1, i = 1, 2, · · · , d− 1; the starting

index k ← d− 1; sweeping direction R2L ← ‘left’

2 Vd ← reshape(Vd, [rd−1, pu, 1,m])
3 rd ← 1
4 while the termination criterion is not satisfied do

Compute {w1(t),w2(t),w3(t),w4(t)} in (12)

for l = 1, · · · ,m do
Bk(:, :, l, :, :) ← B(l)

k as in (13)

if R2L is ‘left’ then
Bk ← reshape(Bk, [rk−1pum, purk+1])
{r,L1,S1,Z1} ← ε-truncated SVD on Bk

rk ← r
Split Bk while keeping left orthogonal:

Vk ← reshape(L1S1, [rk−1, pu,m, rk])
Vk+1 ← reshape(ZT

1 , [rk, pu, rk+1])
if k > 1 then

k ← k − 1
else

R2L←‘right’

else
Bk ← reshape(Bk, [rk−1pu,mpurk+1])
{r,L1,S1,Z1} ← ε-truncated SVD on Bk

rk ← r
Split Bk while keeping right orthogonal:

Vk ← reshape(L1, [rk−1, pu, rk])
Vk+1 ← reshape(S1Z

T
1 , [rk,m, pu, rk+1])

if k < d− 1 then
k ← k + 1

else
R2L←‘left’

if The termination criterion is satisfied then
break

5 Vd ← permute(Vd, [1, 3, 2, 4])
6 rd ← m

of the TN-ranks of the proposed model during training also

reduces the overfitting problem since the low-rank feature

within the data is explored. Thus, it is unnecessary to use a

very large data set as in training pure black-box models such

as deep neural networks.

In order to capture the static feature, the SoC-OCV infor-

mation, which is obtained from specific tests, should also be

fed into the VDC model. Thus, a characterization experiment

should be performed to obtain the SoC-OCV curve, denoted

as OCV = h(SoC). Let {SoCi, OCVi}, i = 1, · · · , Nd

be the Nd sampled points of the SoC-OCV curve. Then,

the corresponding training data for the static feature can

be constructed such that, for each pair {SoCi, OCVi}, the

input/output data {u(t),y(t)} in (8) and (9) is formulated as

Vs (t) = SoCf (t) = SoCi

y (t) = h (SoCi)
(15)

for a time interval with certain duration, i.e., t ∈ [tLi , t
R
i ]. The

duration depends on how much emphasis we would like to put

on the static feature during training. Since there are Nd pairs of

{SoCi, OCVi}, there will be Nd such individual subintervals

for (15). Denote this part of training data as Static Training

Data (STD).

The reason why (15) reflects the static relation between the

SoC and OCV is that the proposed VDC model is capable

of describing the state of the battery when it is fully at rest.

The battery will be at equilibrium when it is fully at rest after

stopping charging/discharging. Thus, the current I(t) and the

transient voltage V1(t) will become zero and the other inner

states Vs(t), SoC(t), and SoCf (t) will become the same. This

inherent property makes the VDC model more powerful in

simultaneously capturing both dynamic and static features of

the battery.

The benefit of using a VDC model is the capability to use

the strong representation power to capture complex nonlin-

ear dynamics all in one, which include not only SoC-OCV

information but also dynamic nonlinearities and other possi-

ble effects eluding first-principles characterization. It directly

makes use of data, which relies on the practical observation

and is more efficient. It should be noted that the SoC-OCV

information used here was obtained from a specific battery

characterization experiment [18].

In sum, two types of training data are required: DTD and

STD. The first part focuses on the dynamics and the second

part focuses on the static feature. The STD is constructed

based on the SoC-OCV curve and its duration can be selected

based on how much weight to put on the static feature.

IV. EXPERIMENTAL VALIDATION

This section presents the experimental validation of the

proposed TN-based VDC model and the comparison with the

other relevant methods. All the experiments in this section

were conducted on a PEC SBT4050 battery tester. It can

support charging/discharging with arbitrary current-, voltage-,

or power- based loads up to 40 V and 50 A. A dedicated server

prepares and configures a test offline and collects sampled

experimental data online via the associated software, LifeTest.

Charging/discharging tests were performed on a Panasonic

NCR18650B lithium-ion battery cell, which was also used in

[18], to generate experimental data. Note that the battery cell

was set to operate between 3.2 V (fully discharged) and 4.2

V (fully charged). In this paper, only the discharging case is

considered.

Two perspectives of validation are performed in the rest of

this section. The first one shows the arrangement of training

and validation data, the parameter estimation of TN-cores

via the Bond Core Sweeping Algorithm, and the prediction

accuracy of the estimated VDC model. The second one shows

the requirements about training data to ensure the success of

the identification algorithm, serving as a note for practitioners.
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A. Training and Validation Results
The proposed hybrid VDC model consists of a linear

double-capacitor model and a Volterra model. The parameters

of the linear double-capacitor can be directly identified or

using the linear part extracted from the identified NDC model

in [18]. Note that the linear double-capacitor model here serves

as a feature extractor to produce useful features that are fed

into the Volterra system. Thus, slight distortion of using a

different identified linear model is not a problem and will

be accounted for during training of the Volterra model. As

presented in Section III-D, two types of training data, i.e.,

DTD and STD, are required.
In order to persistently excite the VDC model, the dynamic

modes in the training data should be sufficiently rich. Thus,

variable-current discharging data should be included. Since

the VDC model describes the nonlinear dynamics among the

current I(t), the voltage Vs(t), and SoC dynamics SoCf (t),
the training data should sweep across the preset working

range of current and SoC. Otherwise, the prediction of the

nonlinear model outside the uncovered working range will

show unexpected behaviors due to unmodeled dynamics. This

phenomenon will be illustrated in Section IV-B.
In order to maintain the static SoC-OCV feature of the

lithium-ion battery, additional training data described in (15)

should also be included. This portion of training data will

guarantee that the voltage prediction of the VDC model arrives

at the corresponding value according to the SoC-OCV curve

when the battery is fully at rest.
In order to better describe the low-frequency dynamics,

at least one constant-current discharging data set should be

included in the training data. The reason is that the variable-

current discharging data focuses on the high frequency dynam-

ics due to fast switching and thus contains little information

about the modes lying in the low-frequency band.
Finally, the training data should include three parts: DTD1

(variable-current profile for high frequency dynamics), STD

(SoC-OCV characteristics for static features), and DTD2

(constant-current profile for low frequency dynamics).
In our experiment, DTD1 consists of two variable-current

profiles (0∼3 A and 0∼6 A). Note that the second one sweeps

mainly across about 2∼6A. Thus, the two profiles allow the

nonlinear dynamic modeling for working range 0∼6 A. STD

describing the static features is formulated as in (15) with

{SoCi, OCVi}, i = 1, · · · , 21 being the 21 equidistantly data

points sampled every 5% SoC from the SoC-OCV curve and

the duration tRi −tLi = 500 sec. DTD2 consists of one constant-

current profile (3.5 A).
For comparison, a Thevenin model [43] and an NDC

model were identified along with the proposed VDC model.

The adopted Thevenin model consists of one nonlinear OCV

source, one internal resistance RTvn
0 and one parallel RTvn

1 -

CTvn
1 circuit same as in the NDC model for comparison.

The estimated parameters are RTvn
0 = 0.0759 Ω, RTvn

1 =
0.0390 Ω, CTvn

1 = 2, 476 F. The identified NDC model

will provide parameters for the double-capacitor part in the

VDC model. The resulting physical parameters were estimated

by the 2.0 identification approach in [18] with the nonlinear

function fixed as the SoC-OCV curve and are given as follows:

TABLE I: Estimated TN-ranks for {V1, · · · ,V5}.

TN-rank r̂1 r̂2 r̂3 r̂4
value 4 7 6 7

Cb = 10, 905F, Cs = 1.462F, Rb = 0.0728Ω, Rs =
0Ω, R1 = 0.0413Ω, C1 = 990F, and R0 = 0.0113Ω.

These parameters determine the feature extractor described

by the linear double-capacitor model in (5). Then, the TN-

based Volterra model with input/output {u(t),y(t)} defined

in (8) and (9) was estimated using the Bond Core Sweeping

Algorithm proposed in Section III-C with memory length

M = 3, degree d = 5, filter time constant α = 1/0.003, and

ε = 0.4. Note that the truncation factor ε is adjusted to seek the

low-rank estimation as much as possible while maintaining the

prediction accuracy. This procedure will prevent the resulting

model from being overfitted. In practice, one should increase

ε if the available dynamic modes are getting richer with

increasing model complexity. The estimated TN-ranks are

illustrated in Table I. The training algorithm takes about 23
seconds on an Intel Core i5-10210U CPU with 16 GB RAM.

The training results are shown in Fig. 6, Fig. 7, Fig. 8, and

Fig. 9. The RMSEs were computed for the dynamic voltage

prediction while the battery is discharging.

For variable-current profiles, the VDC model produces the

best voltage prediction both during cycling and resting. The

NDC model uses a static nonlinear mapping estimated to

balance the trade-off between the nonlinear dynamics and

static SoC-OCV relationship. Despite the improvement in

the dynamic prediction, the trade-off is obvious: the static

nonlinear mapping cannot account for both dynamic and static

nonlinearities simultaneously. Thus, the NDC model shows

better prediction accuracy than the Thevenin model during

discharging, whereas it is still less accurate than the VDC

model due to the aforementioned tradeoff. Fig. 8 shows the

prediction of SoC-OCV relationship using VDC model. It

illustrates that the VDC model can be used to produce a more

accurate dynamic voltage prediction without deteriorating the

static prediction of the SoC-OCV feature. For the constant-

current profile (3.5 A), one can observe that the Thevenin

model is doing its best to minimize the error during discharg-

ing but is limited due to the lack of model fidelity. The VDC

model is the best and can accurately capture the diffusion

dynamics during the idling period.

The validation data consists of four constant-current profiles

(1 A, 1.5 A, 2 A, 2.5 A) and one variable-current profile

(1.5∼2.5 A). The prediction accuracy for the validation data

is shown in Fig. 10 and Fig. 11.

For the constant-current profile in the validation data, the

VDC model shows the best voltage prediction for all four cases

in the following aspects as shown in Fig. 10: the dynamic non-

linearities are being accurately predicted during discharging;

the transient diffusion dynamics are being accurately tracked

during the idling period; the errors of static voltage predictions

when at rest are small. The Thevenin model struggles to

predict the true dynamics. For the variable-current profile in

the validation data, the VDC model performs the best during
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Fig. 6: Illustration of the voltage prediction by the proposed model for the variable-current profile 0∼6 A in the training data

set DTD1. The RMSEs for different models are: 33.2mV (Thevenin); 20.8mV (NDC); 5.81mV (VDC).

both the discharging period and idling period. Similar to the

training result, the NDC model is better in dynamic prediction

than the Thevenin model.

Remark 3: All models are determined and fixed for the

whole SoC range. A Thevenin model with parameters identi-

fied for different SoCs may improve the accuracy of the model

depending on how well the following assumption holds: The

dynamics around a specific SoC and C-rate level can be well

approximated by a linear model. In addition, one needs to

perform additional HPPC test to produce the data to identify

such an SoC-dependent model. The proposed VDC model

captures these nonlinear dynamic behavior directly from the

cycling data instead of performing linearization around an

equilibrium.

B. The Effect of Training Data Range

Section IV-A has demonstrated the efficacy of the proposed

method. Since nonlinear dynamics is modeled, it should be

mentioned that the VDC model, due to its data-driven nature,

will only capture the nonlinearity within the observed range of

input current magnitudes and SoC values. Thus, it is necessary

to select the training data sweeping across the normal working

range. The nonlinearity is directly related to the input current

magnitude and the battery dynamics keeps changing along

with the SoC. For this reason, the current profiles should cover

those common magnitudes in practice, and the training data

should spread from full charge to almost empty.

In order to demonstrate the effect of training data range, the

investigation of parameter estimation was performed on the

two variable-current profiles in DTD1. The 0∼3 A variable-

current profile spreads from SoC = 100% to SoC = 14%
(almost empty). The 0∼6 A variable-current profile spreads

from SoC = 100% to SoC = 47%. The STD and the

experimental data corresponding to 0∼6 A were used to train

the TN Volterra model. The other one (0∼3 A) was used for

validation. The results are shown in Fig. 12.

For the stage when the SoC is above 47%, the voltage

prediction is good. However, when the SoC drops below

47%, the voltage prediction gets worse for the VDC model.

The reason is that no training data sweeps below SoC =
47%. Thus, the VDC model is not persistently excited in the

SoC range below 47%. In other words, the poor prediction

accuracy below 47% is due to the lack of informative data for

that operating range. This observation also indicates a common
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Fig. 7: Illustration of the voltage prediction of the proposed model for the variable-current profile 0∼3 A in the training data

set DTD1. The RMSEs for different models are: 24.6mV (Thevenin); 17.2mV (NDC); 3.15mV (VDC).
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Fig. 8: The model prediction of SoC-OCV relationship for the

training data set STD.

and important need when performing nonlinear modeling: the

training data should cover the normal working range of the

batteries.
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Fig. 9: The voltage prediction for the constant-current profile

(3.5 A) in the training data set DTD2.

V. CONCLUSION

This paper proposes a novel TN-based VDC model. The

VDC model consists of two parts: a linear double-capacitor

model and a TN-based Volterra model to capture nonlinear
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Fig. 10: The voltage prediction for the constant-current pro-

files (1 A, 1.5A, 2 A, 2.5A) in the validation data set.

dynamics. The proposed VDC model has the advantage to

model both static and dynamic nonlinearities simultaneously

in a more accurate way. It is by nature an SoC-dependent

model, which will capture the changes in the battery dynamics

as the SoC varies. Parameters of the VDC model are estimated

via the Bond Core Sweeping Algorithm. It allows the Volterra

model to seek a low-rank representation during training which

also reduces the overfitting problem. The experimental results

show that the VDC model produces a much more accurate

voltage prediction than the Thevenin model and NDC model.

The prediction error of the proposed model can be less than

0.5% as shown in the experimental validation. It is illustrated

that the TN-based VDC model can serve as a powerful tool

in modeling unknown and complex nonlinearities within the

batteries using a data-driven model. Future work can be

investigating using electrochemical models to produce useful

features to feed into a Volterra model. This is attractive since

the electrochemical part will provide insights into the true

battery states and the Volterra part will help do nonlinear

correction to account for unmodeled dynamics and approxi-

mation errors from the electrochemical part with a data-driven

technique.
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Fig. 11: Illustration of the voltage prediction of the proposed model for the variable-current profile 1.5∼2.5 A in the validation

data set. The RMSEs for different models are: 25.9mV (Thevenin); 16.2mV (NDC); 6.15mV (VDC).
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