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Tensor Network Based MIMO Volterra Model for
Lithium-ion Batteries

Yangsheng Hu, Raymond A. de Callafon, Ning Tian, and Huazhen Fang

Abstract— Accurate battery modeling is fundamental for
battery management system to function well and extract the
full potential from a battery without violating constraints. In
this paper, a Tensor Network (TN) based Volterra double-
capacitor (VDC) model for lithium-ion batteries is devel-
oped to improve the prediction performance of the non-
linear double-capacitor (NDC) model. It is shown that the
VDC model maintains the advantages of the NDC model to
account for the rate capacity effect and the voltage recovery
effect. In addition, the VDC model is capable of predicting
both static and dynamic nonlinearities simultaneously in a
more accurate way. To estimate the TN-cores in the VDC
model, a Bond Core Sweeping Algorithm is proposed and
shown to lead to a low-rank representation. A comparison
based on experimental data demonstrates that the VDC
model gives greater prediction accuracy than the NDC
model and Thevenin model, showing significant promise to
enhance future battery applications.

Index Terms— Batteries, equivalent circuit model (ECM),
system identification, tensor network (TN), Volterra model.

[. INTRODUCTION

ECHARGEABLE batteries have become a major driver

for applications ranging from portable consumer elec-
tronics to electric vehicles and microgrid applications. Among
them, lithium-ion batteries (LiBs), having a high power/energy
density, a long life span, high energy storage efficiency, and
environment friendliness, are attracting more and more atten-
tion in both research and application fields [1]-[5]. There are
roughly two major developed efforts in LiBs: one focuses on
the battery cell design, materials selection for electrodes and
electrolytes, pack structure optimization etc., to develop high-
performance batteries; the other one implements advanced bat-
tery management systems (BMS) to maximize the utilization
efficiency and safety for given types of batteries generally
based on estimation of the State-of-Charge (SoC), State-of-
Power (SoP), and State-of-Health (SoH).

Algorithms for BMS generally require mathematical models
that describe battery physics and dynamics. The exisiting
battery models mainly fall into two categories [6]: 1) electro-
chemical models, which leverage electrochemical principles
to capture the dynamics of lithium-ion intercalation and dif-
fusion as well as various associated processes [7]-[12], and
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2) equivalent circuit models, which are a network of circuit
components to describe a LiB’s electrical behaviors [2], [13]-
[18]. A brief comparison between the two models can be found
in [18], where a nonlinear double-capacitor (NDC) model
was proposed to bridge the gap between physical models and
ECM. The NDC model is a modification of a linear double-
capacitor model [19] while maintaining feature to account
for rate capacity effects and energy recovery effects. The
nonlinear mapping introduced in the NDC model is based
on the observation of the nonlinear SoC-OCV (Open Circuit
Voltage) curve. However, the SoC-OCV curve is a static
feature for the LiBs fully at rest and does not reflect the
full nonlinearity when the batteries are used dynamically. As
shown in the validation experiment for the identification 2.0
approach in [18], the resulting SoC-OCV curve identified by
the NDC model does not fully match the measured curve
when the training process was trying to capture both the static
and dynamic nonlinearities. Despite the less accurate static
prediction, the dynamic prediction was still improved by using
the NDC model. This observation provided the motivation for
this paper to propose a new model to account for the two types
of nonlinearities simultaneously.

Both electrochemical models and ECMs have physical ex-
planations for the underlying processes happening inside of
the battery during charging/discharging. However, due to the
limited knowledge about the complicated dynamic processes
involved in charging/discharging, it is impossible to model all
the processes. Pure data-driven modeling approaches such as
system identification or machine learning provide an alterna-
tive to first-principles modeling [20]-[24]. Instead of figur-
ing out the detailed electrochemical and physical processes,
data-driven modeling uncovers the underlying relationship
between the historical input/output data from the perspectives
of statistics and optimization. These techniques have been
demonstrated effective in different battery modeling applica-
tions [25]-[31]. However, a large amount of data is generally
required to guarantee the effectiveness of such models, which
can easily suffer overfitting problems.

On the other hand, from the perspective of formulating a
model, it will be very time-consuming to take into account
a complicated mix of electrochemical reactions and side pro-
cesses even if the expert knowledge is known. The prediction
accuracy heavily relies on the accuracy of first-principles
modeling and the estimation of the physical parameters is
not trivial. However, machine learning methods make use of
a wealth of data and can efficiently formulate an accurate
model to learn the input/output relationships from practical
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observations for effective prediction. From the perspective of
computational complexity, a full-scale electrochemical model,
e.g., the DFN model, is computationally expensive. However,
a machine learning model can usually be formulated into a
computationally efficient structure. This is very attractive for
battery applications.

In this paper, a hybrid combination of an ECM and tensor
network (TN) based supervised learning is used for battery
modeling to enable physics-informed data-driven learning of
the unknown nonlinear dynamics inherent to batteries. This
hybrid structure harnesses the combined strengths of a physics-
based model and a machine learning model. For the ECM part,
the linear double-capacitor model is used to extract the voltage
and SoC features within the battery. Note that the limitation is
that the features generated by the model may not be accurate
due to uncertainty of both modeling and measurement. These
features are then fed into a supervised learning framework
as shown in [32] to learn the nonlinear dynamics between
the raw input features and output terminal voltage. However,
compared to [32], this paper introduces a new modification
that encodes the input features further into a feature map
described by a Volterra model which can also be equivalently
written into a TN representation for better computational
efficiency. The reason for using TN representation is that it can
mitigate the curse of dimensionality encounterd by a normal
Volterra model with a large memory length and a high model
degree [33]. Thus, a TN representation allows the Volterra
model to capture more complex nonlinear dynamics from
the numerical perspective. In addition, we propose the Bond
Core Sweeping Algorithm, which uses the e-truncated singular
value decomposition (SVD) [34], to ignore less significant
modes and seek the low-rank property intrinsic to data to avoid
overfitting.

A. Statement of Contributions

This paper presents the following contributions.

First, a novel TN-based Volterra double-capacitor (VDC)
model is developed. A linear double-capacitor model proposed
in [19] with the currents as the input signals is used as an
initial feature extractor. The raw features produced by the
linear double-capacitor model are then fed into a supervised
learning structure described by a TN-based Volterra model to
predict the output terminal voltages. The proposed VDC model
maintains some advantages of the linear double-capacitor
model such as capturing the rate capacity effect and the voltage
recovery effect. On the other hand, there are different sources
of the dynamic nonlinearities, including but not limited to
unmodeled dynamics varying with different SoC and C-rate.
The linear double-capacitor model or the NDC model, as an
approximation of the true dynamics inherent to a LiB, in-
evitably involves model mismatch. The proposed VDC model
then has an advantage over the NDC model proposed in [18] in
terms of accounting for both static and dynamic nonlinearities
simultaneously in a more accurate way by incorporating a
data-driven technique. In this paper, only discharging cases are
considered. The VDC model will facilitate real-time voltage
prediction with high accuracy and may benefit model-based

algorithm design in BMS, including SoP prediction, charging
control, etc. To our best knowledge, this study is the first
to apply TN-based Volterra techniques in the application of
battery modeling.

Second, a Bond Core Sweeping Algorithm is developed
to estimate the TN-cores of the proposed VDC model. The
proposed algorithm is developed by modifying the sweeping
optimization algorithm in [32]. The first major difference is
that a least squares technique is used to estimate each bond
core instead of using a gradient descent algorithm. The reason
is that the convergence of the gradient descent algorithm can
be rather slow for a problem in which the gradient is rank
deficient. This problem is encountered in our application.
The second major difference is that an e-truncated singular
value decomposition is used when splitting the bond core into
two individual TN-cores. The advantage is that the model
complexity can be adjusted and simplified by emphasizing
on the low-rank estimation. Seeking a low-rank estimation is
important to avoid overfitting.

Third, experimental validation is performed to assess the
performance of the proposed VDC model. The approach to
generating the training data for a nonlinear dynamic battery
modeling is presented. The effect of the current magnitude and
SoC range swept by the training data on the model prediction
is also investigated. A comparison of the VDC model with the
NDC model is also given to show the efficacy of the proposed
VDC model.

Note that this work is a significant extension of our previous
work [35], in which the basic idea of using a TN-based
Volterra model to do nonlinear mapping is illustrated. The
parameter estimation for the TN representation of a more
general multi-input multi-output (MIMO) Volterra model is
developed in this paper. In addition, more experiments are
performed to validate the proposed algorithm, and the effect
of using partial data in a machine learning based method is
also investigated.

B. Organization

The remaining part of this paper is organized as fol-
lows. Section II presents the TN representation of a MIMO
Volterra model. The VDC model of battery dynamics and the
corresponding parameter estimation are proposed in Section
III. In addition, the approach to the acquisition of training
data is investigated. In Section IV, experimental validation is
performed to demonstrate the efficiency of the proposed model
and algorithm. Section V summarizes this paper.

[I. MIMO VOLTERRA MODEL IN THE TN
REPRESENTATION

Denote the output signal as y(¢) € R™ and the input signal
u(t) € RP. The ath element of a vector x(¢) is written as
2(®)(t). Assume that there is a nonlinear relationship between
u(t) and y(t) that can be described by a MIMO Volterra
model.
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A normal description of a discrete-time p-input m-output
Volterra system of degree d can be described as

M—-1

d p—1
yt)=ho+> Y > hens (u(r) (D

i=1 ky o ki=0 a1, ;=0

where M is the memory length, d)]f;f‘ (u(t)) € R and h’fjf‘ €
R™ are the ¢th Volterra kernel function and corresponding
kernel coefficient. Specifically, ¢%* and h};" are the abbre-
viations of functions of {kq, ay; ko, ag; -« - ; ki, o; } such that

ne () = [ w0 (- ky) 2)
j=1

hy = hy (b1, o5 ko o kg, o) 3)
The kernel function ¢%"(-) is a multiplication of different
degrees among the possibly different input components at
possibly different time instants. All kernel functions serve
as a feature map to map the input vector u(t) into a higher
dimensional space, which helps create nonlinear mappings
from the input u(t) to output y(¢) by specifying the kernel
coefficients. This allows one to capture high order nonlinearity
and even coupled dynamics among different input channels
and past states. Thus, this model structure has great potential
for nonlinear system identification.

However, it should be noted that, for the generated high
dimensional space, the number of all the kernel coefficients is
1+ Z?zl (pM)" and suffers from the curse of dimensionality
as the degree d goes up. Avoiding the choice of a large d
prevents an overburdened storage requirement for a computer,
but limits the model’s capability of capturing complex and
even coupled dynamics. On the other hand, even if the storage
demand is not a problem, recording every detailed kernel
coefficient may be unnecessary since not every kernel will
be dominantly active in practice, which motivates us to seek
a low-rank representation of (1).

TN representation can be used to address this issue. In
the following discussion, tensors refer to multidimensional
arrays. A d-way tensor is denoted using a boldface calligraphic
letter as T~ € R™Mxm2xXnd_Fach entry of 7 is denoted as
T (i2a) via d integer indices (i1ig - - -ig).

Definition 1: (The k-Mode Product [34]) For a tensor T~ €
R7XoXng X Xna and g matrix U € RPX™k the k-mode
product X = T xj, U is defined such that

XU ik—1dingria) — zk: UU) gliaik—1ininri-ia)

in=1
and X c RnlX"'Xnk—lxpkxnk+l><"'><nd

Definition 2: (Tensor Train (TT) Decomposition [34]) The
d-way tensor T~ can be represented by a linear TN such that

T(iliQ"'id) _ Z 7-1(“oi1a1)7.2(a1i2a2) L E(Qd—lid,a‘d)
QQ, Qg
where Ti,---, Ty are called TT-cores. Each Ty is a 3-way

tensor of dimensions r,_1 X ny X i, where r,_1, rj are called
the TT-ranks and rq = rg = 1.
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Fig. 1: The illustration of identifying a TN based Volterra model.
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Fig. 2: A linear Tensor Network.

Following the discussion and formulation in [33], one can
incorporate all the kernel coefficients into a (d + 1)-way
Volterra tensor YV € RPM+1)xx(pM+1)xm guch that the
Volterra system output can be simulated as

yT(t):Vx1 uthg utT~-><du;r @
= (Vixa ul ) (WVexa uf) - (Vaxz uf)
where
w = [Lu" (1), u" (t— 1), u"(t— M +1)] e RMH

and {V1, - ,V,} are the TN-cores of the Volterra tensor V.
The last core V; € R7d-1X@M+1)xm 454 the remaining V; €
R7i-1 X (PMA1)X7i with o = 1. In fact, the TN-representation
used here is a generalization of the TT-decomposition with
rq = m. Once the TN-cores are obtained, one can simulate
the system using the second row of (4) without referring back
to its dual representation V), which suffers from the curse of
dimensionality.

The number of stored elements in the TN representation
{Vi,-++,V4} is at a magnitude of O((d — 1)r?(pM +
1) + mr(pM + 1)), which will greatly reduce the storage
requirement if the maximal TN-rank r» = max{ry,--- ,7q}
is sufficiently small. Fortunately, a low value for the maximal
TN-rank r is very common in practical applications, as is the
case with battery modeling. Thus, (4) computed with the TN
representation {V1,---, Vy} serves as a low-rank representa-
tion of (1). The corresponding computational complexity of
using (4) is approximately O(d(pM + 1)r?).

The process of identifying a TN based Volterra model
from input/output experimental data is illustrated in Fig. 1.
An illustration of decomposing a simple 3-way tensor of
dimension ny X ng X ng3 into a combination of three low-rank
TN-cores is shown in Fig. 2.

Remark 1: In this paper, the second line in (4) will be
adopted to simulate a TN-based Volterra model prediction y (¢)
given estimated TN-cores {V1,---,V,} and input features
u(t). Also, the formulation of our proposed algorithm in the
following section allows the readers to rely on only the 2-
mode tensor product throughout the paper in addition to basic
linear algebra. For easy reference, (V;xo u}) € Rri-1x1xri
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can be squeezed into a matrix M; € R™~1*"i by ignoring the
second dimension and each component is computed as
pM+1
k i— k i
M, (i1, ;) = Z u§ )vi(a 1kag)
k=1
where 1 < a;—1 < r;—1 and 1 < o; < ;. A more numerically
efficient way is using matrix product during implementation
as shown in Algorithm 1 following a MATLAB fashion.

Algorithm 1: 2-Mode Tensor Product
Input: TN-core V;, input vector u; in (4)
Output: The matrix representation M; of (V;x2 u})
1 V; « permute(V;, 2,1, 3])
2 V; < reshape(V;, [pM + 1,7i_17])
3 M; < reshape(uf Vy, [r;_1,7:])

[1l. BATTERY MODELING AND PARAMETER ESTIMATION
A. Linear and Nonlinear Double-Capacitor Model

The original linear double-capacitor model for a battery was
proposed in [19] and consists of two serial Resistor-Capacitor
circuits in parallel (i.e., Rp-Cp and R¢-Cy) and a resistor Ry,
as shown in Fig. 3a. The resistor R, represents the collected
instantaneous ohmic resistance. The R-C's circuit corresponds
to the electrode surface region exposed to the electrolyte, while
the R,-C}, to the bulk inner part of the electrode. The double-
capacitor structure can capture both the rate capacity effect
and the voltage recovery effect since it can model the charge
migration between the near-surface and bulk inner domains of
an electrode from the perspective of a single-particle model
(SPM) [36]-[38].

However, the linear double-capacitor model is unable to de-
scribe a defining characteristic of batteries, e.g., the nonlinear
SoC-OCV curve. Thus, the linear double-capacitor model is
working well only around a certain SoC range so that the linear
approximation is reasonable. In order to resolve this issue, the
NDC model was proposed in [18], where a nonlinear mapping
of Vi was introduced to approximate the SoC-OCV curve. A
parallel RC circuit R;-C; was also introduced there to account
for the voltage transients related to the charge transfer on the
electrode/electrolyte interface and the ion mass diffusion in
the battery [39]. The NDC model is shown in Fig. 3b. Two
scenarios can be considered for the parameter estimation of the
NDC model: constant-current charging/discharging; variable-
current charging/discharging. Experiment validation illustrated
that the NDC model can have higher accuracy than other
different ECMs under comparison. Also, the basic NDC model
without the R;-C part is almost comparable to the full model,
especially if the value of R;C is small.

B. Hybrid Double-Capacitor Model Development

Despite the advantages of the NDC model, the validation
results in [18] indicate a space for further improvements: the
validation data show current-dependence of the parameters,
which is not considered by the model; the NDC model is

Ro
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Vs Vb
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T T
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(a) The original linear double-capacitor model.
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(c) The VDC model.

Fig. 3: Tlustration of different double-capacitor models. The
components within the rectangle are treated as a whole. In (b),
h(-) is a nonlinear function. In (c), Gsoc(s) is a linear filter
and y is the voltage prediction of the part within the rectangle.

estimated independently for constant and variable current
scenarios, and the model estimated for one scenario offers
less predictive accuracy for the other; the SoC-OCV curve
identification for the scenario of variable current matches the
true one with relatively limited accuracy since the identifia-
bility of this defining characteristic becomes less with many
parameters including the nonlinear mapping to be estimated
therein. As a final remark, the SoC-OCV curve is a static
feature for batteries when they are fully at rest. On the other
hand, if the nonlinear mapping is not optimized during training
the model and simply fixed as the SoC-OCV curve even for
the scenario of variable current, then the static prediction
error at rest will be reduced. However, the nonlinear transient
dynamics may not be well approximated since the nonlinear
mapping is not optimized from the discharging data. Thus,
the simple nonlinear mapping introduced in the NDC model
may not fully account for the nonlinear transient dynamics. In
addition, when the battery stops discharging, the true terminal
voltage transient takes a long time to reach the full rest state
whereas the predicted one by the NDC model arrives at the
steady state almost instantaneously. This phenomenon implies
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that additional dynamics can be modeled within the battery
after the discharging is stopped and before it achieves the fully
steady state.

Despite the limitation of the nonlinear mapping within the
NDC model, it still shows the potential to propose a new
structure to capture the static and dynamic nonlinearities in a
more accurate way. To improve the above mentioned points of
the NDC model, a hybrid double-capacitor model is proposed
in this paper as shown in Fig. 3c. A linear double-capacitor
is used to extract meaningful features of the batteries and
a multiple input single output (MISO) Volterra system is
followed to synthesize all important features to predict the
voltage. The proposed model is referred to as the VDC model
in the following discussion.

The state-space equation of the linear part in Fig. 3b or
Fig. 3c, which corresponds to a modified version of the linear
double-capacitor model appended with one R-C component,
is given by

Vi (t) Vs (t)
Vi(t) | =A| Va(t) | +BI@) 5)
Vi (t) Vi(t) |
similar to [18], where
—1 1 O 7] R
Cy(Ry+Rs)  Cp(Ry+Rs) Cy(Rp+Rs)
A — 1 —1 0 B _ Ry
Cs(Ry+Rs)  Cs(Ry+Rs) 5 ’ Cs(Rzi+R5)
0 R1Cy Cy

Note that I > 0 for charging, I < 0 for discharging, V,, =
Ve=1V for SoC =1, V, =V, =0V for SoC = 0, and SoC
is computed as

GV + GV
B Cb + Cs

Additional dynamics, which is not captured by the NDC
model, can be attributed to the slow charge diffusion process
inside the battery. The battery becomes fully at rest when the
the process reaches its equilibrium. The additional and slow
dynamics is not obvious by using the cycling data with a high
switching frequency. This phenomenon can be modeled as SoC
dynamics formulated as a first-order transfer function model

1
as+1

SoC (6)

Gsoc(s) = (7

shown in Fig. 3c. The time constant of the slow charge
diffusion process is accounted for by the parameter a. The
static gain of the first-order model is normalized to 1, since the
SoC as a whole within the battery remains the same whereas
it takes some time for all the charges to diffuse toward a
steady state. From the electrochemical perspective, it describes
the dynamics of the lithium concentration at the surface of
the particle around the average lithium concentration in the
solid. When the battery stops charging/discharging, R,-Cs and
Ry-Cy are in the same loop and Vi and Vj, will reach the
same equilibrium simultaneously. Thus, V}, provides no more
dynamic information than V. The introduction of the filter (7)
is necessary since it adds features for slow dynamics to the
input of the Volterra model besides V. The time constant
« requires to be adjusted during the parameter estimation.

Denote the output of Ggoc(s) in (7) as SoCy(t) at the time
instant .

The battery impedance is typically a function of SoC [40].
However, one can break it down into a constant part [?y due to
the materials of current collectors and the inside impedance
which is related to the SoC. The inside impedance can be
attributed to the SoC status.

The V; is the reflection of the surface charge and related
to the major part of the terminal voltage. Different current
profile will affect the dynamic changing of V; and SoC. Thus,
the current dependence of the model parameters mentioned in
the experimental validation in [18] can be described by the
nonlinear interaction between V; and SoCy.

Finally, the voltage V and SoC dynamics SoCy are selected
as the input features for the nonlinear mapping described by
the Volterra system. The transient voltage 1, due to charge
transfer and the constant resistance R are separated from
the nonlinear mapping. The input vector u(t) of the Volterra
system is given as

u(t) = [SoCy (1), Vi ()] ®)

where V(t) and SoC(t) are obtained by simulating the linear
double-capacitor model in (5). One should be careful about
the initial state when simulating SoCy(t) using the filter
Gsoc(s). For example, for a fully charged battery, the initial
SoC(0) = 1 and it should be set as the initial state of
Gsoc(s) in SoCy(t) = Gsoc(s)SoC(t). The other approach
is to filter the signal SoC(¢) — 1 instead for a fully charged
battery if the initial state of Ggoc(s) is set as zero, i.e.,
SoCy(t) = Gsoc(s)(SoC(t) — 1).

Note that the VDC model consists of a linear double-
capacitor model and a Volterra system. The linear double-
capacitor model can be determined separately by parameter
estimation, where Ry along with other parameters within the
linear model will be determined. The linear part is the same
with the one in the NDC model and can be obtained from
the NDC model identification results. Then, given the linear
double-capacitor model and the input current signals, V; and
SoC can be computed, although their accuracy can be affected
by uncertainty of both modeling and measurement. Finally, the
Volterra system serves as a nonlinear correction to improve the
voltage prediction.

The terminal voltage V' (t) consists of Vi (t), I(¢)Ry, and
the output y(¢) of the nonlinear mapping described by the
Volterra system, i.e.,

y(t)=V(t)—I(t)Ro — Vi(t) 9)

The Volterra model is capable of grasping the nonlinearity
and complex coupling among the input features. TN-based
representation makes it possible to capture nonlinearity of high
degree while seeking the low rank to simplify the parameter-
ization and prevent overfitting. Moreover, a Volterra system
is always bounded-input bounded-output stable, allowing a
reliable learning of parameters in battery applications.
Remark 2: It is worth coming up with a physics-informed
data-driven model. First, the parameters can be learned effi-
ciently from the practical data and the numerical complexity of
simulation is guaranteed if the model structure is appropriately
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constructed. Second, adding physics-informed components
makes the simulation more insightful and robust. Despite
the potential of an electrochemical model for high-fidelity
simulation, its physical parameters may not be identifiable
from experiment data and the numerical complexity increases
a lot if many processes are included. Also, it has no way to
handle the uncertainty due to unmodeled mechanisms, which
can be learned directly from practical data by data-driven
techniques.

C. The Bond Core Sweeping Algorithm

Given the input features u(t) and the output prediction y(¢),
the next is to estimate the TN-cores {Vi,---,Vy} in (4).
Although a MISO Volterra system identification is required
for our application, the estimation algorithm will be presented
in terms of a MIMO one for general purpose. The idea of
sweeping optimization proposed in [32] is used in this paper.
Howeyver, the inherent ill-condition feature of the Volterra
structure in this paper will result in a very slow convergence
rate for the gradient method, which is used during sweeping
in [32]. Thus, the local optimization during sweeping will be
modified to compute a least-squares solution to handle the
ill-condition problem.

Note that the dual representation V, which suffers from
the curse of dimensionality, will not be referred to during the
whole estimation process. Instead, the TN-cores are optimized
directly, and the TN-ranks grow and shrink adaptively during
training to concentrate resources on the most useful correla-
tions within the data for learning.

The cost function to be minimized is

T= 0 (1O ey -0 )’

t=1 =1

(10)

where fO(u(t)) := 9V (t) is the Ith prediction output ¥ (t)
of the proposed Volterra model in (4). The outline of the bond
core sweeping algorithm is illustrated in Fig. 4. In order to
adaptively estimate the internal TN-ranks, two neighboring
TN-cores are merged into a bond core during each local
optimization whereas the other TN-cores are fixed. The local
optimization will sweep left and right to iteratively minimize
the cost function. The output branch will be moving along with
the bond core so that the parameters can be adjusted regarding
different outputs during each local optimization.

The original representation of TN-cores are shown in Fig.
4a. The sweeping algorithm starts from the rightmost. The
index order for each TN-core follows a counterclockwise
direction. All the TN-cores are randomly initialized as left
orthogonal to facilitate the numerical stability of the sweeping
algorithm which starts from the right most [41]. A TN-core
V), € R"—1XPuXTk g Jeft orthogonal if it can be reshaped
into an 7i_1p, X 1, matrix Vj for which VEV;C =1I,.

Thus, the rightmost TN-core is firstly modified by adding
one more dimension and isolating the output branch as shown
in Fig. 4b. Then, the rightmost two TN-cores {V;_1,V4}
are merged to formulate a bond core B;_; as shown in Fig.
4c. The bond core parameters are estimated by minimizing
the cost function (10) while fixing the other TN-cores. The
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(a) The original Volterra TN structure.
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(d) Four fixed parts {w1(t), wa(t),ws(t), wa(t)} during the local opti-
mization to estimate an intermediate bond core Bj. Note that the output
branch is shifting along with 1.

Fig. 4: Tlustration of estimating the bond cores.

estimated bond core should be split up back into two updated
TN-cores. Similar steps are then implemented for the next
two TN-cores {V4_2,V4_1}. When the bond core sweeping
reaches the leftmost, the sweeping continues by changing to a
right direction. The sweeping procedures go left and right for
several iterations of local optimizations until the estimation
error is below a given threshold. In order to maintain the
original TN structure shown in Fig. 4a, the sweeping algorithm
should also stop at the rightmost finally. Thus, the termination
criterion for Algorithm 3 is: the cost in (10) for current
estimate is smaller than a given threshold while the bond core
to be updated at this iteration arrives at the right most, i.e.,
k=d-1.

For simplicity of notations, denote p, = pM + 1. In
terms of an intermediate iteration shown in Fig. 4d where
the TN-cores {V,Vit+1} form the bond tensor By €
R7k-1XPuXmxpuxThi1 the output prediction y(¢) can be com-
puted as

I' (1) = Bi x1 wi(t) xa wy(t) xa wy(t) x5 wy(t) (11)
where
W1 (t) = (V1 X9 utT) (kal X9 ll'{)
wa (t) =ws(t) =w (12)

wy (t) = (Vg2 xouf) - (\N)d X2 uf)

and 1~)d € Rra-1XpuXl jg 3 modified final TN-core with the
output branch on V; € R"¢-1XPuX™ ghifted to the bond core
B;.

The local optimization is to fix the other TN-cores
{V1,+ , Vi1, Vki2, -, Va} and estimate the bond core
B, from (11). Due to the ill-condition feature of the Volterra
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Fig. 5: Ilustration of shifting the output branch during bond
core sweeping. The rectangular box drawn with dashed lines
is showing the pair of TN-cores to be merged into a bond core.
A tilde sign will be added over the notation of the TN-core
whose dimension is different from its original one.

model, the gradient method as in [32] is not used here.
Instead, one can solve the local optimization via least
squares. Similar ideas were also used in [33]. Denote B,(Cl) S
R7k=1XPuX1XPuXTkt1 ag the [th sub-tensor of By correspond-
ing to the [th output, where [ = 1,2, --- ,m. Also, denote the
pseudo-inverse operator as pinv(-). Then, B;, can be estimated
as

Bi (1) = BY (13)
where
B/(cl) = reShape(VeC(Bl(gl))a [Tk—lvpuv lapua Tk—‘,—l])
vec(B,(cl_)) = pinv (W)Y
wi () ewl () ewl(1)ew (1)
W — wi (2) @ ws (2) @ w3 (2) @ wy (2)
B : (14)
| Wi (V) @wl (N)®wj (N)®wi (N)
yg; (1)
Y\ (2
v | 10O
Ly @ (V)

and N is the number of available training data points. Note that
‘W only needs to be computed for once during each iteration.

Once the bond core By, has been updated, one can split it up
into two new TN-cores and move the output branch to the next

TN-core. The SVD is used to collapse the bond core while the
TN-rank 7 is updated by observing the number of dominant
singular values. In order to determine the dominant singular
values, an e-truncated SVD [34], presented in Algorithm 2
following a MATLAB fashion, is performed with the sum of
squares of the truncated singular values not being greater than
a percentage of 2 of the total one. The next step is then
to update the bond core Bj_y if sweeping left or By, if
sweeping right. The implementation of splitting up the bond
core and shifting the output branch for both left and right
sweeping is illustrated in Fig. 5, and the complete algorithm
in a MATLAB fashion is summarized in Algorithm 3. Since
the algorithm is set to stop sweeping at the rightmost TN-core,
V. should be permuted back to the original three-way tensor
with TN-rank r; = m in the final step.

Algorithm 2: s-Truncated SVD

Input: Matrix B, expected amount ¢ in percentage to
be truncated
Output: Estimated rank r; truncated {Li,S,7Z;} via
SVD

1 [L,S,Z] + SVD(B,‘econ’)

2 7 < numerical rank determined by removing at most €
portion of insignificant singular values in S such that
their sum of squares is not greater than £2||S||%

3L« L(:,1:7)

4S8« S(1:r1:r)

521+ Z(:,1:1)

D. Acquisition of Training Data

We have proposed a VDC battery model to capture the
complex and coupled dynamics and the Bond Core Sweeping
Algorithm to estimate its parameters. In addition, the experi-
ments to acquire the training data should be carefully designed
to excite the major dynamics within the battery. An accurate
prediction of the static SOC-OCV characteristic is also desired
for the proposed model since the batteries are usually in a
storage state for most of its life time in practice. Thus, we
would like to train a model with both good dynamic and static
predictions.

In order to achieve an accurate dynamic prediction, the
model should be fed with data containing rich modes. This
requirement is also known as persistent excitation in the field
of system identification [20], [42]. A white excitation input
signal sweeping the whole working range is desired but not
practical in many applications. Instead, a relatively small data
set with several different variable-current profiles are sufficient
for the proposed VDC model, and this kind of training data
is denoted as Dynamic Training Data (DTD).

The proposed VDC model is a hybrid model with both
physically meaningful modeling and complexity-adjustable
nonlinear mapping. One advantage of the Volterra structure is
that the nonlinear mapping is always stable, and thus there is
no need to worry about a divergent prediction during validation
or in real-time battery monitoring. The adaptive adjustment
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Algorithm 3: Bond Core Sweeping Algorithm

Input: N input/output sampled data {u(t),y(¢)} in
(8) and (9), memory length M, degree d,
expected accuracy € in percentage

Output: TN-cores {V1, -, V,4} in (4) minimizing

(10)
1 Initialization: Construct u; in (4); rg < 1,74 < m;
initialize left orthogonal TN-cores {V1,---,V;} of

ranks 1, i.e., r; < 1,9 =1,2,---  d — 1; the starting
index k < d — 1; sweeping direction R2L < ‘left’
2 vd — reShape(vdv [rd—lapua ]-7 WL])
3rg+1
4 while the termination criterion is not satisfied do
Compute {w1(t), wa(t), ws(t), wa(t)} in (12)
for(=1,---,m do
L Bi(:y: ) B,(Cl) as in (13)
if R2L is ‘left’ then
By, < reshape(Bg, [rk—10um, puTr1])
{r,L1,S1,Z,} + e-truncated SVD on By,
T < T
Split By, while keeping left orthogonal:
Vi, < reshape(L1Sq, [ry—1,pu, m, Tx])
Viy1  reshape(ZT, [rg, pu, k1))
if £ > 1 then
| k+—k—-1
else
| R2L<‘right’
else
By, < reshape(By, [Tk—1Dw, MPuTi+1])
{r,L1,S1,Z1} < e-truncated SVD on By
TE < T
Split B, while keeping right orthogonal:
Vi « reshape(Ly, [rk—1, Pu,Tk])
Vi1 < reshape(S1ZT, [re, m, pu, Thi1])
if £k <d—1 then
| k+—k+1
else
L R2L<«‘left’

if The termination criterion is satisfied then
L break

5 Vg < permute(Vy, [1,3,2,4])
6 I'q <M

of the TN-ranks of the proposed model during training also
reduces the overfitting problem since the low-rank feature
within the data is explored. Thus, it is unnecessary to use a
very large data set as in training pure black-box models such
as deep neural networks.

In order to capture the static feature, the SoC-OCV infor-
mation, which is obtained from specific tests, should also be
fed into the VDC model. Thus, a characterization experiment
should be performed to obtain the SoC-OCV curve, denoted
as OCV = h(SoC). Let {SoC;,0OCV;},i = 1,--- Ny
be the Ny sampled points of the SoC-OCV curve. Then,
the corresponding training data for the static feature can

be constructed such that, for each pair {SoC;, OCV;}, the
input/output data {u(t),y(¢)} in (8) and (9) is formulated as

V. () = SoCj (t) = SoC;
v (t) = h (SoC;)

for a time interval with certain duration, i.e., t € [tF,¢]. The
duration depends on how much emphasis we would like to put
on the static feature during training. Since there are /N pairs of
{SoC;, OCV,}, there will be Ny such individual subintervals
for (15). Denote this part of training data as Static Training
Data (STD).

The reason why (15) reflects the static relation between the
SoC and OCV is that the proposed VDC model is capable
of describing the state of the battery when it is fully at rest.
The battery will be at equilibrium when it is fully at rest after
stopping charging/discharging. Thus, the current I(¢) and the
transient voltage V4 (¢) will become zero and the other inner
states V;(t), SoC(¢), and SoC(t) will become the same. This
inherent property makes the VDC model more powerful in
simultaneously capturing both dynamic and static features of
the battery.

The benefit of using a VDC model is the capability to use
the strong representation power to capture complex nonlin-
ear dynamics all in one, which include not only SoC-OCV
information but also dynamic nonlinearities and other possi-
ble effects eluding first-principles characterization. It directly
makes use of data, which relies on the practical observation
and is more efficient. It should be noted that the SoC-OCV
information used here was obtained from a specific battery
characterization experiment [18].

In sum, two types of training data are required: DTD and
STD. The first part focuses on the dynamics and the second
part focuses on the static feature. The STD is constructed
based on the SoOC-OCV curve and its duration can be selected
based on how much weight to put on the static feature.

15)

IV. EXPERIMENTAL VALIDATION

This section presents the experimental validation of the
proposed TN-based VDC model and the comparison with the
other relevant methods. All the experiments in this section
were conducted on a PEC SBT4050 battery tester. It can
support charging/discharging with arbitrary current-, voltage-,
or power- based loads up to 40 V and 50 A. A dedicated server
prepares and configures a test offline and collects sampled
experimental data online via the associated software, LifeTest.
Charging/discharging tests were performed on a Panasonic
NCR18650B lithium-ion battery cell, which was also used in
[18], to generate experimental data. Note that the battery cell
was set to operate between 3.2 V (fully discharged) and 4.2
V (fully charged). In this paper, only the discharging case is
considered.

Two perspectives of validation are performed in the rest of
this section. The first one shows the arrangement of training
and validation data, the parameter estimation of TN-cores
via the Bond Core Sweeping Algorithm, and the prediction
accuracy of the estimated VDC model. The second one shows
the requirements about training data to ensure the success of
the identification algorithm, serving as a note for practitioners.
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A. Training and Validation Results

The proposed hybrid VDC model consists of a linear
double-capacitor model and a Volterra model. The parameters
of the linear double-capacitor can be directly identified or
using the linear part extracted from the identified NDC model
in [18]. Note that the linear double-capacitor model here serves
as a feature extractor to produce useful features that are fed
into the Volterra system. Thus, slight distortion of using a
different identified linear model is not a problem and will
be accounted for during training of the Volterra model. As
presented in Section III-D, two types of training data, i.e.,
DTD and STD, are required.

In order to persistently excite the VDC model, the dynamic
modes in the training data should be sufficiently rich. Thus,
variable-current discharging data should be included. Since
the VDC model describes the nonlinear dynamics among the
current I(t), the voltage V,(t), and SoC dynamics SoCy(t),
the training data should sweep across the preset working
range of current and SoC. Otherwise, the prediction of the
nonlinear model outside the uncovered working range will
show unexpected behaviors due to unmodeled dynamics. This
phenomenon will be illustrated in Section IV-B.

In order to maintain the static SoC-OCV feature of the
lithium-ion battery, additional training data described in (15)
should also be included. This portion of training data will
guarantee that the voltage prediction of the VDC model arrives
at the corresponding value according to the SoC-OCV curve
when the battery is fully at rest.

In order to better describe the low-frequency dynamics,
at least one constant-current discharging data set should be
included in the training data. The reason is that the variable-
current discharging data focuses on the high frequency dynam-
ics due to fast switching and thus contains little information
about the modes lying in the low-frequency band.

Finally, the training data should include three parts: DTDI
(variable-current profile for high frequency dynamics), STD
(SoC-OCV characteristics for static features), and DTD2
(constant-current profile for low frequency dynamics).

In our experiment, DTD1 consists of two variable-current
profiles (0~3 A and 0~6 A). Note that the second one sweeps
mainly across about 2~6A. Thus, the two profiles allow the
nonlinear dynamic modeling for working range 0~6 A. STD
describing the static features is formulated as in (15) with
{S0C;,0CV;},i=1,---,21 being the 21 equidistantly data
points sampled every 5% SoC from the SoC-OCV curve and
the duration ¢t —t* = 500 sec. DTD2 consists of one constant-
current profile (3.5 A).

For comparison, a Thevenin model [43] and an NDC
model were identified along with the proposed VDC model.
The adopted Thevenin model consists of one nonlinear OCV
source, one internal resistance Rg “" and one parallel R?””-
CTvn circuit same as in the NDC model for comparison.
The estimated parameters are RI"" = 0.0759 Q, RT"" =
0.0390 €, C]LT“" = 2,476 F. The identified NDC model
will provide parameters for the double-capacitor part in the
VDC model. The resulting physical parameters were estimated
by the 2.0 identification approach in [18] with the nonlinear
function fixed as the SoC-OCV curve and are given as follows:

TABLE I: Estimated TN-ranks for {Vy,---,Vs}.

TN-rank |71 |72 |73 |74
value 4 |7 |6 |7

C, = 10,905F, Cy = 1.462F, R, = 0.072892, Ry =
09, Ry = 0.0413Q, C; = 990F, and Ry = 0.0113Q.
These parameters determine the feature extractor described
by the linear double-capacitor model in (5). Then, the TN-
based Volterra model with input/output {u(t),y(¢)} defined
in (8) and (9) was estimated using the Bond Core Sweeping
Algorithm proposed in Section III-C with memory length
M = 3, degree d = 5, filter time constant o = 1/0.003, and
€ = 0.4. Note that the truncation factor ¢ is adjusted to seek the
low-rank estimation as much as possible while maintaining the
prediction accuracy. This procedure will prevent the resulting
model from being overfitted. In practice, one should increase
¢ if the available dynamic modes are getting richer with
increasing model complexity. The estimated TN-ranks are
illustrated in Table I. The training algorithm takes about 23
seconds on an Intel Core i5-10210U CPU with 16 GB RAM.
The training results are shown in Fig. 6, Fig. 7, Fig. 8, and
Fig. 9. The RMSEs were computed for the dynamic voltage
prediction while the battery is discharging.

For variable-current profiles, the VDC model produces the
best voltage prediction both during cycling and resting. The
NDC model uses a static nonlinear mapping estimated to
balance the trade-off between the nonlinear dynamics and
static SoC-OCV relationship. Despite the improvement in
the dynamic prediction, the trade-off is obvious: the static
nonlinear mapping cannot account for both dynamic and static
nonlinearities simultaneously. Thus, the NDC model shows
better prediction accuracy than the Thevenin model during
discharging, whereas it is still less accurate than the VDC
model due to the aforementioned tradeoff. Fig. 8 shows the
prediction of SoC-OCV relationship using VDC model. It
illustrates that the VDC model can be used to produce a more
accurate dynamic voltage prediction without deteriorating the
static prediction of the SoC-OCV feature. For the constant-
current profile (3.5 A), one can observe that the Thevenin
model is doing its best to minimize the error during discharg-
ing but is limited due to the lack of model fidelity. The VDC
model is the best and can accurately capture the diffusion
dynamics during the idling period.

The validation data consists of four constant-current profiles
(1 A, 1.5 A, 2 A, 25 A) and one variable-current profile
(1.5~2.5 A). The prediction accuracy for the validation data
is shown in Fig. 10 and Fig. 11.

For the constant-current profile in the validation data, the
VDC model shows the best voltage prediction for all four cases
in the following aspects as shown in Fig. 10: the dynamic non-
linearities are being accurately predicted during discharging;
the transient diffusion dynamics are being accurately tracked
during the idling period; the errors of static voltage predictions
when at rest are small. The Thevenin model struggles to
predict the true dynamics. For the variable-current profile in
the validation data, the VDC model performs the best during
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Fig. 6: Illustration of the voltage prediction by the proposed model for the variable-current profile 0~6 A in the training data
set DTD1. The RMSE:s for different models are: 33.2mV (Thevenin); 20.8mV (NDC); 5.81mV (VDC).

both the discharging period and idling period. Similar to the
training result, the NDC model is better in dynamic prediction
than the Thevenin model.

Remark 3: All models are determined and fixed for the
whole SoC range. A Thevenin model with parameters identi-
fied for different SoCs may improve the accuracy of the model
depending on how well the following assumption holds: The
dynamics around a specific SoC and C-rate level can be well
approximated by a linear model. In addition, one needs to
perform additional HPPC test to produce the data to identify
such an SoC-dependent model. The proposed VDC model
captures these nonlinear dynamic behavior directly from the
cycling data instead of performing linearization around an
equilibrium.

B. The Effect of Training Data Range

Section I'V-A has demonstrated the efficacy of the proposed
method. Since nonlinear dynamics is modeled, it should be
mentioned that the VDC model, due to its data-driven nature,
will only capture the nonlinearity within the observed range of
input current magnitudes and SoC values. Thus, it is necessary
to select the training data sweeping across the normal working

range. The nonlinearity is directly related to the input current
magnitude and the battery dynamics keeps changing along
with the SoC. For this reason, the current profiles should cover
those common magnitudes in practice, and the training data
should spread from full charge to almost empty.

In order to demonstrate the effect of training data range, the
investigation of parameter estimation was performed on the
two variable-current profiles in DTD1. The 0~3 A variable-
current profile spreads from SoC = 100% to SoC = 14%
(almost empty). The 0~6 A variable-current profile spreads
from SoC 100% to SoC = 47%. The STD and the
experimental data corresponding to 0~6 A were used to train
the TN Volterra model. The other one (0~3 A) was used for
validation. The results are shown in Fig. 12.

For the stage when the SoC is above 47%, the voltage
prediction is good. However, when the SoC drops below
47%, the voltage prediction gets worse for the VDC model.
The reason is that no training data sweeps below SoC =
47%. Thus, the VDC model is not persistently excited in the
SoC range below 47%. In other words, the poor prediction
accuracy below 47% is due to the lack of informative data for
that operating range. This observation also indicates a common



YANGSHENG HU et al.: TENSOR NETWORK BASED MIMO VOLTERRA MODEL FOR LITHIUM-ION BATTERIES

| |
0 2000 4000 6000 8000

10000 12000
Time (s)

(a) The variable-current profile 0~3 A.
T T T

True
-~ Thevenin

Voltage (V)

5700 | 5750 5800

| | i
0 2000 4000 6000 8000
Time (s)

(b) The voltage prediction for the variable-current profile 0~3 A.
\ \ \ \ \

******* Thevenin
---- NDC
.......... VDC

(c) Fitting error in percentage.

Fig. 7: Tustration of the voltage prediction of the proposed model for the variable-current profile 0~3 A in the training data
set DTD1. The RMSE:s for different models are: 24.6mV (Thevenin); 17.2mV (NDC); 3.15mV (VDC).
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and important need when performing nonlinear modeling: the

training data should cover the normal working range of the
batteries.

V. CONCLUSION

This paper proposes a novel TN-based VDC model. The
VDC model consists of two parts: a linear double-capacitor
model and a TN-based Volterra model to capture nonlinear
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Fig. 10: The voltage prediction for the constant-current pro-
files (1 A, 1.5A, 2 A, 2.5A) in the validation data set.

dynamics. The proposed VDC model has the advantage to
model both static and dynamic nonlinearities simultaneously
in a more accurate way. It is by nature an SoC-dependent
model, which will capture the changes in the battery dynamics
as the SoC varies. Parameters of the VDC model are estimated
via the Bond Core Sweeping Algorithm. It allows the Volterra
model to seek a low-rank representation during training which
also reduces the overfitting problem. The experimental results
show that the VDC model produces a much more accurate
voltage prediction than the Thevenin model and NDC model.
The prediction error of the proposed model can be less than
0.5% as shown in the experimental validation. It is illustrated
that the TN-based VDC model can serve as a powerful tool
in modeling unknown and complex nonlinearities within the
batteries using a data-driven model. Future work can be
investigating using electrochemical models to produce useful
features to feed into a Volterra model. This is attractive since
the electrochemical part will provide insights into the true
battery states and the Volterra part will help do nonlinear
correction to account for unmodeled dynamics and approxi-
mation errors from the electrochemical part with a data-driven
technique.
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Fig. 11: Tlustration of the voltage prediction of the proposed model for the variable-current profile 1.5~2.5 A in the validation
data set. The RMSEs for different models are: 25.9mV (Thevenin); 16.2mV (NDC); 6.15mV (VDC).
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Fig. 12: Illustration of the effect of training data range on the model fitting. The training data for the VDC model includes
STD and a variable-current profile 0~6 A with the SoC spreading from 100% to 47%. The validation data is a variable-current
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the black vertical dashed line indicates the time instant where SoC = 47%.
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