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Abstract

Mathematical modeling of lithium-ion batteries (LiBs) is a primary challenge in advanced battery management. This paper

proposes two new frameworks to integrate physics-based models with machine learning to achieve high-precision modeling for

LiBs. The frameworks are characterized by informing the machine learning model of the state information of the physical model,

enabling a deep integration between physics and machine learning. Based on the frameworks, a series of hybrid models are

constructed, through combining an electrochemical model and an equivalent circuit model, respectively, with a feedforward neural

network. The hybrid models are relatively parsimonious in structure and can provide considerable voltage predictive accuracy under

a broad range of C-rates, as shown by extensive simulations and experiments. The study further expands to conduct aging-aware

hybrid modeling, leading to the design of a hybrid model conscious of the state-of-health to make prediction. The experiments

show that the model has high voltage predictive accuracy throughout a LiB’s cycle life.
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1. Introduction

Lithium-ion batteries (LiBs) represent a key energy storage

technology for our industry and society. Today, they not only

power billions of consumer electronics devices, but also en-

able electrified transportation, smart grid, and renewable energy

adoption to drive the world forward into a decarbonized energy

future. The surging use of LiBs has led to ever-growing de-

mands for higher operating performance and safety. Optimal

operation of LiBs involves state estimation, control, and diag-

nosis, which all rely on accurate and efficient dynamic models

of LiBs. Mathematical modeling of LiBs hence has attracted

intense research interest in the past decade [1, 2]. In this pa-

per, we propose to integrate physics-based modeling with data-

driven machine learning to develop a new breed of models that

harness their respective merits. The proposed models will be

shown to offer high voltage predictive accuracy, computational

efficiency and applicability to a broad range of C-rates.

1.1. Literature Review

The literature includes two main types of physics-based LiB

models, namely, electrochemical models and equivalent circuit

models (ECMs). Electrochemical models use electrochemical

principles to comprehensively characterize the electrochemi-

cal reactions, lithium-ion diffusion and concentration changes

in the electrode/electrolyte, as well as various associated pro-

cesses during charging/discharging of LiBs. A well-known

electrochemical model is the Doyle-Fuller-Newman (DFN)
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model, which is broadly considered reliable and precise enough

for almost all LiB management scenarios [3, 4]. Its accuracy yet

comes with enormous computational complexity. This hence

has motivated an incessant search for streamlined electrochem-

ical models to balance between accuracy and computational

costs. The single particle model (SPM) is one of the most

parsimonious, which represents each electrode as a spherical

particle and delineates lithium-ion intercalation and diffusion

in the particles [5]. With its simplified structure, it is com-

putationally fast but accurate only for low to medium C-rates

(below 1 C-rate). Based on the SPM, there is a wide range of

improved versions for higher accuracy under different condi-

tions. They usually supplement the SPM with characterizations

of thermal behavior [6, 7], electrolyte dynamics [8–11], degra-

dation physics [12], and stress buildup [11]. Another important

line of research lies in applying model order reduction methods

to the DFN, SPM or other electrochemical models, with the aim

of accelerating numerical computation [13–19].

Differently, ECMs leverage electrical circuits, usually based

on resistors, capacitors, and voltage sources, to capture LiBs’

current/voltage dynamics in a physically interpretable way.

Compared to electrochemical models, ECMs have greatly more

parsimonious structures and simpler governing equations, thus

advantageous for computation and conducive to real-time con-

trol, prediction, and simulation. Some widely used ECMs in-

clude the Rint model, the Thevenin model, and the Dual Po-

larization model [20–22]. Recent literature has expanded the

development of ECMs toward better prediction accuracy. Some

studies seek to account for the effects of hysteresis and tempera-

ture on a LiB’s electrical dynamics [23–27]. Others design new

ECMs to approximate certain electrochemical models [28–32].Email address: fang@ku.edu (Huazhen Fang) 



While ECMs have found increasing popularity, their structural

simplicity restricts their accuracy, making them useful only for

low to medium C-rates.

For all the aforementioned models, their effectiveness and fi-

delity will decrease as a LiB ages, since many parameters of

a model can change drastically with the LiB’s state-of-health

(SoH). This hence has stimulated research on aging-aware mod-

eling, where electrochemical models [33–38] or ECMs [24, 39–

42] are coupled with different aging or degradation mechanisms

intrinsic to LiBs.

Besides physical modeling, extracting models from data di-

rectly has become appealing, as ubiquitous onboard sensing has

increased data availability for today’s LiB systems. Machine

learning (ML) tools, such as neural networks (NNs) [43] and

support vector machine [44], have been used to learn battery

models from measurement data. These ML models are black-

box approximations of LiBs’ dynamics. Bypassing the use of

physical principles, they can be constructed from data conve-

niently in practice and sufficiently accurate if trained on rich,

informative enough data. Meanwhile, data can help grasp vari-

ous uncertain factors that affect a LiB cell’s dynamic behaviors.

However, unlike physics-based models, pure ML models gen-

erally lack generalizability and risk producing physically un-

reasonable or incorrect prediction in out-of-sample scenarios.

Also, training them often requires large amounts of high-quality

data, which may not always be possible.

A close inspection indicates that physical modeling and ML

modeling are constructively complementary to each other. On

the one hand, physics-based models can offer physical inter-

pretations of LiBs’ dynamic behaviors and extrapolate to any

charging/discharging scenarios meeting model assumptions.

However, they either require much computation, as in the case

of the DFN, or have inadequate accuracy when the model as-

sumptions are not satisfied—for instance, the SPM and ECMs,

usually designed for low to medium C-rates, will poorly pre-

dict LiBs’ dynamics at high C-rates. Besides, some physical

parameters of these models, like the diffusion coefficients in

electrochemical models and resistances in ECMs, are subject

to change due to different operating conditions, such as tem-

perature and LiB’s aging. This will eventually result in model

mismatch if these parameters are not corrected in time. On the

other hand, ML-based modeling is able to extract complicated

input-to-output relationships underlying data, especially those

evading precise characterization by physical principles or suf-

fering uncertainty. As another benefit, ML models, once after

being trained on datasets, can run fast with only fixed compu-

tational costs. Based on the above, there is an emerging in-

terest in hybrid physics-ML modeling for LiBs to combine the

respective merits of the two modeling approaches. The study

in [45] couples a one-dimensional electrochemical model with

different kinds of NNs. In [46], recurrent NNs are used to learn

the residuals between a LiB’s terminal voltage and the SPM’s

output voltage. In [47], a simplified SPM and a lumped ther-

mal model are combined with an NN in series to predict the

terminal voltage. These hybrid models have a similar underly-

ing structure—an NN takes the current and output voltage of

a physical model as its input, and predicts the residual or ac-
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Figure 1: Comparison of physics-based models for LiB and their applicable

current range.

tual terminal voltage as its output. However, from a physical

perspective, the mappings represented by such NNs do not ef-

fectively hold at the level of LiBs’ dynamics. The NNs, and

consequently the hybrid models, are often not accurate enough

in prediction even if they can achieve satisfactory training ac-

curacy. Therefore, while the present studies indicate a promise

of hybrid modeling for LiBs, this subject is still underexplored

to live up to its potential.

1.2. Contributions

The goal of our study is to develop hybrid physics-ML mod-

els to enable highly accurate voltage prediction while preserv-

ing low computational complexity for LiBs, as visualized in

Fig. 1. As pointed out in the literature survey, the existing hy-

brid models, e.g., [45–47], use NNs to learn relationships or

mappings that are not physically meaningful, and thus see their

predictive accuracy limited. To overcome this limitation, we

propose a new perspective: the NN must be informed of the in-
ternal state of the physical model to correctly learn what the
physical model misses in comparison to the actual physics of
LiBs. In other words, the success of a hybrid model depends on

whether the NN represents a physically sound mapping; to this

end, the NN must be made to take the physical model’s state

as an input. The perspective leads us to develop the following

specific contributions.

• We develop two hybrid physics-ML LiB modeling frame-

works, named as HYBRID-1 and HYBRID-2, respec-

tively, which integrate physical LiB models with feedfor-

ward neural networks (FNNs). HYBRID-1 leverages an

FNN to capture the residuals of a physical model, and

HYBRID-2 uses an FNN to predict the terminal voltage

based on a physical model. Different from the literature,

both of them critically feed state information of the phys-

ical model to the FNN. In particular, we provide a math-
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ematical reasoning to prove that the designed frameworks

are physically reasonable.

• We apply the above frameworks to effectively integrate

electrochemical models and ECMs with FNNs. Our first

effort combines the SPM with thermal dynamics (SPMT)

with an FNN, and the second blends the nonlinear dou-

ble capacitor (NDC) model, an ECM proposed recently

in [28, 29], with an FNN. The developed models, first of

their kind, are validated via extensive simulations or ex-

periments, demonstrating high voltage predictive accuracy

across broad C-rate ranges.

• We further propose to incorporate aging awareness into

hybrid modeling and develop an upgraded hybrid model

that utilizes a LiB cell’s SoH information for voltage pre-

diction. The model is shown capable of making accurate

prediction throughout a cell’s cycle life.

Compared to the existing hybrid models, the proposed frame-

works and models can generalize and predict precisely beyond

training datasets, thanks to the distinct attribute of making the

FNN aware of the physical model’s state. They may find poten-

tial use in various LiB energy storage applications, especially

those involving high C-rates and high power load conditions. A

further view of their applications is given in Section 6.

1.3. Organization

This paper is organized as follows. Section 2 presents the two

proposed hybrid modeling frameworks. Based on the frame-

works, Sections 3-4 develop hybrid models based on integrating

the SPMT and the NDC with FNNs, respectively, and validate

them. Then, Section 5 constructs an aging-aware hybrid model

based upon Sections 3-4 and verifies the results. Finally, Sec-

tion 6 concludes the study.

A preliminary conference version of the work appeared in

[48], which deals with only the integration of electrochemical

modeling with ML. This paper introduces significant extensions

to improve the study in both depth and breadth. The extensions

include the following: 1) the addition of a mathematical ratio-

nale to explain the correctness of the proposed hybrid model-

ing frameworks, 2) the development of new hybrid models by

integrating an ECM with ML, and evaluation of them by ex-

periments, and 3) the expansion of the proposed frameworks to

aging-aware hybrid modeling along with experimental valida-

tion.

2. Hybrid Physics-ML Modeling for LiBs

In this section, we present two hybrid physics-ML modeling

frameworks, referring to them as HYBRID-1 and HYBRID-2,

respectively. They both are designed to blend physical model-

ing with an FNN, and their difference lies in the learning objec-

tive set for the FNN. We further provide an overview of FNNs

for the sake of completeness.

Current 

Physical 
Model

FNN

Terminal voltage 

(a)

Physical 
Model

FNN

(b)

Figure 2: Block diagrams of (a) the HYBRID-1 framework and (b) the

HYBRID-2 framework.

2.1. The Proposed Hybrid Modeling Frameworks

As shown in Fig. 2a, HYBRID-1 is composed of a physical

model in cascade with an FNN, with them operating simulta-

neously. The physical model approximately represents a LiB

cell’s electrochemical, electrical, or thermal behaviors. It is not

perfectly accurate relative to the cell’s true dynamics, due to in-

evitable model mismatch or uncertainty. The FNN is used to

learn biases of the physical model. Here, it is set to capture

ΔV = Vtrue − Vphy, which is the physical model’s residual er-

ror with respect to the true terminal voltage. Leveraging the

FNN’s prediction ΔV to correct Vphy, HYBRID-1 will output

Vhybrid = Vphy + ΔV to emulate the cell’s actual voltage. As an

extension, we propose HYBRID-2 shown in Fig. 2b, in which

the FNN is made to learn the LiB’s terminal voltage Vtrue di-

rectly, rather than the residual. By design, the FNN here is also

informed of the state information of the physical model as in

HYBRID-1.

It is critical to select the input variables of the FNN so that

the FNN can learn correct relationships consistent with the LiB

cell’s true dynamics. We propose that the FNN should take the

physical model’s state information X and the applied current I
as its input. The reasoning is as follows. Without loss of gen-

erality, let us consider that the LiB’s actual dynamics follows a
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high-dimensional nonlinear model of the form⎧⎪⎨⎪⎩ ξ̇ = f (ξ, I),

Vtrue = h(ξ, I),
(1)

where ξ ∈ Rp is the full-order state. The model may be derived

from the ordinary differential equations or discretization of the

partial differential equations governing the LiB [13, 17, 19].

The physical model can be viewed as a reduced-order represen-

tation of the LiB’s full actual dynamics, which approximates

the original model in (1) as⎧⎪⎨⎪⎩ Ẋ = fr(X, I),

Vphy = hr(X, I),
(2)

where X ∈ R
q with q � p is the reduced-order state. From

the perspective of model order reduction, one can view X as

the result of projecting the full state ξ into a low-dimensional

space. The projection can be described as X = σ(ξ), where

σ : Rp → R
q. Note that it is not possible to exactly reconstruct

ξ using X. However, since both ξ and X represent or reflect the

state of the same LiB, it is reasonable to assume that there exists

a nonlinear transformation to approximately project X back to

ξ:

ξ = ψ(X, I) + ε, (3)

where ε is the approximation error. Then, according to (1)-(3),

the residual ΔV can be expressed as

ΔV = Vtrue − Vphy

= h(ψ(X, I) + ε, I) − hr(X, I)

≈ h (ψ(X, I), I) − hr(X, I),

where the approximate equality follows from the zeroth-order

Taylor expansion of h(ψ(X, I) + ε, I) around X and ε = 0. This

implies an approximate mapping (X, I) → ΔV . We hence can

use an FNN to learn this mapping as in the HYBRID-1 frame-

work, with (X, I) as the input and ΔV as the output of the FNN.

Following similar lines, we can find

Vtrue ≈ h (ψ(X, I), I) .

This relation justifies using an FNN to learn the approximate

mapping (X, I) → Vtrue, as is done in the HYBRID-2 frame-

work.

Remark 1. The pivotal difference of the above hybrid model-
ing design from the literature, e.g., [45–47], is that information
about the physical model’s state is fed as part of the input to the
FNN. This, as is reasoned above, makes the FNN capable of
learning physically consistent relationships, and the resultant
tighter physics-ML integration will lead to enhanced accuracy
in prediction.

Remark 2. HYBRID-1 and HYBRID-2 are modular and exten-
sible frameworks that allow execution in versatile ways to con-
struct different hybrid models. First, one can use either an elec-
trochemical model or an ECM as the physical model compo-
nent, depending on the specific objective of hybrid modeling. To

Input 
layer

Hidden layers
Output 

layer

Figure 3: FNN architecture with two fully connected hidden layers.

demonstrate this, we will exploit the SPMT model and the NDC
model, respectively, in Sections 3-4. Further, the frameworks
can be readily extended to meet more needs. For instance, in
Section 5, we will incorporate the SoH information into the for-
mulation, enabling the FNN to make prediction with an aware-
ness of a LiB’s aging condition. This improvement will lead to
hybrid models being able to predict voltage dynamics through-
out the LiB’s cycle life. Finally, the frameworks are open to
using other ML models, e.g., Gaussian processes or support
vector machines, even though this study focuses on the FNN.

Remark 3. Physics-informed ML for battery modeling has at-
tracted growing attention recently. Among the few studies, NNs
are used in [49] to estimate the internal states of a physical
model, e.g., concentrations and potentials in the electrodes and
the electrolyte, and in [50] to capture the variability in the non-
ideal voltage term of an electrochemical model. While these are
meaningful ways to enhance battery modeling, this paper pur-
sues a different goal of using physics-informed ML for highly
accurate voltage prediction over broad C-rate ranges. This type
of battery modeling is useful and important for a variety of bat-
tery management tasks, and its potential applications is further
discussed in Section 6.

2.2. The FNN Model

FNNs are an important class of ML methods designed to ap-

proximate complex functions. Their network structure contains

no cycle or feedback connections, making them the simplest

type of NNs and easy to train and implement. The theoret-

ical performance of FNNs is guaranteed by the universal ap-

proximation theorem, which generally states that a continuous

vector-valued function in the real space can be approximated

with arbitrary accuracy by an FNN [51]. An overview of FNNs

is offered below, which is mainly based on [52, 53].

Consider an unknown function g∗, which is a mapping from

an m-dimensional input x to an n-dimensional output y. An

FNN aims to approximate it by defining a parameterized map-

ping y = g (x, θ) and learning the collection of parameters θ
from the data

{
(xi, yi), i = 1, 2, . . . ,N

}
. As Fig. 3 shows, the
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structure of an FNN includes three parts interconnected in se-

ries, namely the input layer, hidden layers, and output layer.

The input layer takes the input x and passes it to the first hid-

den layer. A hidden layer makes a nonlinear transformation of

its input. For example, the first hidden layer will transform x
into φ(W1x+ b1), where φ is a chosen nonlinear mapping often

called as activation function, W1 is the weight matrix, and b1 is

a correction term. The following hidden layers then run similar

nonlinear transformations sequentially. Finally, the output layer

generates an output value to match y. An L-layer FNN can be

described in a general form:

z1 = x,
zl = φ (Wl−1 zl−1 + bl−1) , l = 2, 3, . . . , L − 1,

y =WL−1 zL−1 + bL−1,

where zl−1 and zl are the input and output of the l-th layer, re-

spectively. Note that the information flows only in the forward

direction from x to y in the above network model, which is why

the model is called as f eed f orward NN.

For the FNN, θ is the collection of Wl and bl for l =
1, 2, . . . , L−1. The training of the FNN is to identify θ from the

measurement data
{
(xi, yi)

}
. A common approach is based on

maximum likelihood estimation, which minimizes the follow-

ing cost function:

J(θ) = −Ex,y∼p̂data
log pmodel (y | x, θ) ,

where p̂data is the data-based empirical distribution of x and y,

and pmodel is the probability distribution of y over the parameter

space θ based on the FNN model. Under some assumptions,

J(θ) can reduce to a mean squared error cost:

J(θ) =
1

N

N∑
i=1

∥∥∥yi − g (xi, θ)
∥∥∥2 .

The minimization is usually achieved using stochastic gradient

descent algorithms. The computation of the gradient can be

complicated, especially for multi-layer FNNs, but it can still be

done efficiently by the back-propagation algorithm or its gener-

alizations.

3. Hybrid Modeling via SPMT+FNN

Based on the HYBRID-1 and HYBRID-2 frameworks, we

integrate the SPMT model with an FNN to build two hybrid

models, named as SPMTNet-1 and SPMTNet-2, respectively.

The proposed models are validated via extensive simulations.

3.1. The SPMTNet-1 and SPMTNet-2 Models

Developed in [6], the SPMT model couples the SPM model

with a bulk thermal model to predict the electrochemical and

thermal behaviors simultaneously. The SPM simplifies each

electrode of a LiB cell as a spherical particle and disregards the

electrolyte dynamics. The transport of the lithium ions inside

a particle is governed by the Fick’s diffusion law in spherical

coordinates:

∂c±s
∂t

(r, t) =
1

r2

∂

∂r

[
D±s r2 ∂c±s

∂r
(r, t)
]
, (4)

where c±s (r, t) is the solid-phase lithium-ion concentration of

positive (+) or negative (−) electrode, and D±s is the solid-phase

diffusion coefficient. The boundary conditions of (4) are given

by

∂c±s
∂r

(0, t) = 0 and
∂c±s
∂r

(R±s , t) = −
1

D±s
j±n ,

where R±s is the particle radius and j±n is the molar flux at the

particle surface. Here,

j±n = ∓
I(t)

a±s FAL±
,

where a±s is the specific interfacial area, F is the Faraday’s con-

stant, A is an electrode’s surface area, and L± is the electrode’s

thickness. Further, j±n results from the electrochemical kinet-

ics and depends on the overpotential of the electrodes η±. The

relation is characterized by the Butler-Volmer equation:

j±n =
1

F
i±0
[
exp
(
αaF
RT

η±
)
− exp

(−αcF
RT

η±
)]
. (5)

Here, αa and αc are the anodic and cathodic charge transfer

coefficients, respectively, and i±0 is the exchange current density

given by

i±0 = k±
(
c0

e

)αa (
c±ss(t)

)αc
(
c±s,max − c±ss(t)

)αa
,

where k± is the kinetic reaction rate, c0
e is the constant

electrolyte-phase lithium-ion concentration, c±ss(t) = c±s
(
R±s , t
)

is the solid-phase lithium-ion concentration at the particle sur-

face and c±s,max is the maximum solid-phase lithium-ion concen-

tration. By assuming αa = αc = 0.5, (5) indicates that η± can

be expressed as

η± =
2RT

F
sinh−1

(
F

2i±
0

j±n

)
.

The terminal voltage V is

VSPMT(t) = U+(c+ss(t)) − U−(c−ss(t)) + η
+ − η−

−
⎛⎜⎜⎜⎜⎝ R+f

a+s L+
+

R−f
a−s L−

⎞⎟⎟⎟⎟⎠ I(t), (6)

where U+ and U− are the equilibrium potentials, and R+f and R−f
are the solid-electrolyte interphase film resistances.

The charging/discharging of LiBs is accompanied by the heat

generation and transfer. The change in temperature can be in-

tense at large currents and notably affects the lithium-ion dif-

fusion and electrochemical kinetics. Here, the temperature de-

pendence of D±s and k± is governed by the Arrhenius law:

ψ = ψref exp

[
Eψ

R

(
1

Tref

− 1

T (t)

)]
, (7)
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Figure 4: Block diagrams of (a) the SPMTNet-1 model and (b) the SPMTNet-2

model.

where ψ is the D±s or k±, T (t) is the lumped temperature, R is the

universal gas constant, and Eψ is the activation energy. Based

on the energy balance principle, the change of T (t) is assumed

to follow

ρavgcp
dT (t)

dt
= q̇gen + q̇conv, (8)

where ρavg is the cell bulk density, cp is the lumped specific heat

capacity, q̇gen denotes the heat generation rate due to ohmic and

entropic heating, and q̇conv is the convective heat removal rate

with the ambience. Further, q̇gen and q̇conv are given by

q̇gen = I(t)
[
V(t) − (U+(c̄+s (t)) − U−(c̄−s (t)))

]
+ I(t)T (t)

∂

∂T
[
U+(c̄+s (t)) − U−(c̄−s (t))

]
,

q̇conv = −hcell (T (t) − Tamb(t)) ,

where Tamb is the ambient temperature, hcell is the convective

heat transfer coefficient, and the bulk concentration c̄±s (t) is

given by:

c̄±s (t) =
3

(R±s )3

∫ R±s

0

r2c±s (r, t)dr.

We define the anodic surface SoC and bulk SoC as

SoCsurf =
c−ss(t)
c−s,max

, SoCbulk =
c̄−s (t)
c−s,max

. (9)

Summarizing (4)-(9), we obtain a complete formulation of

the SPMT model. This model is among the most computation-

ally fast electrochemical models. It can offer good accuracy

Current

profile

RMSE

(SPMT)

RMSE

(SPMTNet-1)

RER

(%)

T
ra

in
in

g

0.2 C 5.80 mV 2.53 mV 56.38

1 C 20.34 mV 4.29 mV 78.91

2 C 31.80 mV 6.23 mV 80.41

4 C 62.48 mV 5.90 mV 90.56

6 C 106.38 mV 4.64 mV 95.64

8 C 157.58 mV 4.24 mV 97.31

10 C 212.65 mV 4.93 mV 97.68

US06 30.18 mV 9.51 mV 68.49

LA92 23.54 mV 9.83 mV 58.24

T
es

ti
n

g

0.5 C 11.12 mV 4.65 mV 58.18

3 C 44.91 mV 9.06 mV 79.83

5 C 83.31 mV 4.99 mV 94.01

7 C 131.25 mV 5.46 mV 95.84

9 C 184.78 mV 4.61 mV 97.51

UDDS 27.68 mV 10.23 mV 63.04

SC04 26.27 mV 8.82 mV 66.43

(a)

Current

profile

RMSE

(SPMT)

RMSE

(SPMTNet-2)

RER

(%)

T
ra

in
in

g

0.2 C 5.80 mV 2.86 mV 50.69

1 C 20.34 mV 3.36 mV 83.48

2 C 31.80 mV 5.56 mV 82.52

4 C 62.48 mV 4.55 mV 92.72

6 C 106.38 mV 3.73 mV 96.49

8 C 157.58 mV 3.81 mV 97.58

10 C 212.65 mV 3.41 mV 98.40

US06 30.18 mV 10.71 mV 64.51

LA92 23.54 mV 7.17 mV 69.54

T
es

ti
n

g

0.5 C 11.12 mV 5.07 mV 54.41

3 C 44.91 mV 6.03 mV 86.57

5 C 83.31 mV 4.38 mV 94.74

7 C 131.25 mV 3.49 mV 97.34

9 C 184.78 mV 4.38 mV 97.63

UDDS 27.68 mV 8.73 mV 68.46

SC04 26.27 mV 9.77 mV 62.81

(b)

Table 1: Training/testing performance of (a) the SPMTNet-1 model and (b)

the SPMTNet-2 model under different current profiles, in comparison with the

SPMT model.

when low to medium currents are applied. However, its pre-

diction performance at high C-rates or in the presence of un-

certainty will deteriorate seriously, due to some simplifications

inherent to it.

Building upon the HYBRID-1 and HYBRID-2 frameworks,

we propose SPMTNet-1 and SPMTNet-2, with their structures

shown in Figs. 4a and 4b. These two hybrid models both com-

bine the SPMT model with an FNN. SPMTNet-1 is designed to

capture the residual between the actual voltage and the SPMT’s

prediction, and SPMTNet-2 is made to approximate the termi-

nal voltage. For both, the FNN takes SoCbulk, SoCsurf and T
derived from the SPMT model as its input variables, leveraging

an awareness of the physical model’s state to make prediction.

Remark 4. The choice is non-unique for the variables used
to represent the SPMT’s electrochemical state and fed to the
FNN. For instance, an expedient way is to just use the full
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Figure 5: Testing results of the SPMTNet-1 and SPMTNet-2 models.

electrochemical state of the SPMT. This, however, will cause
extremely high training and computational costs. Our study
shows that just several simple, aggregated state variables will
suffice. This feature in effect reduces demands for training
data and computation considerably, making the proposed hy-

brid modeling frameworks amenable to practical applications.
After much trial-and-error search, we identify that the pair of
SoCbulk, SoCsurf and T is a favorable choice for SPMTNet-1
and SPMTNet-2 in terms of both computational efficiency and
prediction performance.
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3.2. Simulation Validation

We performed simulation to validate the effectiveness of the

proposed SPMTNet-1 and SPMTNet-2 models. The simulation

settings are as follows:

• The DFN model with thermal dynamics, which is ac-

knowledged as a generic and reliable electrochemical-

thermal model, was used as the benchmark to assess the

SPMTNet-1 and SPMTNet-2 models.

• We used parameters from the DUALFOIL simulation

package [54] to run the DFN model representing an

LCO/graphite battery that operates between 4.1 and 3.2

V to generate synthetic data as the ground truth.

• The synthetic data were divided into the training and test

datasets. The training datasets were produced by apply-

ing constant discharging currents at 0.2/1/2/4/6/8/10 C and

variable currents created based on the US06 and LA92

driving cycles [55]. The test datasets were obtained by

applying constant discharging currents at 0.5/3/5/7/9 C

and variable currents created based on the UDDS and

SC04 [55]. Here, all variable current profiles were scaled

to a maximum current of around 10 C. In all cases, the

initial temperature T (0) = Tamb = 25◦C.

• Both the SPMTNet-1 and SPMTNet-2 models employ a

four-layer FNN as shown in Fig. 3. Each of the two hidden

layers has 32 neurons. The input and output of the FNN

are as specified in Section 3.1. The rectified linear unit

(ReLU) function was chosen as the activation function for

the two hidden layers, and the linear activation function

chosen for the output layer. Keras, a Python-based deep

learning library, was used to create, train and implement

the FNN. Because the magnitudes of the FNN’s input vari-

ables vary across different orders of magnitude, the input

data were pre-processed by normalization, as often recom-

mended in the practice of NNs.

• We utilized the root-mean-square error as a metric to eval-

uate a model’s performance:

RMSE =

√√√
1

N

N∑
i=1

(
Vtrue,i − Vmodel,i

)2,
where Vtrue,i is the true voltage at time i, Vmodel,i is the

model-based voltage prediction, and N is the total num-

ber of data points. Furthermore, a relative error reduction

(RER) was introduced to quantify the improvement of the

SPMTNet-1 and SPMTNet-2 over the SPMT, which is de-

fined as

RER =
RMSESPMT − RMSESPMTNet

RMSESPMT

× 100%.

We began with validating the SPMTNet-1 model. Table 1a

summarizes its performance over all the training datasets and

compares it with the baseline SPMT model. We observed that

the SPMTNet-1 model offers remarkable accuracy in all train-

ing scenarios. It consistently outperforms the SPMT model by

a considerable margin, especially at medium to very high cur-

rents. Further, we applied the trained SPMTNet-1 model to the

test datasets to appraise its prediction performance. Table 1a

shows a quantitative evaluation, and Figs. 5a-5b demonstrate

a visual assessment in the cases of constant 0.5/3/7 C and the

SC04 profiles. As is seen, the SPMTNet-1 still retains high ac-

curacy in the testing phase, proving its strong predictive ability.

For the SPMTNet-2 model, Table 1b further shows its

training/testing performance across different test datasets, and

Fig. 5c displays its prediction under the UDDS-based test

dataset. These results show that the SPMTNet-2 is also greatly

effective in grasping and forecasting the dynamics of LiBs.

Finally, we emphasize that the SPMTNet-1 and SPMTNet-2

models provide higher testing accuracy and better voltage pre-

dictive performance than the existing hybrid models for LiBs,

e.g., [46], as extensive simulation reveals. This underscores

the efficacy of the proposed design that feeding a physics-based

model’s state information into the ML model.

4. Hybrid Modeling via NDC+FNN

Section 3 shows the effectiveness of integrating electrochem-

ical modeling with ML for modeling of LiBs. A subsequent

question of interest is whether we can integrate ECMs with

ML based on the proposed HYBRID-1 and HYBRID-2 frame-

works. ECMs have simplistic structures and fast computation,

and hybrid models based on them can be beneficial for various

real-world battery management tasks. In this section, we blend

the NDC model, an ECM developed recently in [28, 29], with

an FNN to develop two hybrid models, named NDCNet-1 and

NDCNet-2, respectively, and experimentally investigate their

performance.

4.1. The NDCNet-1 and NDCNet-2 Models

The NDC model maps the diffusion and electrical processes

in a LiB cell to a circuit of electrical components. As shown in

Fig. 6a, the circuit includes two coupled parts. The first (left)

part simulates the diffusion in the cell’s electrode, which com-

prises two R-C pairs, Rb-Cb and Rs-Cs, configured in parallel.

The Rb-Cb analogously represents the bulk inner region of the

electrode, and the Rs-Cs represents the surface region of the

electrode. As such, Cb 
 Cs and Rb 
 Rs, where Rs can often

be set as 0 [28]. The charge transfer between Cb and Cs mimics

the diffusion of lithium ions in the electrode [56]. The second

(right) part simulates the dynamic output voltage of the battery,

which consists of a voltage source U, a resistor R0, and an R-C

pair R1-C1 pair connected in series. Here, U = h(Vs) plays the

role of the open-circuit voltage source. In addition, the R1-C1

approximates the voltage transients caused by charge transfer

on the electrode/electrolyte interface, and R0 accounts for the

ohmic resistance and solid electrolyte interface resistance.
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(a)

NDC

FNN

(b)

NDC

FNN

(c)

Figure 6: (a) The NDC model, (b) the NDCNet-1 model and (c) the NDCNet-2

model.

The state-space equations of the NDC model are given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
V̇b(t)
V̇s(t)
V̇1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Vb(t)
Vs(t)
V1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + BI(t), (10a)

VNDC(t) = h(Vs(t)) − V1(t) + R0I(t), (10b)

where Vb, Vs and V1 are the voltage across Cb, Cs and C1, re-

spectively. Here,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
0

1
Cs(Rb+Rs)

−1
Cs(Rb+Rs)

0

0 0 −1
R1C1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
Cb(Rb+Rs)

Rb
Cs(Rb+Rs)−1

C1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
In this study, we parameterize the h(Vs) as

h(Vs) =
α1V2

s + α2Vs + α3

V3
s + α4V2

s + α5Vs + α6

,

where αi for i = 1, 2, ..., 6 are the coefficients. Further, we have

Vb = Vs = 0 V when the cell is depleted (SoC = 0%), and

Current

profile

RMSE

(NDC)

RMSE

(NDCNet-1)

RER

(%)

T
ra

in
in

g

1 C 20.47 mV 3.56 mV 82.61

2 C 68.77 mV 5.05 mV 92.66

5 C 194.67 mV 5.17 mV 97.34

7 C 274.75 mV 4.35 mV 98.42

8 C 318.85 mV 5.62 mV 98.24

US06 33.70 mV 8.67 mV 74.27

SC04 38.19 mV 6.68 mV 82.50

T
es

ti
n

g

3 C 112.67 mV 11.25 mV 90.02

4 C 150.63 mV 10.87 mV 92.78

6 C 236.51 mV 7.83 mV 96.69

UDDS 32.92 mV 10.96 mV 66.71

LA92 28.36 mV 9.30 mV 67.21

(a)

Current

profile

RMSE

(NDC)

RMSE

(NDCNet-2)

RER

(%)

T
ra

in
in

g

1 C 20.47 mV 3.96 mV 80.65

2 C 68.77 mV 4.80 mV 93.02

5 C 194.67 mV 5.24 mV 97.31

7 C 274.75 mV 2.77 mV 99.00

8 C 318.85 mV 4.08 mV 98.72

US06 33.70 mV 9.24 mV 72.58

SC04 38.19 mV 5.99 mV 84.32
T

es
ti

n
g

3 C 112.67 mV 14.05 mV 87.53

4 C 150.63 mV 10.72 mV 92.88

6 C 236.51 mV 9.14 mV 96.14

UDDS 32.92 mV 10.85 mV 67.04

LA92 28.36 mV 8.60 mV 69.68

(b)

Table 2: Training/testing performance of (a) the NDCNet-1 model and (b) the

NDCNet-2 model under different current profiles, in comparison with the NDC

model.

Vb = Vs = 1 V when the cell is fully charged (SoC = 100%).

The total charge capacity of the cell thus is Cb + Cs. Then, the

SoC is given by

SoC =
CbVb +CsVs

Cb +Cs
× 100%. (11)

Finally, the internal resistance R0 is assumed to be SoC-

dependent:

R0 = γ1 + γ2e−γ3SoC + γ4e−γ5(1−SoC). (12)

The NDC model, as summarized in (10)-(12), simulates the

charge diffusion in an electrode and the nonlinear voltage dy-

namics simultaneously. With this characteristic, it presents

higher voltage predictive accuracy at low to medium C-rates

than earlier ECMs, including the Thevenin’s model, and has

found desirable use in SoC estimation and optimal charg-

ing [57, 58]. However, as with the SPM, its accuracy will de-

cline at high C-rates. We are hence intrigued to develop NDC-

based hybrid models to improve the predictive performance.

We construct the NDCNet-1 and NDCNet-2, based on the

HYBRID-1 and HYBRID-2 frameworks, respectively. Their

structures are shown in Figs. 6b-6c. Here, the NDCNet-1 is
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(a) Testing results of the NDCNet-1 model under discharging by the LA92

profile with the cooling fan off.
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Figure 7: Testing results of the NDCNet-1 and the NDCNet-2 models.

designed to capture the NDC model’s residual relative to the

true terminal voltage directly, and the NDCNet-2 is made to

learn and reproduce the terminal voltage. As the frameworks

mandate, we feed the state variables of the NDC model, Vb,

Vs and V1, to the FNN so that the FNN can perform physics-

informed prediction. Besides, the temperature T is fed to the

FNN so that the FNN can capture the effect of the temperature

in its voltage prediction.

4.2. Experimental Validation
We evaluated the proposed NDCNet-1 and NDCNet-2 mod-

els through experimental validation. The experimental settings

are as follows:

• All the experimental data were collected on a Samsung

INR18650-25R LiB cell using the PEC SBT4050 battery

tester. The cell has a nominal capacity of 2.5 Ah and an

operating range from 4.2 V to 2.8 V, with a maximum con-

tinuous discharging current of 20 A (8 C).

• The NDC model was extracted from experimental data us-

ing the parameter identification 1.0 approach in [28].

• The training datasets were collected from experiments by

applying constant discharging currents at 1/2/5/7/8 C and

variable current profiles based on the US06 and SC04. The

test datasets were based on constant discharging currents

at 3/4/6 C and variable current profiles UDDS and LA92.

Here, all variable current profiles were scaled to be be-

tween 0∼8 C. The datasets were purposefully designed so

as to validate the proposed models across low to very high

C-rates.

• In order to capture the influence of temperature, all types

of current profiles were applied twice with an electric

cooling fan on and off. The temperature was measured

by a thermocouple attached to the cell’s surface. Dur-

ing the experiments, the cell’s temperature varied between

19∼55◦C.

• Both the NDCNet-1 and NDCNet-2 models adopt the

same FNN architecture as in the SPMTNet-1 and

SPMTNet-2. The performance metrics for evaluation are

RMSE and RER as defined in Section 3.2.

The validation results of the NDCNet-1 and NDCNet-2 mod-

els are summarized in Tables 2a and 2b, respectively. Both

models show considerable training accuracy—compared to the

NDC model, they substantially decrease the prediction errors
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Figure 8: (a) Training and (b) testing accuracy of pure FNN models and

NDCNet-1 under variable current profiles when the cooling fan was off. The

numbers of neurons in each hidden layer are shown in the parentheses.

as measured by RMSE, especially when high C-rates are ap-

plied. The testing accuracy for both slightly declines but still

remains high. Figs. 7a-7b further display the voltage prediction

of the NDCNet-1 and NDCNet-2 models in comparison with

the NDC model when the LA92 and UDDS profiles are applied.

It is seen that the two models consistently deliver much better

prediction and, in particular, bring more performance enhance-

ments at large currents. These results demonstrate the NDCNet-

1 and NDCNet-2 models as effective and powerful for voltage

prediction. Note that both models are more parsimonious in

structure than the SPMTNet-1 and SPMTNet-2 models, due to

the simplicity of the NDC model. This makes them potentially

more amenable to computation and real-world applications.

Further, we compared the NDCNet-1 model with pure FNN

modeling to evaluate our hybrid modeling design. Here, we

trained the NDCNet-1 model with 8/32/64 neurons in each hid-

den layer of the FNN. The pure FNN models were designed to

use the present and history information to predict the terminal

voltage. They were set up as below:

• The FNN-A model: Input: I(k), I(k − 1) ,T (k), T (k − 1),

SoC(k), and SoC(k − 1), where k is the discrete time in-

dex, and SoC is based on Coulomb counting. Output:

V(k). Structure: two hidden layers with 128 neurons in

each layer.

• The FNN-B model: Input and output: the same as the

FNN-A model. Structure: two hidden layers with 256 neu-

rons in each layer.

• The FNN-C model: Input: I(k), I(k − 1) ,T (k), T (k − 1),

SoC(k), SoC(k−1), and V(k−1). Output: V(k). Structure:

two hidden layers with 128 neurons in each layer.

• The FNN-D model: Input and output: the same as the

FNN-C model. Structure: two hidden layers with 256 neu-

rons in each layer.

Figs. 8a-8b illustrate the comparison results. We highlight

two observations. First, all the versions of the NDCNet-1

model, despite having much smaller numbers of neurons and

being trained on the same datasets, considerably outperform all

the four pure FNN models in both training and testing. Second,

pure ML models are prone to giving unreasonable predictions

in testing scenarios. For instance, the FNN-D model has only

slightly less accuracy than the NDCNet-1 model when tested

by the LA92 profile, but has much poorer performance under

UDDS profile. The comparison shows that our hybrid modeling

design can provide better prediction performance with simpler

model structure and offer good consistency in accuracy between

training and testing.

5. Aging-Aware Hybrid Modeling

LiB cells age during cycling, which causes changes

in material properties and affects the processes in charg-

ing/discharging [1, 32, 59]. Aging manifests itself in capacity

fade, internal resistance growth, and fast heat buildup. A LiB

cell hence represents a time-varying system indeed. However,

it has been found non-trivial to perform aging-aware LiB mod-

eling, even though the problem has attracted some research.

A main difficulty lies in characterizing physical relationships

between aging and changes in a model’s different parameters,

which are often convoluted or elusive. Yet, the notion of hy-

brid modeling proposed in this paper can potentially allow to

include an aging awareness into ML-based prediction, with-

out tediously analyzing the underlying physics. To validate this

promise, we further investigate aging-aware hybrid modeling in

this section and focus on expanding the NDCNet-1 model, with

similar results consistently obtained for the other proposed hy-

brid models if they are modified in the same way.
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Figure 9: Block diagram of the AA-NDCNet-1.

To quantify the aging condition, we consider SoH defined

as the ratio between a cell’s current capacity Qa and its initial

capacity Qinit:

SoH =
Qa

Qinit

× 100%.

While SoH can be described in different ways, this definition

suffices for our hybrid modeling, and its conciseness helps

ensure model parsimony. Proceeding forward, we expand

the NDCNet-1 model by including the above SoH. The new

model is named as aging-aware NDCNet-1 (AA-NDCNet-1)

and shown in Fig. 9. It presents two main features. First, we ap-

ply SoH, which is calculated on a regular basis, as an additional

input to the FNN. As such, the FNN becomes informed and

aware of SoH when making prediction. Second, for the AA-

NDCNet-1 model, we do not have to update the NDC model

continually based on the aging condition. Instead, we solely

use the FNN to capture the effect of SoH on the terminal volt-

age. This would bring significant convenience in practical use

of the proposed model.

Next, we present the experimental validation of the AA-

NDCNet-1 model. The experimental settings are as follows.

• We collected the experimental data from two Samsung

INR18650-25R LiB cells labeled as #1 and #2, re-

spectively. Both cells underwent the same 450 charg-

ing/discharging cycles until their capacity Qa reached

about 81% of the initial capacity Qinit. For a cy-

cle, the cells were first charged based on the constant-

current/constant-voltage charging protocol. Then, they

were discharged by repeatedly and periodically applying

the constant 1/2/3/4/5/6 C and UDDS/US06/LA92/SC04-

based variable current profiles one after another. The cell’s

actual capacity Qa can be determined based on constant-

current discharging at 4 C, as suggested by the cell’s data

sheet.

• Cell #1 was intended to generate training data, and cell

#2 was used to test the model. Here, we only used

part of the datasets from cell #1 to train the model; they

included 1/2/4/6 C constant current profiles and vari-

able current profiles based on the UDDS and US06 for

SoH=81∼100%. The testing datasets from cell #2 con-

tained constant discharging current profiles at 3/5 C and
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Figure 10: Comparison of (a) the NDC model and (b) the AA-NDCNet-1 model

under different testing current profiles and SoH values.

variable current profiles based on the LA92 and SC04 for

SoH = 81∼100%. All variable current profiles were scaled

to be between 0 and 6 C in magnitude. The datasets span

low to high C-rates in order to sufficiently assess the per-

formance of the AA-NDCNet-1 model.

• The NDC model was identified only once, using the data

gathered from cell #1 when SoH=100%. The FNN hence

aimed to capture the residual between VNDC and Vtrue for

different SoH values. For all scenarios, SoC and C-rates

were calculated relative to the initial capacity Qinit.

• The AA-NDCNet-1 used the same FNN architecture as the

NDCNet-1 in Section 4.2 and was evaluated by RMSE.

Figs. 10a-10b show the testing performance of AA-NDCNet-

1 model compared with the NDC model when SoH =

99/95/93/90/88/86/84/81%. Two observations are noteworthy.
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First, the RMSE of the identified NDC model steadily increases

as the cell ages. However, the AA-NDCNet-1 model not only

produces much smaller RMSE, almost consistently below 20

mV in all scenarios, but also preserves high accuracy through-

out the aging process. Second, the AA-NDCNet-1 model, even

though trained on cell #1, is capable of well predicting the volt-

age behaviors of cell #2 throughout its cycle life. This suggests

the promise of making the AA-NDCNet-1 model a “universal”

hybrid model—one learned from a cell but widely applicable to

other cells of the same type.

6. Discussion

Based on the results in Sections 3-5, we have the following

remarks.

• Predictive accuracy. The proposed catalog of hybrid

models has shown not only high accuracy but also strong

physical consistency in both simulations and experiments.

We highlight that this merit rests on two factors. First,

our hybrid models exploit physics-informed ML by feed-

ing the state of a physical model into the FNN. The aware-

ness of the physical model’s status helps the FNN make

better voltage prediction. Second, data play a significant

role in the overall prediction performance. Even though

the proposed hybrid modeling frameworks reduce the de-

pendence on data amounts compared to pure ML models,

we still must use sufficient quantities of informative data to

train the FNN. The data should effectively cover the spec-

trum of a LiB’s dynamics and span the prediction ranges

intended for the model in terms of C-rates, SoC, and SoH.

• Computational efficiency. For the proposed hybrid mod-

els, most of the computational burden comes from the

FNN training. The training costs can vary, depending on

the quantities of data and the structure of the FNN. How-

ever, we point out that the FNN employed in a proposed

hybrid model can have a much simpler structure, com-

pared to the case when a pure FNN is used for dynamic

modeling of LiBs. This implies significantly lower com-

putational costs in training. When deployed for online pre-

diction, the hybrid models would allow fast computation.

Our experiences showed the SPMTNet-1 and SPMTNet-

2 models run much faster than the DFN model; further,

the NDC-based hybrid models offer even higher computa-

tional efficiency.

• Prospective applications. As a main feature, the pro-

posed hybrid frameworks and models are capable of mak-

ing accurate voltage prediction over wide C-rate ranges.

This makes them very useful for various kinds of prac-

tical LiB energy storage systems. In particular, they are

suitable for LiB systems that must operate at high power

conditions, for which accurate modeling is still beyond the

reach of today’s electrochemical models (e.g., the SPMT

model) and ECMs (e.g., the Thevenin or NDC model) be-

cause of their either high computational costs or lack of

accuracy. An application example in point is electric air-

craft, which runs at up to 5 C in the take-off and landing

phases [60, 61]. For such applications, the proposed hy-

brid models can be used to estimate the state-of-power and

state-of-energy with their strong voltage prediction capa-

bilities. This will be part of our subsequent work as an

extension of the presented study. The proposed models

can also find promising use in LiB systems that operate at

only low to medium C-rates. For such systems, a physi-

cal model with good fidelity is often easily available, but

an FNN can be used to complement the physical model

to capture the uncertain nonlinear voltage. The resultant

hybrid models will well lend themselves to voltage pre-

diction and SoC estimation in this case.

• FNN architecture selection. A four-layer FNN, with

the two hidden layers each having 32 neurons, was used

throughout the model validation in the study, so as to as-

sess the models on a common ground. However, we found

out that other FNN architectures, e.g., one with fewer neu-

rons in the hidden layers, can even lead to comparable per-

formance. A practitioner may want to use an architecture

to strike a balance between prediction accuracy and model

size or complexity. This can be achieved by empirical

tuning or deploying automated architecture search meth-

ods [62]. Finally, our tries in the model validation with re-

current and long short-term memory NNs showed they can

also be alternatives to FNNs here, though we choose the

latter to present the study for their simplicity and tractabil-

ity for practical application.

7. Conclusion

The ever-increasing adoption of LiBs across various sec-

tors presents a pressing demand for accurate and computa-

tionally efficient models. In this paper, we proposed to in-

tegrate physics-based modeling with data-driven ML to meet

this need. From this perspective, we developed the HYBRID-

1 and HYBRID-2 modeling frameworks characterized by in-

forming the ML model of the physical model’s state informa-

tion to significantly improve the voltage prediction performance

and simplify the ML architecture. We then applied the frame-

works to investigate their viability in enabling effective inte-

gration of electrochemical models and ECMs with ML, respec-

tively. We constructed four hybrid models, based on the no-

tions of SPMT+FNN and NDC+FNN. We conducted extensive

simulations and experiments to illustrate that all the four hybrid

models can offer exceptionally high voltage predictive accuracy

for LiBs operating at a wide range of C-rates. Further, we ex-

panded the hybrid modeling design to embed an awareness of a

LiB’s aging condition into prediction, through making the ML

informed of SoH. An NDC+FNN hybrid model was upgraded

to achieve this end and experimentally validated to be capable

of making accurate prediction under different SoH conditions.

Our future work will include the application of the proposed

models to different battery management tasks.
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Physics-informed neural networks for electrode-level state estimation in

lithium-ion batteries, Journal of Power Sources 506 (2021) 230034.

[50] R. G. Nascimento, M. Corbetta, C. S. Kulkarni, F. A. Viana, Hybrid

physics-informed neural networks for lithium-ion battery modeling and

prognosis, Journal of Power Sources 513 (2021) 230526.

[51] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks

are universal approximators, Neural Networks 2 (5) (1989) 359–366.

[52] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[53] M. Malmström, I. Skog, D. Axehill, F. Gustafsson, Asymptotic predic-

tion error variance for feedforward neural networks, IFAC-PapersOnLine

53 (2) (2020) 1108–1113.

[54] J. Newman, (2008) Fortran programs for the simulation of electrochemi-

cal systems. [online]. Available: http://www.cchem.berkeley.edu

/jsngrp/fortran.html.

[55] Environmental Protection Agency, Vehicle and fuel emission testing,

Technical Report.

[56] H. Fang, Y. Wang, J. Chen, Health-aware and user-involved battery charg-

ing management for electric vehicles: Linear quadratic strategies, IEEE

Transactions on Control Systems Technology 25 (3) (2017) 911–923.

[57] H. Movahedi, N. Tian, H. Fang, R. Rajamani, Hysteresis compensation

and nonlinear observer design for state-of-charge estimation using a non-

linear double-capacitor Li-ion battery model, IEEE/ASME Transactions

on Mechatronics (in press).

[58] N. Tian, H. Fang, Y. Wang, Real-time optimal lithium-ion battery charg-

ing based on explicit model predictive control, IEEE Transactions on In-

dustrial Informatics 17 (2) (2021) 1318–1330.

[59] X. Tang, C. Zou, K. Yao, J. Lu, Y. Xia, F. Gao, Aging trajectory prediction

for lithium-ion batteries via model migration and bayesian monte carlo

method, Applied Energy 254 (2019) 113591.

[60] A. Bills, S. Sripad, W. L. Fredericks, M. Guttenberg, D. Charles, E. Frank,

V. Viswanathan, Universal battery performance and degradation model

for electric aircraft (2021). arXiv:2008.01527.

[61] X.-G. Yang, T. Liu, S. Ge, E. Rountree, C.-Y. Wang, Challenges and key

requirements of batteries for electric vertical takeoff and landing aircraft,

Joule 5 (7) (2021) 1644–1659.

[62] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, X. Wang, A com-

prehensive survey of neural architecture search: Challenges and solutions,

ACM Computing Surveys 54 (4) (2022) 1–34.

15


