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Abstract—This paper presents a novel modular, reconfigurable
battery energy storage system. The proposed design is charac-
terized by a tight integration of reconfigurable power switches
and DC/DC converters. This characteristic enables isolation of
faulty cells from the system and allows fine power control for
individual cells toward optimal system-level performance. An
optimal power management approach is developed to extensively
exploit the merits of the proposed design. Based on receding-
horizon convex optimization, this approach aims to minimize
the total power losses in charging/discharging while allocating
the power in line with each cell’s condition to achieve state-of-
charge (SoC) and temperature balancing. By appropriate design,
the approach manages to regulate the power of a cell across its
full SoC range and guarantees the feasibility of the optimization
problem. We perform extensive simulations and further develop
a lab-scale prototype to validate the proposed system design and
power management approach.

Index Terms—Battery management systems, cell balancing,
convex optimization, reconfigurable battery energy storage sys-
tems (RBESSs).

NOMENCLATURE

Variables
S Reconfiguration switches–binary (1/0) variable

V ∗
t RBESS reference output voltage

V max
C Maximum output voltage of DC/DC converters

Imax
C Maximum output current of DC/DC converters

v Cell voltage

u Cell open-circuit voltage

iL Cell current

Pb Cell internal power

P Cell output power

E Cell energy

Pl Module power losses

J Total power losses

Pout RBESS output power

Iout RBESS output charging/discharging current

Q̇cnd Conductive heat transfer rate

This work was supported in part by the U.S. National Science Foundation
under Awards CMMI-1763093 and CMMI-1847651, and in part by the U.S.
Department of Energy, Office of Electricity through the Energy Storage
Program.

A. Farakhor and H. Fang (corresponding author) are with the Department of
Mechanical Engineering, University of Kansas, Lawrence, KS, USA (Email:
fang@ku.edu, a.farakhor@ku.edu).

D. Wu is with the Pacific Northwest National Laboratory, Richland, WA,
USA (Email: di.wu@pnnl.gov).

Y. Wang is with the Mitsubishi Electric Research Laboratories, Cambridge,
MA, USA (Email: yebinwang@merl.com).

Q̇conv Convective heat transfer rate

ξ Slack variable

z Optimization variables

Parameters
n Number of battery cells

ns Number of cells in series

np Number of cells in parallel

J Set of in-service cells

L Inductor for DC/DC converters

C Output capacitor for DC/DC converters

Q̄ Cell capacity

q, qmin, qmax SoC of a cell, and its lower and upper limits

qavg Average SoC

Δq SoC imbalance tolerance

ΔE Energy imbalance tolerance

α Intercept coefficient of the SoC/OCV line seg-

ment

β Slope coefficient of the SoC/OCV line segment

R Cell internal resistance

RC Resistance to capture the power losses of

DC/DC converters

Rcnd Conductive thermal resistance

Rconv Convective thermal resistance

Cth Thermal capacitance

T, Tmax Cell temperature and its upper limit

Tavg Average temperature

Tenv Environmental temperature

ΔT Temperature imbalance tolerance

λ Penalty weight for the multi-objective opti-

mization

Δt Sampling time

H Optimization horizon

I. INTRODUCTION

L ITHIUM-ION battery energy storage systems (BESSs)

have proven themselves as an enabling technology for

various applications, including electric cars, electric aircraft,

smart grid, and space systems[1–4]. Despite their high energy

density and long cycle life, lithium-ion batteries suffer from

safety risks, which trace to the high reactivity of lithium

and flammability of the commonly used electrolyte solutions

and are exacerbated by side reactions, aging, and degradation

[5]. Hence, it is imperative to ensure their safe and reliable
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operation, particularly in safety-critical applications [6]. Re-

configurable BESS (RBESS) have attracted much attention as

a promising means to achieve this end. An RBESS characteris-

tically uses power electronics switches to make the connection

among the constituent cells reconfigurable, providing the capa-

bility to bypass faulty cells without interrupting the operation

of the system [7]. This feature overcomes the vulnerability of

conventional hardwired BESS to single-cell failures due to the

fixed configuration [8]. This paper proposes a novel RBESS

design that integrates reconfigurable switches with DC/DC

converters. The new design uses the switches to reconfigure the

connectivity of the cells for the sake of safety and meanwhile,

leverages the converters to achieve robust power management

and supply from cell to system level. Further, we present an

optimal power management algorithm and develop a lab-scale

prototype to validate the proposed RBESS design and control.

A. Literature Review

This paper centers around the RBESS circuit design and

power management. Therefore, we survey the literature on the

two dimensions one by one. The review will also encompass

some recent studies about hardwired BESS due to the rele-

vance.

1) Review of RBESS circuit design: The literature has pre-

sented two main ways to design RBESS circuit architectures.

The first one builds and integrates a circuit of controllable

power electronics switches with the cells. By controlling the

switches, a cell can be put into or cut off from the connection

with other cells when a fault occurs. The circuit topology

plays a key role in the level of reconfigurability, functional

flexibility, and circuit complexity. The study in [9] shows a

switching circuit for a series-connected battery pack, which

uses only two switches for every cell. More sophisticated

topologies can provide more versatile reconfiguration, though

at the expense of using larger numbers of switches. The work

in [10] considers a string of modules of parallel-connected

cells in series and allows switch-based bypass of any cell

or module. The circuit topologies proposed in [11, 12] place

five and six switches, respectively, around each cell to realize

arbitrary series and parallel connection among the cells, and

the one shown in [13] uses only four to achieve the same

end. It is interesting to point out that reconfigurable switching

circuits can enable more functions than just isolating faulty

cells. A battery system designed in [14] dynamically connects

some battery modules in series or parallel to produce multi-

level and even AC voltage output. In [15], an inverter based on

switching circuits combines batteries and supercapacitors for

hybrid energy storage. While easily reconfigurable, switching

circuits are unable to do cell-level charging/discharging power

regulation. This limitation will lead to unbalanced use of the

cells following the reconfiguration-based bypass of a cell.

Another important way for RBESS design uses converters.

A converter can not only connect a cell into the circuit, but also

charge or discharge it at a controlled current, voltage, or power.

This capability offers a higher degree of freedom for cell-level

control to enhance the balanced use of the cells. In [16], a

centralized converter interfaces with a few cells, and it contains

a selector to select and put the cells into operation. The work in

[17] pairs converters, which by design include power switches

to offer a bypass mode, with individual cells one by one to

form a reconfigurable pack. However, converter-based RBESS

architectures are unable to offer flexible topology changes,

compared to the switching circuits. As such, only series-

connected RBESS is considered in [16, 17]. Converters have

also found their way into hardwired BESS. The studies in [18–

20] integrate DC/DC converters with the cells to enable cell

balancing and power loss minimization. However, the fixed

hardwired connections among the cells make them susceptible

to single-cell faults.

2) Review of RBESS control and power management: For

a given switching-circuit-based RBESS, an essential question

is how to control its topology. A main approach lies in

finding out a connection topology to meet load requirements.

For example, a heuristic method in [10] groups battery cells

into modules and chooses a minimum set of modules on a

load request to perform charging/discharging. The method

of dynamic programming finds use in identifying an opti-

mal configuration topology in [11], and rule-based bypassing

mechanisms are proposed in [12] to control the switches for

stable or responsive voltage supply. The study in [13] exploits

the switching circuit to achieve cell equalization through a

hierarchical strategy that combines intra-module equalization

and system-level reconfiguration. Considering the switching

circuits in [9, 10], the study in [21] proposes to sort cells

according to their capacity and then reconfigure them into

serial strings to restrain the cell imbalance.

On a related note, the literature has included a few stud-

ies about power management for hardwired BESS based on

converters. For converter-based RBESS, the main subject of

investigation is developing control approaches to manage the

cell-to-system-level operation. Optimal control has shown as

a useful solution in this regard. However, due to a lithium-

ion battery’s nonlinear characteristics, optimization problems

posed for the power management are often non-convex, and

thus defy the computation of global optima. To mitigate the

issue, the studies in [18, 19] choose to leverage a battery model

convexification approach proposed in [22] to formulate convex

optimal power control problems. The convexification therein

involves a linear approximation of the relationship between

the state-of-charge (SoC) and the open-circuit-voltage (OCV),

thus restricting the proposed methods to only limited operating

ranges. It is also possible to use a linear battery model to

achieve optimal control that even admits closed-form solutions

[23], but the method is also just applicable to operating ranges

in which the linear model is accurate.

As another valuable approach, distributed power manage-

ment treats the cells as independent agents and makes them

perform individual control toward a global goal. One can

decompose a global optimization task and distribute it among

individual cells for charging or load sharing, as shown in

[20]. As an alternative way, distributed consensus control is

applied in [24] to achieve SoC balancing among the cells.

Not requiring numerical optimization, this method offers fast

computation. But the lack of optimality makes it in need of

more time to converge.
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TABLE I
CHARACTERISTICS OF DIFFERENT BESS STRUCTURES.

Switch-based RBESS Converter-
based

RBESS

Converter-based
hardwired BESS

Proposed design

[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

Safety (Bypass of faulty cells) � � � � � � � � � × × × �
Output voltage regulation × × × × × × × � � × × × �
SoC balancing � � � � � × � � � � � � �
Temperature balancing × × × × × × × × × � � � �
State-of-health balancing × × × × × × × × × × × × �
Optimal cell-level power control × × × × × × × × × � � � �
Compatibility with cells of different types × × × × × × � × � × � � �
Flexibility in series/parallel connection L M H H H M L L L × × × H

L: Low, M: Medium, H: High

Table I summarizes the main BESS architectures in the

literature for comparison. In this context, we propose the

presented work to improve the state of the art.

B. Statement of Contributions
Despite recent advances, the RBESS technology remains far

from reaching a level of maturity in both design and control.

The existing RBESS architectures use either only switches

or only converters to enable good reconfigurability or good

power regulation capability, but not both. There is also a lack

of power control approaches sophisticated enough to maximize

the operating performance of RBESS. To overcome these

substantial shortcomings, our study presents the following

specific contributions.

1) We propose a new modular, reconfigurable power electron-

ics architecture for RBESS. Differing from the existing

ones, the proposed architecture, for the first time, integrates

power switches with DC/DC converters for a combination

of their respective merits, while using the fewest number of

switches for each cell to our best knowledge. Among the

various benefits that the proposed design brings are high

reconfigurability—arbitrary bypass and parallel or series

connection among the adjacent cells—and high regulata-

bility in power supply from cell to system level to satisfy

exogenous power demands, even under the occurrence of

cell failures, and ensure equal use of the cells simultane-

ously.

2) We develop a power management approach based on

optimal control for the proposed RBESS to minimize the

system-wide energy loss while supplying demanded power

and equalizing the cells in SoC and temperature. Compared

to the prior methods, our approach is different in two

aspects. First, we adopt piecewise linear SoC/OCV ap-

proximation in the battery model convexification to enable

control across low to high SoC regions. Second, previous

methods may be subject to infeasibility when the cells’

actual conditions make the pre-set operating constraints

unsatisfiable. Here, we introduce slack variables to relax

the optimization problem to ensure the feasibility and

practical applicability of our approach. Finally, we present

a reconfiguration method to modify the switching circuit

topology after a faulty cell is isolated.

3) We develop an experimental prototype and conduct a series

of experiments to validate and assess the performance

of the proposed RBESS. The experiments involve var-

ious scenarios under non-uniform cell conditions, fault

occurrence, and reconfiguration. The results demonstrate

the effectiveness of the proposed architecture and power

management approach.

Based on the above contributions, our RBESS design

presents significant advantages to distinguish itself from the

literature, as shown in Table I. A preliminary conference

version of this work appeared in [25] to report the RBESS

architecture design. Here, we introduce substantial expansions

in optimal power management and experimental validation.

C. Organization

The remainder of the paper is organized as follows. Section

II presents the power electronics architecture of the proposed

RBESS and discusses its unique features. Section III develops

the optimal power management approach, which covers the

modeling, optimization problem formulation, and convexifica-

tion. This section also presents a switching circuit reconfigura-

tion method. Section IV provides extensive simulation results,

and Section V proceeds to develop an experimental prototype

to validate the proposed RBESS design and control approach.

Finally, Section VI concludes the study.

II. ARCHITECTURE OF THE PROPOSED RBESS

This section elaborates the proposed RBESS. Fig. 1 shows

the power electronics architecture. As illustrated, every cell is

connected with a DC/DC converter to make up a module. Here,

we employ synchronous DC/DC converters, even though other

types of converter topologies are also allowed. The converter,

which comprises two power switches, an inductor, and an

output capacitor, provides bi-directional power processing to

control the charging and discharging of the cell. As such,

the module has the capability of cell-level power control.

The modules are connected via a switching circuit, which

places three power switches between every two adjacent

modules. With an appropriate reconfiguration of the switches,

the switching circuit can bypass a module subject to faults and

achieve arbitrary series or parallel connection among adjacent
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Fig. 1. The proposed modular DC/DC converter-integrated RBESS.

modules. We label the three switches connecting modules i
and i+1 as Sij for j = 1, 2, 3. For switch Sij , Sij = 1 when

it is on, and Sij = 0 when it is off. To bypass and isolate cell

i for 1 ≤ i ≤ n − 1 from the battery pack, we let Si1 = 1
and Si2 = Si3 = 0. To bypass cell n, we let S(n−1)2 = 1 and

S(n−1)3 = S(n−1)1 = 0. Modules i and i + 1 are configured

in series when Si1 = Si2 = 0 and Si3 = 1, and in parallel

when Si1 = Si2 = 1 and Si3 = 0.

The proposed design uses only 3(n − 1) power switches

for n cells. To our knowledge, this is more economical than

any other RBESS design in the literature to provide the same

level of reconfigurability. The circuit simplicity further results

in convenient operation and reconfiguration. Specifically, a cell

requires only one switch to be on for the series and bypass

configurations, and a parallel configuration needs only two

switches to be on, as seen from above.

Fig. 1 illustrates how the proposed design dovetails with the

battery management system (BMS). The BMS adopts a two-

layer control strategy. At the higher level, the optimal power

management generates optimal charging/discharging currents

for the cells; at the lower level, PI-based local current mode

controllers perform reference tracking for the cell currents, as

is common in control of DC/DC converters [26].

Our proposed RBESS can provide high reconfigurability

and control flexibility, which lead to distinct benefits for

practical applications. A summary of the major ones is as

follows.

1) The proposed design allows to bypass and isolate any faulty

module. Hence, the battery pack can continue to operate

rather than shut down as a whole, despite safety threats and

anomalies. Further, following the bypass of a module, the

switching circuit can reconfigure to redirect the power flow

and share the load equally among the remaining in-service

cells to promote balanced use of them.

2) In the proposed design, the embedded DC/DC converters

take on responsibility for the external power electronic

devices in the conventional designs to control the charg-

ing/discharging of the cells. The DC/DC converters would

yield useful functions with their capability of power con-

version and control. First, they can regulate their output

voltage so that the RBESS can supply desired or refer-

ence voltage. The voltage supply can remain consistent

before and after a fault-induced reconfiguration. Second,

the converters apply individual current or voltage control

to the cells, thus making it possible to customize and

optimize the charging/discharging for each cell based on its

present condition. One can translate this strength into cell

balancing, e.g., by charging (resp., discharging) the cells

with high SoC less (resp., more) relative to the cells with

low SoC. It is also viable to balance the cells in temperature

and state-of-health.

3) Even though beyond the scope of this paper, the proposed

design can accommodate the heterogeneity of the cells. For

example, one can leverage it to integrate heterogeneous

cells from different manufacturers or even based on dif-

ferent electrochemistries to form a workable system. In

a similar vein, the design can potentially enable hybrid

energy storage consisting of battery cells, supercapacitors,

and even solar cells.

Note that the use of the embedded DC/DC converters can

mitigate the use of exogenous power electronics devices, and

that one can connect a string or pack of cells, rather than a

single cell, to each DC/DC converter in practical adoptions.

These factors would help make the overall implementation cost

of the proposed RBESS manageable. Finally, the diverse new

functions and safety improvements brought by the design are

valuable especially for high-stakes, safety-critical applications

including electric vehicles and aircraft.

III. MODELING AND OPTIMAL CONTROL OF THE

PROPOSED RBESS

This section investigates optimal power management for

the proposed RBESS. We will begin with the electrical and

thermal modeling for the modules. We then proceed to present

a model-based optimal control problem for the RBESS and
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convexify it for computational tractability. Here, the model-

ing and optimal control formulation are a refinement of the

methodology in [18, 19], and improvements are introduced to

expand the operating SoC range of the RBESS and ensure the

feasibility of the optimization problem. Finally, we present

a switching circuit reconfiguration mechanism that dovetails

with the power management method.

A. Electrical and Thermal Modeling

Consider the proposed RBESS consisting of n modules.

Each module includes a cell, a DC/DC converter, and three

power switches connected in cascade, as shown in Fig. 2 (a).

We denote the set of all the in-service modules as J . The

electrical model of module j for j ∈ J is schematically shown

in Fig. 2 (b). It includes two parts. The first part is the Rint

model to describe the cell’s electrical dynamics [27], which

comprises an OCV source uj in series with an internal resistor

Rj . The model’s governing equations are:

q̇j(t) = − 1

Q̄j
iLj

(t), (1a)

vj(t) = uj(qj(t))−RjiLj
(t), (1b)

where vj , iLj
, uj , Q̄j , and qj are the terminal voltage of

the cell, applied current in Ampere, OCV, capacity, and SoC,

respectively. The internal power of the battery cell is given by

Pbj = uj(qj(t))iLj
(t). (2)

The DC/DC converter is modeled as an ideal DC/DC

transformer along with a series resistor RC to capture power

losses. The reconfiguration switches are also modeled by the

ideal switches with series resistors RSji . For module j, we

assume that we can collect the power losses on RSji for

i = 1, 2, 3 in a single resistor RSj
. Thus, the module’s output

power Pj can be calculated as

Pj = uj(qj(t))iLj (t)− (Rj +RC +RSj )i
2
Lj
(t), (3)

where Rji
2
Lj
(t), RCi

2
Lj
(t), and RSj

i2Lj
(t) represent the inter-

nal power losses of the cell, the converter, and the reconfigu-

ration switches, respectively.

We adopt a lumped thermal model in [18] to describe the

thermal dynamics of module j. The thermal model is depicted

in Fig. 2 (c). The model captures the heat transfer due to the

convection between module j and the environment, Q̇conv,j ,

and the conduction between module j and its adjacent cells,

Q̇cnd,j . Meanwhile, the power loss caused by the internal

resistor, Rji
2
Lj

, translates into heat generation, which becomes

the main heating source. Combining all, the thermal model is

governed by

Cth,j Ṫj(t) = Rji
2
Lj
(t)− Q̇cnd,j − Q̇conv,j , (4a)

Q̇conv,j(t) = (Tj(t)− Tenv)/Rconv, (4b)

Q̇cnd,j(t) = (2Tj(t)− Tj+1(t)− Tj−1(t))/Rcnd, (4c)

where Tj and Tenv are the cell’s and environmental temper-

atures, respectively. In addition, the term Cth,j represents the

thermal capacitance of the cell; Rcnd and Rconv are the thermal

resistances between neighboring cells and between cell j and

Qj1

Qj2

Cj

Lj Sj1

Sj2

Sj3

(a)
Sj1

Sj2

Sj3

Battery Cell DC/DC converter

(b)

+

-

+

-

+

-
+
-

ConductionConduction

Convection

(c)
Fig. 2. The proposed DC/DC converter-integrated cell module. (a) The circuit
structure of the proposed module. (b) The electrical model of the proposed
module. (c) The thermal model of the cell j.

the environment, respectively. Here, Rconv depends inversely

on the external surface area of the cell Aj and the convective

heat transfer coefficient between the cell’s surface and the

environment h. For instance, one can consider a parallel forced

air cooling approach for the proposed design [28], which

allows every cell to experience the same amount of cooling

air.

The above electro-thermal model is concise but expressive

and computationally efficient. Putting them together for all

the modules, one can obtain a complete description of the

dynamics of the RBESS, which allows us to perform optimal

power management design subsequently.

B. Problem Formulation

The aim of our RBESS power management is to distribute

the power load among the cells so that the power losses

can be minimized under some key safety, balancing and

power demand satisfaction constraints. To begin with, we will

formulate the optimization problem.

The total power losses of the RBESS can be expressed by

J(t) =
∑
j∈J

(Rj +RC +RSj
)i2Lj

(t). (5)

We use the following objective function to encompass the total

power losses over a horizon:∫ H

0

J(t)dt, (6)
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where H is the planning horizon length. For the sake of safety,

we require each cell to operate within some favorable current,

SoC, and temperature ranges:

imin
Lj

≤ iLj ≤ imax
Lj

, (7a)

qmin
j ≤ qj ≤ qmax

j , (7b)

Tj ≤ Tmax
j , (7c)

where imin/max
Lj

, qmin/max
j , and Tmax

j are the lower/upper safety

bounds for the current, SoC, and temperature of cell j, respec-

tively. It is important to note that imin
Lj

can be set to be zero

as the zero current means the bypass of the module. Further,

we impose the following SoC and temperature balancing

constraints to equalize the cells and make an even usage of

them:

|qj(t)− qavg(t)| ≤ Δq, (8)

|Tj(t)− Tavg(t)| ≤ ΔT, (9)

Here, qavg(t) and Tavg(t) represent the average SoC and tem-

perature of all the cells that belong to J . They are calculated

as

Xavg(t) =
1

card(J )

∑
j∈J

Xj(t),

where X = q and T , and card(J ) is the cardinality of J . The

SoC and temperature thresholds Δq and ΔT determine the

tolerated deviation of each cell’s SoC and temperature from

the average. Here, Δq and ΔT are tunable parameters, and

one can tune them to meet the SoC and temperature balancing

requirements for a specifically considered application. While

lower Δq and ΔT values force a more balanced SoC and

temperature distribution among the cells, higher values allow

more deviation for the cells’ SoC and temperature from the

average. To make the RBESS meet the power demands, we

present the following output power satisfaction constraint:

∑
j∈J

Pbj − (Rj +RC +RSj
)i2Lj

= Pout, (10)

where Pout is the total power demanded of the RBESS.

Summing up the above, our power management approach

is based on addressing the constrained nonlinear optimization

problem as follows:

min
iLj

,j∈J

∫ H

0

J(t)dt,

s.t. (1b), (4a), (7) − (10).

(11)

This optimization problem pursues predictive minimization of

the power losses while complying with the constraints that

promote safety, SoC and temperature balancing, and power

supply-demand match. Note that the optimization problem (11)

is non-convex due to the nonlinearity of the equality constraint

(10). Thus, the solution to this problem is neither trivial nor

computationally cheap. To overcome the issue, we relax the

problem slightly to formulate a convex optimization problem,

as suggested in [22]. The convexification is described in detail

as follows.
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Fig. 3. The SoC/OCV curve of the simulated cells and the multi-segment
linearization.

C. Convex Problem Formulation

For the sake of convexification, we begin with linearizing

the SoC/OCV curve. The existing studies, e.g., [18, 19] per-

form the linearization for only the medium SoC range, where

the OCV is closely linear with SoC for lithium-ion batteries.

However, this treatment excludes the use of the low and high

SoC ranges. To address the issue, we introduce multi-segment

linearization based on different SoC ranges to approximate the

complete SoC/OCV curve:

uj(qj(t)) = αi
j(qj(t)) + βi

j(qj(t))qj(t), (12)

where αi
j and βi

j are the intercept and slope coefficients of the

i-th line segment for cell j. Fig. 3 illustrates an example of

the linearization, where the SoC/OCV curve taken from a real

cell is approximated by three line segments. Differing from

the literature, the αi
j and βi

j values are SoC-dependent, and

the multi-segment linear approximation spans the SoC/OCV

curve from 0 to 100% SoC. To ease the notation, we will drop

the superscript i from αi
j and βi

j in the sequel without causing

confusion. Next, we present a convex model by introducing

the notion of accumulated energy Ej to take the place of SoC.

The accumulated energy of a battery cell can be expressed as

Ej(t) =
1

2
Cju

2
j (qj(t))− E0

j , (13)

where Cj = Q̄j/βj and E0
j = 1

2Cju
2
j (qj(0)) is the initial

energy. Inserting (12) to (13) and using (1b), the dynamic

equation of the cell’s accumulated energy can be derived as

Ėj(t) = −Pbj . (14)

In the above, we extract a desirably linear dynamic model

to represent the evolution of Ej(t) driven by Pbj . Based on

(14), we will reformulate the optimization problem to be one

with respect to Pbj , as will be seen later. Proceeding forward,

we consider module j’s power loss, Plj (t), which can be

expressed in terms of Pbj as

Plj (t) =
(Rj +RC +RSj )CjP

2
bj
(t)

2(Ej(t) + E0
j )

. (15)

As our optimization goal is to minimize the total power loss,

(15) serves as an equality constraint. Since Plj (t) is not a

linear function of Pbj , the resulting optimization problem
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would be non-convex due to the nonlinearity of (15). Thanks

to the fact that the objective function minimizes the total loss

of the battery pack, we can relax (15) to comply with the

convexity requirement

Plj (t) ≥
(Rj +RC +RSj

)CjP
2
bj
(t)

2(Ej(t) + E0
j )

, (16)

by which the optimization problem will practically reduce

Plj (t) to its lower bound. The safety constraints (7a)-(7b) can

also be reformulated in terms of the Pbj and Ej as follows:

√
2

Cj
(Ej + E0

j )i
min
Lj

≤ Pbj ≤
√

2

Cj
(Ej + E0

j )i
max
Lj

, (17a)

1

2
Cju

2
j (q

min
j (t)) ≤ Ej + E0

j ≤ 1

2
Cju

2
j (q

max
j (t)). (17b)

Similarly, the SoC balancing constraint (8) translates into the

following one:

∣∣∣∣∣ 2

Cj
Ej(t)− 1

card(J )

∑
i∈J

2

Ci
Ei(t)

∣∣∣∣∣ ≤ ΔEj , (18)

where ΔEj = (αj + βjΔq)2 − α2
j . It is worth noting that

the SoC balancing constraint, either (8) or (18), may result in

infeasibility for the optimization problem, when Δq or ΔE
fails to bound the cells’ initial difference in SoC. The same

issue applies to the temperature balancing constraint (9). Once

happening, the infeasibility will cause the power optimization

procedure to abort. While it is possible to make ΔE and

ΔT large enough to forestall the issue, this will sacrifice the

achievable performance in both power loss minimization and

cell balancing. To guarantee the feasibility, we introduce slack

variables to modify the constraints in (18) and (9) as follows:

∣∣∣∣∣ 2

Cj
Ej(t)− 1

card(J )

∑
l∈J

2

Cl
El(t)

∣∣∣∣∣ ≤ ΔEj + ξ
(E)
j , (19)

|Tj(t)− Tavg(t)| ≤ ΔT + ξ
(T )
j , (20)

where ξ
(E)
j , ξ

(T )
j ≥ 0 denote the SoC and temperature slack

variables, respectively. The slack variables will be included

into the objective function to penalize potential constraint

violations. As such, if a cell’s SoC or temperature is beyond

the constraints, it will be driven close to the constraints by

heavily penalizing the corresponding slack variables, without

compromising the feasibility. Besides, the use of the slack

variables will improve the power control flexibility. This will

be discussed in the simulation study in Section IV.

Based on the above, we are now ready to make a convex

relaxation of the problem in (11). Here, we also turn our

focus to discrete-time optimization for the sake of compu-

tation, through applying the forward Euler method to (4)

and (14) with the sampling time of Δt. We use the vector

zj = [Pbj , Plj , Ej , Tj , ξ
(E)
j , ξ

(T )
j ]�, j ∈ J to collect all

the optimization variables and propose the following convex

optimization problem for the RBESS power management:

min
zj ,j∈J

H∑
k=0

∑
j∈J

Plj [k] + λ(E)ξ
(E)
j [k] + λ(T )ξ

(T )
j [k],

Safety constraints:√
2

Cj
(Ej [k] + E0

j )i
min
Lj

≤ Pbj [k] ≤
√

2

Cj
(Ej [k] + E0

j )i
max
Lj

,

Tj ≤ Tmax
j

1

2
Cju

2
j (q

min
j [k]) ≤ Ej [k] + E0

j ≤ 1

2
Cju

2
j (q

max
j [k]),

Balancing constraints:∣∣∣∣∣ 2

Cj
Ej [k]− 1

card(J )

∑
l∈J

2

Cl
El[k]

∣∣∣∣∣ ≤ ΔEj + ξ
(E)
j [k],

|Tj [k]− Tavg[k]| ≤ ΔT + ξ
(T )
j [k],

Power loss constraint:

Plj [k] ≥
(Rj +RC +RSj

)CjP
2
bj
[k]

2(Ej [k] + E0
j )

,

Energy dynamics:

Ej [k + 1]− Ej [k] = −Pbj [k]Δt,

Thermal dynamics:

Tj [k + 1] = Tj [k] +
Δt

Cth,j

[
Plj [k]− (Tj [k]− Tenv)/Rconv

− (2Tj [k]− Tj+1[k]− Tj−1[k])/Rcnd

]
,

Power supply-demand balance:∑
j∈J

Pbj [k]− Plj [k] = Pout[k],

(21)

where λ(E) and λ(T ) are the respective penalty weights for

ξ(E) and ξ(T ). The above problem is verifiably convex as a

result of the convex cost function and constraints. The convex-

ity makes it advantageous in practice as robust algorithms are

available to find out its global optimum with efficient com-

putation. The problem setup is similar to [18, 19]. However,

we crucially introduce the slack variables here to make the

problem always feasible. This improvement eliminates the risk

of no solution to satisfy the hard constraints, further enhancing

the practical aspects of power management.
The problem is designed to be implemented in a receding-

horizon manner. This will bring three benefits. First, predictive

optimization over a limited time horizon rather than the whole

mission duration will make the computation more manageable.

Second, the receding-horizon power control can better respond

to changes that occur to the RBESS in operation, e.g., fault-

triggered cell bypass and switching circuit reconfiguration.

Finally, the SoC change in each receding horizon is slight,

so the optimization only needs to consider a single SoC/OCV

linear segment and hence runs more efficiently.

D. Reconfiguration
The proposed RBESS allows dynamic switching of the

power switches to bypass faulty cells, ensuring continuous
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Algorithm 1 Power management of the proposed RBESS

1: for Run-time do
2: if a fault occurs to cell i then
3: Bypass cell i
4: Determine the set of the in-service cells J
5: Calculate ns and np from (22)

6: Reconfigure the switch circuit Si1:3, i = 1, 2, ...n
7: end if
8: Run the optimal power management strategy (21)

9: return Pbj

10: if Pbj == 0 for any j then
11: Bypass cell j
12: end if
13: end for

system operation. Following the bypass, an important question

is how to reconfigure the connection topology among the

cells. However, it is not easy to identify a complete answer,

as the large discrete reconfiguration decision space due to

the use of switches would defy an exhaustive search for an

optimal topology. In addition, inappropriate reconfiguration

may produce poor topologies to cause short circuits or other

issues. Note that the power management approach in (21)

determines the optimal charging/discharging power of the cells

individually and is not affected by any arbitrary series or

parallel connection among them. This makes its run and the

reconfiguration procedure separable but contiguous.

Here, we leverage an efficient heuristic to address the

question and outline it as below. Suppose that all the remaining

cells are approximately uniform in SoC and temperature at

the time of the reconfiguration, since the power management

based on (21) has driven cell balance. The reconfiguration

then should yield a topology that facilitates a balanced use

of the cells and makes every cell take an even power load.

A straightforward topology design to fulfill this need is one

based on ns serially connected modules with each module

consisting of np cells in parallel connection. We denote this

topology as npPnsS. We can determine ns and np by

ns =
V ∗
t

V max
C

, np =
Iout

imax
C

, (22)

where V ∗
t is the desired terminal voltage; V max

C and imax
C

are the maximum output voltage and current stresses of

the DC/DC converters, and Iout = Pout/V
∗
t is the output

charging/discharging current of the battery pack. Subsequently,

the RBESS can follow the series/parallel switching analysis in

Section II to reconfigure the switch circuit.

This heuristic-based reconfiguration mechanism is compu-

tationally fast, fail-safe, and easy to implement. Further, it

promotes system-wide cell balance and fits together with the

power management in (21). This leads us to the overall RBESS

management approach as shown in Algorithm 1.

IV. SIMULATION RESULTS

This section presents simulation results to evaluate the

proposed RBESS design and power management approach.

Table II summarizes the specifications of the RBESS under

TABLE II
SPECIFICATIONS OF THE PROPOSED RBESS

Symbol Parameter Value [Unit]

n Number of battery cells 15

v Cell nominal voltage 3.6 [V]

Q̄ Cell nominal capacity 2.5 [A.h]

R Cell internal resistance 31.3 [mΩ]

[qmin, qmax] Cell SoC limits [0.05,0.95]

[imin, imax] Cell current limits [-10,10] [A]

vcut-off Cell cut-off voltage 3.3 [V]

Cth Thermal capacitance 40.23 [J/K]

Rconv Convection thermal resistance 41.05 [K/W]

Rcnd Conductance thermal resistance 26.6 [K/W]

Tenv Environment temperature 298 [K]

Δq SoC balancing threshold 1%

ΔT Temperature balancing threshold 0.5 [K]

Δt Sampling time 1 [s]

simulation. The battery cells are assumed to be Samsung

INR18650-25R, and we have identified their parameters (see

Table II) and SoC/OCV relationship (see Fig. 3) from ex-

periments using the approach in [29]. We approximate the

SoC/OCV curve using a piecewise linear function with three

segments that together span from zero to 100% SoC. The

power load profile for Pout is obtained by repeating the

scaled Urban Dynamometer Driving Schedule (UDDS). We

use the CVX package [30] to configure and solve the convex

optimization problem in (21) to compute Pb. The optimization

runs over a receding horizon of 20 seconds, i.e., H = 20.

The initial SoC of the cells is drawn from a normal

distribution with mean of 90% and variance of 3%. Similarly,

the initial temperature of the cells follows a normal distribution

with mean of 308 K and variance of 3 K. In order to

investigate whether the power management can handle the

cells’ heterogeneity, a white Gaussian noise with variance of

4 mΩ is added to the internal resistance value of each cell.

Furthermore, it is assumed that cells 4, 8, and 14 are bypassed

and isolated from the battery pack at the 2,000th, 4,000th, and

6,000th seconds, respectively.

Fig. 4 depicts the SoC and temperature balancing perfor-

mance of the proposed power management approach. The

tolerated SoC and temperature deviation bounds, Δq and

ΔT , are 1% and 0.5 K, respectively. According to Fig. 4

(a), the cells are different in their initial SoC. Among them,

cell 2 has the lowest initial SoC of 86.48%, and cell 15

has the highest SoC of 92.61%. The difference is beyond

the desired error bounds. However, the power management

approach successfully drives the SoC of the cells to reach

within the bounds after 200 seconds and continues to regulate

the charging/discharging power of the cells to ensure SoC

balance in the battery pack. Both cells 2 and 15 end up with

the same SoC of 8.2% when the simulation is finished. It is

important to note the key of incorporating the slack variables

in guaranteeing the feasibility of the power optimization. Fig. 4
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Fig. 4. Simulation results of the SoC and temperature balancing. (a) The SoC of the cells. (b) The SoC difference of the cells from the average. (c) The
temperature of the cells. (d) The temperature difference of the cells from the average.

(b) illustrates the deviation of the cells’ SoC from the average.

The tolerance bound is set to be 1%. Some of the cells

initially are beyond this bound—for example, cell 15 deviates

from the average SoC by 3.5%. In this case, the optimization

problem would have been infeasible, but this issue is avoided

as the slack variable ξ(E) permits slight violation of the SoC

balancing constraints with a negligible compromise to physical

safety of the cells. Meanwhile, the penalization of ξ(E) as in

(21) in the cost function forces the cells to remain within the

tolerated error bound once after they enter the bound, keeping

the SoC balanced. The SoC of the bypassed cells remains

unchanged after isolation as the cells are no longer used.

Fig. 4 (c) shows the evolution of the cells’ temperature.

Similar to the SoC initialization, the initial temperatures of

the cells stretch beyond the desired bounds where cells 1

and 2 have the highest and lowest temperature of 37.92℃
and 29.73℃, respectively. The power management approach

effectively controls the cell temperatures to reach a balanced

temperature after 500 seconds. Note that a cell’s temperature

is still affected by the temperature of its adjacent cells and

the environment after it is bypassed. As shown in Fig. 4 (c),

when the average temperature of the battery pack increases,

the temperature of the bypassed cells also rises due to the con-

ductive heat transfer among adjacent cells. Here, even though

the cells’ initial temperature difference exceeds the bound

of 0.5℃ (see Fig. 4 (d)), the optimization for temperature

balancing maintains feasibility as a result of introducing the

slack variable ξ(T ).

To further investigate the role of the slack variables in the
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Fig. 5. The change of the slack variables.

formulated optimization problem, Fig. 5 depicts their evolution

through time. When the cells’ SoC or temperature lies outside

the balancing constraints, the slack variables will take nonzero

values to relax the balancing constraints gently, thus turning

the nominally infeasible optimization problem into a feasible

one. The slack variables will decrease and approach zero as the

cells are increasingly balanced in SoC and temperature. When

they are zero, the SoC and temperature balancing constraints

are fully satisfied. Penalizing the slack variables restricts over-

relaxation of the constraints and tightens the bounds as the

SoC and temperature get closer to or into the constraints. The

penalization weights associated with the slack variables are

subject to tuning so as to achieve the performance desired

by a user. In general, heavier penalization will lead to less

constraint relaxation and more time to achieve balancing.
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Fig. 6. The output power profiles of the cells.

The output power profiles of the cells are shown in Fig. 6.

We can see that the power of the individual cells is regulated

to vary from one to another. This is because the cells have dif-

ferent conditions in SoC, temperature and internal resistances

and must collectively minimize the overall power losses while

complying with safety and balancing constraints. The cells

can also adjust their own output on the bypass of a faulty

cell. The peak power of battery cells are around 28 W for

1, 560 < t < 1, 570 s before any cells are bypassed from the

pack. However, when three cells are bypassed from the pack,

the peak power of the remaining cells is increased to around

33 W for 5, 750 < t < 5, 760 s to compensate for the bypassed

cells and to ensure a continuous power supply to the load.

It is of our interest to investigate whether the proposed

RBESS is more capable of reducing the total power losses

than conventional hardwired battery systems. Fig. 7 shows a

comparison of the resultant power losses, which focuses on

1, 000 < t < 2, 000 s for the purpose of visual illustration.

The hardwired pack is found to constantly suffer more power

dissipation, because the it neglects that the cells have different

internal resistances (associated with the higher power losses,

the pack also faces higher operating temperatures as well

as significant SoC and temperature imbalance). By contrast,

the proposed RBESS is able to optimally allocate the charg-

ing/discharging power among the cells to gain more power

efficiency.

We further assess whether the proposed power management

approach can distribute power among the cells relative to their

state-of-health (SoH), which is important to reduce the cell

aging and degradation. To this end, we consider the root-mean-

square (RMS) of the output power of the cells, and use the

internal resistance as the SoH indicator—overall, the higher

the internal resistance, the more degraded the cell is. Fig. 8

illustrates the normalized RMS of the output power of the

battery cells in comparison to their internal resistance values.

We observe that the cells with lower resistances are allocated

more power load overall, see the groups of cells 1-4, cells

6-7, and cells 9-10. While the pattern is obvious, the power

distribution also depends on each cell’s SoC and temperature

and thus shows certain perturbations. We can argue that the

power management approach contributes to a balanced use of

the battery cells in terms of SoH.
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V. EXPERIMENTAL RESULTS

We develop a lab-scale prototype of the proposed RBESS

for experimental validation. Fig. 9 (a) shows the experimental

setup, and Figs. 9 (b)-(c) illustrate the circuit boards of the

RBESS prototype based on the design in Fig. 1. The RBESS is

a pack of five cells integrated with five converters (Fig. 9 (b))

and 12 relay switches for reconfigurable connection (Fig. 9

(c)). Table III lays out the specifications of the key components

of the prototype. Type K thermocouples are attached on the

surface of each cell to measure their temperature. A National

Instruments PCIe-6321 DAQ board with LabVIEW is used

to collect the cells’ voltages, temperatures, and output power

data. Using the CVX package, we then solve the optimal

power management problem using MATLAB every minute

(i.e., Δt = 60 s). The optimal power values of the cells are

then fed to local controllers using DSP TMS320F28335. The

local controllers based on STM8S003F3P6 microcontrollers,

generate 250 kHz PWM signals to DC/DC converters. The

prototype is connected to a 20 Ω resistance load with a total

output discharge power of 50 W.

The cells, labeled from 1 to 5 in order, have an initial SoC of

87%, 89%, 82%, 91%, and 93%, respectively. The experiment

lasts for 30 minutes with a sampling time of Δt = 60 s.

Each cell’s output current is limited to 5 A. To investigate the

effect of fault occurrence, a fault is assumed for cell 3 after 15

minutes of discharging in the experiment. The obtained results

are shown in Figs. 10-11.
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Fig. 9. Lab-scale prototype of the proposed RBESS. (a) The experimental
setup. (b) Top circuit view. (c) Bottom circuit view

Fig. 10 (a) shows the SoC of the battery cells. The initial

SoC values of the cells are not within the desired tolerance

bound. However, the optimal power management approach

successfully distributes the discharging power among the cells

such that the cells reach the SoC balancing bounds after about

four minutes. The corresponding output power profiles of the

cells are shown in Fig. 11. It can be seen that cell 3, with

the lowest initial SoC, is assigned zero power load (and thus

bypassed by reconfiguration) in the first two minutes, while

cell 5, with the highest SoC, delivers the maximum allowed

power. Not only does the proper distribution of the output

power lead to cell balancing, but the reconfiguration capability

of the proposed design also helps cell balancing. Fig. 10 (b)

also shows the SoC deviation of the cells from their average

value. We point out that, without the inclusion of the slack

variables, the optimization would have been infeasible at the

very initial moment when the SoC deviation goes beyond the

SoC balancing constraint. Fig. 10 (c) depicts the temperature

TABLE III
LIST OF KEY COMPONENTS

Device Model (Value)

MOSFET CSD86356Q5D

Relay switch TE OJT-SS-105HM

Gate driver TPS28225

Inductor SER2915H-333KL (33 μH)

Capacitor (10 μF)

Local controller STM8S003F3P6

Main controller TMS320f28335

Battery cell Samsung INR18650-25R

of the cells. The initial temperature of all the cells is 20.7℃.

Due to the uneven power distribution among the cells for SoC

balancing, the cells will see their temperature rise and slightly

drift away from each other. However, the deviation remains

within the desired bound without violating the temperature

balancing constraint. Fig. 10 (d) also shows the temperature

deviation of the cells from the average value. The difference

increases from zero to the pre-specified bound of 0.5℃ in the

beginning. But afterwards, it shows a declining trend and is

well bounded.

When a fault occurs to cell 3 after 15 minutes of discharg-

ing, the cell is bypassed and isolated, as indicated in Fig. 11.

Right after this happens, the other four cells that remain in

service increase their discharging power accordingly, contin-

uing to supply a total output power of 50 W as demanded.

This highlights the benefit of the proposed RBESS in ensuring

robust and consistent operation despite cell faults.

VI. CONCLUSION AND FUTURE WORK

The RBESS technology offers an important way to enhance

the safe use of lithium-ion batteries. In this paper, we pro-

posed a novel modular RBESS design, which distinguishes

itself by the integration of reconfigurable power switches and

DC/DC converters. The design harnesses the switching circuit

reconfiguration to bypass any defective cells, and exploits

the DC/DC converters to facilitate optimal power distribution

at the cell level and ensure consistent power storage/supply

at the system level. Based on the design, we developed a

power management approach to achieve power-loss-minimized

operation of the RBESS along with SoC and temperature

balancing among the cells. Compared to existing methods,

this approach allows wide-SoC-range operation of the cells

by multi-segment SoC/OCV approximation and guarantees the

feasibility of the optimization problem via mild relaxation. We

conducted extensive simulations and then developed a lab-

scale prototype of the RBESS design to perform validation

experiments. The results substantiate the effectiveness of the

proposed design and the power management approach. The

study can benefit and potentially drive the use of lithium-ion

batteries for safety-critical applications.

Based on the study, several interesting research questions

are worth pursing further. One is how to quantify and assess

the reliability of the proposed RBESS given the failure rates of

the batteries, switches, and converters. A subsequent question

is how to optimize the RBESS architecture and size under

specified reliability metrics and power requirements. Finally,

it is important to enable fast computation in large-size RBESS

power management, and how to scale up the optimization

approach in this paper is open to exploration.
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