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Abstract— We consider solving distributed consensus opti-
mization problems over multi-agent networks. Current dis-
tributed methods fail to capture the heterogeneity among
agents’ local computation capacities. We propose DISH as a
distributed hybrid primal-dual algorithmic framework to handle
and utilize system heterogeneity. Specifically, DISH allows
those agents with higher computational capabilities or cheaper
computational costs to implement Newton-type updates locally,
while other agents can adopt the much simpler gradient-type
updates. We show that DISH is a general framework and
includes EXTRA, DIGing, and ESOM-0 as special cases. More-
over, when all agents take both primal and dual Newton-type
updates, DISH approximates Newton’s method by estimating
both primal and dual Hessians. Theoretically, we show that
DISH achieves a linear (Q-linear) convergence rate to the
exact optimal solution for strongly convex functions, regardless
of agents’ choices of gradient-type and Newton-type updates.
Finally, we perform numerical studies to demonstrate the
efficacy of DISH in practice. To the best of our knowledge, DISH
is the first hybrid method allowing heterogeneous local updates
for distributed consensus optimization under general network
topology with provable convergence and rate guarantees.

I. INTRODUCTION

Distributed optimization problems over a connected net-
work with multiple agents have gained significant attention
recently. This is motivated by a wide range of applications
such as power grids [1], [2], sensor networks [3], [4],
communication networks [5], [6], and machine learning [7],
[8]. In such problems, each agent only has access to its
local data and only communicates with its neighbors in the
network due to privacy issues or communication budgets [9].
All agents in the system aim to optimize an objective func-
tion collaboratively by employing a distributed procedure.
Formally, we denote by G = {N , E} a connected undirected
network with the node set N = {1, · · · , n} and the edge
set E ⊆ {{i, j} | i, j ∈ N , i 6= j}. We study the distributed
optimization problem over G,

min
ω∈Rd

n∑
i=1

fi(ω), (1)

where ω ∈ Rd is the decision variable and fi : Rd → R is
the local objective function corresponding to the ith agent.
For instance, if we consider an empirical risk minimization
problem in a supervised learning setting, the goal of the
system is to learn a shared model over all the data in
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Fig. 1. A Heterogeneous System.

the network without exchanging local data, where local fi
denotes expected loss over the local data at the ith agent.

In order to develop a distributed method for solving
Problem 1, we decouple the computation of individual agents
by introducing the local copy of the decision variable at the
ith agent as xi ∈ Rd. We formulate Problem 1 over the
network G as a consensus optimization problem [10], [11],

min
x1,··· ,xn

n∑
i=1

fi(xi) s.t. xi = xj , for {i, j} ∈ E . (2)

The consensus constraint xi = xj for {i, j} ∈ E enforces the
equivalence of Problems 1 and 2 for a connected network G.

While there is growing literature on developing distributed
optimization algorithms to solve Problem 2, most existing
methods require all agents to take the same type of updates.
Such methods include gradient-type methods [11]–[14] and
Newton-type methods [15]–[18]. With these methods, if any
agent in a system cannot handle high-order computation,
a fast-converging method utilizing higher-order information
will not be applicable to the whole system. As a result,
the system could not fully utilize the distributed computa-
tion capability when faced with heterogeneity. This is in
stark contrast to the fact that many practical distributed
systems have heterogeneous agents. There can be drastically
varying computation and communication capabilities among
the agents due to different hardware, network connectivity,
and battery power. [19]. Figure 1 shows an example of a
heterogeneous system. Moreover, due to the recent global
chip shortage, processors with advanced computation ca-
pability have very limited availability. Consequently, many
distributed computation systems have only a few agents with
advanced hardware co-existing with many older processors.
Therefore, it is imperative to provide a flexible and efficient
hybrid method to utilize heterogeneous agents. To the best of
our knowledge, this paper takes the first step in this direction.

In order to handle and utilize the system heterogeneity,
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we propose a distributed hybrid primal-dual algorithmic
framework named DISH. DISH allows agents to choose
gradient-type updates or Newton-type updates based on their
computation capabilities. Specifically, there can be both
gradient-type and Newton-type agents in the same commu-
nication round and each agent can switch to either type of
updates based on its current situation. We show that DISH
include primal-dual gradient-type methods such as EXTRA
[12], DIGing [13], and [14] and primal-Newton-dual-gradient
methods like ESOM [20] as special cases. Theoretically, we
show that DISH achieves a linear (Q-linear) convergence rate
to the exact optimal solution for strongly convex functions,
regardless of agents’ choices of gradient-type and Newton-
type updates. Finally, we conduct numerical experiments on
decentralized least squares problems and logistic regression
problems and demonstrate the efficacy of the DISH algo-
rithmic framework. We observe that when all agents always
take primal-dual Newton-type updates, DISH offers faster
convergence speed over gradient methods.

Related Works. Our work is related to the proliferating
literature on distributed optimization methods to solve Prob-
lem 2. There are first-order primal iterative methods, like
distributed (sub)-gradient descent (DGD) [11], which takes
a linear combination of a local gradient descent step and
a weighted average among local neighbors. DGD finds a
near-optimal solution with constant stepsize. Based on DGD,
other related methods including [12]–[14], [21] use gradient
tracking technique, which can find the exact solution with
constant stepsize and be viewed as primal-dual gradient
methods with respect to augmented Lagrangian formulation.
Second-order primal methods, including Network Newton
[22] and Distributed Newton method [23], rely on an inner
loop to iteratively approximate a Newton step. [24] derives
a DGD based method with the inclusion of first and second-
order updates in the continuous-time setting. Their method
cannot be directly applied in discrete-time and lacks con-
vergence rate analysis. Another popular approach is to use
dual decomposition-based methods such as ADMM [25],
[26], CoCoA [27], ESOM [20], and PD-QN [28]. Among
these, PD-QN is a primal-dual quasi-Newton method with a
linear convergence guarantee. ESOM is most related to our
approach, which proposes to perform second-order updates
in the primal space and first-order updates in the dual
space and has a provable linear convergence rate. However,
none of these methods allow different types of updates
for heterogeneous agents. Our earlier work [29] develops
a linearly converging distributed primal-dual hybrid method
that allows different types of updates, but relies on the
structure of a server-client (federated) network. To the best
of our knowledge, DISH is the first hybrid method allow-
ing heterogeneous local updates for distributed consensus
optimization under general network topology with provable
convergence and rate guarantees.

Contributions. Our main contributions are fourfold:
• We propose DISH as a distributed hybrid primal-dual

algorithmic framework, which allows agents to employ

both gradient-type and Newton-type information to har-
vest system heterogeneity.

• For the agents capable of second order computation in
DISH, we develop a Newton-type method that approx-
imates Newton’s step in both the primal and the dual
spaces with a distributed implementation.

• We show a linear convergence analysis of DISH to
find the optimal solution regardless of agents’ choice
of gradient-type or Newton-type updates.

• We conduct numerical experiments and demonstrate the
efficacy of DISH in practice.

Notations. We denoted by ⊗ the Kronecker product. For any
m ∈ Z+, we denote by Im ∈ Rm×m the identity matrix and
1m = (1, · · · , 1)

ᵀ ∈ Rm the vector of all ones. For any
symmetric matrix S, we denote by ρ(S) its spectral radius.
For any positive semidefinite matrix M ∈ Rp×p, we denote
by σ+

min(M) its smallest positive eigenvalue and ‖y‖2M =
yᵀMy for any y ∈ Rp. For any positive definite matrix A,
we denote by θmin(A) its smallest eigenvalue.

II. PRELIMINARIES

In this section, we reformulate Problem 2 in a compact
form and introduce its dual problem based on the augmented
Lagrangian [30], which prepares our derivation of DISH.

Equivalent Reformulation. For compactness, we reformu-
late Problem 2 in the following equivalent form,

min
x∈Rnd

f(x) =
n∑
i=1

fi(xi) s.t. (Z ⊗ Id)x = x, (3)

where x = (xᵀ1 , · · · , xᵀn)
ᵀ is the concatenation of local vari-

ables, f : Rnd → R is the aggregate function, and Z ∈ Rd×d
with elements zij is a consensus matrix corresponding to G.
We emphasize that Z satisfies the following assumption.

Assumption 1. The consensus matrix Z satisfies that:
(a) Off-diagonal elements: zij 6= 0 if and only if {i, j} 6∈ E;
(b) Diagonal elements: zii > 0 for all i ∈ N ;
(c) zij = zji for all i 6= j and i, j ∈ N ;
(d) Z1n = 1n.

Assumption 1 is standard for consensus matrices, where
(a) states the right sparsity pattern of Z, (b) ensures the
aperiodicity of G, and (c) and (d) impose that Z is symmetric
and doubly stochastic. We denote by γ the second largest
eigenvalue of Z. With the irreducibility of Z guaranteed by
the connectness of G, by Perron-Frobenius theorem, we have
ρ(Z) = 1, γ < 1, and null(I −Z) = span{1n}. A matrix Z
under Assumption 1 is known as the consensus matrix due
to its property that (Z⊗ Id)x = x if and only if xi = xj for
all i, j ∈ N [11]. If we denote W = (In−Z)⊗ Id, we have
σ+
min(W ) = 1 − γ and null(W ) = span{1n ⊗ y : y ∈ Rd}.

We can rewrite Problem 3 using the matrix W as follows,

min
x∈Rnd

f(x) =
n∑
i=1

fi(xi) s.t. Wx = 0. (4)

We will impose the next assumption throughout the paper.
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Assumption 2. The local function fi is twice differentiable,
mi-strongly convex, and `i-Lipschitz smooth with positive
constants 0 < mi ≤ `i <∞ for any agent i ∈ N .

Assumption 2 postulates that the local Hessian is bounded
by miId � ∇2fi(·) � `iId for any i ∈ N . For convenience,
we denote by m = mini∈N {mi} and ` = maxi∈N {`i}.
Augmented Lagrangian and Dual Problem. In order to
develop primal-dual methods for solving Problem 4 with
the consensus constraint, we introduce the dual function
based on the augmented Lagrangian. We denote by λ =
(λᵀ1 , · · · , λᵀn)

ᵀ the dual variable with λi ∈ Rd associated
with the constraint ziixi −

∑
j∈N zijxj = 0 at agent i. We

define the augmented Lagrangian L(x,λ) of Problem 4 as

L(x,λ) = f(x) + λᵀWx +
µ

2
xᵀV x, (5)

where µ ≥ 0 and V ∈ Rnd×nd is positive semi-definite
with null(V ) = span{1n ⊗ y : y ∈ Rd}. The augmentation
term µxᵀV x/2 serves as a penalty for the violation of the
consensus constraint. Examples of choices for V include W
and W 2. For convenience, throughout the paper, we will use
V = W . We remark that L(x,λ) is the (unaugmented) La-
grangian function when µ = 0. The augmented Lagrangian
in (5) can also be viewed as the (unaugmented) Lagrangian
associated with the penalized problem

min
x∈Rnd

f(x) +
µ

2
xᵀV x s.t. Wx = 0. (6)

Problem 6 is equivalent to Problem 4 since µxᵀV x/2 is zero
for any feasible x. By the convexity condition in Assumption
2 and the Slater’s condition, strong duality holds for Problem
6 [31]. Thus, Problem 6, as well as Problem 4, are equivalent
to the following dual problem,

max
λ∈Rnd

g(λ), where g(λ) = min
x∈Rnd

L(x,λ), (7)

where we refer to g : Rnd → R as the dual function. For any
λ ∈ Rnd, as we will show in Lemma 5, the function L(·,λ)
is strongly convex with a unique minimizer defined as

x∗(λ) = argmin
x∈Rnd

L(x,λ). (8)

By the definition of g in (7), we have L(x∗(λ),λ) = g(λ).
We show the explicit forms of the gradient and the Hessian
of the dual function g in the following lemma [32].

Lemma 3. Under Assumption 2, with x∗(λ) defined in (8),
the gradient and the Hessian of the dual function g(λ)
defined in Problem 7 are given by

∇g(λ) = Wx∗(λ),

∇2g(λ) = −W (∇2
xxL(x∗(λ),λ))−1W.

For the rest of the paper, we focus on developing dis-
tributed methods for solving Problem 7.

III. ALGORITHM

This section proposes DISH as a distributed hybrid primal-
dual algorithmic framework for solving Problem 7, which
allows choices of gradient-type and Newton-type updates
for each agent at each iteration based on their current
battery/computation capabilities and provides flexibility to
handle and utilize heterogeneity in the network.

A. DISH to Handle and Utilize System Heterogeneity

Specifically, we propose the following hybrid updates. At
each iteration k,

xk+1 = xk −AP k∇xL(xk,λk),

λk+1 = λk +BQk∇λL(xk,λk), (9)

where stepsize matrices A = diag{a1, · · · , an} ⊗ Id and
B = diag{b1, · · · , bn}⊗Id consist of personalized stepsizes
ai and bi > 0 for i ∈ N and block diagonal update matrices
P k = diag{P k1 , · · · , P kn} and Qk = diag{Qk1 , · · · , Qkn} are
composed of positive definite local update matrices P ki and
Qki ∈ Rd×d for i ∈ N . Here are some examples of possible
local update matrices. For the primal updates, we can take

Gradient-type: P ki = Id;

Newton-type: P ki = (∇2fi(x
k
i ) + µId)

−1. (10)

As for the dual updates, we can use

Gradient-type: Qki = Id;

Newton-type: Qki = ∇2fi(x
k
i ) + µId. (11)

As we go through the following sections, we will explain
such choices of local update matrices. We remark that as we
will show in Theorem 7, the analysis of DISH only requires
the update matrices P ki and Qki to be positive definite. Thus,
the agents can take other local updates such as quasi-Newton
methods like BFGS [33] and the scaled gradient method
[10]. These can be future directions. Nevertheless, this paper
mainly focuses on gradient-type and Newton-type updates.

By substituting the partial derivatives in (9), we can write
DISH in a compact form as follows, at iteration k,

xk+1 = xk −AP k(∇f(xk) +Wλk + µWxk),

λk+1 = λk +BQkWxk, (12)

Based on (12), we provide the distributed implementation
of DISH in Algorithm 1. DISH in Algorithm 1 consists of a
primal (Line 5) and a dual step (Line 6) for each agent, where
both steps can be either gradient-type or Newton-type based
on the agent’s choice in each iteration. We note that this is a
very flexible framework. An agent may use different types of
updates across iterations, and between primal and dual spaces
within the same iteration. The primal and dual updates can be
computed simultaneously as they both depend on values from
the previous iteration. In the sequel, we provide interpretation
on DISH with some specific choices of updates.

B. Relation of DISH to Existing Methods

Now we illustrate how the introduced DISH algorithm is
related to some other distributed optimization methods.
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Algorithm 1 DISH: Distributed Hybrid Primal-dual Algo-
rithmic Framework for Consensus Optimization

1: Input: Initialization x0i , λ
0
i ∈ Rd, stepsizes ai, bi ∈ R+

for all i ∈ N , and the penalty parameter µ.
2: for k = 0, . . . ,K − 1 do
3: for each agent i ∈ N in parallel do
4: Send xki and λki to its neighbors j for {i, j} ∈ E ;
5: xk+1

i = xki − aiP ki
{
∇fi(xki ) + (1− zii)λki

−
∑

j : {j,i}∈E
zjiλ

k
j

+µ
[
(1− zii)xki −

∑
j : {i,j}∈E

zijx
k
j

]}
;

6: λk+1
i = λki +biQ

k
i

[
(1−zii)xki −

∑
j : {i,j}∈E

zijx
k
j

]
;

7: end for
8: end for

1) Primal-Dual Gradient-type Method (EXTRA, DIGing,
and [14]): When all agents in the network perform primal
and dual gradient-type updates, that is, P k = Qk = Ind,
the compact form (12) of Algorithm 1 at iteration k is as
follows,

xk+1 = xk −A(∇f(xk) +Wλk + µWxk),

λk+1 = λk +BWxk. (13)

This recovers the Arrow-Hurwicz-Uzawa method [34]. For
convenience, we refer to updates in (13) as DISH-G. We
remark that some exact distributed first-order methods with
gradient tracking techniques, such as EXTRA [12], DIGing
[13], and [14], are also equivalent to primal-dual gradient-
type methods similar to DISH-G [21]. The only difference
between these methods and DISH-G occurs in different
choices of consensus constraints or penalty terms used in
the augmented Lagrangian, or whether the dual step adopts
the previous primal variable xk or the updated xk+1 (also
referred to as Jacobi or Gauss-Seidel updates).

While such gradient-type primal-dual methods lead to
simple distributed implementation, they suffer from slow
convergence due to their first-order nature. This motivates
us to involve Newton-type updates in DISH as a speedup.

2) Primal-Newton-Dual-Gradient Method (ESOM [20]):
ESOM is a second-order method that each iteration approx-
imates a Newton’s step by an inner loop in the primal space
and a gradient ascent step in the dual space. ESOM-0 is a
variant of ESOM without the primal inner loop and can be
viewed as a special case of DISH with a different choice
of positive definite update matrix. In particular, we define
P kESOM = ∇2f(xk)+µ(In−diag(Z))⊗ Id, which is a diag-
onal approximation of the primal Hessian ∇2

xxLµ(xk,λk) =
∇2f(xk) + µW when µ > 0 and exact when µ = 0. When
all agents in DISH perform primal Newton-type and dual
gradient-type updates with P k = P kESOM and Qk = Ind,
respectively, the updates of DISH in (12) at iteration k is

xk+1 = xk −AP kESOM(∇f(xk) +Wλk + µWxk),

λk+1 = λk +BWxk,

which coincide with ESOM-0. Other variants of ESOM
iteratively approximates the off-diagonal parts of the primal
Hessian. ESOM enjoys the speedup brought by the primal
Hessian’s information. Our numerical study shows that DISH
with Newton-type updates in both primal and dual spaces can
further benefit from the dual Hessian’s information.

C. DISH-N as an Approximated Newton’s Method

Now we take a close inspection of DISH when all agents
in the network always take both primal and dual Newton-
type updates. In this case, DISH in (12) shows as follows,

xk+1 = xk −A(Hk)−1(∇f(xk) +Wλk + µWxk),

λk+1 = λk +BHkWxk, (14)

where Hk = ∇2f(xk) + µInd = diag{∇2f1(xk1) +
µId, · · · ,∇2fn(xkn)+µId} approximates the primal Hessian
∇2

xxLµ(xk,λk). We will refer to updates in (14) as DISH-
N. In the sequel, we present that DISH-N can be viewed as
an approximation of a Newton’s method that takes Newton’s
steps in both the primal and the dual spaces.

Primal Update. The primal Newton’s step for solving the
inner problem minx L(x,λk) in (7) at iteration k is as
follows,

xk+1 = xk −
(
∇2

xxL(xk,λk)
)−1∇xL(xk,λk). (15)

We note that when µ = 0, the primal update in (14) coincides
with the exact Newton’s step in (15). As when µ > 0,
the primal Hessian ∇2

xxL(xk,λk) = ∇2f(xk) + µW is
nonseparable due to the penalty term µW , which makes it
difficult to compute the exact Hessian inverse in a distributed
way. Here we approximate W = (In−Z)⊗Id by the identity
Ind. We remark that (In − diag(Z)) ⊗ Id used in P kESOM
is another approximation of W . Adopting either of them is
guaranteed to provide linear convergence rate by Theorem
7. By substituting Hk = ∇2f(xk)+µInd in (15), we obtain
the Newton-type primal update in (14).

Dual Update. Now we consider the dual Newton’s update for
maxλ g(λ) in (7) at iteration k. Since we cannot get the exact
primal minimizer x∗(λk) used in ∇g(λk) and ∇2g(λk) by
Lemma 3, we replace x∗(λk) by the current primal iterate xk

and define ∇̂g(λk) and ∇̂2g(λk) as estimators of ∇g(λk)
and ∇2g(λk), respectively, as follows,

∇̂g(λk) = Wxk, ∇̂2g(λk) = −W (∇2
xxL(xk,λk))−1W.

We remark that ∇̂2g(λk) is not full-rank due to the matrix
W . We denote by λk+1 = λk + ∆λk the dual update at
iteration k, where ∆λk is an approximated dual Newton’s
step satisfying

∇̂2g(λk)∆λk = ∇̂g(λk). (16)

We define a Hessian weighted average of local primal
variables yk as follows,

yk =
(∑
i∈N
∇2fi(x

k
i )
)−1∑

i∈N
∇2fi(x

k
i )xki . (17)

Now we introduce a lemma to characterize ∆λk using yk.
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Lemma 4. Under Assumption 2, with yk defined in (17), the
dual Newton’s step ∆λk in (16) satisfies

W∆λk = ∇2
xxL(xk,λk)

(
1n ⊗ yk − xk

)
.

We note that calculating yk in (17) directly is impractical
in a distributed manner since communicating d × d local
Hessians can be prohibitively expensive. Thus, at the ith

agent, we estimate yk by the weighted average of xkj from
its neighbors in the network, that is,

∑
j∈N zijx

k
j = [(Z ⊗

Id)x
k]i. Such estimators are more accurate when either

the local Hessians are similar to each other or the local
decision variables xki are close to consensus. This includes
the scenarios when the original problem is generated by an
empirical risk minimization problem with i.i.d. samples at
each node, or when the underlying graph has good algebraic
connectivity or when the method is close to its limit point
(a consensed point).

If we substitute (Z ⊗ Id)xk and Hk = ∇2f(xk) + µInd
as estimators of 1n ⊗ yk and ∇2

xxL(xk,λk) in Lemma 4,
respectively, we obtain an estimator ∆λ̂k of ∆λk satisfying

W∆λ̂k = Hk((Z ⊗ Id)xk − xk) = −HkWxk.

We highlight that only Wλk is used in the primal update in
(14). Therefore, we do not need to compute λ accurately, but
rather focus on approximating Wλk and W∆λk instead. In
order to ensure that W∆λk lies in the subspace range(W ),
we introduce an additional communication round and use
W 2∆λ̂k = −WHkWxk as an estimator of W∆λ̂k. We
remark that such estimation is exact under a complete graph
with Z = 1ᵀ

n1n/n, and it is more accurate if the underlying
graph is a closer-to-complete one with all eigenvalues of Z
closer to either 1 or 0. Thus, by substituting the estimator
W 2∆λ̂k, we obtain the dual update,

Wλk+1 = Wλk − β2W 2∆λ̂k

= Wλk + β2WHkWxk.

There are multiple equivalent λ solutions satisfying the
above equation, all corresponding to the same primal update.
One of these equivalent solutions can be obtained by omitting
W on both sides, which leads to the Newton-type dual up-
date in (14). Thus, DISH-N with distributed implementation
approximates the primal-dual Newton’s method. Previous
works [30], [32] have shown that the primal-dual Newton’s
method improves the convergence performance by utiliz-
ing second-order information. Thus, DISH-N convergences
efficiently when the approximations are good, i.e., with
i.i.d. data distribution among agents for an empirical risk
minimization problem and/or a closer-to-complete graph for
the underlying topology.

IV. THEORETICAL CONVERGENCE

In this section, we present the linear convergence rate
for DISH in Algorithm 1, regardless of agents’ choices of
gradient-type or Newton-type updates.

Properties of Primal and Dual Functions. We first show
some pivotal properties of the primal function L(·,λ).

Lemma 5. Under Assumption 2, for any λ ∈ Rnd, L(·,λ) is
s-strongly convex and `L-Lipschitz smooth with `L = `+2µ.

Now we show the properties of the dual function g(λ).
In particular, we denote by ΛOPT the dual optimal set to
Problem 7, that is, for any λ∗ ∈ ΛOPT, we have g(λ∗) =
maxλ g(λ). The next lemma shows the properties of g.

Lemma 6. Under Assumption 2, the dual function g(·) is
`g-Lipschitz smooth and it satisfies the PL inequality [35]
with λ∗ ∈ ΛOPT that

g(λ∗)− g(λ) ≤ 1

2pg
‖∇g(λ)‖2,

where constants pg = (1− γ)/(`+ 2µ) and `g = 4/s.

Merit Function. Now we introduce the merit function used
in the analysis. We first define two performance metrics, the
dual optimality gap and the primal tracking error, as follows,

∆k
λ = g(λ∗)− g(λk),

∆k
x = L(xk,λk)− L(x∗(λk),λk), (18)

where x∗(λ) is defined in (8) and λ∗ ∈ ΛOPT is a dual opti-
mal point. We remark that ∆k

x and ∆k
λ are both nonnegative

by definition. Now we define a merit function to be used in
the analysis by combing the performance metrics in (18) as

∆k = 9∆k
λ + ∆k

x. (19)

We remark that ∆k ≥ 0 for all k ≥ 0. We define xOPT as
the optimal solution of Problem 4. The strong duality implies
that x∗(λ∗) = xOPT for any λ∗ ∈ ΛOPT. We will show that
using DISH, ∆k converges to zero at a linear rate in Theorem
7 and therefore, the primal sequence xk goes to the exact
optimal solution xOPT linearly in Corollary 10.

Linear Convergence of DISH. Now we present the theo-
retical linear convergence of DISH. We first define constants
0 < p

i
≤ pi and 0 < q

i
≤ qi as bounds on the positive

definite local update matrices P ki and Qki for i ∈ N ,

p
i
Id � P ki � piId, q

i
Id � Qki � qiId. (20)

Specifically, with the options of gradient-type and Newton-
type updates in (10) and (11), we have p

i
= min{1, 1/(`i +

µ)}, pi = max{1, 1/(mi + µ)}, q
i

= min{1,mi + µ},
and qi = max{1, `i + µ}. For convenience, we also define
constants α and β as lower bounds to eigenvalues of matrices
AP k and BQk, respectively, as follows,

α = min
i∈N
{aipi} ≤ min

i∈N
{aiθmin(P ki )} = θmin(AP k),

β = min
i∈N
{biqi} ≤ min

i∈N
{biθmin(Qki )} = θmin(BQk). (21)

We show the main theorem stating that DISH in Algorithm
1 convergence linearly in terms of ∆k defined in (19).

Theorem 7 (Linear Convergence of DISH). For any given
µ ≥ 0, under Assumption 2, we suppose that the stepsizes
{ai, bi}i∈N satisfy the following conditions,

0 < ai ≤ 1/[2pi(s/16 + `+ 2µ)],

0 < bi ≤ min{s/64, αs2/60}/qi, (22)
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where pi and qi are defined in (20) and α is defined in (21).
Then for all k = 0, 1, · · · ,K−1, the iterates generated from
DISH in Algorithm 1 satisfy

∆k+1 ≤ (1− ρ) ∆k,

where ρ = min{(1 − γ)β/[9(` + 4µ)], sα/2} satisfies 0 <
ρ < 1 with α and β defined in (21).

Proof Sketch of Theorem 7. Now we sketch the proof of
Theorem 7. Due to the coupled nature of primal and dual
updates in DISH in (12), our main idea for analyzing the
primal-dual framework is to bound the dual optimality gap
∆k

λ and the primal tracking error ∆k
x through coupled

inequalities. We decompose our analysis into three steps.
Step 1: Bounding the Dual Optimality Gap ∆k+1

λ . We
first bound the updated dual optimality gap ∆k+1

λ with an
alternative primal tracking error ‖∇xL(xk,λk)‖2 using the
Lipschitz smoothness of the dual function g. For conve-
nience, we define a constant β as an upper bound of ‖BQk‖
as follows,

β = max
i∈N
{biqi} ≥ max

i∈N
{bi‖Qki ‖} = ‖BQk‖. (23)

The following proposition shows the obtained inequality.

Proposition 8. Under Assumption 2, given a constant µ ≥ 0
and stepsizes {ai, bi}i∈N > 0, for all k = 0, 1, · · · ,K − 1,
the iterates generated from DISH in Algorithm 1 satisfy

∆k+1
λ ≤ ∆k

λ −
(

1

2
− β`g

)
‖∇g(λk)‖2BQk

+

(
1

2
+ β`g

)
4β

s2
‖∇xL(xk,λk)‖2,

where β is defined in (23) and `g is defined in Lemma 6.

Step 2: Bounding the Primal Tracking Error ∆k+1
x . Next, we

derive a bound of the updated primal tracking error ∆k+1
x

by an alternative dual optimality gap ∇g(λk). We use the
Lipschitz smoothness of L(·,λ) to show the following result.

Proposition 9. Under Assumption 2, given a constant µ ≥ 0
and stepsizes {ai, bi}i∈N > 0, for all k = 0, 1, · · · ,K − 1,
the iterates generated from DISH in Algorithm 1 satisfy

∆k+1
x ≤ ∆k

x + 3‖∇g(λk)‖2BQk − ‖∇xL(xk,λk)‖2Dk

+ ∆k
λ −∆k+1

λ ,

where matrix Dk = AP k−(2β+`L/2)A2(P k)2−12β/s2Ind
with β and `L defined in (23) and Lemma 5, respectively.

Step 3: Putting Things Together. Finally, we take a linear
combination of the coupled inequalities in Propositions 8
and 9. We use the strong convexity of L(·,λ) and the PL
inequality satisfied by g(λ) in Lemmas 5 and 6. By some
algebraic manipulations, when the stepsizes satisfy (22), we
prove the linear convergence of DISH in Theorem 7.

The following corollary shows that DISH finds the optimal
solution xOPT at a linear rate.

Corollary 10. Under Assumption 2, when the stepsizes
{ai, bi}i∈N satisfy conditions in (22), for all k = 0, · · · ,K−
1, the iterates generated from DISH in Algorithm 1 satisfy

‖xk − xOPT‖2 ≤ c(1− ρ)k,

where the constant c = 4`L∆0/[s · min{`L, 9s}] with `L
defined in Lemma 5.

Theorem 7 shows a linear (Q-linear) convergence rate
of DISH in terms of the merit function ∆k, regardless of
agents’ choices of gradient-type or Newton-type updates.
Corollary 10 guarantees that DISH converges linearly to the
exact optimal solution xOPT. We can also show that the dual
sequence goes to the optimal point. Since only constants p

i
,

pi, qi, qi defined in (20) are needed in Theorem 7, agents
can adopt any local updates as long as the update matrices
are positive definite with uniform upper and lower bounds.

The provable linear rate of DISH recovers the linear rate
of some existing distributed methods with exact convergence.
Such methods include gradient-type methods such as EX-
TRA [12], DIGing [13], and [14] and other methods that
adopt Newton or quasi-Newton information like PD-QN [28]
and ESOM [20] as discussed in Section III-B. When all
agents take Newton-type updates in both primal and dual
spaces, DISH does not give faster than linear rate. This is
due to the distributed approximations made in both primal
and dual Newton steps.

The linear rate 1−ρ in Theorem 7 depends on the network
structure γ, objective function properties ` and s, the aug-
mentation penalty µ, and the worst case of update matrices
α and β. Although the theorem is conservative relying on
the worst agents’ updates, as numerical experiments will
show in Section V, DISH can achieve faster performance
when more agents adopt Newton-type updates since the local
information is more fully utilized.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical studies of DISH
on convex distributed empirical risk minimization problems
including linear least squares and binary classifications. All
the experiments are conducted on 3.30GHz Intel Core i9
CPUs, Ubuntu 20.04.2, in Python 3.8.5. Our code is publicly
available at https://github.com/xiaochunniu/DISH.

Experimental Setups. We evaluate all methods on two
setups, both with synthetic data. In each setup, the underlying
network is randomly generated by the Erdős-Rényi model
with n nodes (agents) and probability p to generate each
edge. We denote by δi the degree of node i and δmax =
maxi∈N {δi} the largest degree of the network. We define the
elements of the consensus matrix Z as zij = 1/(δmax + 1)
for {i, j} ∈ E , zii = 1 − δi/(δmax + 1) for i ∈ N , and
zij = 0 otherwise. In each setup, the decision variable is
d-dimensional and there are total amount N =

∑
i∈N Ni of

data in the network with the local dataset size Ni at agent i.
Here are more details of the setups.
Setup 1: Decentralized Linear Least Squares over a Random
Graph. We first consider the decentralized regularized linear
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(a) Least Squares in Setup 1 (b) Logistic Regression in Setup 2

Fig. 2. Underlying Networks.

least squares problem as follows,

min
ω∈Rd

1

2N

n∑
i=1

‖Aiω − yi‖2 +
ρ

2
‖ω‖2 ,

where Ai ∈ RNi×d and yi ∈ RNi are the feature matrix and
the response vector at agent i, respectively, and ρ ≥ 0 is the
penalty parameter. Specifically, we set n = 10, p = 0.7, d =
5, Ni = 50 for all i ∈ N , and ρ = 1. We generate matrices
Âi ∈ R50×5, noise vectors vi ∈ R50 for i ∈ N , and a vector
ω0 ∈ R5 from standard Normal distributions. We set feature
matrices Ai = ÂiΘ, where Θ = diag{10, 10, 0.1, 0.1, 0.1} ∈
R5×5 is the scaling matrix. We generate the response vector
yi ∈ R50 by the formula yi = Aiω0 + vi for i ∈ N .
Setup 2: Decentralized Logistic Regression over a Random
Graph. The second setup studies the regularized logistic
regression model for solving binary classification problems

min
ω∈Rd

1

N

n∑
i=1

[
− yᵀi log hi − (1− yi)ᵀ log(1− hi)

]
+
ρ

2
‖ω‖2,

where hi = 1/(1+exp(−Aiω)), Ai ∈ RNi×d, and yi ∈ RNi

are the known feature matrix and label vector at agent i,
respectively, and ρ is the penalty parameter. Specifically, we
set n = 20, p = 0.5, d = 3, Ni = 50 for all i ∈ N , and ρ =
1. We generate matrices Âi ∈ R50×3, noise vectors vi ∈ R50

for i ∈ N , and a vector ω0 ∈ R3 from Normal distributions.
We scale Âi with matrix Θ = diag{10, 0.1, 0.1} ∈ R3×3 and
set feature matrices to be Ai = ÂiΘ. The response vector
yi ∈ R50 is generated by yi = argmax(softmax(Aiω0+vi)).
The generated underlying networks are shown in Figure 2.

Implemented Methods. We implement EXTRA [12],
ESOM-0 [20], and DISH in Algorithm 1 on the intro-
duced two setups. For convenience, we denote by DISH-
K DISH with K agents performing Newton-type updates
and the other agents performing gradient-type updates all
the time. Moreover, we represent DISH-G&N as DISH with
all agents switching between gradient-type and Newton-type
updates once in a while. In particular, for DISH-G&N-
U and DISH-G&N-LN, we generate ti ∼ U [5, 50] and
ti ∼ lognormal(2, 4) + 30, respectively. In both cases, we
let agent i change its updates type every ti iterations with
the initial updates uniformly sampled from {‘gradient-type’,
‘Newton-type’}. We remark that all these methods require
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Fig. 3. Performance of EXTRA, ESOM-0, and DISH.
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Fig. 4. Performance of DISH-G&N.

one communication round with the same communication
costs for each iteration independent of the update type.

For all setups and methods, we tune stepsizes and pa-
rameters by grid search in the range [2−6, 24] and select
the optimal ones that minimize the number of iterations to
reach a predetermined relative error threshold, measured by
‖xk−xOPT‖/‖x0−xOPT‖, where the optimal point xOPT is
obtained by a centralized solver for Problem 1. We remark
that in DISH we fix ai = 1 when agent i takes Newton-type
updates to mimic primal Newton’s step.

Results and Conclusions. In both Figures 3 and 4, the x-
axis shows the number of communication rounds (iterations)
and the y-axis is the logarithm of the relative error. As shown
in Figures 3 and 4, it is clear that the DISH framework has a
linear convergence performance regardless of agents’ choice
of gradient-type and Newton-type updates, which validates
the theoretical guarantees in Theorem 7.

As shown in Figure 3, primal-dual gradient-type methods,
EXTRA and DISH-G, perform similarly due to their similar
update formulas. However, when some agents take Newton-
type updates, DISH improves the overall training speed and
outperforms the baseline method DISH-G consistently. In
particular, the second-order DISH-N method outperforms
ESOM-0 in many scenarios, implying DISH-N benefits from
the dual Hessian approximation.

Moreover, as the number of agents that perform Newton-
type updates, K, increases, the numerical convergence of
DISH is likely to become faster since the Hessian informa-
tion can be more fully utilized. This observation suggests that
in practical systems, those agents with higher computational
capabilities and/or cheaper costs to perform computation can
choose to take Newton-type updates locally to help speed up
the overall convergence of the whole system.

In traditional distributed optimization algorithms, all
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agents perform the same type of updates. The complexity
of the method is determined by the agents equipped with the
worst computation hardware. While in DISH, since efficient
Newton-type updates are involved at parts of the network, the
overall system enjoys a faster convergence speed compared
to systems running gradient-type methods only. Therefore,
we can maximally leverage the parallel heterogeneous com-
putation capabilities in this setting.

VI. FINAL REMARKS AND FUTURE WORK

This paper proposes DISH as a distributed hybrid primal-
dual algorithmic framework allowing agents to perform ei-
ther gradient-type or Newton-type updates based on their
computation capacities. We show a linear convergence rate
of DISH for strongly convex functions. Numerical studies are
provided to demonstrate the efficacy of DISH in practice.

We highlight a few exciting directions for future works
on the DISH framework. First, since we show that more
Newton-type agents bring better numerical performance of
DISH, a future work could be a theoretical understanding
of the relation between the number of Newton-type agents
and the local acceleration. Also, we could involve stochas-
tic methods in DISH. For instance, agents could perform
stochastic gradient-type or subsampled Newton-type methods
locally. Moreover, we could consider asynchronous updates
in DISH. At each communication round, only a randomly
selected subset of the agents take computation steps since
only a few agents may be active in practice.
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“Cocoa: A general framework for communication-efficient distributed
optimization,” Journal of Machine Learning Research, vol. 18, p. 230,
2018.

[28] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-newton
method for exact consensus optimization,” IEEE Transactions on
Signal Processing, vol. 67, no. 23, pp. 5983–5997, 2019.

[29] X. Niu and E. Wei, “Fedhybrid: A hybrid primal-dual algorithm frame-
work for federated optimization,” arXiv preprint arXiv:2106.01279,
2021.

[30] D. P. Bertsekas, Constrained optimization and Lagrange multiplier
methods. Academic press, 2014.

[31] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[32] R. A. Tapia, “Diagonalized multiplier methods and quasi-newton
methods for constrained optimization,” Journal of Optimization Theory
and Applications, vol. 22, no. 2, pp. 135–194, 1977.

[33] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.
[34] K. Arrow and L. Hurwicz, “H. uzawa—studies in nonlinear program-

ming,” 1958.
[35] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gra-

dient and proximal-gradient methods under the polyak-łojasiewicz
condition,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2016, pp. 795–811.

6510

Authorized licensed use limited to: Northwestern University. Downloaded on February 05,2023 at 05:10:21 UTC from IEEE Xplore.  Restrictions apply. 


