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Abstract. The Controller Area Network (CAN) protocol used in vehi-
cles today was designed to be fast, reliable, and robust. However, it
is inherently insecure due to its lack of any kind of message authen-
tication. Despite this, CAN is still used extensively in the automotive
industry for various electronic control units (ECUs) and sensors which
perform critical functions such as engine control. This paper presents a
novel methodology for in-vehicle security through fingerprinting of ECUs.
The proposed research uses the fingerprints injected in the signal due
to material imperfections and semiconductor impurities. By extracting
features from the physical CAN signal and using them as inputs for a
machine learning algorithm, it is possible to determine the sender ECU
of a packet. A high classification accuracy of up to 100.0% is possible
when every node on the bus has a sufficiently different channel length.

Keywords: Machine learning · Fingerprinting · Classification · k-NN ·
Gaussian naive bayes · Multinomial logistic regression · Vehicle
cybersecurity · In-vehicle networks · CAN

1 Introduction

Nearly every vehicle on the road today utilizes Controller Area Network (CAN)
as one of its primary in-vehicle networks (IVNs) to interface various sensors
and electronic control units (ECUs) inside the vehicle [9]. The CAN standard
was adopted in the automotive industry due to its high reliability and noise
immunity, but one significant drawback of CAN is its lack of a security layer.

CAN bus is a message-based communication protocol where each message
sent on the bus is given a unique identifier. When an ECU receives a message, it
is impossible to determine the source of the message since there is no identifier
for the sender in the CAN frame. This architecture makes CAN bus vulnerable
to spoofing attacks, where an external attacker can gain control of any ECU on
the bus and impersonate another ECU. In a vehicle, this type of attack could
endanger the occupants if critical vehicle functions are disrupted at high speeds.
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This was demonstrated in 2015 by Miller et al. [26], who discovered vulnera-
bilities in a 2014 Jeep Cherokee that allowed them remote access to the vehicle’s
engine controller and steering module, among other things. No modifications to
the vehicle were required to disrupt these critical vehicle functions, and it was
discovered that this type of exploitation could be accomplished at great distance
through a cellular network.

In this paper, we propose a novel intrusion detection system to defend against
spoofing attacks in IVNs. This system links CAN packets to the sender ECU by
using unique characteristics extracted from voltage measurements of the CAN-
High signal. The features are then used in machine learning algorithms to asso-
ciate the message with an ECU and determine if the message is legitimate.

In the past, several researchers have used voltage characteristics to finger-
print ECUs [5,20]. Unlike them, we have used seven novel signal characteristics,
extracted mostly from noise and rising edge transients, as features for our machine
learning classifiers. The extraction and selection of these features are an important
part of machine learning based IDS’s. This is because the performance of a machine
learning system depends on the quality of the selected features just as much as the
algorithm itself. To increase the interpretability of our IDS, the feature extrac-
tion and selection process is explained in detail in Sect. 4. The effectiveness of the
selected features were evaluated with k-nearest neighbors, Gaussian naive bayes,
and multinomial logistic regression using a publicly available dataset.

The paper is organized as follows. In Sect. 2, the threat model is defined
for the CAN bus network. In Sect. 3, the related work section is presented. In
Sects. 4, 5, and 6, the machine learning pipeline is detailed (i.e. data acquisition
& preprocessing, model selection & parameter tuning, and model validation &
results). Finally, the paper is concluded in Sect. 7.

2 Threat Model

The primary threat model that this paper will examine is the case where an exter-
nal attacker gains control of one or more ECUs in the vehicle. Systems such as the
infotainment system, which has wireless connectivity features, allows the attacker
to gain remote access without physical modifications to the vehicle. If the com-
promised ECU has access to the vehicle’s CAN bus, then it would be capable of
manipulating other ECUs on the bus to a certain degree, as shown in Fig. 1.

Once an attacker gains control of an ECU, there are three types of attacks
they can launch on the CAN bus: spoofing, fabrication, and bus-off attacks. Each
attack is explained in more detail below. In this paper, the primary focus is on
the spoofing attack.

2.1 Spoofing Attack

Spoofing attacks, sometimes called impersonation attacks, occur when an
attacker takes control of an ECU and mimics the behavior of another ECU on
the bus. Typically, the ECU to be impersonated is disabled before the attacking
ECU begins to send CAN messages in its place.
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Fig. 1. IVN threat model

2.2 Fabrication Attack

Fabrication attacks occur when an attacker injects additional messages on the
CAN bus through a compromised ECU. These messages can override previously
sent messages to disrupt communication. A fabrication attack can also result in
denial of service (DoS) if the adversary floods the bus with high-priority messages
that block other ECUs from transmitting.

2.3 Bus-Off Attack

A bus-off attack disables the compromised ECU, and it ceases all activity on
the CAN bus. This can disrupt time-sensitive communications if other ECUs
are dependent on the messages sent by the compromised ECU.

3 Related Work

As shown in Fig. 2, existing approaches for IVN security can be separated into
two primary categories: message authentication code (MAC) based approaches
[6,17,31,35,37] and intrusion detection system (IDS) based approaches. IDS’s
can be further broken down into parameter monitoring [16,21,29,32], informa-
tion theory [23,30,38], machine learning [10,18,19,22,24,27,33,36], and finger-
printing [1–5,8,11–15,20,28,34] based approaches.

3.1 MAC Based Approach

MAC based systems are the most traditional implementations of IVN security. In
CAN, this is accomplished by appending some form of encrypted sender authen-
tication to the message.

One such implementation of a MAC based system is LCAP [17], developed in
2012 by Hazem and Fahmy. The system works by implementing a 16-bit “magic
number”, either occupying 2 bytes in the message or utilizing the extra identifier
bits provided by extended CAN.
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Fig. 2. IVN security categories

While MAC based security can be effective, it can be computationally expen-
sive and be easily nullified if the adversary gains access to the encryption key.
In addition, many protocols such as CAN already have a significant overhead
without a MAC. In the case of LCAP, which can occupy 25% of the payload
with its “magic number” [17], the data bandwidth is reduced even more.

3.2 Parameter Monitoring IDS Approach

Since many CAN bus messages are broadcasted periodically, IDS’s based on
parameter monitoring typically examine message frequency or the time difference
between a remote frame and reply. A database of expected message frequencies
or timings can be created, and deviations from these timings can be marked as
anomalies, as seen in Fig. 3. This approach is excellent at detecting DoS and
bus-off attacks, but can fall short if the adversary is timing-aware.

Fig. 3. Concept of frequency based IDS

In 2015, Taylor et al. [32] was able to develop a timing-based system that
detected upwards of 96.2% of attacks that altered the frequency of messages on
a CAN bus, from message deletion up to ten times the typical frequency.
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3.3 Information Theory IDS Approach

IDS’s based on information theory examine the information entropy of messages
on the CAN bus. In 2016, Marchetti et al. [23] demonstrated that certain types
of attacks can cause changes in entropy compared to the typical value for the
message. This led to accurate detection of anomalies for most messages on the
bus, but for the few IDs with varying entropy, the method proved to be less
effective.

3.4 Machine Learning IDS Approach

Machine Learning IDS’s utilize various artificial intelligence models, such as neu-
ral networks and AI-based classifiers, to implement IVN security. One example
of such a system is the deep learning IDS developed by Kang et al. [19]. In their
IDS, the probability distributions of bits in the CAN packet’s payload was used
as a set of features for the model. This approach was able to classify legitimate
and malicious messages with an accuracy of 97.8%.

3.5 Fingerprinting IDS Approach

Fingerprinting is a method that examines the non-ideal characteristics of a trans-
mitter, such as semiconductor impurities or parasitics in its communication chan-
nel. These characteristics can be exploited to create a unique fingerprint for each
ECU. A rather extreme case can be seen in Fig. 4, where it would be easy to dif-
ferentiate the two ECUs through features such as transient response length. This
ability to differeniate between ECUs makes fingerprinting an excellent candidate
to detect spoofing attacks. It is, however, ineffective against bus-off attacks.

Fig. 4. Physical signal differences between ECUs

In 2018, Choi et al. developed VoltageIDS [5], a fingerprinting based IDS
that utilizes various time-domain and frequency-domain features, such as mean,
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standard deviation, and kurtosis, to classify the source ECU of a signal. Using
Linear SVM, they achieved F-Scores of up to 99.7% with just 70 samples per
ECU.

The technology used in many IDS’s for IVNs can also be utilized in broader
applications. In 2020, Hady et al. [7] created the Enhanced Healthcare Monitor-
ing System, an IDS for a hospital’s network that combined patient bio-metric
data with network data to act as features. In addition to ECUs, fingerprinting
based approaches can also be applied to various other sensors and signals. Zuo
et al. [39] collected radio frequency emission data from UAV video signals, and
were able to successfully differentiate the signals from WiFi interference.

4 Data Acquisition and Preprocessing

4.1 Data Collection

Data collection was carried out using seven different MCP 2515 CAN bus shields
mounted on Arduino UNO-R2 microcontrollers, each with a different channel
length, varying from 2m to 10m. The CAN-High signal was recorded using a
DSO1012A oscilloscope sampling at 20 MSa/s. For each of the ECUs, thirty
records were captured with approximately 600 samples in each record, amounting
to a pulse train 4–5 pulses in length. Fig. 5 shows a few pulses of CAN-High
data from ECU 1.

4.2 Pulse Segmentation

Segmenting each record into individual pulses was done using a simple thresh-
olding algorithm, the pseudo code for which can be seen in Algorithm 1.

Algorithm 1. Pulse Segmentation Algorithm
k ← 0
for i ← 0 to N − 2 do

if y(i) < 3 and y(i + 1) ≥ 3 then
indexList(k) ← (i + 1)
k ← (k + 1)
i ← (i + B − 1)

end if
end for

Whenever the raw signal y(n) (which is of length N samples) transitions
from below 3 V to above 3 V, the current index is saved in a list of indices.
This list is later used to segment the data. In some cases the transient period of
the signal’s rising edge has a large amplitude and can cross the 3 V threshold
multiple times. To bypass this issue, B samples can be skipped after finding a
valid rising edge to ensure the transient has dissipated sufficiently. B = 20 was
used in this case.
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Fig. 5. Pulse train from ECU 1

Figure 6 shows an example of a single pulse extracted from the pulse train
from Fig. 5. By extracting individual pulses, it makes it easier to extract some
signal attributes (e.g. from only the dominant bit, or only the transient period).

4.3 Feature Extraction

After singular pulses were isolated from the data, seven features were extracted
from each pulse to form a feature set for the classifiers. Each of these features
are described below.

Transient Response Length. The time required for the transient response to
settle to within some threshold α of the signal’s steady-state value VS . This can
be found by starting near the falling edge of the pulse, denoted by the sample
NF , where we have good confidence that the signal is in the steady-state, and
working backwards until the first value that exceeds the threshold α is found.
Pseudo code for this algorithm can be seen in Algorithm 2.

Maximum Transient Voltage. The maximum value of the signal observed
during the transient period, as shown in Eq. 1
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Fig. 6. Single pulse from ECU 1

Vmax = max(y(n)) (1)

Energy of the Transient Period. The sum of the squared signal over the
transient period, as seen in Eq. 2, where NT is the length of the transient period
in samples.

Ey =
NT −1∑

n=0

|y(n)|2 (2)

Average Dominant Bit Steady-State Value. The average value of the dom-
inant bit during the steady state. As seen in Eq. 3, this can be done by averaging
the samples from NS to NF , where NS is the sample at the beginning of the
steady-state, and NF is the last sample before the falling edge of the pulse.

VD =
1

NF − NS + 1

NF∑

n=NS

y(n) (3)
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Algorithm 2. Transient Length Algorithm
for i ← NF to 0 do

if |y(i) − VS | > α then
ltr = i + 1
break

end if
end for

Peak Noise Frequency. The frequency at which the peak value occurs in
the magnitude spectrum. To determine this, the noise of the signal must first
be isolated to ensure data independence in the Fast Fourier Transform (FFT).
Thus, the ideal signal must be approximated from the pulse. Since the pulse
begins at the rising edge, the only parameter that must be found to construct
the ideal signal is the sample NF at which the falling edge occurs. This can be
done using a simple 3V threshold, as seen in Algorithm 3.

Algorithm 3. Finding Falling Edge Algorithm
for i ← 0 to N − 1 do

if y(i) ≤ 3 then
NF = i
break

end if
end for

With NF calculated, the ideal signal can be acquired, as seen in Fig. 7.
This signal is 3.5 V during the dominant bit and 2.5 V during the recessive
bit. The ideal pulse can then be subtracted from the actual pulse, leaving the
noise behind. Additionally, the mean value of the noise can also be subtracted
to remove the DC component of the noise signal, as seen in Fig. 8.

The FFT of the noise signal with DC component removed can then be taken
to determine the peak frequency of the pulse’s noise, such as in Fig. 9.

Average Noise. The average value of the noise signal whose length is N sam-
ples, such as the one shown in Fig. 8. See Eq. 4

V =
1
N

N−1∑

n=0

y(n) (4)

Standard Deviation of Noise. The standard deviation of the noise signal
whose length is N samples, such as the one shown in Fig. 8. See Eq. 5

σ =

√∑
(xi − V )2

N
(5)
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Fig. 7. Actual vs. Ideal signal

4.4 Outlier Removal

Outlier removal was performed as in Eq. 6. For a given class ci, the jth data
point xij is removed if any of its features differ from the class mean μi of that
feature by more than 3 standard deviations.

|xij − μi| > 3σi (6)

5 Model Selection and Parameter Tuning

Three different machine learning models were used to perform ECU classification
using the extracted features: k-Nearest Neighbor (k-NN), Gaussian Naive Bayes
(GNB), and Multinomial Logistic Regression (MLR). All of these models were
implemented using MATLAB’s Statistics and Machine Learning Toolbox [25]. A
brief overview of each of these methods can be seen below.
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Fig. 8. Noise of pulse from ECU 1

5.1 K-Nearest Neighbor

k-NN is a simple machine learning algorithm that maps observed data points xi

to an n-dimensional feature space. Fig. 10 shows an example of three different
features represented in a 3-dimensional space.

When an unknown data point u is input to the model, k-NN calculates the
distance between u and every observed data point xi, and uses the k closest
observations to make a classification decision.

5.2 Gaussian Naive Bayes

GNB is a specific case of the Naive Bayes (NB) classification method that uses a
Gaussian distribution. To predict the class of an unknown data point u, the GNB
classifier leverages Bayes’ Theorem (see Eq. 7). Since GNB is an implementation
of NB, it makes the “naive” assumption that all of the features are independent,
which greatly simplifies the calculation of P (u). After calculating P (ci|u) for
each class ci, a prediction is made based on the highest probability.

P (ci|u) =
P (u|ci)P (ci)

P (u)
(7)
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Fig. 9. Magnitude spectrum of pulse noise

5.3 Multinomial Logistic Regression

MLR is a generalization of linear regression to a classification problem with more
than two classes. Similarly to GNB, MLR assigns a probability for u belonging
to class ci for each class i. The classification decision is then made based on the
highest probability.

5.4 Model Tuning and Parameter Selection

The tuning phase was implemented through adjusting various parameters of each
model to determine which sets of parameters result in the best model perfor-
mance. Each of the three methods implemented using MATLAB have their own
unique parameters that can be changed when fitting the model.

K-NN Tuning. A list of parameters that were tested for the k-NN classifier can
be seen below. Ultimately, the parameters selected were k = 1, and a euclidean
distance metric with equal distance weighting.

– Value of k from 1 → 31
– Distance calculation method (euclidean, hamming, cityblock)
– Distance weights (equal, inverse, inverse squared)

A set of three features was used in the k-NN classifier, which can be seen
listed below.

– Transient response length
– Maximum transient voltage
– Energy of the transient period
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Fig. 10. Example of a 3-D feature space

GNB Tuning. A list of parameters adjusted for the GNB classifier can be
seen below. For this classifier, a kernel distribution with a normal kernel type
produced the best results.

– Distribution type (kernel, multinomial, multivariate multinomial, normal)
– Kernel type (box, epanechnikov, Gaussian, triangular, normal)

For the GNB classifier, an extra feature was added compared to k-NN for a
4-dimensional feature set. These features are listed below.

– Transient response length
– Maximum transient voltage
– Energy of the transient period
– Average Dominant Bit Steady-State Value

MLR Tuning. A list of parameters adjusted for the MLR classifier can be seen
below. A hierarchical model with a logit link function was utilized for MLR.

– Model type (nominal, ordinal, hierarchical)
– Link function (logit, probit, log-log, complementary log-log)

For the MLR classifier, poor performance was observed for smaller feature
sets. The model performed best when all seven features, detailed in Sect. 4, were
used in the classification algorithm.
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6 Model Validation and Results

Model validation and testing was performed using a 70–30 split in the data
set, which amounted to approximately 560 training data points and around 280
testing data points, split evenly across all 7 ECUs. Accuracy was the primary
metric used in evaluating model performance, as in eq. 8. NC denotes the number
of correct classifications, and NT the number of total classifications made.

Acc. =
NC

NT
(8)

Table 1. Confusion matrix for 1-NN and GNB classifiers (7 ECUs)

Predicted Class

− − E1 E2 E3 E4 E5 E6 E7 Acc. (%)

T
ru

e
C

la
ss

E1 41 0 0 0 0 0 0 100.0

E2 0 40 0 0 0 0 0 100.0

E3 0 0 42 0 0 0 0 100.0

E4 0 0 0 42 0 0 0 100.0

E5 0 0 0 0 36 0 0 100.0

E6 0 0 0 0 0 42 0 100.0

E7 0 0 0 0 0 0 42 100.0

Acc. (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 2. Confusion matrix for MLR classifier (7 ECUs)

Predicted Class

− − E1 E2 E3 E4 E5 E6 E7 Acc. (%)

T
ru

e
C

la
ss

E1 36 0 0 0 1 0 0 97.3

E2 0 37 0 0 0 1 0 97.4

E3 0 0 38 0 0 0 1 97.4

E4 0 0 0 35 0 1 3 89.7

E5 0 0 0 0 37 0 0 100.0

E6 1 3 0 0 0 34 0 89.5

E7 0 0 0 0 0 0 41 100.0

Acc. (%) 97.3 92.5 100.0 100.0 97.4 94.4 91.1 95.9

As can be seen in Table 1, both the k-NN classifier and GNB classifier deliver
perfect classification for this dataset, with an accuracy of 100.0%. The MLR
classifier, while faring much worse with a per-class accuracy as low as 89.5%,
still delivers an overall accuracy of 95.9% as shown in Table 2.
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The reason that the accuracy is so high for this data set is because of the
distinct separation between ECUs in the feature space, as can be seen in Fig.
10. Since each of the ECUs in the dataset have a different channel length, they
all have different transient characteristics that can be easily distinguished.

7 Conclusion

Connected vehicles are becoming more prevalent every day, and with
autonomous vehicle technology on the horizon, security for IVNs is becoming
more important than ever before. The fingerprinting methodology we presented
in this paper was able to correctly identify the sender ECU of a CAN packet
with a high degree of accuracy. Perfect classification was achieved when the ECU
channel lengths are sufficiently different, and up to 95.95% accuracy was achieved
when this is not possible. Such a system would be cost-effective and could be
easily implemented into an IVN with minimal modifications to the network, only
requiring an additional ECU to be inserted as the IDS. Thus, we believe that
this IDS would be an effective solution to combating spoofing attacks in IVNs.
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