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Abstract—In this work, we present a method that can learn
to model dynamic and arbitrary 3D scenes, purely from 2D
visual observations. Our approach uses a keypoint-conditioned
Neural Radiance Field (KP-NeRF) to capture and model these
scenes with the overarching goal of supporting image-based
robot manipulation. Differentiating this from previous methods,
which typically condition the model on generic embedding
vectors for representation, our implicit neural radiance function
is conditioned on a set of keypoints that are inferred from a
learned encoder given imagery observations. This implicitly sep-
arates the visual modeling components into object appearances
and object pose configurations. Such inductive bias built into
the architecture encourages discovered keypoints to capture
state transitions in the robot’s environment across time and
space. We then learn a forward prediction model of the encoded
keypoints, constructed over the keypoint representation space,
and perform MPC control for challenging manipulation tasks
including block pushing and door closing. We evaluate the
performance of our method through various tasks: novel
scene view synthesis, action-conditioned forward prediction,
and robot manipulation tasks.

I. INTRODUCTION

Visual-based control of a robot for manipulation has
been a question studied in the literature for decades, but
remains largely unsolved and is still open today. From a
general manipulation standpoint, a vast majority of previous
work has assumed there exists an underlying model for the
dynamics associated with the robot and its environment [1].
However, these models are increasingly difficult or even
impossible to derive analytically in many cases, as tasks get
more complicated and environments become less structured
[2], [3]. A way to alleviate such restraint is to learn and
continuously infer the dynamics associated with contact
between a robot and its environment, e.g. in Model-Based
Reinforcement Learning approaches [4], and one promising
approach is through vision [5]. In this work, we are interested
in developing methods that are able to learn a representation
and its dynamics purely through 2D visual images of a task
— this opens the door to being able to work with systems
where the dynamics are unknown and cannot be analytically
derived.

One common approach is to use the 2D image itself
as such representation. One can learn dynamics models
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and make future predictions directly for the image’s pixels
[6], [7], [8]. Planning will then be carried out using the
cost of distances measured in image space. This approach,
however, suffers from high modeling error given the dif-
ficulty in 2D image prediction itself. Another approach is
to learn a reduced dimensional representation, either as
an embedding or as keypoints, and then perform control
tasks [9], [10], [11], [12], [13]. This approach usually also
performs 2D image reconstruction and prediction as auxiliary
tasks to obtain meaningful representations. These two types
of approaches, although mostly promising, suffer from an
inherent limitation which is the lack of 3D-awareness in
the scene. When projected from 3D space to a 2D image,
even simple scene element movement can create complex
appearance changes due to relative viewing angle shift and
occlusion. This difficulty in visual modeling leads to blurry
imagery predictions and less effective representations, which
are especially required for manipulation.

There have been recent advances in learning implicit 3D
representation of scenes [14], [15], [16]. Neural Radiance
Field (NeRF) [17] and its extensions [18], [19] can learn
3D structures and appearances of particular scenes trained
solely on a set of 2D images from different views. Followup
work, PixelNeRF [20], extends NeRF to generalize across
multiple scenes by conditioning on image features from
one or multiple observed images. [5] combines NeRF and
contrastive learning to learn an image embedding function
which is then applied to control. A-NeRF [21] uses artic-
ulated skeleton to model 3D human body and refine 3D
pose estimation. Contrary to these previous works, our work
proposes to combine Neural Radiance Field with keypoint
representation for control. The intuition behind this method
is that in most robotic manipulation scenarios, scenes are
dynamic since the state of the world is always changing, but
the objects being manipulated typically remain the same. It
would thus be desirable to have the appearance modeling and
configuration estimation be separated. Such disentanglement
would improve the visual modeling quality (e.g., lower view
synthesis error) because the locally conditioned appearance
model will be easier to learn, and also provide for a more
straightforward distance metric when performing Model Pre-
dictive Control (MPC) [22], [23].

To this end, we devise a keypoint-conditioned Neural
Radiance Field (KP-NeRF). Given an input image from a
fixed camera view, we first predict keypoint locations and
depth in the image space and then unproject to 3D space.
Thereafter, for each point sampled in 3D space as in [24],
we additionally compute the position with respect to each
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Fig. 1.

Our method first learn a keypoint-conditioned neural radiance field and then train a forward dynamics prediction based on the discovered keypoints.

In the first step, we augment the original 5D input with the keypoint relative local encoding as context for the model to generalized along a dynamical
scene. In the second step, we learn an action-conditioned forward prediction model of the transition dynamics of keypoints.
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Fig. 2. Static camera only provides a 2D view of a robotic manipulation
scene. Additional data from moving cameras provide invaluable 3D context
information for training purposes. During testing, though, only fixed cameras
are used as we can now rely on the detected 3D aware keypoints.

keypoint. These local positions are then concatenated to the
original 5D input (3D position + 2D view direction) to feed
into a MLP to output radiance and opacity for that point.
The neural radiance function is now conditioned on the
point’s relative location to all the keypoints so that the local
appearance and structure is invariant when the keypoints
move within a dynamical scene. By imposing this inductive
bias, the network is encouraged to predict keypoints that
attach to dynamical elements of the scene so as to exploit
the local invariance of the object’s appearance. As shown in
Figure 3, our method discovers keypoints that are relatively
"attached" to objects in the scene, even when no explicit
label information is provided.

Given our learned KP-NeRF, we subsequently train a dy-
namics model that predicts keypoint movements conditioned
on input action. This dynamics model can be used to forward
propagate keypoint poses, which enables action conditioned

scene predictions from arbitrary views and model-based
control schemas, such as MPC. Through comparison with
baseline methods, we find our method, KP-NeRF, produces
higher quality scene modeling in both, same timestep view
synthesis and forward predictive view synthesis settings.
The learned keypoint representation provides a more well-
constructed space, which in turn produces less control error
and more accurate manipulation procedures.

II. METHODOLOGY
A. Preliminary

Neural Radience Field: Proposed initially in the context
of novel view synthesis, NeRF [17] represents the scene
as a continuous function F.,r parameterized as multi-layer
perception:

(D

which maps any given 3D scene coordinate x € R> and view
direction d € S? to volumetric density ¢ € R and radiance
¢ € R3. The points in space are obtained by sampling depth
s on the ray from camera origin o as x =r(s) = 0+ sd. Both
o and d are derived from calibrated camera pose. The color
C(r) of a pixel that corresponds to ray r is then numerically
estimated via an integral of accumulated radiance along the
corresponding ray r:

Foerp:x,d— 0,¢

N
C(l’) = Z T;a;c;,

2)
i=1
i1
where T; =exp | — Z Gi(Sjt1—s;) 3)
j=1
and o; = 1 —CXp(—G,'(SH_] —S,')). 4)
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Fig. 3. Novel view synthesis in block and door environments. The models receive observation from the fixed camera and try to render images of another
moving camera given its pose. Our method KP-NeRF produces accurate view synthesis with better details compare to baselines. Keypoints are overlayed

on the rendered image for KP-NeRF and its variant for visualization.

Here, s/, is a set of samples from near bound s, to far
bound s; and o; = o(r(s;)), ¢; = ¢(r(s;)) are evaluations of
volume density and radiance at sample points r(s;) along the
ray.

In training, F;.r will be optimized to render a scene from
multiple views given a set of images and camera pose pairs.
During testing, the model can then render that given scene
from a novel view corresponding to an arbitrary camera pose.
A pixel-wise L2 distance norm is used as loss function:

L= Z cr)— C(r)
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B. Dynamical Scene Representation

Keypoint-conditioned Neural Radiance Field: The orig-
inal NeRF, while impressive in generating high quality view
synthesis, lacks the ability to generalize across different
scenes. The followup work [20] in image conditioning 3D
scene modeling uses either local or global features from
CNN to provide context, which does not fully leverage
object invariance usually appearing in robot manipulation
settings. We extend NeRF to generalize across a dynamical
scene by conditioning on a set of recognized keypoints given
an imagery observation. We use encoder F,,. to extract k
keypoints kpjj.1) = Fenc(O) from observational image O.

In order to encourage the network to learn 3D aware
representation that is invariant to keypoint movements, we
compute the relative location of given point x with respect
to each keypoint and provide that as context information
for the neural radiance model. Different from generic em-
bedding produced by CNN features, our representation as
keypoints provides structure that supports object structure
and appearance invariance with respect to keypoints. This
keypoint relative local encoding is defined as the following:

Fip nerf : X, d,{X—kp;|i€[l:k]} = 0,c (6)

It is also possible to simply provide keypoint locations as
additional inputs without local encoding as defined as follow:

ka_nerf_no_local : Xadakp[lzk] — 0,¢ @)

This variant however does not establish structural rela-
tionship between points in 3D and keypoint locations. The
performances of above two variants will be then compared
by experiments in Section III. A-NeRF [21] also uses relative
encoding that is in spirit similar to ours. However their
relative encoding is with respect to bones in prespecified
skeleton, and they focus on the human body modeling which
is different from our settings.

Keypoint Encoder: Inspired by previous works in un-
supervised keypoint detection [25], [12], we choose to pa-
rameterize keypoint locations by heatmap and depth map.
The keypoint encoder F,. is implemented with a fully con-
volutional neural network backbone. We pass observational
image O into the backbone network to obtain k feature maps
Fj,.. - For each of the feature maps F; we then apply spatial
softmax to produce a probability heatmap H; that represents
the probability that a corresponding keypoint appears in
certain location in that given image. Additionally, we also
have network output a depth map Dy, representing the
depth from that camera origin to the keypoints. The final
location of a keypoint is then computed as the expected
position in the heatmap with expected depth from the depth
map using the heatmap as probabilities.

C. Model Predictive Control with Discovered Keypoints

Given a dynamics model, either learned or analytical,
Model Predictive Control (MPC) solves for the minimum



cost, i.e. optimal, trajectory over a receding time horizon.
Unfortunately, this optimization at each timestep can be
prohibitively expensive for most systems to do online, espe-
cially in high dimensional spaces. Various fast optimization
procedures have been introduced in the literature: from
simple hill climbing approaches for straightforward systems
[26] to high dimensional importance sampling methods for
complex, highly dynamic systems [27], [28]. Using methods
from this literature, we decide to leverage a cross entropy
optimization approach to solve our MPC problem and control
keypoints according to a learned dynamics model.

Once we have obtained the keypoint encoder F,., we can
use supervised learning to estimate the forward dynamics
model, kp, 11 = Fyyu(kps,a;). We predict H steps in the
future by iteratively feeding actions into the one-step forward
model. We implement Fyy, as an MLP network which is
trained by optimizing the following loss function:

H
[fdyn = ||k}71+h - kl’r+h ”2’ (8)
h=1
where kp,j, = Fayn(kPisn—1,an—1), kp, = kps.

Once Fyy, is learned, we use an importance sampling
version of MPC to find the optimal next-state action as to
minimize the differences between current keypoint positions
and goal keypoint positions kp,. This is done iteratively after
each actuation step and relies on the cross entropy method
to optimize the following cost function:

Clkp,kp) = ||kp — K, |- ©)
III. EXPERIMENTS

Our primary experimental domain is with simulated table-
top manipulation task built off of the Meta-World suite of
environments [29]. Specifically, it consists of a simulated
Sawyer robot, and two blocks or a door on a tabletop. The
setup of environment is adapted from [30]. As illustrated
in Figure. 2, the agent receives pixel image from a fixed
posed camera and an additional pixel image from a camera
moving in space. In this section, we are going to compare our
approach to baseline methods on the following three tasks:
novel view synthesis, action-conditioned video prediction,
and image-based robot manipulation.

TABLE I
QUANTITATIVE COMPARISON IN NOVEL VIEW SYNTHESIS BY PSNR
(THE HIGHER THE BETTER) AND MSE (THE LOWER THE BETTER).

Block Door
PSNRT MSE| PSNRt MSE|
NeRF low dim 18.30 0.0154 23.00 0.0050
NeRF 20.42 0.0095 23.19 0.0050
KP-NeRF w/o local encoding 12.86 0.0524 12.99 0.0512
KP-NeRF (ours) 22.85 0.0054 23.65 0.0045

A. Novel View synthesis

We first evaluate the model’s ability to encode 3D-aware
information by measuring the novel view synthesis quality.
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Fig. 4. Accuracy of the forward predicted frames measured in PSNR.

Left: block environment; Right: door environment. X-axis is the number
of control steps used to predict. Our method produces higher PSNR in
predicted frames, especially in the block environment.

The agent executes a random policy for 200 episodes to
collecting 10,000 pair of image frames from a fixed camera
and a moving camera of another pose. Aside from our
method, KP-NeRF, and KP-NeRF with no local encoding
variant, we also have NeRF as baseline, in which we directly
adapt the original NeRF by using a global embedding vector
as context information. The global embedding vector is
extracted from the fixed camera view by using a CNN
encoder. For our method and its variant, we choose the
total number of keypoints k to be 6 for both the blocks and
environment. We have NeRF with a 128 dimensional latent
embedding and also compare to a NeRF low dimensional
version having an 18 dimensional embedding to align the
degrees of freedom as in KP-NeRF. All models are trained
to convergence for 100,000 iterations. We choose to utilize
two commonly evaluated image reconstruction metrics, the
peak signal to noise ratio (PSNR) and the mean squared error
(MSE) to measure the performance.

Quantitative results comparing the methods are presented
in Table I. We note that our method, KP-NeRF, outperforms
the others in both, the block and the door environments.
This can be further qualitatively validated by the graphical
samples in Figure 3. From these results, both keypoints and
local encodings are important to produce a high quality novel
view synthesis in the tested dynamical scene. When condi-
tioning on generic vector embedding, the model produces
more blurry images compared to ours. In particular, when
an embedding’s degrees of freedom matches ours, it cannot
capture the blocks due to the lack of expressiveness. The
poor performance of the KP-NeRF variant without a local
encoding, on the other hand, indicates that the structure of
computing local locations to each keypoint brings crucial in-
ductive bias for learning meaningful keypoints and rendering
a model. As we can see from the visualization, the keypoints
from our methods can approximately following dynamical
elements in the scene. Note that such a pattern emerges in
an unsupervised manner during training which is a result of
the inductive bias we mentioned earlier.
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view. Our method generates more clear and less blurry prediction compared to the baseline, especially around the edge of objects.

B. Action-conditioned video prediction

Going beyond novel view synthesis, where the model
receives an observation from the same timestep, we further
test the model’s performance when doing forward video
prediction. Under this setting, the model trains an action
conditioned forward prediction on the encoded vector em-
bedding or keypoints, and then uses the original rendering
function to synthesize images from predicted values. We use
the learned encoding function from the previous subsection
to extract keypoints or embeddings for a 50,000 frame dataset
collected by executing a random policy with only one fixed
observational camera view. We have more single-view data
to train the forward dynamics model than multi-view data
to train the keypoint-conditioned rendering model, where
single-view data is easier to obtain than multi-view data.
Therefore, we can train the forward dynamics model using
a larger but easier to acquire dataset once the keypoint
encoder is learned. The forward dynamics prediction model
is implemented as a MLP with 4 hidden layers of 512 width.
Since the previous subsection illustrates that neither a low
dimensional vector embedding nor keypoints without local
encodings work well, we only compare our method against
NeRF with a 128 dimensional embedding vector.

In Figure 4, we can see that our method produces higher
PSNR when performing forward predictions, and is partic-
ularly more evident in the block environment. The block
environment has one more object moving across the space
under which our keypoint-based representation is easier to
model and generalize due the inductive bias we introduce
through our keypoint relative local encoding. The forward
prediction quality can be visualized in Figure 5. Our method
generates sharp object appearances across steps, while the
baseline is blurry—especially around the blocks.

C. Image-based robot manipulation

After showing our performance in same timestep view
synthesis and forward prediction, we apply the learned
dynamics model in image-based robot manipulation tasks:
block pushing and door closing. The block pushing task is
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Fig. 6. A sample trial for each of the manipulation tasks. For each task,
the first row is the rollout observation and the second row is the detected
keypoints overlaid on a rendered viewed from a different camera pose. The
last column is the goal image to reach.
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Fig. 7. Average success rate for each task evaluated over 100 trials with
40 control steps. Our approach outperforms the baseline methods in both
the block pushing task and the door closing task.

defined as pushing the target block to the goal position with
distance less than 0.1. The door closing task is to close the
door to be within 0.1 radians from the goal position. A view



of the target state is provided to specify the goal. Aside from
KP-NeRF and NeRF, we also include the learned embedding
through a variational autoencoder (VAE) as a 2D baseline to
compare with. Subsequently, a dynamics model is learned
with the loss function in Equation 8. MPC control is then
applied with the learned dynamics function for all methods.

As shown in Figure 7, our method outperforms both NeRF
and VAE in both block pushing and door closing in achieving
higher success rate. This could be attributed to the fact that
1) our model produces better 3D-aware scene modeling as
shown in previous subsections and 2) our keypoint-based
representation serves as a more appropriate space to compute
distance on when performing MPC control. A rollout for the
task is presented in Figure 6.

IV. DISCUSSIONS AND FUTURE WORK

In this paper, we proposed a method to learn a 3D-aware
keypoint representation for a dynamical scene. By introduc-
ing keypoint relative local encodings as inductive bias, the
model was able to leverage object appearances invariant to
relative keypoints to model complex dynamical scenes. We
show that it is beneficial to learn such keypoint-conditioned
neural radiance fields that produce superior performance
among tasks including view synthesis, video prediction, and
robot manipulation.

Meanwhile, there are several limitations that exist cur-
rently in this presented work. First, our experiments, while
showing promising results, were only conducted in simulated
tabletop environments. In the future, we are interested in
expanding this to real-world robot scenarios, particularly for
in-hand manipulation. Moreover, we find that there is still
room of improvement in binding keypoints to consistent
position of dynamical elements in the scene. It would be
desirable to further investigate methods to enforce more
consistent constraints that regularizes the keypoint locations
towards that direction.
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