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Abstract— Recent advances in latent space dynamics model
from pixels show promising progress in vision-based model
predictive control (MPC). However, executing MPC in real
time can be challenging due to its intensive computational
cost in each timestep. We propose to introduce additional
learning objectives to enforce that the learned latent space
is proportional derivative controllable. In execution time, the
simple PD-controller can be applied directly to the latent space
encoded from pixels, to produce simple and effective control
to systems with visual observations. We show that our method
outperforms baseline methods to produce robust goal reaching
and trajectory tracking in various environments.

I. INTRODUCTION
Vision-based control is important to many robotic ap-

plication where the robot configuration (e.g., joint angles)
cannot be directly captured by sensors (e.g., encoders) but
an image is available. Scaling existing optimal control algo-
rithms to high-dimensional, non-linear vision inputs remains
an open challenge. A recent approach, known as Learning
Controllable Embedding (LCE), is to first embed the high-
dimensional visual input into a low-dimensional latent space,
and then to jointly learn a transition dynamics model in the
latent space [1], [2], [3], [4], [5], [6]. After obtaining such
a latent space and the corresponding dynamics model, it is
feasible to apply traditional planning algorithms or model-
predictive control (MPC) [7], [8], [9], [10], [11].

Such MPC-based approaches are computationally expen-
sive to execute, and the resulting models are often more
complex than the true underlying physical state space. Our
key insight is that, even though the visual perception is com-
plex to model, the underlying physical system is often quite
simple and is often possible to control with straightforward
linear methods such as simple proportional derivative control
(PD-control) [12]. However, the latent space produced by
LCE approaches is typically complex and is not amenable
to PD-control. The main reason is that both the encoding and
the transition dynamics are modeled by nonlinear functions
which are not constrained to relate each controllable degree
of freedom to an embedding dimension in the simplest
possible way.

In this work, we build on LCE to develop embedding
that allow simple PD-control on the latent space. Essentially,
our goal is to learn a state embedding function z = E(x)
from raw observations (images) x such that taking an action
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produced by PD-control using the current embedding z and
its estimated velocity, will gradually push the system towards
the target in physical state space. To structure the latent
space to be suitable for such a control law, we introduce
the technique of pseudo-target labeling and the objective of
latent space PD-control Lyapunov risk.

We test our method (ProCL) in two 2-D and one 3-
D simulated environments. Under our evaluations, ProCL
produces latent space where a PD-controller can be applied.
It is shown that ProCL outperforms baseline method in both
goal reaching and trajectory tracking tasks.

In summary, the main contribution of this work is to
develop a framework that induces proportional derivative
controllability on latent space. Our method is simple to im-
plement, extends existing LCE methods, and shows superior
performance in various environments.

II. PRELIMINARIES

A. PD Control

Proportional derivative control (PD-control) is a class of
feedback control [12], [13] which produces commands that
are proportional to an error term and its derivative:

ut = Kpet +Kd
d
dt

et (1)

Gain terms (Kp,Kd) applied to error e in proportion
and its derivative respectively, shape the feedback response.
PD control is widely applied in industry across numerous
domains, providing a simple mechanism to stabilise sys-
tems. Like many other classical control methods, PD control
usually is applied to relatively low-dimensional system with
possibly known system model. In this work, we extend the
applicability of PD control to the setting where only high
dimensional visual input is provided.

B. Lyapunov Stability

To motivate our design to enforce PD-controllability in
latent space, we briefly introduce Lyapunov stability [14],
[15], [16]. In our setting, we do not assume knowing a
linear system model in priori. In fact, even if the underlying
system is linear, the images and the embeded latent repre-
sentation can very likely be nonlinear. Therefore, techniques
in analysing linear system stability are no longer applicable.
To characterize the stability of nonlinear systems, stability in
the sense of Lyapunov is the most common way given the
difficulty to derive a closed-form expression of a trajectory.
The technique is to prove the existence of a Lyapunov
function that is defined as follows: suppose that x = 0 is an
equilibrium point for a dynamical system dx

dt = f (x) where f :



X →Rn is the system dynamics that is locally Lipschitz [14].
Let V :X →R be a continuously differentiable function such
that

V (0) = 0, and V (x)> 0 ∀x ∈ X \{0} (2)

and the Lie derivative of V along the trajectories

L fV =
dV
dt

= ∇V (x)T dx
dt

= ∇V (x)T f (x)≤ 0 ∀x ∈ X (3)

then the origin is stable and V is a Lyapunov function.

C. Predictive Coding, Consistency, Curvature

Predictive Coding, Consistency, Curvature (PC3) [5] is
a recently proposed LCE framework that we use as the
backbone of our method. Under this framework, we jointly
learn an encoder E : X → Z and latent space dynamics
F : Z ×U →Z to maximize next observation predictability
without reconstruction. In practice, X is constructed as
concatenation of multiple images to capture velocity.

The core idea is to use the following predictive coding
loss to maximize the mutual information between X and Z:

Lcpc(E,F) =−E

[
1
K ∑

i
ln

F(E(xi
t+1)|E(xi

t)),u
i
t)

1
K ∑ j F(E(xi

t+1)|E(x
j
t )),u

j
t )

]
(4)

In addition to the CPC loss (4), a consistency loss is also
employed to enforce that a predicted latent embedding is
consistent with the encoding from the next observation:

Lcons(E,F) =−Ep(xt+1,xt ,ut ) [lnF(E(xt+1)|E(xt),ut)] (5)

Finally, a curvature loss is used to encourage local-
linearity. The curvature of F is measured by by computing
the first-order Taylor expansion error incurred when evalu-
ating at z̃ = z+ηz and ũ = u+ηu,

Lcurv(F) = Eη∼N (0,σ I)‖ fZ(z̃, ũ)− (∇z fZ(z̃, ũ)ηz

+∇u fZ(z̃, ũ)ηu)− fZ(z,u)‖
(6)

The complete PC3 loss is the combination of all three
terms above:

Lpc3(E,F) = λ1Lcpc(E,F)+λ2Lcons(E,F)

+λ3Lcurv(E,F)
(7)

III. PROPORTIONAL DERIVATIVE CONTROLLABLE
LATENT SPACE

Consider the task of controlling dynamical systems in the
form st+1 = fS(st ,ut), fS is the system dynamics. We are
interested in the case in which we can only access to high-
dimensional visual observation xt and desire to drive the
system to match a reference image in goal reaching task or
an image sequence in trajectory tracking task. This scenario
has wide applications in real-world when only vision input
is provided.

A. Motivation

The motivation of our model is straightforward. We find
that even though the underlying system is PD-controllable,
it is difficult to perform PD-control on latent space learned
by regular LCE method like PC3 as described above. The
first challenge is that the correspondence between latent
state dimension and control dimension is hard to recover.
Consider a simple 2D point mass environment with 2D
control. This generally is modeled with 4D latent embedding
(2D for position and 2D for velocity). After the model is
trained, we do not know which dimension is configuration
(position in point mass environment) and which dimension
is velocity. The correspondence between configuration and
velocity can be solved by decoupling latent state z in to
configuration, velocity pair (h,v) and have ht = ht−1+∆t ·vt ,
but the correspondence between state and control is a harder
problem. Local linearity is promoted using curvature loss,
but it is still not easy to fully disentangle the corresponding
pair of each degree of freedom of state and control. Manually
viewing the generated latent map to verify it is disentangled
and link each control dimension to each state dimension is
possible, but is obviously not scalable to higher dimension
environments.

Moreover, even if we manage to find a correspondence
among configuration, velocity and control either by manual
visual inspection or by imposing additional heuristics regu-
lations [17], there is no objective in the training procedure
that drives PD-controllability. LCE methods only ensure that
the latent encoding and the latent transition dynamics are
predictive of next observation. This objective supports, e.g.,
planning algorithms on the latent space in a MPC framework,
but does not encourage it to directly be PD-controllable.

To tackle above challenges, we propose the Proportional
Derivative Controllable Latent (ProCL) method. ProCL ex-
tends PC3 to enable PD-control on latent space. First, we
structure the latent state z into a (configuration, velocity)
pair (h,v). This design can be easily implemented with
simple modification to E and F in PC3 networks. More
concretely, we refer to individual image frames at each
timestep as it and two consecutive frames (it , it−1) as xt to
capture velocity. We have zt = (ht ,vt) = E(xt), where ht =
e(it) and vt = (e(it)− e(it−1))/∆t. Following this, we can
have forward dynamics model zt+1 = F(zt ,ut) = (ht+1,vt+1),
where ht+1 = ht + vt+1 and vt+1 = g(ht ,vt ,ut). e and g
are implemented as convolutional neural network (CNN)
and multi-layer perceptron (MLP) respectively. As discussed
earlier, this design would create a consistent configuration
representation h and its velocity v in the latent space. Other
than this modification to PC3 networks, we add additional
objective to learning loss function which is going to be
described in the following subsection. In execution, the PD-
control on the latent space will take the form:

ut = Kp(h
target
t −ht)+Kd(v

target
t − vt), (8)

where htarget
t is obtained by encoding provided target image

into latent space; in trajectory tracking task, vtarget
t is obtained



by taking finite difference of the consecutive reference latent
embedding and in goal reaching task, vtarget

t is simply 0. In
other words, we perform PD-control on the latent repre-
sentation h embedded from single image i. Meanwhile, as
presented in the subsequent subsection, we consider z=(h,v)
as the full state when deriving loss for control stability.

B. Enforce PD-controllability on latent space
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Fig. 1. Enforce PD-controllability by computing latent space PD-control
Lyapunov risk as learning objective.

In this subsection, we introduce the technique to enforce
PD-controllability in latent space. We add an additional
objective so that a PD-controller would induce converging
transitions that satisfying the Lyapunov condition in Eq. 3.

Empirical Lyapunov risk: Following recent progress in
combining Lyapunov stability with neural networks [18],
[19], [20], [21], [22], we minimize additional loss function
termed as empirical Lyapunov risk R. To introduce empirical
Lyapunov risk, we define the Lyapunov function V :Z →R
to be a continuously differentiable function. With the Lie
derivative L fV along the controlled closed-loop dynamics f ,
the sample size N and the sampling distribution ρ , we have:

R =
1
N

N

∑
i=1

max(0,L fV (zi− ztarget)) (9)

The empirical Lyapunov risk is non-negative, and when V
satisfies Eq. 2-3, it is a true Lyapunov function for f , i.e. this
empirical risk reaches global minimum at 0, for all sample
size N and distribution ρ . Given our setting that we only have
access to transition tuples instead of the true dynamics f of
the system, we approximate the Lie derivative L fV along
sample trajectories of the system through finite differences:

L f ,∆tV (zt) =
1
∆t

(V (zt+1− ztarget)−V (zt − ztarget)), (10)

where zt and zt+1 are consecutive states and ∆t is the time
difference between them. It’s easy to see that lim∆t→0V (s) =
L f ,∆tV (zt). In principle V can also be a trainable function
of z. But for simplicity, we have V = zT Qz as a quadratic
function of states with Q as a tunable hyperparameter for
this study.

After defining empirical Lyapunov risk as an additional
objective to minimize, the immediate problem is how to
effectively draw samples from a distribution following a

PD-control law in latent space. We could iteratively collect
samples by applying PD-control to some randomly selected
target state, but that makes the training "on-policy" in the
sense that transition tuple is only valid given the current la-
tent encoding function. When the encoding function changes,
the stored transition no longer follows proportional derivative
control law in latent space, and thus such an approach is not
sample efficient and may also be unstable in training.

Hindsight target labeling: Inspired by Hindsight Experi-
ence Replay [23], [24], we propose to label a pseudo-target
from a stored transition tuple (zt ,ut ,zt+1). The intuition is
that, given zt , ut and the gain matrices Kp and Kd , which
are hyperparameters, we can invert this system to sample
a series of targets ztarget

t that reconciles with zt , ut and the
gain matrices. That is we compute the encoding ztarget

t that
would explain the control ut we take at zt . As such, this
is effectively "off-policy" in the sense that we can use all
transition tuples collected by any random policy to update
the embedding function. With zt = (ht ,vt), we first sample
vtarget

t ∈ Prior(v), where Prior(v) is implemented as a buffer
of all vt in the current mini-batch. And then we can treat
htarget

t as the only unknown variable in solving Eq. 8 to get
the following expression:

htarget
t = K−1

p (ut +Kpht −Kd(v
target
t − vt)) (11)

ztarget
t is then naturally composed as (htarget

t ,vtarget
t ).

Latent space PD-control Lyapunov risk: With hindsight
pseudo-target labeling, we now have an expanded transition
tuple (zt ,ut ,zt+1,z

target
t ), on top of which we can then express

the approximated Lie derivative as:

L f ,∆tV (zt) =
1
∆t

(V (zt+1− ztarget
t )−V (zt − ztarget

t )), (12)

which is then used to replace L fV in Eq. 9 to compute the
empirical Lyapunov risk R. Notice that given a replay buffer
of transitions pre-collected by a random policy, R is now a
function of latent space encoding function E. Minimizing R
is then to find function E so that change in V brought by
PD-controller in latent space encoded by E is non-positive.
We thus denote the latent space PD-control Lyapunov risk
as R(E).

We combine this objective R(E) with the original PC3 loss
function (7). Our overall objective is thus:

LProCL(E,F) = λpc3Lpc3(E,F)+λRR(E) (13)

To summarize, as shown in Fig. 1, we minimize the
empirical Lyapunov risk evaluated for PD-controller on
latent space as an objective to enforce latent space is PD-
controllable. Hindsight pseudo-target labeling is employed
to efficiently provide training examples to perform training.
Pseudo-code 1 is also shown below.

C. More considerations

One issue applying Lyapunov risk R as training objective
on latent space is that R is sensitive to non-volume preserving
transformations of the latent space. That is shrinking the
overall size of latent map will minimize the value of R. This
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Fig. 2. Goal reaching performance using PD controller on PC3 and ProCL and PID controller on NewtonianVAE. The y axes are in log-scale. Shaded
area represents plus or minus one standard deviation over 50 episodes.

Algorithm 1 Proportional Derivative Controllable Latent
Space
Input: PD-control gain Kp, Kd and Lyapunov function V

1: Collect experience using random control and store into
replay buffer B

2: Initialize encoding function E and dynamics model F
3: while not finished do:
4: Sample xt ,ut ,xt+1 from B
5: Sample vtarget

t from Prior(vt)
6: Compute PC3 loss using Eq. 7
7: Compute htarget

t using Eq. 11
8: Compute latent PD-control Lyapunov risk using

Eq. 12 and Eq. 9
9: Update E and F with the objective defined in Eq. 13

is similar to Lcons in PC3 training. Therefore, following [5],
we add Gaussian noise ε ∈ N (0,σ2I) to the next state
encoding E(xt+1). Since the noise variance is fixed, Lcpc can
maximized by expanding the latent space, thus balancing the
contraction behaviour produced by R and Lcons.

IV. EXPERIMENTS

In this section, we report evaluations of our method
ProCL, along with comparison with baseline method. The
experiments are based on three image-based environments:
Point mass, Reacher-2D and Fetch-3D. Observation exam-
ples can be found in Fig. 3.

Point mass-2D: The Point mass-2D environment is
adapted from PointMass system from deepmind control
suite [25]. The mass has two degree of freedom and is
linearly actuated by 2D control to move on a plane. The
movement is bounded by the frame edges.

Reacher-2D: The Reacher-2D environment is adapted
from the Reacher environment in deepmind control suite. It
has two degree of freedom in configuration and fully actuated
by 2D control. Following [17], we limit robot’s middle joint
angle so that only it bends in one direction and also limit the
origin joint angle range to between -160 and 160 degrees to
avoid discontinuity in full circular motion.

Fetch-3D: The Fetch-3D environment is adapted from
FetchReach-V1 environment from OpenAI Gym [26]. No

adjustment is made other than that we resize the pixel
observation to 128 by 128 and then crop the center 64 by
64 of it. The robot arm is actuated in the 3D end-effector
position with 3D control as acceleration of the end-effector
position. This environment is more challenging due to the
3D visual scene and partial occlusions came with it.

Training data generation: The training data is collected
using random control interacting with environments. We
generate 10000 time-steps’ transitions for Point mass-2D and
Reacher-2D, and 50000 time-steps’ transitions for Fetch-3D.

Baseline methods: We compare our model to two base-
lines, the original PC3 [5] with PD control applied to
learned latent space and Newtonian VAE [17] with PID
control. For both our method ProCL and PC3, We use the
same network architecture described in PC3 and apply the
change in networks described in the end of section III-
A. For NewtonianVAE, we thankfully obtained the original
implementation from the authors. We empirically find that
PD and PID control generate similar performances for New-
tonianVAE and thus choose to directly compare with PID
control with the original hyperparameters shown in the paper.
No additional modification is made.

(a) Point mass-2D (b) Reacher-2D (c) Fetch-3D

Fig. 3. Environment observation samples: Point mass-2D and Reacher-2D
and Fetch-3D.

A. Visual goal reaching

In this sub-section, we compare the PD-controllability
properties of the latent space generated by ProCL and the
baseline methods on all three simulated environments. We
train both ProCL and PC3 using the pre-generated dataset
to learn embedding functions. During test time, we use PD-
controller to control the system to reach a randomly sampled
target state. For NewtonianVAE, we obtain the pretrained
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Fig. 4. Goal reaching trajectories are shown in the learned latent state. We can see that across all three environments, ProCL learns a latent space that is
compatible with PD-controller to produce robust reaching from start state to target state.

model on the same environments kindly shared by the author.
Following the original implementation, PID control (Kp =
8 · I, Ki = 2 · I, Kd = 0.5 · I) is applied to the learned latent
state by NewtonianVAE.

Trajectories shown in Fig. 4 demonstrate the advantage
of our method’s PD-controllability in the latent space. PD-
controller applied to ProCL’s latent space can generate con-
verging dynamics towards target. NewtonianVAE can also
achieves converging behaviour in latent space but with more
oscillation near the target. Meanwhile, PC3’s latent space
does not have such property: the PD-controlled trajectory
either largely oscillates around target or can not approach in
the right direction across the whole time period.

To more closely comparing the performance, we present
the convergence curves of the L2 distance in the ground
truth state configuration space in Fig. 5. We can see that the
average distance with our method converges quickly to close
to zero. ProCL outperforms NewtonianVAE in two of three
environments. PD-controller on PC3 does not make progress
across many steps.

Hyperparameters: For all experiments, we set
λpc3,λR,λ1,λ2,λ3 to 1, 10, 1, 1, 10 respectively. We
also have fixed PD-control gain matrix Kp as 10 · I and Kd
as 2 · I. Quadratic Lyapunov function matrix Qh is set to
I and Qv is set to 0.1 · I. ∆t is set to match environment
timestep for point mass-2D and reacher-2d, and is set to 1
for fetch-3D. The only hyperparameter we tune is the noise
ε added to latent embedding during training of ProCL. The
effect of PD-control is related to the scale of the latent
space which is balanced by the noise ε as discussed in
section III-C. We therefore tune the latent noise ε as a
way to control the scale of the latent map, which then
relates to the scale of the control. As shown in Fig. 2, we
present ablation study using different noise level. In our

experiments, ε = 0.01 generates the best performance across
all three environments and is thus chosen for both goal
reaching and trajectory tracking task.

B. Visual trajectory tracking

Besides goal reaching, we also show how ProCL com-
bined with PD-control alone can enable visual input tra-
jectory tracking, using the Fetch-3D environment. Contrary
to NewtonianVAE [17] where dynamic movement primitives
(DMP) [27], [28] needs to be fitted with demonstrated data,
tracking with PD-control with Eq. 8 can be performed
directly using our approach. We generate a sequence of
demonstration trajectory in Fetch-3D environment and then
use the learned latent encoding function to embed the visual
demonstrations into latent space trajectory. PD-controller is
then applied to track this latent trajectory in execution with
the same hyperparameters (Kp = 10 · I, Kd = 2 · I) as in the
previous subsection. As shown in Fig. 6, our method is able
to closely track the demonstrated visual rollout.

V. RELATED WORK

Modeling high-dimensional visual inputs with latent en-
coding has been of interest for a long time. Variational
autoencoder (VAE) [29], [30] provides a general framework
to conduct variational inference of latent variable over visual
inputs. Following this direction, it has been shown success in
training a latent dynamics model in the latent space of VAE
to perform control tasks [31], [32], [33] as well as perform
video prediction and generation [34], [35].

In the space of modeling visual observation dynamics
for control, learning Controllable Embedding (LCE) is a
recent framework to jointly learn embedding function from
the high-dimensional visual input into a low-dimensional
latent space, and a transition dynamics model in the latent



Point mass-2D Reacher-2D Fetch-3D

Fig. 5. Ablation study on hyperparameter. Convergence rates using different latent noise during the training of ProCL. The y axes are in log-scale. Shaded
area represents plus or minus one standard deviation over 50 episodes.

Fig. 6. Performance in trajectory tracking. Left: ProCL’s observed frames during visual trajectory tracking. Right: 3D view of target path and tracking
trajectory by ProCL.

space [1], [2], [3], [4], [5], [6]. There have been heuristics
to guide the learning of meaningful latent state. E2C [1]
uses locally linear neural network to parameterize the latent
transition dynamics. Some other methods such as PCC [6]
and PC3 [5] also desire local linearity in latent space but
choose to employ general neural network with curvature
as additional penalty. Next observation prediction has been
widely used as training signal to learn meaningful represen-
tation in most LCE methods like E2C and PCC. Recently
proposed PC3 uses predictive coding as an alternative to
minimizes predictive suboptimality, which bypasses the need
for a decoder network.

As we discussed earlier, LCE methods such as E2C,
PCC and PC3 usually apply MPC methods to perform
control in execution, of which the intensive computational
cost becomes the runtime bottleneck. This limitation also
applies to some of more recent targeting more complex
environment such as PlaNet [36] which uses Cross Entropy
Method (CEM) [37], [38] to search for the best action
sequences under learned model. One alternative is to not
separate control from latent space encoding and dynamics
learning. SOLAR [3], for example, performs policy opti-
mization alongside with model learning. The learned latent
space is thus becoming task-specific instead of dynamics-
specific as in the previous approaches . Other recent work
such as Dreamer [39] and MuZero [40] also predicts the
task specific reward and value function in the learned latent
dynamics model to further improve the performance.

Introduction of physical knowledge prior [41], [42], [43],
[44], [45] has also shown to enhance the modeling and
control of latent dynamics. It’s presented in [46] that a
Lagrangian dynamics can be learned from images to improve
dynamic prediction and generalization. Among all the works,
Newtonian VAE [17] is perhaps the most relevant work to
ours. Their motivation is to regularize the latent space em-
bedding along each dimension of control with the heuristics
of each dimension of control applies strictly positive change
to corresponding dimension in the latent state. Although
similar to our approach in applying PD-controller to latent
space, we argue that their method does not have a principled
objective to optimize for such PD-controllability. In contrary,
our approach directly minimize the latent space PD-control
Lyapunov risk to enforce PD-controllability.

VI. CONCLUSION

We introduce proportional derivative controllable latent
space (ProCL) model to learn PD-controllable latent space
from visual perceptions. With the assumption that the un-
derlying physical system is PD-controllable, ProCL can
enable PD-control on learned latent space which bypasses the
computational burden for MPC type of method in execution
time. Experimental results show that our method can produce
robust and superior performance in both goal reaching and
visual trajectory tracking tasks across multiple environments.
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