
1

CF4FL: A Communication Framework for
Federated Learning in Transportation Systems

Pedram Kheirkhah Sangdeh∗, Chengzhang Li†, Hossein Pirayesh∗, Shichen Zhang∗, Huacheng Zeng∗, and Y. Thomas Hou†
∗Department of Computer Science and Engineering, Michigan State University

†Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA

Abstract—Federated Learning (FL) is a promising technique
to enhance the safety and efficiency of intelligent transportation
systems. While FL has been extensively studied, the communica-
tion and networking challenges related to the operations of FL
in dynamic yet dense vehicular networks remain under-explored.
Limited storage and communication capacities of individual
vehicles throttle the timely training of an FL model in distributed
vehicular networks. In this paper, we present a communication
framework for FL (CF4FL) in transportation systems. CF4FL
aims to accelerate the convergence of FL training process through
the innovation of two complementary networking components: (i)
a deadline-driven vehicle scheduler (DDVS), and (ii) a concurrent
vehicle polling scheme (CVPS). DDVS identifies a subset of
vehicles for local model training in each iteration of FL, with the
aim of minimizing data loss while respecting the deadline con-
straints derived from vehicles’ storage, computation, and energy
budgets. CVPS takes advantage of multiple antennas on an edge
server to enable concurrent local model transmissions in dynamic
vehicular networks, thereby reducing the airtime overhead of
each FL iteration. We have evaluated CF4FL through a blend of
experimentation and simulation. Trace-driven simulation shows
that, compared to existing scheduling and transmission schemes,
CF4FL reduces the convergence time of FL training by 39%.

Index Terms—Federated learning, machine learning, au-
tonomous driving, intelligent transportation, scheduling, MIMO

I. INTRODUCTION

Knowledge about vehicles, drivers, environments, and their
mutual interactions is critical for intelligent transportation
systems (ITS). Machine learning (ML) techniques have been
extensively studied to extract useful knowledge from massive
data collected by vehicles so as to enhance the safety and
efficiency of ITS. Conventional ML techniques are propelled
by a central server with unconditional access to data collected
by vehicles and infrastructure. However, with the advancement
of autonomous vehicles, the amount of data from the sensors of
vehicles (e.g., LIDARs, radars, cameras, and inertial sensors)
can easily reach to gigabit per second, making it impractical
to transfer raw data to a server, let alone the privacy issue
around sharing raw data.

Federated Learning (FL) has been introduced as a privacy-
preserving and communication-efficient alternative, where in-
dividual clients (rather than a central server) carry out the
model training process [1]. While FL is a promising training
paradigm for vehicular networks, the limited communication
capacity of these networks along with the heterogeneous sens-
ing, storage, and processing capabilities of individual vehicles,
bring up an important question – how to optimize the design
and operation of wireless vehicular networks to facilitate FL.

Different strategies have been proposed for FL to address
its communication cost, such as decreasing the communi-
cation frequency [2], reporting local models using a sparse
representation [3]–[6], and quantization of model parameters
[7]–[9]. The main idea of these strategies is to reduce the
communication overhead of FL by tuning learning parameters
and structure, which will likely cause FL performance degra-
dation. Recently, pioneering work [10]–[16] has been con-
ducted to address FL’s communication overhead problem from
a networking perspective by efficient resource allocation and
scheduling schemes. To the best of our knowledge, existing
works mainly employ cross-layer optimization techniques to
enhance learning efficiency. They assume that global channel
state information (CSI) is available at the server. They also
assume that CSI remains valid for the time period of an
FL iteration (a.k.a. global iteration). Given the small channel
coherence time caused by high mobility of vehicles, these two
assumptions may not be valid in practical vehicular networks.

In this paper, we present a Communication Framework for
FL (CF4FL) for ITS, with the aim of accelerating the FL
training process. We consider a vehicular network that com-
prises a server (for model aggregation and dissemination) and
many distributed vehicles (for data collection and local model
training). Each vehicle continuously collects data samples from
its surrounding environment using on-board sensors such as
camera, radar, and lidar; and it uses its collected data samples
for local model training when scheduled by the server. To
embrace topology dynamicity and hardware heterogeneity of
vehicular networks, a deadline is defined for each vehicle
as the maximum number of global iterations during which
the vehicle can keep/store its collected data samples. Once
the deadline is reached, the newly collected data samples
will be partially or entirely lost due to the limited storage
or other limiting factors. CF4FL considers the case where
each vehicle has a specific deadline for its data collection.
CF4FL mainly comprises two complementary components: (i)
deadline-driven vehicle scheduler (DDVS), and (ii) concurrent
vehicle polling scheme (CVPS).

DDVS is an online scheduler equipped with two scheduling
schemes: a general but complex scheduler and a lightweight
heuristic scheduler. DDVS selects a subset of vehicles in
each global iteration. The selected vehicles will perform local
model training (using their collected data samples) and send
their resultant local models to the server in the current FL
iteration, while the vehicles that are not selected will continue
to collect data samples. Given the deadline of data collection
at vehicles, DDVS must meticulously and systematically select

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

2

the vehicles in each FL iteration to maximize the amount of
data samples for local model training and therefore minimize
the data loss at vehicles. CVPS, on the other hand, focuses
on enhancing the communication capacity between vehicles
and server to reduce the duration of a global iteration. CVPS
allows the server to concurrently poll multiple vehicles in a
global iteration. The key challenge is the time misalignment of
multiple concurrent packets caused by the signal propagation
delay, packet processing delay, and clock imperfections. CVPS
addresses this challenge by a novel spatial signal detection al-
gorithm, which decodes asynchronous data packets from mul-
tiple vehicles. Particularly, CVPS needs neither inter-vehicle
synchronization nor instantaneous CSI for asynchronous con-
current vehicle transmissions.

We have evaluated CF4FL through a blend of experimen-
tation and simulation. We implemented CVPS on a software-
defined radio (SDR) vehicular testbed where the server has
four antennas and each vehicle has one antenna, and evaluated
its performance in three typical scenarios: parking lots, local
streets, and highways. Our experimental results shows four ve-
hicles can send their local models to the server simultaneously
with 98% success rate. The experimental results are utilized
to conduct trace-driven simulation for the performance eval-
uation of CF4FL. Our results show that, DDVS reduces data
loss by 76%, 54%, and 59% compared to Random, Round-
Robbin, Earliest-Deadline-First schedulers, respectively. Over-
all, CF4FL reduces the training convergence time of FL by
39%.

II. RELATED WORK

In the literature, there are two research lines involving both
FL and networking: FL for networking and networking for FL.
This work belongs to the latter category.

FL in Wireless Vehicular Networks. While many works
studied FL applications for transportation systems [17]–[19],
few investigated the unique challenges of FL in vehicular
networks. [20] considered the heterogeneity of local data
samples and designed an approach to selectively collect and
aggregate local models for fast convergence. [21] proposed a
privacy-preserving aggregation for FL in navigation systems.
In [22]–[24], blockchain-based FL frameworks were proposed
to protect the privacy of vehicles when sharing local models.
[25] proposed a new clustered architecture for FL in vehicular
networks which leverages vehicle-to-vehicle communications
to conserve communication resources. [26] proposed a greedy
algorithm to accelerate FL by assigning resources to the
vehicles with high-quality data samples. [10] and [27] are
the most relevant works to this paper. [10] proposed an
algorithm for vehicle selection and wireless resource alloca-
tion in cellular systems based on dataset content. This work
took into account both limited bandwidth and packet error
rate in its resource allocation strategy to maximize learning
efficiency. The proposed resource allocation is reliant on the
exact realization of links capacity and the availability of CSI.
While CF4FL pursues a similar objective, it differs from [10]
in the problem settings, including the lack of instantaneous
CSI and concurrent vehicle polling. [27] accelerates FL in

vehicular networks by selecting vehicles with massive local
datasets and dropping those with few data samples. It neither
considers vehicle-specific deadlines nor focuses on minimizing
data loss.

Resource Allocation and Scheduling for FL. Resource
allocation and participant scheduling in each global iteration
are important for FL convergence. Several research efforts
have been made to study participant scheduling and resource
allocation toward different objectives, such as minimizing FL
loss [10]–[12], minimizing latency [13], improving energy
efficiency [14]–[16], and enhancing learning efficiency [28].
However, these works are limited to stationary or semi-
stationary networks where instantaneous CSI with relatively
large coherence time can be estimated at the server in each
global iteration. In practice, such an luxury is barely available,
especially in vehicular networks. CF4FL differs from these ef-
forts in terms of requirements, objective, and network settings.

Communication Airtime Overhead of FL. The limited
communication capacity is a realistic barrier for the FL de-
ployment in wireless networks, which throttles the learning
process and slows down the learning convergence. Pioneering
works have been done to resolve the communication prob-
lem for FL using different approaches, such as decreasing
the communication frequency (i.e., the number of global
iterations) [2], reporting local models using their sparsified
representations [3]–[6], and quantization of model parameters
[7]–[9]. Apparently, CF4FL is orthogonal to these efforts as it
does not optimize FL but innovates the networking design to
improve the convergence speed of FL training.

III. FEDERATED LEARNING IN VEHICULAR NETWORKS

The deployment of FL in vehicular networks is a complex
task due to the unique features of vehicular networks and the
stringent requirements of data collection. CF4FL assumes that
vehicles can label their collected data for local training. It
also assumes that vehicles have sufficient computational power
for local training [29]. In what follows, we first describe the
system model and then formulate the problem. Finally, we
point out the challenges in the design of an efficient solution.

A. System Model

Practical realization of ITS requires to collect an immense
amount of data in vehicular environments, such as information
of other vehicles, the condition of road surface, the probability
of accidents, and the existence of local objects. The collected
data by different vehicles is a valuable source of information to
train ML models for the applications such as pothole detection,
collision avoidance, object/pedestrian identification, and curb
avoidance. For vehicles, sharing their raw data samples with
a central server for training a unified model may not be a
good idea due to the concerns about data privacy, the limited
network bandwidth, and the huge size of data samples. FL
alleviates these issues and offers a decentralized framework
to train a global model through the local model training at
individual vehicles using their privately-owned data.

We consider a vehicular network that comprises a central
server and many vehicles as shown in Fig. 1 , where each

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

3

DDVS
CVPS

Global modelLocal model Unused data samples
Selected vehicle Unselected vehicle Central server

Global modelLocal model Unused data samples
Selected vehicle Unselected vehicle Central server

Fig. 1: FL in a vehicular network.

vehicle is equipped with a single antenna and the server is
equipped with multiple antennas. The server is responsible
for vehicle scheduling, receiving local models from scheduled
vehicles, aggregating models, and broadcasting the aggregated
model to all vehicles. Each vehicle performs continuous data
collection from its surrounding environment using its on-board
sensors. If it is scheduled in the current iteration, it first uses
its collected data for local model training and then reports the
updated local model to the server; otherwise (not scheduled),
it continues to collect data until its deadline is reached. To
describe FL training, let us consider a network at global
iteration t. Denote N(t) as the set of vehicles associated to
a server, with |N(t)| = N(t). Denote M as the number of
antennas at the server. Denote Ii(t) as the dataset at vehicle
i in global iteration t. Assume that the data collection and
transmissions at vehicles are done in parallel. Also, assume
that a unique frequency band (e.g., a channel in 802.11p
or a resource block in C-V2X) is assigned to the FL task
under consideration, and the frequency band is used via time
division multiple access (TDMA) for communications between
vehicles and the server.

B. Problem Formulation

In the conventional training process of FL as shown in Fig. 1
and Fig. 2, the server selects a subset of vehicles for local
model training. Denote S(t) as the set of selected vehicles
in global iteration t. Each selected vehicle, say i, trains its
local model to minimize a loss function. Denote θi(t) as
the local model parameters. Then, the loss function can be
written as: L (θi(t), Ii(t)|θi(t− 1)), where θi(t − 1) is the
initial parameters of local model. In the rest of this paper, we
drop the condition of θi(t−1) for notation simplicity. Vehicle i
sends θi(t) to the server and discards Ii(t) in its buffer
to collect future data. An unselected vehicle, on the other
hand, piles up the collected data samples during the current
iteration on top of what it already has in its buffer, until it has
been selected. Piling up data samples can adversely affect the
entire training process, especially in a dense vehicular network
where some vehicles would not be selected for many global
iterations. These vehicles face several issues. First, the size

1

2

N(t)

Poll A
gg

r.

A global iteration

 (t)ᶿ2

 (t)ᶿ1

 (t)ᶿg

N(t)
 (t)ᶿ

Lo
ca

l u
pd

at
es

Poll A
gg

r.

A global iteration

 (t)ᶿ2

 (t)ᶿ1

 (t)ᶿg

N(t)
 (t)ᶿ

Lo
ca

l u
pd

at
es

Server
1τ(t)

2τ(t)

Fig. 2: Sequential polling for the iterative training of FL in
vehicular networks.

of unused data samples (i.e., data samples collected since the
last participation in FL) may exceed the storage limit. Second,
vehicle stragglers (i.e., computation-slow vehicles) drastically
increase the time duration of a global iteration. The local
processing time can contribute to a time limit (i.e., deadline)
for each vehicle or equivalently a virtual cap on an allowable
amount of data that the vehicle can collect. We denote this cap
as Fi (in bits) for vehicle i. When vehicle i is not selected for
a long time and its unused data samples exceed Fi bits, the
data samples will be lost from that point on.

At the end of a global iteration, the server receives local
models from the selected vehicles and aggregates them to
obtain a new global model. The contribution of each local
model to the global one is proportional to the amount of data
that is used in training that local model [12]. Simply put, the
aggregation is a weighted average of the polled local models.
Denote θg(t) as the parameters of the aggregated global model.
Then, we have

θg(t) =

∑
i∈S(t) |Ii(t)| · θi(t)∑

i∈S(t) |Ii(t)|
. (1)

Similarly, the global loss is evaluated as a weighted average
on loss of local models, i.e.,

L(θg(t)) =

∑
i∈S(t) |Ii(t)| · L (θi(t), Ii(t))∑

i∈S(t) |Ii(t)|
. (2)

As shown in Fig. 2, the server then broadcasts the global
model to all the vehicles, including those who were not
selected for local model training in the current global iteration.
At all vehicles, their local models are replaced with the global
one to initialize the next iteration of local model training.
The network continues global iterations until the global model
converges, e.g., |L(θg(t))−L(θg(t−1))| ≤ ϵ, where ϵ is a pre-
defined threshold. We define the learning efficiency of global
iteration t as |L(θg(t))− L(θg(t− 1))| · 1

∆t , where ∆t is the
time duration of global iteration t.

Now, the question to ask is how to increase learning effi-
ciency in each global iteration while avoiding data loss due to
the deadline and storage constraints. To answer this question,
we first formulate the learning efficiency in its general form for
conventional FL setting. As shown in Fig. 2, ∆t is dominated
by the uplink and downlink data transmissions as well as local
processing time. Then, it can be calculated as:

∆t =
∑

i∈S(t)

(
τi(t) +

Z(θi(t))

Cui(t)

)
+

Z(θg(t))

min
i∈N(t)

Cdi(t)
, (3)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

4

where τi(t), Cui(t), and Cdi(t) are vehicle i’s local processing
time, uplink data rate, and downlink data rate, respectively.
Z(·) returns the size of its input in bits. Here, we have
Z(θi(t)) = Z(θg(t)), ∀i ∈ S(t). The uplink transmissions also
take place sequentially in a TDMA manner. In practice, the
server typically limits the maximum time duration of a global
iteration, i.e., ∆t ≤ T , where T is a pre-defined constant.

In each global iteration, the server selects a subset of vehi-
cles that maximize learning efficiency without losing collected
data at vehicles. Hence, the problem can be formulated as:

maximize
S(t)

1

∆t
·
(
L(θg(t))− L(θg(t− 1))

)
(4a)

s.t. ∆t ≤ T, (4b)
|Ii(t+ 1)| ≤ Fi, ∀i ∈ N(t)/S(t), (4c)

where (4b) is the maximum allowable time for a global
iteration, and (4c) attempts to avoid data loss for the vehicles
that are not selected for local model training in the current
global iteration.

C. Challenges

There are two challenges to solve the problem in (4).
Challenge 1. Solving (4) requires perfect global CSI knowl-

edge for the server to select vehicles. However, obtaining fresh
CSI for the server is extremely difficult, if not impossible. This
is because the channel coherence time in vehicular networks
is too short for channel acquisition. For example, consider a
relatively small neural network model with 8, 778 parameters,
which we later use for digit classification in Section VII. If
each parameter is represented by 32 bits, it takes at least 10.1
ms to transmit the entire model in the uplink using the most
aggressive modulation and coding scheme (MCS) of IEEE
802.11p, 64QAM and 3/4 coding rate. However, 10.1 ms
is very likely beyond the channel coherence time of many
vehicular networks. To address this challenge, we propose a
deadline-driven vehicle scheduler, which allows the server to
poll vehicles in the absence of CSI.

Challenge 2. Another challenge is to reduce the airtime
consumption of a global iteration. A natural approach is uplink
MU-MIMO transmission, which allows the server to com-
municate with multiple vehicles at the same time. However,
existing uplink MU-MIMO schemes require the packets from
vehicles to be aligned in time. This is extremely hard in
vehicular networks due to the high mobility (e.g., 60 mph)
and the dynamic network topology. Pursuing network-wide
timing synchronization, even if possible in practice, inevitably
entails a large amount of airtime overhead. To combat this
challenge, we propose an asynchronous uplink MU-MIMO
scheme, which allows the server to receive packets from
multiple vehicles at the same time.

IV. CF4FL: OVERVIEW

CF4FL is a heuristic vehicular communication framework to
accelerate FL in general. To maximize the learning efficiency
in (4), CF4FL focuses on two tasks. First, CF4FL endeavors
to maximize the numerator of the objective function in (4a)
(i.e., learning accuracy). CF4FL pursues the the same objective

as the schedulers proposed in [10], [12], [13], [30], in which
the analysis shows that learning efficiency will be improved
by using (consuming) more data samples for training local
models. CF4FL assumes that data at all vehicles are inde-
pendent and identically distributed (iid) and bear the same
quality. It also assumes a direct relation between the data
consumption of local training and the convergence of global
model. CF4FL considers the vehicle-specific deadlines and
avoids data sample loss at vehicles. Leveraging the maximum
number of local data samples for training the global model,
CF4FL improves the objective function in (4a). Second, given
the set of selected vehicles (i.e., S(t)), concurrent polling
minimizes the denominator of the objective function in (4a)
(i.e., ∆t). CF4FL strives to solve (4) and meet constraints (4b)
and (4c), provided that the original problem has a feasible
solution. These two tasks will be carried out by DDVS and
CVPS, respectively, as shown in Fig. 3. In what follows, we
highlight the key components of CF4FL.

Server. As the central controller, the server is responsible
for three tasks: i) passing appropriate information (i.e., dead-
lines, which are translation of Fi in time domain) to DDVS;
ii) aggregating local models; and iii) broadcasting the global
model at the end of each global iteration. The calculation of
the deadlines is detailed in Section V-A.

DDVS. At the beginning of each global iteration, DDVS
receives the deadlines from server and designs a scheduler to
poll at most M vehicles by CVPS, where M is the number
of antennas at the server. It is the available spatial degrees
of freedom (DoF) for polling. If the scheduling problem is
feasible, it guarantees that a vehicle is polled before reaching
its deadline. Unfortunately, the scheduling problem is not
always feasible. As such, DDVS first determines the feasibility
of the scheduling problem. If infeasible, DDVS removes some
vehicles with the shortest deadlines to make the scheduling
problem feasible. This process is illustrated in Fig. 3(a). Once
the scheduling feasibility (termed schedulability) is secured,
DDVS finds a scheduler to poll the remaining vehicles within
a finite number of iterations.

CVPS. Upon receiving a poll frame from DDVS, the
selected vehicles prepare their local models and send them
to the server. CVPS leverages multiple antennas at the server
to decode the uplink data packets. As the vehicles are asyn-
chronous in nature, CVPS first compensates the time and
frequency offsets of the collided frames. Then, it constructs a
spatial detection filter to recover the data packets, from which
local models are extracted by the server.

V. DEADLINE-DRIVEN VEHICLE SCHEDULER (DDVS)
DDVS is responsible for examining the feasibility of (4)

and designing a scheduler based on the deadlines specified by
the server. We first propose a general scheduler to find a cyclic
scheduler that guarantees zero data loss if the network deadline
(deadlines of all vehicles in the network) is schedulable. The
general scheduler comes with a high computational complexity
as it needs to find a cycle on a large graph called steady
state graph, making it hard to implement for large vehicular
networks. We therefore propose a lightweight scheduler to
handle vehicle selection problem in large vehicular networks.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

5

DDVSCVPS

Server
CF4FL

(a) Step 1: If necessary, DDVS removes some of the vehicles
(gray colored) and considers a set of vehicles which are schedu-
lable (white colored)

DDVSCVPS

Server
CF4FL

(b) Step 2: Without knowing CSI, DDVS designs a scheduler
merely based on vehicles deadlines and buffer status and selects
a subset vehicles (green colored)

DDVSCVPS

Server
CF4FL

(c) Step 3: CVPS recovers local models which are concurrently
sent by selected vehicles

DDVSCVPS

Server
CF4FL

(d) Step 4: Server aggregates the local models and sends back
the global model to all vehicles

Fig. 3: An overview of CF4FL and its underlying components: DDVS schedules the vehicles without requiring global CSI and
CVPS recovers concurrent, but asynchronous, packets transmitted by vehicles.

A. Network Deadline and State

DDVS determines vehicles’ polling order based on their
deadline and state, which we describe below.

Deadline. For a vehicle, say vehicle i, we denote its
deadline as di. It indeed translates Fi into time domain
based on three parameters: the worst-case duration of a global
iteration, the sensing rate of vehicle i, and processing delay
of vehicle i, which are denoted by tw, bi, and τi, respectively.
tw is conservatively defined with respect to the case where
the lowest MCS in 802.11p is used for all transmissions in
a global iteration. bi and τi root in hardware capabilities of
vehicle i. We also assume the vehicles persistently collect data
in time domain, and the number of their collected data samples
linearly increases over time. Then, the deadline for vehicle i
is defined as di = ⌊Fi/(tw.bi) + τi/tw⌋, which is reflected in
(4c).

Zero data loss is guaranteed for vehicle i if it collects data
no more than di subsequent global iterations before being
polled. With respect to the individual deadline of vehicles, we
further define network deadline as d⃗(t) ≜

(
d1, d2, · · · , dN(t)

)
for global iteration t. The individual and network deadlines
are calculated at the server. Vehicle i, reports Fi and bi once
to the server as a part of its association process. On the other
hand, the server is aware of M , Z(θg), and MCS; therefore,
it easily obtains tw which is fixed during the whole training
cycle. Then, the server calculates di.

State. To indicate the number of global iterations elapsed
from the last time a vehicle has been polled, we define a
counter, i.e., buffer state. For vehicle i, the buffer state is
denoted by pi(t) and can be written as:

pi (t) =

{
1, if i ∈ S(t);
pi(t− 1) + 1, if i /∈ S(t).

(5)

We further define network state as p⃗(t) ≜
(
p1(t), p2(t),

· · · , pN(t)(t)
)

for global iteration t.

B. Schedulability of Network Deadline and General Scheduler

The objective of DDVS is to design a scheduler to honor
the constraint of p⃗(t) ≼ d⃗(t) for ∀t > 0. To design such a
scheduler, we need to answer two fundamental questions: i)
Is the network deadline schedulable (i.e., the existence of a
scheduler that satisfies the constraints in (4))? ii) If a network
deadline is schedulable, how to find a scheduler for it? To
answer these two questions, we have the following remarks.
First, not every network deadline is schedulable. If the network
deadline is not scheduable, DDVS first removes some of
vehicles to secure the scheduability. Second, for a schedulable
network deadline, DDVS designs a cyclic scheduler, which
turns out to be optimal but with high computational complex-
ity. Subsequently, a low-complexity heuristic is designed for
large-scale vehicular networks.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

6

2,2,1 2,2,2 2,2,3 2,3,1

1,1,1

1,1,2

2,3,2

1,1,3 1,2,1 1,2,21,3,1

1,3,2 1,3,3 2,1,1 2,1,2

2,3,3

1,2,3

2,1,3

d(t)=(1,2,3,3) and l(d(t))>2

d(t)=(2,3,3) and l(d(t))<2

d(t)=(1,2,3,3) and l(d(t))>2

d(t)=(2,3,3) and l(d(t))<2

Remove 1

d(t)=(1,2,3,3) and l(d(t))>2

d(t)=(2,3,3) and l(d(t))<2

Remove 1

Network’s deadline❶

❶

Feasibility graph❷

❷

1,1,2 1,1,3

1,2,1

1,3,1

2,1,1

S1

S2 S3 S4

S5
Steady- state graph❸

❸

Cyclic Scheduler ❹

❹

1,2,1S1 2,1,1 S5

One possible
scheduler

S(2m+1)={2,3}
S(2m+2)={1,3}

for any integer m

Fig. 4: An example of checking the necessary condition of schedulibility, constructing feasibility and steady-state graphs,
finding the shortest cycle, and obtaining a cyclic scheduler.

The two tasks, examining the schedulibility of a network
deadline and designing a scheduler, are tightly intertwined.
Apparently, the network deadline d⃗(t) is schedulable if there
exists a scheduler S (with S(t) being the set of selected
vehicles at global iteration t) such that p⃗(t) ≼ d⃗(t) for ∀t > 0.
Such a scheduler should select vehicle i at least once per di
global iterations. In addition, as we will show, CVPS will
allow the server to poll M vehicles in a global iteration. Define
l(d⃗(t)) ≜

∑N(t)
i=1

1
di

as the network load. Then, we have the
following necessary condition for the schedulibility of d⃗(t).

Lemma 1. If d⃗(t) is schedulable, then l(d⃗(t)) ≤M .

The proof is given in Appendix A. Lemma 1 implies that
the network load supported by the server should not exceed
M . DDVS does not set a limit on the number of vehicles
for scheduling. Instead, it sets a limit on the network load
for schedulability. DDVS can work for a small-size network
with as less as M vehicles or a large-scale network with many
vehicles. DDVS first determines if the network deadline meets
the necessary condition. If not, DDVS removes the vehicles
with the smallest deadlines one by one until the condition
is met. This treatment follows two reasons. First, a vehicle
with the shortest deadline is the bottleneck of scheduling as
it has the highest contribution to the network load. Second, a
vehicle with the shortest deadline has the lowest contribution
in improving global model per poll.

We use a small example shown in Fig. 4 to illustrate this
process. In this example, four vehicles with network deadline
d⃗(t) = (1, 2, 3, 3) are associated to a server with two antennas,
i.e., M = 2. Referring to step 1 in the example, the initial
network load is l(d⃗(t)) = 2.16. As the network load does not
meet the necessary condition, DDVS removes first vehicle with
d1 = 1 and updates the network deadline to d⃗(t) = (2, 3, 3).
Then, we have l(d⃗(t)) < 2, which meets the necessary
condition of schedulability.

Feasibility Graph. Once d⃗(t) meets the necessary condition
of schedulability, DDVS examines the schedulability of d⃗(t).
To do so, DDVS constructs a feasible scheduling space includ-
ing feasible network states and possible transitions between the
network states. The feasible scheduling space is constructed
using a directed graph called feasibility graph. The feasibility
graph G is constructed as follows.

G = (V,E), (6a)

V = {p⃗(t) : p⃗(t) ≼ d⃗(t)}, (6b)

E = {p⃗(t− 1)→ p⃗(t) : ∃ S(t) and p⃗(t) ∈ V }. (6c)

Referring to Fig. 4, the constructed feasibility graph for a given
network deadline d⃗(t) = (2, 3, 3) is shown in Step 2. To further
clarify state and transitions in this graph, let us focus on an
example where the network state is p⃗(t) = (1, 3, 1) and S(t) =
{1, 2}. Since vehicles 1 and 2 are selected, their buffer will be
cleared and the network state transits to p⃗(t + 1) = (1, 1, 2)
according to (5). Since p⃗(t) ≼ d⃗(t), p⃗(t+ 1) ≼ d⃗(t+ 1), and
|S(t)| = M , both states and corresponding transition belong
to the feasibility graph. As an another example, let us consider
the case that, for the same initial state, i.e., p⃗(t) = (1, 3, 1),
first and third vehicles are selected for polling. Then, p⃗(t+1) =
(1, 4, 1), which is not a feasible state. Therefore, p⃗(t+1) and
the transition from p⃗(t) are not in the feasibility graph.

Per (6c), an edge in the feasibility graph corresponds to a
scheduling decision, and a cycle in the graph corresponds to
a cycle of decisions that can be followed for infinite time.
Therefore, a unique correspondence exists between a cycle
on feasibility graph G and a cyclic scheduler S. A cycle
with length c in the feasibility graph is equivalent to a cyclic
scheduler having S(t + c) = S(t) for t > 0. It is easy
to see that, under such a cyclic scheduler, we also have
p⃗(t+ c) = p⃗(t) for t > c. This correspondence is exploited to
determine the schedulibility of a network deadline.

Lemma 2. d⃗(t) is schedulable if and only if there is a cycle
on the feasibility graph G in (6), and the repetition of the
cycle represents a feasible cyclic scheduler for (4).

The proof is given in Appendix B. Lemma 2 implies that
finding a scheduler for d⃗(t) is equivalent to finding a cycle
on graph G. The complexity of such a search is O(|V |+ |E|)
[31], which is likely to be intractable in practice.1

Pruning feasibility graph. To reduce the computational
complexity, we narrow down the search space by pruning
graph G while maintaining its cycles. This is done by remov-
ing all the network states and their connected edges that cannot
be a part of any cycle in G. We call the pruned graph steady
state graph Gs = (Vs, Es). If p⃗(t) ∈ V is also a vertex in Vs, it
has the following features: i) no more than M elements of p⃗(t)
have hit their deadline; ii) no more than M elements of p⃗(t)

1The number of states in a feasibility graph is |V | =
∏N(t)

i=1 di, and the
number of outgoing edges from one state can reach up to C

N(t)
M , which is

the number of M -combinations from N(t) vehicles. For a network with tens
of vehicles and a few antennas at the server, |V | + |E| can easily reach to
millions, making the search for a cycle on G intractable.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

7

that have not hit the deadline carry the same values; and iii)
one or more elements of p⃗(t) equal to 1. The latter feature can
be relaxed to the case where exactly M elements are equal to
1, if the vehicular network is very dense and DDVS intends to
use all available spatial degrees of freedom to poll M vehicles
in each global iteration. It is obvious that all cycles in G do
exist in Gs and vice versa. Obtaining the steady state graph
is illustrated in Step 3 of the example shown in Fig. 4, where
the feasibility graph is pruned as described above. The steady
state graph is much smaller than the feasibility graph. For the
example in Fig. 4, it has only 5 states (marked as S1 to S5).

Shortest Cycle in Steady State Graph Gs. The shortest
cycle in Gs is critical as it keeps pi(t) for all i ∈ N(t) at
small values. Hence, if a vehicle suddenly leaves the network
or stops participating in FL, then a small number of data
samples will be lost. To find a cycle with the shortest length,
we sort vertices in Vs and derive an adjacency matrix A for
Gs such that A(i, j) = 1 if there exists an edge from vertex i
to vertex j, and A(i, j) = 0 otherwise. If N(t) > M , which
is the case for a typical vehicular network, all the diagonal
entries of A are zero, i.e, diag(A) = 0 where 0 denotes an
all-zero vector with length |Vs|. For such an adjacency matrix,
the shortest cycles has length n if n is the smallest integer
number for which diag(An) ̸= 0. A state corresponding
to the position of a non-zero element on diameter of An

is located on the shortest cycle(s). Then, we can leverage
Floyd–Warshall algorithm [32] to find the shortest cycle for
that state. If N(t) ≤M , even with the most pressing deadlines,
i.e., di = 1 ∀i ∈ N(t), the network load meets the necessary
condition of schedulibility. All vehicles will be scheduled to
serve in every global iterations. In the steady state graph, this
scheduler is a self-loop that starts and ends at the same state
in every global iteration.

Referring to the example in Fig. 4, the adjacency matrix is
calculated. As the first element on the diameter of A2 is non-
zero, the length of the shortest cycle is 2 and it passes through
S1. DDVS finds such a cycle on the steady state graph. It
chooses one of the two existing cycles with such conditions.
In this example, the cycle between S1 and S5 is selected. The
cycle corresponds to a cyclic scheduler which selects vehicles
2 and 3 on odd global iterations and selects vehicle 1 and 3
on even ones.

A General Scheduler. Alg. 1 presents an algorithm to check
the schedulability of d⃗(t) and construct a cyclic scheduler.
It comprises four main steps: preparing network deadline,
constructing and pruning feasibility graph, constructing steady
state graph, and finding the shortest cycle.

Computational Complexity of General Scheduler. The
computational complexity of finding the shortest cycles on the
steady state graph Gs = (Vs, Es) using Floyed-Warshall algo-
rithm is O(|Vs|3). The number of vertices in Gs can be approx-

imated by: |Vs| ≈
∑C

N(t)
M

j=1

∏
k∈CMj

(dk) −
∑N(t)

i=M+1 C
N(t)
i −∑N(t)

i=M+1

∑C
N(t)
i

j=1 mink∈Cij (dk−1) where where Cij is the jth
realization of i-combinations from N(t) vehicles. In the worst
case, the computational complexity of the general scheduler
is O(d

3(N(t)−M)
max), where dmax = max

i∈N(t)
{di}. It can be seen

Algorithm 1 A deadline-driven cyclic scheduler

1: Input. The network deadline d⃗(t)
2: if d⃗(t) = d⃗(t− 1) then
3: Keep current scheduler
4: else
5: Q = N(t)
6: S = ∅
7: while

∑
i∈Q 1/di > M or S = ∅ do

8: Q←− Q\{i} such that di = min{d⃗(t)}
9: Update d⃗(t)

10: if
∑

i∈Q 1/di < M then
11: Construct feasibility graph G
12: Obtain Gs from G with adjacency matrix A
13: if ∃n ∈ N such that diag(An) ̸= 0⃗ then
14: Find smallest n
15: Find cyclic scheduler S with length n using

Floyd–Warshall algorithm [32]

16: Return S

that the computational complexity grows polynomially w.r.t.
deadlines and exponentially w.r.t. the number of vehicles. Due
to its high complexity, this scheme is intractable in dense
vehicular networks.

C. A Lightweight Scheduler

While Alg. 1 is capable of constructing a cyclic scheduler
for a given network deadline, it is of high computational
complexity and thus only suited for small networks. For
large-scale networks, we propose a heuristic called Extended
Polynomial Scheduler (EPS), which is of a low computational
complexity.

Main Idea. EPS was inspired by the transformation of
“Fictitious Polynomial Mapping” in [33]. The main idea
behind EPS is to map a network deadline d⃗(t) to a fictitious
polynomial deadline (FPD) ⃗̃

d(t) that satisfies ⃗̃
d(t) ≼ d⃗(t).

Based on FPD, we propose EPS for the polynomial deadline
⃗̃
d(t). Given ⃗̃

d(t) ≼ d⃗(t), the proposed scheduler by EPS will
also meet the original deadline d⃗(t).

Transformation. EPS is designed based on a special struc-
ture of FPD. A vector ⃗̃

d(t) = (d̃1, d̃2, · · · , d̃N(t)) is FPD if
d̃i = b · 2mi for ∀i ∈ N(t), b ∈ N, and mi ∈ Z [33]. Now, a
question is that for a given d⃗(t), how can we find an FPD ⃗̃

d(t)

such that di ≥ d̃i for all i’s and l(
⃗̃
d(t)) ≤ M? To find such

an FPD, it is sufficient to check N(t) different realizations
of FPD, i.e., di = d̃i for i ∈ {1, 2, · · · , N(t)}. Specifi-
cally, for each i ∈ {1, 2, · · · , N(t)}, we construct ⃗̃

d(t) =(
di2

⌊log2(d1/di)⌋, di2
⌊log2(d2/di)⌋, · · · , di2⌊log2(dN(t)/di)⌋

)
. We

can find a mapping for d⃗(t) if and only if we have l(⃗̃d(t)) ≤M
for one of these realizations. If such an FPD is not found
from all the realizations, we remove vehicles with the shortest
deadlines one by one until an FPD is found. It is worth noting
that for a single network deadline, multiple FPDs with suitable
load may exist. In such a case, we pick the FPD with the lowest
load.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

8

 ⓿ Deadlines received from server

𝑑(𝑡) = (2,2,3,3,3,4,5,6,7,9,9,9,10)

𝑙 (𝑑(𝑡)) = 3.19

 ❶ Conversion to polynomial deadline

𝑑̃𝑗 = 𝑑1 × 2⌊𝑙𝑜𝑔2(𝑑𝑗/𝑑1)⌋

𝑑̃(𝑡) = (2,2,2,2,2,4,4,4,4,8,8,8,8)

𝑙 (𝑑̃(𝑡)) = 4 ✓

Group 4 Veh. id
Deadline {4,4,8,8,8,8}

{8,9,10,11,12,13}

Group 3

Group 2

Group 1

Deadline

Veh. id {5,6,7}
{2,4,4}

Veh. id
Deadline

Deadline
Veh. id

{2,2}
{3,4}

{2,2}
{1,2}

 ❷ Grouping

𝒮1 ⇔
Repetition of

{1,2}

𝒮2 ⇔
Repetition of

{3,4}

𝒮3 ⇔
Repetition of

{5,6,5,7}

𝒮4 ⇔
Repetition of

{8,9,10,11,8,9,12,13}

Per-group scheduling ❸ ❹ Aggregation

𝒮(𝑚8 + 1) = {1,3,5,8}

𝒮(𝑚8 + 2) = {2,4,6,9}

𝒮(𝑚8 + 3) = {1,3,5,10}

𝒮(𝑚8 + 4) = {2,4,7,11}

𝒮(𝑚8 + 5) = {1,3,5,8}

𝒮(𝑚8 + 6) = {2,4,6,9}

𝒮(𝑚8 + 7) = {1,3,5,12}

𝒮(𝑚8 + 8) = {2,4,7,13}

→

→

→

→

Fig. 5: An example of using EPS for scheduling. The network includes 13 vehicles with network deadline d⃗(t) =
(2, 2, 3, 3, 3, 4, 5, 6, 7, 9, 9, 9, 10) and l(d⃗(t)) = 3.19. Final scheduler is the output of step 4 and it is a cyclic scheduler
with cycle length 8.

We illustrate the mapping procedure through the example
as shown in Fig 5. In this example, the network deadline is
d⃗(t) = (2, 2, 3, 3, 3, 4, 5, 6, 7, 9, 9, 9, 10), yielding l(d⃗(t)) =

3.19. We pick d1 = 2 for mapping. Then, we have ⃗̃
d(t) =

(2 × 2⌊log2(2/2)⌋, 2 × 2⌊log2(2/2)⌋, · · · , 2 × 2⌊log2(10/2)⌋) =

(2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8), yielding l(
⃗̃
d(t)) = 4. Since

the network load meets l(
⃗̃
d(t)) ≤ M condition in Lemma 1,

we use the polynomial deadline ⃗̃
d(t) for scheduling.

Grouping. Once an FPD with a proper load is found, we
then construct a feasible scheduler. For the special case where
M = 1, the Fictitious Scheduler Construction (FSC) algorithm
in [33] can provide a feasible scheduler when d⃗(t) can be
mapped to ⃗̃

d(t) whose load is no more than one, i.e., l(⃗̃d(t)) ≤
1. Therefore, for the general case with M > 1, if we can divide
N(t) into M separate groups and each group can be mapped to
an FPD with load no greater than 1, then a feasible scheduler
can be constructed. We now present a procedure to divide N(t)
into such M separate groups. Recall that d⃗(t) can be mapped
to an FPD ⃗̃

d(t) with l(
⃗̃
d(t)) ≤M . Without loss of generality,

we assume d̃1 ≤ d̃2 ≤ · · · ≤ d̃N(t). Then, we pick the first
k elements with

∑k−1
i=1 1/d̃i < 1 and

∑k
i=1 1/d̃i ≥ 1 as one

group. Again, referring to the example shown in Fig. 5, the
FPD is divided into four groups, each of which holds a load
no less than 1. The deadlines of the four groups are {2, 2},
{2, 2}, {2, 4, 4}, and {4, 4, 8, 8, 8, 8}.

Construction of feasible scheduler. To design the feasible
scheduler, we apply FSC on each group. The schedulers
designed for all groups will be aggregated toward a final
scheduler, which makes a decision for polling a subset of
vehicles in each global iteration. For the final scheduler, we
have the following lemma:

Lemma 3. For any d⃗(t) that can be mapped to an FPD ⃗̃
d(t)

with ⃗̃
d(t) ≼ d⃗(t) and l(

⃗̃
d(t)) ≤ M , EPS can find a feasible

scheduler.

The proof is given in Appendix C. In our example shown
in Fig. 5, a cyclic scheduler is designed for each group using
FSC in [33]. As an instance, for the first group which includes
vehicles 1 and 2, the scheduler polls vehicle 1 on every
even global iteration and polls vehicle 2 on every odd global

iteration.
Aggregation. Once a cyclic scheduler is constructed for

each group. In each global iteration, we poll the vehicles
specified by each group. Referring to the example in Fig. 5,
at t = 3, the vehicle selected in the third global iteration are
S(3) = {1, 3, 5, 10}. For the general case, if the number of
groups are less than M , more than one vehicle specified by
a scheduler will be selected. For example, if there are two
groups and M = 4, on each global iteration, two subsequent
vehicles will be selected by the scheduler of each group.

Computational Complexity of EPS. The computational
complexity of EPS can be attributed to finding FPD and
FSC. FSC is called only once when an appropriate FPD is
found. Finding an appropriate FPD may go through an iterative
removal of vehicles with the shortest deadline to relax the net-
work load. EPS finds FPD over the entire set of vehicles. Based
on the computational complexity analysis in [33], the computa-
tional complexity of EPS is O(N3(t))+O(Mdmax log dmax).
In a dense vehicular network, the computational complexity
of EPS grows polynomially w.r.t. N(t), which is much lower
compared to the general scheduler.

When to Invoke EPS. Alg. 1 presents a generic scheduler,
which can find a feasible cyclic scheduler that may not be
realized by EPS. This issue can be intuitively inferred by con-
sidering the gap between necessary condition of schedulability
(i.e., d⃗(t) ≤M) and a network load threshold that guarantees
existence of at least one FPD (i.e., d⃗(t) ≤ M ln(2)) [33].
However, in moderate-size or large-size vehicular networks,
steady state graphs become too large to store and process.
Based on the available computational resources at the server,
a threshold is needed to be set on the network size to efficiently
switch between EPS and the general scheduler, and to gain a
suitable trade-off between performance and complexity.

How DDVS (EPS and General Schedulers) Mitigate
Stragglers Effect. After incorporating processing delays into
the deadlines, if a straggler exists in the network, the network
load drastically increases. When such an increase pushes the
network load beyond the threshold of schedulability, DDVS
removes the vehicles with the shortest deadline. These vehicles
are less-capable vehicles, and likely pose high processing de-
lays. Therefore, DDVS treats the schedulability of the network
by ignoring stragglers with high processing delays.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

9

Algorithm 2 Extended polynomial scheduler (EPS).

1: Input: The network deadline d⃗(t)
2: if d⃗(t) = d⃗(t− 1) then
3: Keep current scheduler
4: else
5: Q = N(t)
6: Sort d⃗(t) in increasing order
7: while 1 do
8: for i = 1, 2, · · · , |Q| do
9: Set ⃗̃d(t) = [di2

⌊log2(d1/di)⌋, · · · , di2⌊log2(d|Q|/di)⌋]

10: if l(⃗̃d(t)) ≤M then
11: goto line 14
12: Q←− Q\{1}
13: Update d⃗(t)

14: while |Q| > 0 do
15: if

∑|Q|
i=1 1/d̃i > 1 then

16: Find the smallest k such that
∑k

i=1 1/d̃i ≥ 1
17: else
18: Set k = |Q|
19: For [d1, d2, · · · , dk], use FSC to find a feasible

scheduler and aggregate it into S
20: Q←− Q\{1, 2, · · · , k}
21: Update d⃗(t) and ⃗̃

d(t)

22: Return S

Summary of EPS. Alg. 2 summarizes EPS. It first sorts
the vehicles based on their deadline in a non-decreasing order
and then maps it to multiple FPDs. If EPS finds an FPD with
load less than M , it uses that FPD for scheduling; otherwise, it
removes the vehicle with the shortest deadline and repeats this
procedure. Once an FPD with a load less than M is found,
it partitions the FPD into multiple groups and constructs a
scheduler for each of them. The aggregation of schedulers for
different groups leads to a desired scheduler.

VI. CONCURRENT VEHICLE POLLING SCHEME (CVPS)

Concurrent vehicle polling will significantly improve the
FL convergence, and uplink MU-MIMO is an approach
to achieving concurrent vehicle polling. While uplink MU-
MIMO has been well studied in WiFi and cellular networks,
existing techniques are limited to stationary or semi-stationary
networks as they assume the perfect time alignment of uplink
transmissions. This assumption, however, is not valid in ve-
hicular networks. This is because, while the frequency syn-
chronization can be achieved using GPS or other techniques,
the time misalignment of uplink transmissions (caused by
signal propagation delay, packet processing delay, clock jitters,
etc.) is hard to eliminated in dynamic vehicular networks.
To address this issue, we propose an asynchronous uplink
MU-MIMO transmission scheme to enable concurrent vehicle
polling. It should be noted that the asynchronism CVPS deals
with is different from that in asynchronous FL. CVPS deals
with the signal-level asynchrony, while FL deals with the
message-level asynchrony. In Asynchronous FL, the server
receives delayed local models even after the termination of

A local model

PreambleFrame body

Vehicles side Server side

Asynchronism
 in polling

C
V
PS

C
V
PS

C
V
PS

...

Fig. 6: Asyncronism in local model transmissions of the
selected vehicles.

RF front
end ADC

OFDM
demodulation

QAM
demodulation

Signal
projection

Frame
extraction

Frequency offset
correction

Time and frequency
offsets estimation

Detection
filter

Phase offset
correction

...

\begin{figure}[t]
\centering

\includegraphics[width=0.49\textwidth]{figures/miss_align.pdf}
\caption{Structure of EVP.}

\label{fig:turbo_fvn}
\end{figure}

...

Fig. 7: PHY-layer structure of CVPS.

a global iteration. The asynchronism in asynchronous FL is
in the order of packets or frames. In contrast, CF4FL deals
with the synchronous FL where all local models from the
selected vehicles will be received by the server within the
corresponding global iteration. The PHY-layer asynchronism
in CF4FL is in the order of signal samples.

When DDVS initiates a global iteration, the selected ve-
hicles simultaneously send their local models to the server
as shown in Fig. 6. The vehicles transmit their local models
through multiple frames within a stream. This is because
a frame must lie within channel coherence time, which is
relatively short in vehicular networks. Per 802.11p standard,
each frame comprises a preamble including a short training
field (STF) and a long training field (LTF), a signal field, and
payload (frame body).

As shown in Fig. 7, CVPS employs M antennas of the
server to mitigate inter-vehicle interference and recovers all
the transmitted frames within streams. To do so, the received
signal samples from M antennas first go through the signal
projection module, which decomposes the signaling space into
M subspaces in the time domain. The projection of signal in
each subspace is used for time and frequency synchroniza-
tion. Once time and frequency offsets are compensated, the
signals will be converted to frequency domain using OFDM
demodulation. A spatial detection filter is then designed for
each interfered frame. The spatial detection filter not only
suppresses inter-vehicle interference, but it also equalizes the
unknown channel. The recovered frame is demodulated after
phase offset compensation. In what follows, we describe the
key components of CVPS.

Synchronization via Signal Projection. In the vehicular
scenario shown in Fig. 6, synchronization of streams is chal-
lenging as each stream is polluted by inter-vehicle interference.
To alleviate the interference, we project the time-domain signal

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

10

samples into M orthogonal subspaces. Let us denote the nth
received samples from all antennas by y(n) ∈ CM×1. The
basis of signal subspaces at sampling index n, B(n), can be
calculated through eigenvalue decomposition as follows:

[B(n),Λ(n)] = EVD

(
1

2Ls + 1

n+Ls∑
i=n−Ls

(
y(i)y(i)H

))
, (7)

where EVD(·) denotes eigenvalue decomposition, (·)H is
conjugate transpose operation, Ls is an integer number that
defines a window length in calculation, Λ(n) ∈ CM×M is a
diagonal matrix containing eigenvalues, and B(n) ∈ CM×M

has corresponding eigenvectors with Bj(n) being its jth
columns. Bj(n) is the base for the jth subspace and can
be used to project received signal samples at sampling index
n onto subspace j. The projected signals are then used for
synchronization. To find the appropriate subspace for a certain
stream, we try all subspaces and choose the one with highest
cross-correlation peak in time synchronization. That said, if
the jth subspace is chosen for stream i, ỹi(n) ≜ Bj(n)

Hy(n)
is employed for time and frequency offset compensations
of stream i. The beginning of a frame in stream i is then
calculated w.r.t. the peak of correlation between LTF waveform
used by vehicle i and ỹi. Also, the carrier frequency offset is
computed by θi = 1/K · ∠(

∑n=n0+K−1
n=n0

ỹi(n)ỹi(n +K)H),
where ∠(·) is the angle of a complex number, K is the FFT
size, and n0 is the position of the first LTF sample in a frame.
The calculated offset is corrected before further processing.

Spatial Detection Filter. The synchronized signals are first
translated into the frequency domain by OFDM demodulation.
Let us focus on the first frame of stream i coming from vehicle
i. In the frequency domain, the received signal can be written
as:

Y(l, k) = hui(k)xi(l, k) +
∑

j∈S(t),j ̸=i

(huj(k)xj(l, k)), (8)

where Y(l, k) ∈ CM×1 and xi(l, k) ∈ C are the received
signal at the server and the transmitted signal from vehicle i
on subcarrier k and sample l, respectively. Also, hui(k) ∈
CM×1 denotes the channel from vehicle i to the server on
subcarrier k. Although the channel gain may vary over the
stream, it is assumed to be unchanged over one frame. For
recovering a frame in stream i, we particularly look for filter
P(k) ∈ CM×1 that nullifies

∑
j∈S(t),j ̸=i huj(k)xj(l, k) and

equalizes the effect of channel hui(k). The filter can be
constructed as:

P(k)=

 ∑
(l,k′)∈Rik

Y(l, k′)Y(l, k′)H

−1 ∑
(l,k′)∈Rik

Y(l, k′)Ri(l, k
′)H

,
(9)

where Ri(l, k
′) is the reference signal on sample l and

subcarrier k′ of the preamble used by vehicle i and Y(l, k′)
denotes the corresponding received signal samples over all the
antennas. Rik is the set of reference signal samples located
within a pre-defined sliding window around subcarrier k. With
this filter, interference mitigation and channel equalization can
be achieved through x̂i(l, k) = P(k)HY(l, k), where x̂i(l, k)

In
te

rf
er

en
ce

Desired
frames

P12P12 P1(L-1)P1(L-1) P1LP1LP11

Fig. 8: Illustrating the idea of CVPS.

is the estimated signal symbol. (9) suggests that the design
of P(k) is not reliant on CSI and it only needs pre-known
reference signal samples in the preamble of desired frame,
which is the case for LTF and STF samples in IEEE 802.11p.

Computational complexity of Filter Design. The compu-
tational complexity of designing a spatial filter is independent
of the size of vehicular networks since at most M vehicles
will be polled in each global iteration. The design of such a
filter requires matrix multiplication, addition, and inversion.
The overall computational complexity of designing a spatial
filter is O(NscM

3), where Nsc is the number of subcarriers.
Mitigating Preamble Misalignment. The detection filter in

(9) can remove unintended streams if those streams interfere
with the preamble of the desired frame. This requirement
cannot be met at the first frame of each stream due to the lack
of network-wide synchronization. As an example, consider the
transmitted streams shown in Fig. 8, where the preamble of
the first frame from stream 1 is not collided with stream 2.
If the reference signal samples in the preamble are leveraged
to design a detection filter like P11, this filter cannot mitigate
the interference caused by stream 2. To address this issue, we
do not use the preamble of the first frame for filter design.
Instead, once the filter P12 is designed for the second frame,
it is used for both first and second frames. Here, we have
assumed that time misalignment does not exceed the length
of a frame. It is worth noting that time misalignment is not a
challenge for the frames located on the tail of streams. This
is because a non-interfering stream at the preamble will not
interfere with the rest of the frame. Therefore, starting from
the second frame, the detection filter leverages the reference
signal samples to recover the frame’s body within the same
frame as shown in Fig. 8 for frames 2 to L.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CF4FL and
its two components (DDVS and CVPS) using experiments and
trace-driven simulation.

A. Evaluation Methodology

We first implement CVPS on a wireless vehicular testbed
and investigate its performance on parking lots, local streets,
and highways. The measurement results will be used to
simulate vehicle polling in large vehicular networks with
N(t) = 5 ∼ 25 vehicles. In our simulation, DDVS uses the
general scheduler if N(t) ≤ 8 and EPS otherwise. Through
trace-driven simulation, we then evaluate CF4FL in dynamic
vehicular networks of different sizes.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

11

Local streets
Distance: 6.3 mile
Speed: 25-55 mph

Highway
Distance: 3.9 mile
Speed: 55-70 mph

(e) Experimental routes(d) Parking lot.

(a) Vehicular testbed. (b) Inside the server.

(c) Inside a vehicle.

Vehicle 1
Vehicle 2 Server

Parking lot
Speed: 0-15 mphPower

inverter

Laptop

USRP
X310

USRP
N310

Battery

Laptop

Four
antennas

Two
antennas

Case
study

Fig. 9: Experimental scenarios and our vehicular testbed for
evaluating polling approaches.

Vehicular Testbed. Fig. 9 shows our small-size vehicular
testbed used to evaluate CVPS. It has three vehicles: one acts
as the server, and the other two act as four virtual vehicles.
The server is implemented using a USRP N310 radio with
four antennas (M = 4) for the transmission/reception of RF
signals, a ThinkPad T480 with Quad-Core i5-8250U CPU for
baseband signal processing, and an APC 1500VA UPS battery
as shown in Fig. 9(b). Each of the two client vehicles carries
a USRP X310 device, a ThinkPad T480 with Quad-Core i5-
8250U CPU, and a BESTEK 300W power inverter as shown in
Fig. 9(c). Since USRP X310 has two independent RF chains,
we use the two client vehicles to emulate four client vehicles,
each of which has one antenna for radio signal transmission
and reception.

Experimental Route. We evaluate CVPS using sequential
polling (i.e., single-user MIMO) as the comparison baseline
in three scenarios: a parking lot as shown in Fig. 9(d) at 0 ∼
15 mph speed, local streets at 25 ∼ 55 mph speed on 6.3
miles, and a highway at 55 ∼ 70 mph speed on 3.9 miles,
as shown in Fig. 9(e). The two client vehicles keep staying
within 50 ∼ 300 ft distance from the server during several
laps on the experimental route.

Trace-Driven Simulation. We simulate CF4FL for large
networks with different numbers of vehicles based on our col-
lected experimental results. Specifically, we assume a network
with size (number of vehicles) N(0) at the beginning, where
a vehicle can join/leave the network based on the arrival/leave
global iterations drawn from Poisson distribution with param-
eter λ. In our simulation, we let N(0) ∈ {10, 15, 20} and
λ ∈ {0.02, 0.04}, with the same probability for a vehicle
joining and leaving the network. In a simulated network,
each vehicle has an integer deadline drawn from uniform
distribution between 2 to 10. Also, we assume a vehicle
collects a batch of data during each global iteration.

B. FL Task

As a case study, we use FL to classify images of digits 0 to
9 in our evaluation. The digit classification is a useful tool in
vehicular environments for different purposes, such as recog-

1@28x28

Input Conv2D

MaxPool
Conv2D

MaxPool

Conv2D

Dense3x3

2x2
3x3

2x2 3x3

8@26x26

8@13x13
16@11x11 16@6x6

32@4x4 1x512

1x10

Fig. 10: CNN-based FL application for digit classification.

nizing road sign of speed limit, identifying the information on
traffic sign, recognizing clearance limits, weight limits, etc.

Dataset. We use MNIST dataset. It includes 70,000 images
of handwritten digits, where 60,000 are used for training and
10,000 for test. Each image has 28×28 pixels and labeled
with a number from 0 to 9. In our experiments, the dataset is
partitioned among vehicles in an iid manner.

Neural Network Architecture. We use a convolutional
neural network (CNN) as shown in Fig. 10 to perform the
desired FL task. The input is 28 × 28 pixels. The first 2D
convolutional layers are followed by batch normalization,
ReLu, and max pooling layers. The outputs of the last 2D
convolutional layers are flattened and then flowed into a dense
layer. A softmax layer is applied to the output of dense layer
to represent the predicted digit.

Training and Convergence. For training digit classifier, the
learning rate is set to 0.001 and it is not decayed as the data
samples in vehicles will be discarded after consumption (past,
current, and future data samples are equally valuable). The
number of global iterations is also not pre-set. We assume that
the global model converges when the classification accuracy
change of two consecutive global iterations is less than 0.1%.

Benchmarks. For DDVS, we employ the following three
schedulers as the performance benchmark.

• Random Scheduler (RND): At each global iteration, RND
scheduler selects M vehicles among N(t) vehicles with
equal probabilities. The selection is performed regardless
of vehicles status (i.e., d⃗(t) and p⃗(t)).

• Round-Robin Scheduler (RR): The RR scheduler is es-
sentially a cyclic time-sharing scheduler. It selects M
vehicles in each global iteration such that in a large
number of global iterations, all the vehicles are polled
with equal probability.

• Earliest Deadline First Scheduler (EDF): In each global
iteration, EDF scheduler selects M vehicles that are
closest to their corresponding deadline (i.e., M vehicles
corresponding to M smallest elements in d⃗(t)− p⃗(t)). If
more than M vehicles are found with the same closeness,
the ones with more data samples are selected.

For CVPS, we employ sequential polling (SP) as the
performance baseline. While CVPS polls M vehicles in a
global iteration concurrently, SP polls M vehicles sequentially
in a global iteration. Finally, for CF4FL, we combine the
benchmark schedulers with SP to provide three benchmarks:
RND+SP, RR+SP, EDF+SP.

C. Performance of DDVS
A Case Study. We simulate a vehicular network starting

with N(0) = 15 vehicles at the first global iteration. Vehicles

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

12

1 500 1000

Global iteration

10

16

24
N

u
m

b
e
r
 o

f
v
e
h

ic
le

s

(a) Network size.

1 500 1000

Global iteration

0

4

8

N
e

tw
o

r
k

 l
o

a
d

Network load
Schedulibility threshold

(b) Network load.

1 500 1000

Global iteration

0

6

12

L
o

s
t

b
a
tc

h
e
s Avg. loss = 0.9 batch/iter.

(c) DDVS.

1 500 1000

Global iteration

0

6

12

L
o

s
t

b
a
tc

h
e
s Avg. loss = 4.0 batch/iter.

(d) RND scheduler.

1 500 1000

Global iteration

0

6

12

L
o

s
t

b
a

tc
h

e
s Avg. loss = 2.2 batch/iter.

(e) RR scheduler.

1 500 1000

Global iteration

0

6

L
o

s
t

b
a
tc

h
e
s Avg. loss = 2.9 batch/iter.

(f) EDF scheduler.

Fig. 11: Data loss of different schedulers for a vehicular
network with N(0) = 15 and λ = 0.02.

join or leave the network at the beginning of each global
iteration, following a Poisson distribution with λ = 0.02.
An instance of such a network is shown in Fig. 11(a). The
network size varies between 15 to 20 vehicles during 1, 000
global iterations. The shortest and longest interval between
two subsequent changes are 1 and 97 global iterations. The
network load also varies between 2.8 to 5.9 as shown in
Fig. 11(b). Also, we assume M = 4 and, therefore, the
necessary condition for the schedulibilty of network load is
l(d⃗(t)) ≤ 4. We leverage all benchmark schedulers along
with DDVS on this network and measure the lost batches
of data in each iteration. The maximum data loss is 6, 10,
8, and 10 batches in an iteration for DDVS, RND, RR, and
EDF schedulers, respectively. The average data loss of DDVS,
RND, RR, and EDF schedulers is 0.9, 4.0, 2.2, and 2.9 batch
per global iteration, respectively.

Extensive Simulation. By the same token, we repeat the
above study through extensive simulation to measure the gain
of DDVS scheduler in different network sizes and different
network dynamics. Fig. 12 presents the loss of data, from
which we have following observations: i) compared to RND
scheduler over all cases, DDVS reduces the data loss by 76.1%
on average; ii) compared to RR scheduler, DDVS reduces the
data loss by 53.9% on average; and iii) compared to EDF
scheduler, DDVS reduces the data loss by 59.0% on average.

D. Performance of CVPS

A Case Study. The case study is conducted at the location
marked in Fig. 9(a). We first conduct sequential polling and

0.3

2.5

1.1 0.9

DDVS RND RR EDF
0.0

2.5

5.0

Lo
ss

 (b
at

ch
/it

er
.)

(a) N(0) = 10 and λ = 0.02.

0.9

3.5

1.8 2

DDVS RND RR EDF
0.0

2.5

5.0

Lo
ss

 (b
at

ch
/it

er
.)

(b) N(0) = 15 and λ = 0.02.

1.7

4.6

2.6
3.2

DDVS RND RR EDF
0.0

2.5

5.0

Lo
ss

 (b
at

ch
/it

er
.)

(c) N(0) = 20 and λ = 0.02.

0.2

2.6

1.1 1

DDVS RND RR EDF
0.0

2.5

5.0

Lo
ss

 (b
at

ch
/it

er
.)

(d) N(0) = 10 and λ = 0.04.

1.2

4.2

2.2 2.6

DDVS RND RR EDF
0.0

2.5

5.0

Lo
ss

 (b
at

ch
/it

er
.)

(e) N(0) = 15 and λ = 0.04.

1.6

4.9

2.6
3.3

DDVS RND RR EDF
0.0

2.5

5.0

Lo
ss

 (b
at

ch
/it

er
.)

(f) N(0) = 20 and λ = 0.04.

Fig. 12: Data loss of DDVS, RND, RR, and EDF schedulers
in different vehicular networks.

-1 0 1

-1

0

1

EVM= -16.7 dB

(a) Stream 1

-1 0 1

-1

0

1

EVM= -19.2 dB

(b) Stream 2

-1 0 1

-1

0

1

EVM= -15.5 dB

(c) Stream 3

-1 0 1

-1

0

1

EVM= -12.5 dB

(d) Stream 4

Fig. 13: The EVM performance of CVPS when decoding four
concurrent data packets.

send a stream from each antenna of vehicles 1 and 2 one by
one. The error vector magnitude (EVM)2 of decoded signals
are −19.8 dB, −20.0 dB, −19.1 dB, and −17.3 dB. The
average data rate achieved by sequential polling is interpolated
to 11 Mbps. We then conduct CVPS, which concurrently polls
four streams from vehicles 1 and 2. The constellations of first
decoded frame in all streams are shown in Fig. 13. The EVM
of decoded frames is −16.7 dB, −19.2 dB, −15.5 dB, and
12.5 dB. Collectively, CVPS yields 34 Mbps data rate. As
a global iteration includes the polling of M = 4 vehicles
in uplink and a broadcast in downlink, CVPS reduces the
time consumption of a global iteration by 2.2× compared to
sequential polling.

Extensive Experiments. We perform extensive experiments
to measure the EVM of decoded signals polled by CVPS and
sequential approaches at parking lot, local streets, and high-
way. The cumulative distribution function (CDF) of measured
EVMs is illustrated in Fig. 14. The average EVM of decoded
signals with CVPS is −19.5 dB, −16.8 dB, and −15.9 dB
at parking lot, local streets, and highway, respectively. The

2EVM is calcuated by EVM = 10 log10(
E[|Ŝ(l,k)−S(l,k)|2]

E[|S(l,k)|2]), where

Ŝ(l, k) and S(l, k) are the lth estimated and original modulated symbols
on the kth subcarrier, respectively.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

13

-30 -20 -10

EVM(dB)

0

0.5

1

C
D

F

Parking lot
Local roads
Highway

(a) CVPS.

-30 -20 -10

EVM(dB)

0

0.5

1

C
D

F

Parking lot
Local roads
Highway

(b) Sequential polling

Fig. 14: EVM of decoded frames via CVPS and sequential
polling in parking lot, local streets, and highway.

0.
01 0.

07

0.
28

0.
39

0.
23

0.
01

0.
01

Fail 1 2 3 4 5 6 7 8
0.0

0.3

0.6

Pr
ob

ab
ilit

y

MCS index

 Parking lot

(a) CVPS: Parking lot.

0.
14

0.
36 0.
38

0.
06

0.
06

Fail 1 2 3 4 5 6 7 8
0.0

0.3

0.6

Pr
ob

ab
ilit

y

MCS index

 Parking lot

(b) Sequ. polling: Parking lot.

0.
01 0.

06 0.
11 0.

15

0.
3

0.
25

0.
11

0.
01

Fail 1 2 3 4 5 6 7 8
0.0

0.3

0.6

Pr
ob

ab
ilit

y

MCS index

 Local streets

(c) CVPS: Local streets

0.
01

0.
26

0.
49

0.
18

0.
04

0.
02

Fail 1 2 3 4 5 6 7 8
0.0

0.3

0.6

Pr
ob

ab
ilit

y

MCS index

 Local streets

(d) Sequ. polling: Local streets.

0.
04 0.
05

0.
16 0.
17

0.
31

0.
17

0.
09

0.
01

Fail 1 2 3 4 5 6 7 8
0.0

0.3

0.6

Pr
ob

ab
ilit

y

MCS index

 Highway

(e) CVPS: Highway.

0.
05

0.
32 0.

37

0.
22

0.
03

0.
01

Fail 1 2 3 4 5 6 7 8
0.0

0.3

0.6

Pr
ob

ab
ilit

y

MCS index

 Highway

(f) Sequ. polling: Highway.

Fig. 15: Comparison of CVPS and sequential polling in terms
of MCS selection probability.

average EVM of decoded signals with sequential polling is
−22.0 dB, −20.2 dB, and −19.4 dB at parking lot, local
streets, and highway, respectively. Apparently, CVPS has a
slight EVM degradation compared to sequential polling. This
degradation is caused by the residual inter-vehicle interference
of concurrent transmissions.

Fig. 15 presents probability of MCS selection for uplink
transmissions in both CVPS and sequential polling. It shows
that CVPS causes 1% and 4% data packet loss in local streets
and highway, respectively. In contrast, no loss is observed for
sequential polling. This is because sequential polling selects a
single vehicle for uplink transmissions+, while CVPS selects
four vehicles for concurrent uplink transmissions. The data
packet loss is caused by the poor uplink channel. Fig. 16
shows the data rate achieved by two polling strategies. It is
proportional to the data rate of local model polling. Evidently,
CVPS offers a much higher data rate for local model polling
in the uplink, thereby shortening the time consumption of
each global iteration. Quantitatively, CVPS alone reduces the

D
a
ta

ra
te

(M
b
p
s
)

Fig. 16: Data rate achieved by CVPS and sequential polling.

0 5 10 15 20
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF4FL
RND+SP
RR+SP
EDF+SP
Convergence

t=5.48 s

t=3.85 s

(a) Parking lot: N(0) = 10 and
λ = 0.02.

0 5 10 15
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF4FL
RND+SP
RR+SP
EDF+SP
Convergence

t=2.99 s

t=1.40 s

(b) Parking lot: N(0) = 20 and
λ = 0.04.

0 5 10 15 20
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF4FL
RND+SP
RR+SP
EDF+SP
Convergence

t=4.80 s

t=5.94 s

(c) Local streets: N(0) = 10
and λ = 0.02.

0 5 10 15
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF4FL
RND+SP
RR+SP
EDF+SP
Convergence

t=1.48 s

t=3.24 s

(d) Local streets: N(0) = 20
and λ = 0.04.

0 5 10 15 20
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF4FL
RND+SP
RR+SP
EDF+SP
Convergence

t=6.08 s

t=4.17 s

(e) Highway: N(0) = 10 and
λ = 0.02.

0 5 10 15
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CF4FL
RND+SP
RR+SP
EDF+SP
Convergence

t=3.32 s

t=1.52 s

(f) Highway: N(0) = 20 and
λ = 0.04.

Fig. 17: Convergence of CF4FL and benchmark approaches
in different vehicular scenarios.

duration of a global iteration by 58.3%, 52.4%, and 52.4% in
a parking lot, local streets, and highways, respectively.

E. Performance of CF4FL (DDVS + CVPS)

Finally, we evaluate the performance of CF4FL by compar-
ing it with RND+SP, RR+SP, and EDF+SP benchmarks in two
cases: i) N(0) = 10 and λ = 0.02, and ii) N(0) = 20 and
λ = 0.04. Two cases are simulated in the three environments
(parking lot, local streets, and highways), and a total of
six scenarios are evaluated. The performance of CF4FL and
its benchmarks are presented in Fig. 17. And we have the
following observations.

• FL Convergence Speed. On average over all scenarios,
CF4FL reduces the convergence time by 48.2%, 34.9%,
and 35.3% compared to RND+SP, RR+SP, and EDF+SP,
respectively.

• Data Collection Speed. As shown in Fig. 17(a)-(f),
CF4FL obtained 60,000 data samples in a shorter period
of time compared to the benchmarks. On average, data

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

14

0 2 4 6 8 10
Time (s)

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

2 vehicles/iteration
3 vehicles/iteration
4 vehicles/iteration
Convergence

2 veh./iter.

t = 3.0 s

4 veh./iter.

t = 1.4 s

3 veh./iter.

t = 2.3 s

(a) Impact of number of se-
lected vehicles.

0 1 2 3 4 5
Time (s)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

d(t) x 1

t = 1.4 s

d(t) x 2

t = 0.93 s

d(t) x 3

t = 0.7 s

(b) Impact of scaling dead-
lines

Fig. 18: Effect of vehicle selection and deadlines on FL
training.

collection speed of CF4FL is 2.2×, 1.8×, and 1.7× faster
than RND+SP, RR+SP, and EDF+SP, respectively.

F. Effect of Vehicle Selection and Deadlines on Learning
To determine how the number of selected vehicles per global

iteration and vehicles’ deadlines affect FL training, we have
considered two additional test scenarios on a vehicular network
at a parking lot with N(0) = 20, λ = 0.04, and a four-antenna
server. First, we investigate the effect of selected vehicles by
putting an intentional limit on the number of selected vehicles
per global iteration. In the second scenario, while four vehicles
are selected per iteration, the deadlines are scaled by a factor
of 1, 2, and 3. As shown in Fig. 18(a), increasing the number
of selected vehicles (up to M = 4) per global iteration will
accelerate the learning process. When the server selects 2, 3,
and 4 vehicles per iteration, the global model converges within
3.0s, 2.3s, and 1.4s. Referring to Fig. 18(b), doubling and
tripling the deadlines reduce the convergence time by 23.3%
and 53.3%, respectively.

VIII. CONCLUSION

In this paper, we studied vehicle scheduling and polling
problems associated with FL in vehicular networks, with the
aim of accelerating the convergence speed of FL training
process. To tackle the above two problems, we presented
CF4FL, a vehicular communication framework for FL training
process. CF4FL comprises two complementary components,
namely DDVS and CVPS. DDVS is a scheduler for each
global iteration of FL, which reduces data loss under deadline
constraints. CVPS takes advantage of multiple antennas at
the server to enable concurrent local model polling, thereby
significantly reducing the time duration of each global iteration
and leading to a faster convergence of FL. We have evaluated
CF4FL through a blend of experimentation and trace-driven
simulation. Our results show that CF4FL reduces the con-
vergence time by 39.4%, and it collects data samples 1.9×
faster than existing solutions in parking lots, local streets, and
highways.

ACKNOWLEDGMENTS

The work of P. Kheirkhah Sangdeh, H. Pirayesh, S. Zhang,
and H. Zeng was supported in part by NSF Grant CNS-
2100112. The work of C. Li and Y.T. Hou was supported in
part by ONR under MURI Grant N00014-19-1-2621, Virginia
Commonwealth Cyber Initiative (CCI), and Virginia Tech In-
stitute for Critical Technology and Applied Science (ICTAS).

APPENDIX A
PROOF OF LEMMA 1

For vehicle i, zero data loss is guaranteed if it is polled
at least once in every di subsequent global iterations. Let
us assume the network’s deadline does not change within
t ∈ [0, T]. Polling rate ri for vehicle i then satisfies
ri = limT→∞

1
T

∑T
t=1 Ii(S(t)) ≥

1
di

, where Ii(S(t)) = 1
if i ∈ S(t); otherwise, Ii(S(t)) = 0. For all vehicles, we

have M
(a)

≥
∑N(t)

i=1 ri
(b)

≥
∑N(t)

i=1
1
di

, where (a) holds as M
is the maximum number of vehicles that can be polled by
CVPS in global iteration, and (b) is directly concluded from
the constraint on polling rate.

APPENDIX B
PROOF OF LEMMA 2

If the deadlines and number of vehicles are finite, the
number of vertices in G is also finite as:

|V | =
N(t)∏
i=1

di <∞, if N(t) <∞ and di <∞ ∀i ∈ N(t).

(10)
Therefore, there exists two distinct FL rounds t′ and t′′ with

1 ≤ t′ < t′′ ≤ |V |+1 for which p⃗(t′) = p⃗(t′′). Any path with
a length larger than |V | includes a cycle. In other words, we
cannot infinitely move on the feasibility graph without forming
any cycle. If p⃗(t′) = p⃗(t′′) and a cycle is formed, all vehicles
are polled at least once within [t′, t′′]. This statement itself can
be proved based on contradiction. If vehicle i is not polled,
we have:

∄ t ∈ [t′, t′′] s.t. i ∈ S(t), (11a)
pi(t

′) < pi(t
′′), (11b)

p⃗(t′) ̸= p⃗(t′′). (11c)

where (11b) follows from the fact that buffer state is a
monotonic increasing function as long as the vehicle is not
polled. (11b) directly results (11c) which is in contradiction
to our assumption p⃗(t′) = p⃗(t′′). Therefore, all vehicles will
be polled at least once within a cycle. The repetition of the
cycle on feasibility graph G results in a cyclic scheduler which
results pi(t) ≤ di for t > 0 and ∀i ∈ N(t).

APPENDIX C
PROOF OF LEMMA 3

d̃i can be written as d̃i = b/2mi , where mi ∈ N, mi is non-
increasing with i, and b is an integer. Equivalently, 1/d̃i =
2mi/b. For the first group including vehicle 1 to vehicle k, we
have:

s ≜
k∑

i=1

2mi (12a)

(s− 2mk)/b ≤ 1, (12b)
s/b > 1. (12c)

(12b) and (12c) follow from (12a) and the definition of a
group. Based on (12b) and (12c), s can be expressed as s =
⌈b/2mk⌉ · 2mk = ⌈d̃k⌉ · 2mk . Given that mi ≥ mk for all

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

15

i < k, we have s ≤ ⌈b/2mi⌉ · 2mi = ⌈d̃i⌉ · 2mi for i < k.
Therefore, we can obtain an FPD ⃗̃g with l(⃗̃g) = 1 as ⃗̃g =
(d̃1, d̃2, · · · , d̃k)·s/b. For g̃i, i = 1, 2, · · · , k, we have g̃i = d̃i ·
s/b ≤ d̃i·⌈d̃i⌉·2mi/b = ⌈d̃i⌉ ≤ di. Therefore, (d1, d2, · · · , dk)
can be mapped to ⃗̃g and we can use FSC to find a scheduler
for it [33]. We repeat the above procedure up to (M − 1)
times for remaining groups, and use FSC to find a feasible
scheduler for each of them. Then we combine the M different
schedulers and get feasible scheduler S.

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, pp. 1273–1282, 2017.

[3] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 9,
pp. 3400–3413, 2020.

[4] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 440–445, 2017.

[5] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in International Conference on Learning Representations,
2018.

[6] H. Sun, S. Li, F. R. Yu, Q. Qi, J. Wang, and J. Liao, “Toward
communication-efficient federated learning in the internet of things with
edge computing,” IEEE Internet of Things Journal, vol. 7, no. 11,
pp. 11053–11067, 2020.

[7] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
arXiv preprint arXiv:1705.07878, 2017.

[8] H. Wang, S. Sievert, Z. Charles, S. Liu, S. Wright, and D. Pa-
pailiopoulos, “ATOMO: communication-efficient learning via atomic
sparsification,” in 32nd International Conference on Neural Information
Processing Systems, pp. 9872–9883, 2018.

[9] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in International Conference on
AI and Statistics, pp. 2021–2031, 2020.

[10] S. Wang, F. Liu, and H. Xia, “Content-based vehicle selection and
resource allocation for federated learning in IoV,” in 2021 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW),
pp. 1–7, 2021.

[11] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “Perfor-
mance optimization of federated learning over wireless networks,” in
2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–
6, 2019.

[12] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
2020.

[13] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling
and resource allocation for latency constrained wireless federated learn-
ing,” IEEE Transactions on Wireless Communications, vol. 20, no. 1,
pp. 453–467, 2021.

[14] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication net-
works,” IEEE Transactions on Wireless Communications, vol. 20, no. 3,
pp. 1935–1949, 2021.

[15] J. Xu and H. Wang, “Client selection and bandwidth allocation in
wireless federated learning networks: A long-term perspective,” IEEE
Transactions on Wireless Communications, vol. 20, no. 2, pp. 1188–
1200, 2021.

[16] C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM Transactions
on Networking, vol. 29, no. 1, pp. 398–409, 2021.

[17] Y. M. Saputra, D. Nguyen, H. T. Dinh, T. X. Vu, E. Dutkiewicz, and
S. Chatzinotas, “Federated learning meets contract theory: Economic-
efficiency framework for electric vehicle networks,” IEEE Transactions
on Mobile Computing, 2020.

[18] A. Uprety, D. B. Rawat, and J. Li, “Privacy preserving misbehavior
detection in IoV using federated machine learning,” in 2021 IEEE 18th
Annual Consumer Communications & Networking Conference (CCNC),
pp. 1–6, 2021.

[19] X. Huang, P. Li, R. Yu, Y. Wu, K. Xie, and S. Xie, “Fedparking: A
federated learning based parking space estimation with parked vehicle
assisted edge computing,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 9, pp. 9355–9368, 2021.

[20] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23920–23935, 2020.

[21] Q. Kong, F. Yin, R. Lu, B. Li, X. Wang, S. Cui, and P. Zhang,
“Privacy-preserving aggregation for federated learning-based navigation
in vehicular fog,” IEEE Transactions on Industrial Informatics, 2021.

[22] S. R. Pokhrel and J. Choi, “A decentralized federated learning approach
for connected autonomous vehicles,” in 2020 IEEE Wireless Commu-
nications and Networking Conference Workshops (WCNCW), pp. 1–6,
2020.

[23] S. R. Pokhrel and J. Choi, “Federated learning with blockchain for au-
tonomous vehicles: Analysis and design challenges,” IEEE Transactions
on Communications, vol. 68, no. 8, pp. 4734–4746, 2020.

[24] H. Chai, S. Leng, Y. Chen, and K. Zhang, “A hierarchical blockchain-
enabled federated learning algorithm for knowledge sharing in Internet
of vehicles,” IEEE Transactions on Intelligent Transportation Systems,
2020.

[25] A. Taik, Z. Mlika, and S. Cherkaoui, “Clustered vehicular federated
learning: Process and optimization,” arXiv preprint arXiv:2201.11271,
2022.

[26] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle selection
and resource optimization for federated learning in vehicular edge
computing,” IEEE Transactions on Intelligent Transportation Systems,
2021.

[27] S. Liu, J. Yu, X. Deng, and S. Wan, “FedCPF: An efficient-
communication federated learning approach for vehicular edge comput-
ing in 6G communication networks,” IEEE Transactions on Intelligent
Transportation Systems, 2022.

[28] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), pp. 19–35, 2021.

[29] NVIDIA, “Hardware for self-driving cars.” https://tinyurl.com/59any9fc.
[Online; accessed 23-Sep-2022].

[30] H.-S. Lee and J.-W. Lee, “Adaptive transmission scheduling in wireless
networks for asynchronous federated learning,” IEEE Journal on Se-
lected Areas in Communications, vol. 39, no. 12, pp. 3673–3687, 2021.

[31] R. E. Tarjan, “Two streamlined depth-first search algorithms,” Funda-
menta Informaticae, vol. 9, no. 1, pp. 85–94, 1986.

[32] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[33] C. Li, Q. Liu, S. Li, Y. Chen, Y. T. Hou, W. Lou, and S. Kompella,
“Scheduling with age of information guarantee,” IEEE/ACM Transac-
tions on Networking, 2022.

Pedram Kheirkhah Sangdeh received his B.Sc. de-
gree in Electrical Engineering from Iran University
of Science and Technology, Tehran, Iran, in 2011,
and his M.Sc. degree in Electrical Engineering from
the College of Engineering, University of Tehran,
Tehran, Iran, in 2014. He is currently working to-
ward his Ph.D. degree in the Department of Com-
puter Science and Engineering at Michigan State
University, East Lansing, MI, USA. His research
interests include design, performance analysis, and
implementation of innovative protocols for intelli-

gent wireless networking.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

https://tinyurl.com/59any9fc

16

Chengzhang Li is a Ph.D. student in the Bradley
Department of Electrical and Computer Engineering
at Virginia Tech, Blacksburg, VA, USA. He received
his M.S. degree in computer engineering from Vir-
ginia Tech in 2020, and his B.S. degree in Electron-
ics Engineering from Tsinghua University, Beijing,
China, in 2017. His current research interests are
modeling, analysis and algorithm design for wireless
networks, with a focus on Age of Information (AoI),
5G and ultra-low latency research.

Hossein Pirayesh received the B.Sc. degree in
Electrical Engineering from Karaj Islamic Azad Uni-
versity, Karaj, Iran, in 2013 and the M.Sc. degree
in Electrical Engineering from Iran University of
Science and Technology, Tehran, Iran, in 2016. He
is currently working toward his Ph.D. degree in the
Department of Computer Science and Engineering
at Michigan State University, East Lansing, MI,
USA. His research focuses are on wireless com-
munications and networking, including theoretical
analysis, algorithm and protocol design, and system

implementation.

Shichen Zhang is currently a Ph.D. student in the
Department of Computer Science and Engineering at
Michigan State University (MSU), East Lansing, MI.
He received his B.Eng degree in Automation from
Beijing University of Technology, Beijing, China, in
2018 and M.Eng degree in Electrical and Computer
Engineering from Cornell University, Ithaca, NY, in
2019. His current research interests focus on wireless
networks, sensing systems, and machine learning.

Huacheng Zeng (SM’20) received a Ph.D. degree
in Computer Engineering from Virginia Polytech-
nic Institute and State University (Virginia Tech),
Blacksburg, VA. He is currently an Assistant Pro-
fessor in the Department of Computer Science and
Engineering at Michigan State University (MSU),
East Lansing, MI. Prior to joining MSU, he was an
Assistant Professor of Electrical and Computer En-
gineering at the University of Louisville, Louisville,
KY, and a Senior System Engineer at Marvell Semi-
conductor, Santa Clara, CA. He is a recipient of the

NSF CAREER Award. He received the Best Paper Award from IEEE SECON
2021 and ACM WUWNet 2014. His research interest is broadly in wireless
networking and sensing systems.

Y. Thomas Hou (F’14) is Bradley Distinguished
Professor of Electrical and Computer Engineering
at Virginia Tech, Blacksburg, VA, USA, which he
joined in 2002. He received his Ph.D. degree from
NYU Tandon School of Engineering (formerly Poly-
technic Univ.) in 1998. During 1997 to 2002, he was
a Member of Research Staff at Fujitsu Laboratories
of America, Sunnyvale, CA, USA. Prof. Hou’s cur-
rent research focuses on developing innovative solu-
tions to complex science and engineering problems
arising from wireless and mobile networks. He is

also interested in wireless security. He has over 300 papers published in
IEEE/ACM journals and conferences. His papers were recognized by nine
best paper awards from the IEEE and the ACM. He holds six U.S. patents. He
authored/co-authored two graduate textbooks: Applied Optimization Methods
for Wireless Networks (Cambridge University Press, 2014) and Cognitive
Radio Communications and Networks: Principles and Practices (Academic
Press/Elsevier, 2009). Prof. Hou was named an IEEE Fellow for contributions
to modeling and optimization of wireless networks. He was/is on the editorial
boards of a number of IEEE and ACM transactions and journals. He served as
Steering Committee Chair of IEEE INFOCOM conference and was a member
of the IEEE Communications Society Board of Governors. He was also a
Distinguished Lecturer of the IEEE Communications Society.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3221770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on November 24,2022 at 07:36:20 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Federated Learning in Vehicular Networks
	System Model
	Problem Formulation
	Challenges

	CF4FL: Overview
	Deadline-Driven Vehicle Scheduler (DDVS)
	Network Deadline and State
	Schedulability of Network Deadline and General Scheduler
	A Lightweight Scheduler

	Concurrent Vehicle Polling Scheme (CVPS)
	Performance Evaluation
	Evaluation Methodology
	FL Task
	Performance of DDVS
	Performance of CVPS
	Performance of CF4FL (DDVS + CVPS)
	Effect of Vehicle Selection and Deadlines on Learning

	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Lemma 3
	References
	Biographies
	Pedram Kheirkhah Sangdeh
	Chengzhang Li
	Hossein Pirayesh
	Shichen Zhang
	Huacheng Zeng
	Y. Thomas Hou

