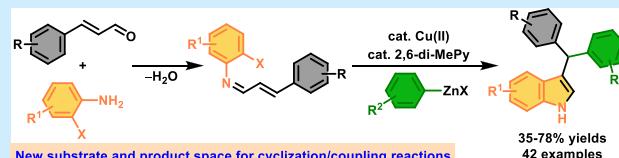


Cu-Catalyzed Cyclization/Coupling of Alkenyl Aldimines with Arylzinc Reagents: Access to Indole-3-diarylmethanes

Rishi R. Sapkota, Raj Kumar Tak, Vivek Aryal, Doleshwar Niroula, Nicholas C. Secosky, Roshan K. Dhungana, and Ramesh Giri*

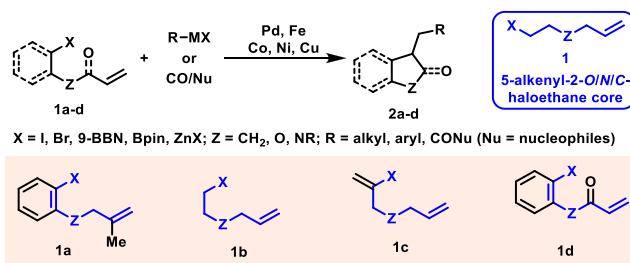
Cite This: *Org. Lett.* 2022, 24, 6213–6218

Read Online


ACCESS |

Metrics & More

Article Recommendations

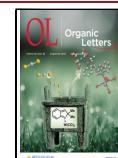

Supporting Information

ABSTRACT: We report a Cu(II)-catalyzed cyclization/coupling of alkenyl aldimines with arylzinc reagents to create indole-3-diarylmethane derivatives (Sapkota et al. *ChemRxiv* 2022, DOI: 10.26434/chemrxiv-2022-d6qn). The current reaction provides a unified modular route from readily available starting materials to indole-3-diarylmethanes in which all three arene cores can be decorated with differential functional substitutions on demand. Since the cyclization/coupling of alkenyl aldimines is unknown to date, the current method widens the scope with regard to both the substrate and product diversity for this class of reaction.

Transition metal-catalyzed cyclization/coupling of alkenyl halocarbons with carbon sources is a promising synthetic method to generate complex carbocycles and heterocycles rapidly from simple chemicals.^{1,2} Since early disclosures,³ a number of catalytic systems have been developed that exploited *ortho*-N/O-allyl(2-methyl)iodoarenes (Scheme 1,

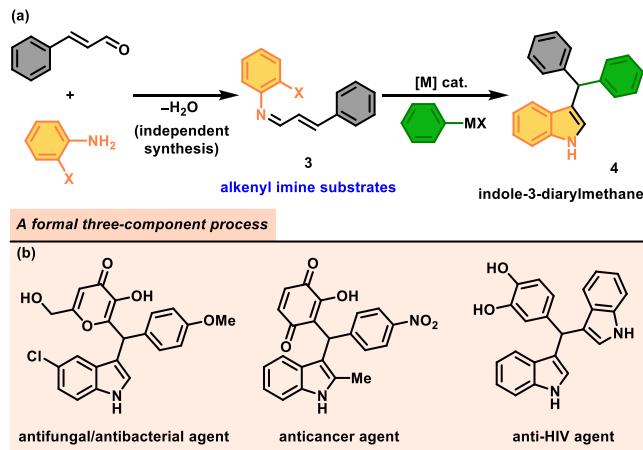
Scheme 1. Most Common Substrate Architectures for Cyclization/Coupling and the Resultant Products

1a) as alkenyl haloarenes, and organotin and organoboron reagents as coupling partners. These Pd-catalyzed reactions involved alkyl-Pd(II) intermediates lacking β -Hs. Recently, the limitation with β -Hs has been systematically addressed by implementing catalysts derived from Co, Fe, Ni, and Cu. These metals enabled the use of *N/O*-allyl-haloethanes (1b–c) that proceeded via β -H-alkylmetal intermediates. For example, Oshima,⁴ Kang,⁵ Cárdenas,⁶ Lautens,⁷ ourselves,⁸ and others⁹ disclosed Co-, Fe-, Mn-, and Ni-catalyzed cyclization/coupling of 1a–c types of substrates with aryl Grignard and alkyl/arylzinc reagents, arynes, aryl C–H bonds, and CO/N,O-nucleophiles to furnish cyclic products 2a–c.


Recently, Fu,¹⁰ Brown,¹¹ and ourselves¹² also revealed that *N/O*-allyl-alkyl/arylboron and alkyl/arylzinc reagents, the class

1a–b type of substrates, could undergo cyclization/coupling with aryl and alkyl halides to generate five-membered carbon- and heterocycles. The class 1a–b substrates have also been elegantly demonstrated by Diao,¹³ Wang,¹⁴ Peng,¹⁵ and others¹⁶ to participate in Ni-catalyzed reductive cyclization/coupling with aryl halides, which furnished similar cyclic products. Lautens,¹⁷ Kong,¹⁸ and others¹⁹ have ingeniously leveraged Rh-, Pd-, and Ni-catalysts for the cyclization/coupling of class 1d substrates with arylboron reagents, aryl halides, C–H bonds, and CO/N,O-nucleophiles. Reactions that rely upon C–C and C–X (X = NR₂, SR, Cl, F) bond activation²⁰ and the use of enolate nucleophiles²¹ have also furnished 2a–d types of carbocyclic products by cyclization/coupling of alkenyl thioesters and ketones, acyl amides, and acyl halides. These cyclization/coupling methods have occasionally been interrogated to synthesize a score of bioactive and pharmaceutically relevant cyclic cores, thereby unmistakably claiming the versatility and synthetic potential of the reactions.^{8,10,13a}

Despite profound interest and synthetic appeal, there is little to no attention on expanding the scope of this class of reaction. Therefore, the scope of cyclization/coupling reactions with carbon sources is so far largely confined within a relatively narrow substrate architecture and product diversity.²² As evident from the published reports, a large majority of the reactions depend on the 5-alkenyl-2-O/N/C-haloethane core


Received: July 26, 2022

Published: August 15, 2022

(1) and create products with cyclopentane, pyrrolidine, and tetrahydrofuran rings. The 5-alkenyl-2-*O*/N/C-haloethane core (1) is typically derived from the products of a halohydrin reaction and *O*/N-acylation (Scheme 1). Herein, we introduce a new substrate strategy for cyclization/coupling in which we combine alkenyl aldehydes with anilines by dehydration to generate alkenyl aldimines (3) (Scheme 2a). We envisioned

Scheme 2. (a) This Work: Alkenyl Imines for Cyclization/Coupling Reaction; (b) Biologically Active Indole-3-diaryl methane Derivatives and Their Analogs

that the strategically situated alkenes in these aldimines could facilitate a metal-catalyzed cyclization to occur with the *ortho*-haloarene and, therefore, increase the repertoire of both the substrates (3) and the heterocyclic products (4) previously inaccessible by cyclization/coupling reactions.²³ C-3-substituted indoles are present in natural products²⁴ and are of great interest in drugs, pharmaceuticals, agrochemicals, and materials.²⁵ In particular, indole-3-diaryl methane derivatives (4) and their analogs are biologically active and serve as potent antifungal and antibacterial agents,²⁶ topoisomerase I inhibitors (anticancer agents),²⁷ and HIV-1 integrase inhibitors (Scheme 2b).²⁸

To interrogate the feasibility of using alkenyl imines for cyclization/coupling, we synthesized *N*-(2-iodophenyl)-cinnamaldimine (3, X = I) through the condensation of 2-iodoaniline with cinnamaldehyde. Examination of different reaction parameters for the reaction of the aldimine 3 with PhZnI revealed that 10 mol % Cu(OAc)₂ effected the cyclization/coupling and furnished *N*-unprotected indole-3-diphenylmethane 4 in 72% yield in the presence of 40 mol % 2,6-dimethylpyridine (N3) at 100 °C in 12 h (Table 1, entry 1). The reaction also proceeded in the absence of N3, although the indole product 4 was generated in much lower yield (35%) (entry 2). Evaluation of other pyridine derivatives showed that 3-methylpyridine (N2) and 4-dimethylaminopyridine (N4) increased the product yields to 53–55% (entries 4–5), while others (N1, N5–N7) had zero to minimal effects in the reaction (entries 3, 6–8). The indole 4 was formed in lower yields in solvents other than dioxane (entry 9). Catalysts based on other metals, such as Pd, Fe, Co, and Ni, generated zero to trace amount of the indole 4 and mostly produced biaryls from direct cross-coupling (entry 10).²⁹

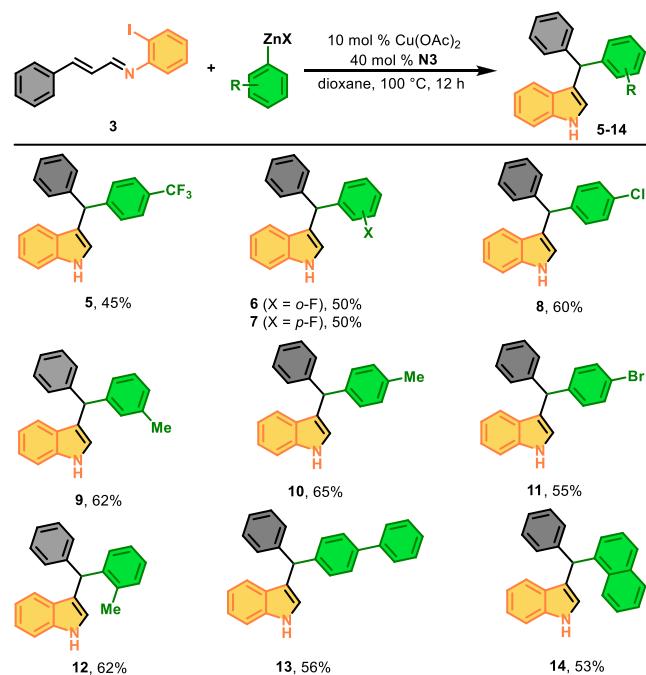
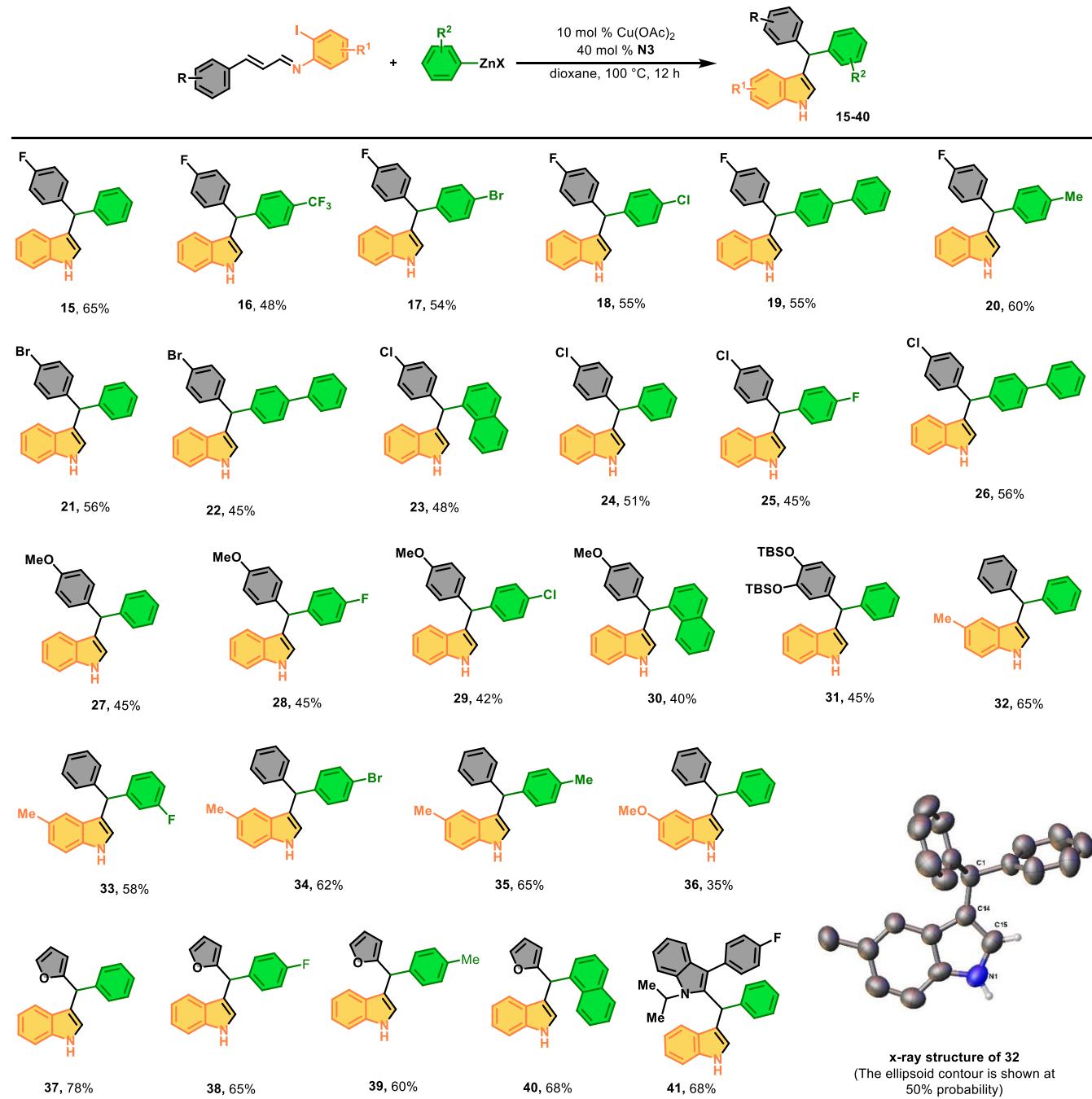

After optimization of the reaction parameters, we examined the scope of the reaction for arylzinc reagents (Scheme 3). The reaction furnished indole derivatives in good yields with both

Table 1. Optimization of Reaction Parameters^a

entry	deviation from standard conditions	yield (%) ^b
1	none	72 (64)
2	without N3	35
3	N1 instead of N3	38
4	N2 instead of N3	53
5	N4 instead of N3	55
6	N5 instead of N3	31
7	N6 instead of N3	38
8	N7 instead of N3	25
9	THF, NMP, DMF, DMSO, or toluene instead of dioxane	9–20
10	Pd-, Fe-, Co-, and Ni-salts instead of Cu(OAc) ₂ ^c	0–5


^aReactions were conducted in 0.10 mmol scale with 2.0 equiv of PhZnI in 0.5 mL of solvent. ^b¹H NMR yields using pyrene as a standard. The number in parentheses is the isolated yield from a 0.50 mmol scale reaction in 2.5 mL of dioxane. ^c10 mol % of FeBr₃, Ni(cod)₂, NiBr₂, Pd(PPh₃)₄, Pd₂(dba)₃, and Co(acac)₂ were used.

Scheme 3. Scope of the Reaction with ArZnI^a

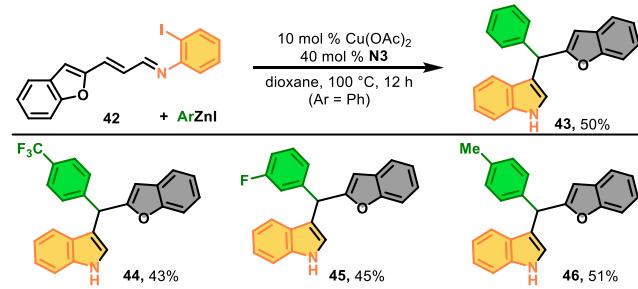
^aReactions were conducted in 0.50 mmol scale with 2.0 equiv of ArZnI in 2.5 mL of dioxane. Reported is the % yields of isolated products.

electron-rich and electron-poor arylzinc reagents (5–10), and tolerated functional groups such as trifluoromethyl, fluoro, chloro, and methyl. Arylzinc reagents bearing reactive bromide and sterically hindered *ortho*-Me groups were tolerated, which afforded indole products in good yields (11, 12). Similarly, the

Scheme 4. Scope of the Reaction of the Cinnamaldehyde and Aniline Components of Alkenyl Aldimines with ArZnI^a

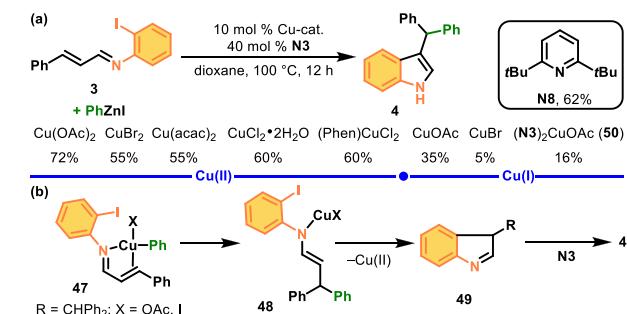
^aReactions were conducted in 0.50 mmol scale with 2.0 equiv of ArZnI in 2.5 mL dioxane. Reported % is the yields of isolated products.

reaction could also be conducted with biaryl- and 1-naphthylzinc reagents to increase the polyaromatic backbones on the indole core (13, 14).

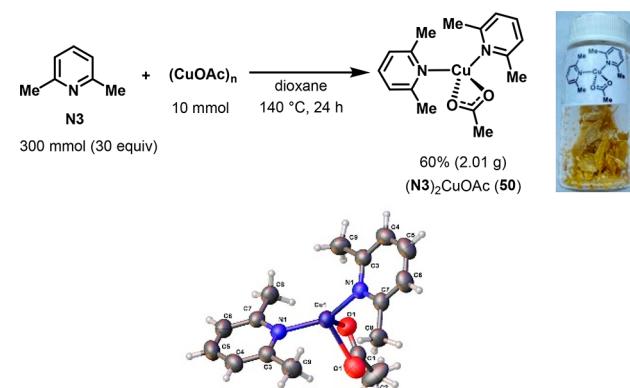

We also examined the scope of the reaction with substitutions on the cinnamaldehyde and aniline, the two components of the alkenyl imines (Scheme 4).³⁰ The alkenyl imines derived from 2-iodoaniline and cinnamaldehyde bearing fluoro, bromo, and chloro could readily undergo cyclization/coupling with arylzinc reagents containing trifluoromethyl, fluoro, bromo, chloro, phenyl, and 1-naphthyl groups (15–26). The alkenyl imine with cinnamaldehyde unit containing an electron-donating group, such as methoxy and OTBS, could

also be used for cyclization/coupling with phenyl, 4-fluorophenyl, 4-chlorophenyl, and 1-naphthylzinc iodides (27–31). The reaction was also compatible with substituted anilines bearing methoxy and methyl substituents, the alkenyl imines of which generated products in good yields with phenyl, 3-fluoro, 4-bromo, and 4-methylzinc iodides (32–36). These combinations of reagents enabled us to synthesize indole-3-diarylmethane derivatives in which all three arene moieties are differently substituted.

The reaction also tolerated heterocycles on the cinnamaldehyde unit (Scheme 4). As demonstrated by the cyclization/coupling of the alkenyl imine derived from 3-(2-furanyl)-


acrylaldehyde and 2-iodoaniline, the indole-3-(2-furanyl)-aryl methane derivatives were generated in good to excellent yields with phenyl, 4-fluorophenyl, 4-methylphenyl, and 2-naphthylzinc iodide (37–40). More importantly, the reaction also furnished a C-2/C-3 bis-indolyl-3-aryl methane derivative (41) in excellent yield by the cyclization/coupling of alkenyl imine composed of a 3-(1*H*-indol-2-yl)acrylaldehyde derivative and 2-iodoaniline with phenylzinc iodide. C-2/C-3 bis-indolylmethane is an important precursor for heterocyclic natural products such as indolocarbazoles.³¹ This class of compound is also best known for mediating the toxicity of dioxin and related toxins.³² In order to further demonstrate the scope, we also synthesized 3-(benzofuran-2-yl(phenyl)-methyl)-1*H*-indole (43), a potential autophagy inducer in cervical cancer cells,³³ and its three derivatives (44–46) (Scheme 5).

Scheme 5. Synthesis of Bioactive 3-Diaryl Methylindeole Derivatives Having Anticancer Properties


Additionally, our preliminary studies indicate that the reaction is catalyzed by a Cu(II) catalyst unbound to N3. Examination of various Cu(II)-salts containing different anions (OAc, Br and Cl) showed that the product 4 was formed in high yields (55–72%) (Scheme 6a). In contrast, Cu(I)-salts

Scheme 6. Control Experiments and Proposed Cyclization Steps

containing the same anions (OAc and Br) furnished the product 4 consistently in low yields (5–35%). We also synthesized a N3-bound CuOAc complex 50 in gram-scale (2.01 g) from the reaction of N3 base with CuOAc in dioxane at 140 °C (Scheme 7). The structure of the complex 50 was confirmed as a tetrahedral κ^2 -acetato-(N3)₂CuOAc by a single crystal X-ray crystallography. The use of the complex 50 as a catalyst under the standard conditions generated the indole product 4 only in 16% yield (Scheme 6a), further suggesting that Cu(I) is less likely to be an active catalyst. Additional experiments with (phen)CuCl₂ as a catalyst and the replacement of N3 with 2,6-di-*tert*-butylpyridine (N8), which

Scheme 7. Synthesis of (N3)₂CuOAc (50) and Its X-ray Structure^a

^aSelected bond lengths (Å) and angles (deg): Cu1–O1, 2.340(4); Cu1–N2, 1.990(4); O1–Cu1–O1¹, 55.6(2); O1–Cu1–N2, 107.40(15); O1–Cu1–N2¹, 105.14(15). The ellipsoid contour is shown at 50% probability.

produced the indole product 4 in 60% and 62%, respectively, indicated that the reaction was catalyzed by a Cu(II) catalyst that is not bound to N3 and that N3 and N8 possibly functioned as sterically hindered bases.³⁴

Based on these experiments, we propose that the reaction is initiated by a Cu(II)-catalyzed conjugate addition of ArZnX to the α,β -unsaturated imine, followed by iodine atom abstraction upon single electron transfer from the Cu(II)-enamido species 48 to the intramolecular ArI (Scheme 6b). Upon cyclization of the aryl iodide onto the enamido alkene, 3*H*-indole (49) is released and the Cu(II) catalyst is regenerated. The 3*H*-indole is then isomerized by the N3 base to form the final 1*H*-indole 4.

In summary, we have developed a Cu(II)-catalyzed cyclization/coupling of alkenyl aldimines, derived from alkenyl aldehydes and anilines upon dehydration, with arylzinc reagents in a formal three-component fashion. The reaction is assisted by stoichiometric amounts of 2,6-dimethylpyridine (N3), which functions as a base. This cyclization/coupling reaction produces in a single step a variety of indole-3-diaryl methane derivatives, an important class of bioactive scaffolds and precursors to many heterocyclic natural products. We anticipate that the current work creates a new direction and stimulate future research in the realm of cyclization/coupling by expanding its scope to aldehydes, anilines, and arylzinc reagents, which are some of the most common and readily available precursors in organic synthesis.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.orglett.2c02531>.

Experimental procedures and characterization data for all compounds (PDF)

Accession Codes

CCDC 2145421 and 2145423 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Author

Ramesh Giri — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-8993-9131; Email: rkg5374@psu.edu

Authors

Rishi R. Sapkota — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-0595-962X

Raj Kumar Tak — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Vivek Aryal — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Doleshwar Niroula — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Nicholas C. Secosky — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Roshan K. Dhungana — Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.orglett.2c02531>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge the NSF (CHE-1554299 and CHE-2102394) and The Pennsylvania State University (PSU) for support of this work. We thank Dr. Hemant Yennawar at the Pennsylvania State University for the X-ray crystallographic analysis of compounds **32** and **50**, and Nathaniel Ginder in the Lear group at PSU for help with collecting IR data. The X-ray instrument was funded by NIH SIG S10 grants (1S10OD028589-01 and 1S10RR023439-01).

■ REFERENCES

- (1) A version of this paper was deposited on a preprint server: Sapkota, R. R.; Tak, R. K.; Aryal, V.; Niroula, D.; Secosky, N. C.; Dhungana, R. K.; Giri, R. Cu-Catalyzed Cyclization/Coupling of Alkenyl Aldimines. Indolization of Aldehydes, Anilines and Aryl Zinc Reagents *ChemRxiv* 2022. DOI: [10.26434/chemrxiv-2022-d6qn](https://doi.org/10.26434/chemrxiv-2022-d6qn).
- (2) For reviews on cyclization/coupling reactions, see: (a) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Transition Metal-Catalyzed Dicarbofunctionalization of Unactivated Olefins. *Chem. Rec.* 2018, 18, 1314–1340. (b) Badir, S. O.; Molander, G. A. Developments in Photoredox/Nickel Dual-Catalyzed 1,2-Difunctionalizations. *Chem.* 2020, 6, 1327–1339. (c) Montgomery, J. Nickel-Catalyzed Cyclizations, Couplings, and Cycloadditions Involving Three Reactive Components. *Acc. Chem. Res.* 2000, 33, 467–473. (d) Qi, X.; Diao, T. Nickel-Catalyzed Dicarbofunctionalization of Alkenes. *ACS Catal.* 2020, 10, 8542–8556. (e) Chemler, S. R.; Karyakarte, S. D.; Khoder, Z. M. Stereoselective and Regioselective Synthesis of Heterocycles via Copper-Catalyzed Additions of Amine Derivatives and Alcohols to

Alkenes. *J. Org. Chem.* 2017, 82, 11311–11325. (f) Wolfe, J. P. Stereoselective Synthesis of Saturated Heterocycles via Palladium-Catalyzed Alkene Carboetherification and Carboamination Reactions. *Synlett* 2008, 2008, 2913–2937.

(3) (a) Mahandru, G. M.; Skauge, A. R. L.; Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery, J. Cascade Cyclizations and Couplings Involving Nickel Enolates. *J. Am. Chem. Soc.* 2003, 125, 13481–13485. (b) Negishi, E.-i.; Copéret, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. Palladium-Catalyzed Carbonylative Cyclization of 1-Iodo-2-alkenylbenzenes. *J. Am. Chem. Soc.* 1996, 118, 5904–5918. (c) Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderoatoshi, Y.; Minakata, S.; Komatsu, M. Cascade Radical Reactions Catalyzed by a Pd/Light System: Cyclizative Multiple Carbonylation of 4-Alkenyl Iodides. *J. Am. Chem. Soc.* 2002, 124, 3812–3813.

(4) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Cobalt-Catalyzed Tandem Radical Cyclization and Cross-Coupling Reaction: Its Application to Benzyl-Substituted Heterocycles. *J. Am. Chem. Soc.* 2001, 123, 5374–5375.

(5) Kim, J. G.; Son, Y. H.; Seo, J. W.; Kang, E. J. Iron-Catalyzed Tandem Cyclization and Cross-Coupling Reactions of Iodoalkanes and Aryl Grignard Reagents. *Eur. J. Org. Chem.* 2015, 2015, 1781–1789.

(6) Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Ni-Catalyzed Cascade Formation of C(sp³)—C(sp³) Bonds by Cyclization and Cross-Coupling Reactions of Iodoalkanes with Alkyl Zinc Halides. *Angew. Chem., Int. Ed.* 2007, 46, 8790–8795.

(7) (a) Whyte, A.; Bajohr, J.; Arora, R.; Torelli, A.; Lautens, M. Sequential Pd⁰- and Pd^{II}-Catalyzed Cyclizations: Enantioselective Heck and Nucleopalladation Reactions. *Angew. Chem., Int. Ed.* 2021, 60, 20231–20236. (b) Marchese, A. D.; Durant, A. G.; Lautens, M. A Modular Approach for the Palladium-Catalyzed Synthesis of Bisheterocyclic Spirocycles. *Org. Lett.* 2022, 24, 95–99.

(8) Kc, S.; Basnet, P.; Thapa, S.; Shrestha, B.; Giri, R. Ni-Catalyzed Regioselective Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross-Coupling and Application to the Concise Synthesis of Lignan Natural Products. *J. Org. Chem.* 2018, 83, 2920–2936.

(9) (a) Zhao, T.-Y.; Xiao, L.-J.; Zhou, Q.-L. Nickel-Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6-Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. *Angew. Chem., Int. Ed.* 2022, 61 (11), e202115702. (b) Liu, L.; Cheng, F.; Meng, C.; Zhang, A.-A.; Zhang, M.; Xu, K.; Ishida, N.; Murakami, M. Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. *ACS Catal.* 2021, 11, 8942–8947. (c) Cao, K.; Zhang, Z.-M.; Zhang, J.; Chen, F. Palladium-Catalyzed Asymmetric Cross-Coupling Reactions of Cyclobutanols and Unactivated Olefins. *Org. Lett.* 2021, 23, 9520–9525. (d) Liu, C.; Widenhoefer, R. A. Palladium-Catalyzed Cyclization/Carboalkoxylation of Alkenyl Indoles. *J. Am. Chem. Soc.* 2004, 126, 10250–10251. (e) McMahon, C. M.; Renn, M. S.; Alexanian, E. J. Manganese-Catalyzed Carboacylations of Alkenes with Alkyl Iodides. *Org. Lett.* 2016, 18, 4148–4150.

(10) Cong, H.; Fu, G. C. Catalytic Enantioselective Cyclization/Cross-Coupling with Alkyl Electrophiles. *J. Am. Chem. Soc.* 2014, 136, 3788–3791.

(11) You, W.; Brown, M. K. Diarylation of Alkenes by a Cu-Catalyzed Migratory Insertion/Cross-Coupling Cascade. *J. Am. Chem. Soc.* 2014, 136, 14730–14733.

(12) Thapa, S.; Basnet, P.; Giri, R. Copper-Catalyzed Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross-Coupling. *J. Am. Chem. Soc.* 2017, 139, 5700–5703.

(13) (a) Kuang, Y.; Wang, X.; Anthony, D.; Diao, T. Ni-catalyzed two-component reductive dicarbofunctionalization of alkenes via radical cyclization. *Chem. Commun.* 2018, 54, 2558–2561. (b) Lin, Q.; Diao, T. Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes. *J. Am. Chem. Soc.* 2019, 141, 17937–17948.

(14) Jin, Y.; Yang, H.; Wang, C. Nickel-Catalyzed Asymmetric Reductive Arylbenzylatation of Unactivated Alkenes. *Org. Lett.* **2020**, *22*, 2724–2729.

(15) Yan, C.-S.; Peng, Y.; Xu, X.-B.; Wang, Y.-W. Nickel-Mediated Inter- and Intramolecular Reductive Cross-Coupling of Unactivated Alkyl Bromides and Aryl Iodides at Room Temperature. *Chem. Eur. J.* **2012**, *18*, 6039–6048.

(16) Tian, Z.-X.; Qiao, J.-B.; Xu, G.-L.; Pang, X.; Qi, L.; Ma, W.-Y.; Zhao, Z.-Z.; Duan, J.; Du, Y.-F.; Su, P.; Liu, X.-Y.; Shu, X.-Z. Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes. *J. Am. Chem. Soc.* **2019**, *141*, 7637–7643.

(17) Jang, Y. J.; Yoon, H.; Lautens, M. Rh-Catalyzed Domino Addition–Enolate Arylation: Generation of 3-Substituted Oxindoles via a Rh(III) Intermediate. *Org. Lett.* **2015**, *17*, 3895–3897.

(18) Pan, Q.; Ping, Y.; Wang, Y.; Guo, Y.; Kong, W. Ni-Catalyzed Ligand-Controlled Regiodivergent Reductive Dicarbofunctionalization of Alkenes. *J. Am. Chem. Soc.* **2021**, *143*, 10282–10291.

(19) (a) Hu, H.; Peng, Y.; Yu, T.; Cheng, S.; Luo, S.; Zhu, Q. Palladium-Catalyzed Enantioselective 7-exo-Trig Carbopalladation/Carbonylation: Cascade Reactions To Achieve Atropisomeric Dibenzo[b,d]azepin-6-ones. *Org. Lett.* **2021**, *23*, 3636–3640. (b) Piou, T.; Bunescu, A.; Wang, Q.; Neuville, L.; Zhu, J. Palladium-Catalyzed Through-Space C(sp³)-H and C(sp²)-H Bond Activation by 1,4-Palladium Migration: Efficient Synthesis of [3,4]-Fused Oxindoles. *Angew. Chem., Int. Ed.* **2013**, *52*, 12385–12389. (c) Ruck, R. T.; Huffman, M. A.; Kim, M. M.; Shevlin, M.; Kandur, W. V.; Davies, I. W. Palladium-Catalyzed Tandem Heck Reaction/C–H Functionalization—Preparation of Spiro-Indane-Oxindoles. *Angew. Chem., Int. Ed.* **2008**, *47*, 4711–4714.

(20) (a) Xu, T.; Dong, G. Rhodium-Catalyzed Regioselective Carboacylation of Olefins: A C–C Bond Activation Approach for Accessing Fused-Ring Systems. *Angew. Chem., Int. Ed.* **2012**, *51*, 7567–7571. (b) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. Highly Enantioselective Rh-Catalyzed Carboacylation of Olefins: Efficient Syntheses of Chiral Poly-Fused Rings. *J. Am. Chem. Soc.* **2012**, *134*, 20005–20008. (c) Walker, J. A.; Vickerman, K. L.; Humke, J. N.; Stanley, L. M. Ni-Catalyzed Alkene Carboacylation via Amide C–N Bond Activation. *J. Am. Chem. Soc.* **2017**, *139*, 10228–10231. (d) Fan, P.; Lan, Y.; Zhang, C.; Wang, C. Nickel/Photo-Cocatalyzed Asymmetric Acyl-Carbamoylation of Alkenes. *J. Am. Chem. Soc.* **2020**, *142*, 2180–2186.

(21) (a) Huang, D.; Olivieri, D.; Sun, Y.; Zhang, P.; Newhouse, T. R. Nickel-Catalyzed Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. *J. Am. Chem. Soc.* **2019**, *141*, 16249–16254. (b) Dhungana, R. K.; Shrestha, B.; Thapa-Magar, R.; Basnet, P.; Giri, R. Pd-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Unactivated Olefins by a Heck Reaction/Enolate Cyclization Cascade. *Org. Lett.* **2017**, *19*, 2154–2157. (c) Fournet, G.; Balme, G.; Gore, J. Formation de cyclopentanes lors de réactions de Heck. *Tetrahedron* **1990**, *46*, 7763–7774.

(22) For examples of cyclization/coupling with N,O-nucleophiles, see: (a) Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R. Copper-Catalyzed Intramolecular Alkene Carboetherification: Synthesis of Fused-Ring and Bridged-Ring Tetrahydrofurans. *J. Am. Chem. Soc.* **2012**, *134*, 12149–12156. (b) Bovino, M. T.; Liwosz, T. W.; Kendel, N. E.; Miller, Y.; Tyminska, N.; Zurek, E.; Chemler, S. R. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes. *Angew. Chem., Int. Ed.* **2014**, *53*, 6383–6387. (c) Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Sultam Synthesis via Cu-Catalyzed Intermolecular Carboamination of Alkenes with N-Fluorobenzenesulfonimide. *Org. Lett.* **2013**, *15*, 2502–2505. (d) Zhang, B.; Studer, A. Copper-Catalyzed Intermolecular Aminoazidation of Alkenes. *Org. Lett.* **2014**, *16*, 1790–1793. (e) Cahard, E.; Bremeyer, N.; Gaunt, M. J. Copper-Catalyzed Intramolecular Electrophilic Carbofunctionalization of Allylic Amides. *Angew. Chem., Int. Ed.* **2013**, *52*, 9284–9288. (f) Ito, H.; Toyoda, T.; Sawamura, M. Stereospecific Synthesis of Cyclobutylboronates through Copper(I)-Catalyzed Reaction of Homoallylic Sulfonates and a Diboron Derivative. *J. Am. Chem. Soc.* **2010**, *132*, 5990–5992.

(g) Jones, B. T.; García-Cárceles, J.; Caiger, L.; Hazelden, I. R.; Lewis, R. J.; Langer, T.; Bower, J. F. Complex Polyheterocycles and the Stereochemical Reassignment of Pileamartine A via Aza-Heck Triggered Aryl C–H Functionalization Cascades. *J. Am. Chem. Soc.* **2021**, *143*, 15593–15598.

(23) For reviews on indole synthesis, see: (a) Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions. *Chem. Rev.* **2011**, *111*, PR215–PR283. (b) Inman, M.; Moody, C. J. Indole synthesis – something old, something new. *Chem. Sci.* **2013**, *4*, 29–41. (c) Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles. *Chem. Rev.* **2006**, *106*, 2875–2911.

(24) (a) Xu, J.; Rawal, V. H. Total Synthesis of (–)-Ambiguine P. *J. Am. Chem. Soc.* **2019**, *141*, 4820–4823. (b) Susick, R. B.; Morrill, L. A.; Picazo, E.; Garg, N. K. Pardon the Interruption: A Modification of Fischer's Venerable Reaction for the Synthesis of Heterocycles and Natural Products. *Synlett* **2017**, *28*, 1–11. (c) Baran, P. S.; Richter, J. M. Direct Coupling of Indoles with Carbonyl Compounds: Short, Enantioselective, Gram-Scale Synthetic Entry into the Hapalindole and Fischerindole Alkaloid Families. *J. Am. Chem. Soc.* **2004**, *126*, 7450–7451. (d) Bhat, V.; Dave, A.; MacKay, J. A.; Rawal, V. H. In *The Alkaloids: Chemistry and Biology*; Knölker, H.-J., Ed.; Academic Press, 2014; Vol. 73, pp 65–160.

(25) Shiri, M. Indoles in Multicomponent Processes (MCPs). *Chem. Rev.* **2012**, *112*, 3508–3549.

(26) Reddy, B. V. S.; Reddy, M. R.; Madan, C.; Kumar, K. P.; Rao, M. S. Indium(III) chloride catalyzed three-component coupling reaction: A novel synthesis of 2-substituted aryl(indolyl)kojic acid derivatives as potent antifungal and antibacterial agents. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 7507–7511.

(27) Zhang, C.; Qu, Y.; Niu, B. Design, synthesis and biological evaluation of lapachol derivatives possessing indole scaffolds as topoisomerase I inhibitors. *Bioorg. Med. Chem.* **2016**, *24*, 5781–5786.

(28) Deng, J.; Sanchez, T.; Neamati, N.; Briggs, J. M. Dynamic Pharmacophore Model Optimization: Identification of Novel HIV-1 Integrase Inhibitors. *J. Med. Chem.* **2006**, *49*, 1684–1692.

(29) Exogenous LiCl had a detrimental effect on the reaction, which decreased the yield of indole **4** to 31%.

(30) Reactions with alkyl and vinylzinc halides, and aliphatic aldimines did not furnish any indole product.

(31) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. *Chem. Rev.* **2012**, *112*, 3193–3328.

(32) Denison, M. S.; Soshilov, A. A.; He, G.; DeGroot, D. E.; Zhao, B. Exactly the Same but Different: Promiscuity and Diversity in the Molecular Mechanisms of Action of the Aryl Hydrocarbon (Dioxin) Receptor. *Toxicol. Sci.* **2011**, *124*, 1–22.

(33) Siddiqui, S. K.; SahayaSheela, V. J.; Kolluru, S.; Pandian, G. N.; Santhoshkumar, T. R.; Dan, V. M.; Ramana, C. V. Discovery of 3-(benzofuran-2-ylmethyl)-1H-indole derivatives as potential autophagy inducers in cervical cancer cells. *Bioorg. Med. Chem. Lett.* **2020**, *30*, 127431.

(34) We also reacted **N3** with Cu(OAc)₂ in dioxane at 100 °C for 12 h, and no **N3**-bound complex was formed, indicating that **N3** does not bind to Cu(OAc)₂ under our reaction conditions.