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Abstract

ADAMTS13, a metalloproteinase, specifically cleaves unusually large multimers of von Willebrand factor (VWF), newly
released from vascular endothelial cells. The ratio of ADAMTS13 activity to VWF antigen (ADAMTS13/VWF) and indica-
tors of the alternative complement pathway (C3a and sC5b-9) are both related to the severity of COVID-19. The ADAMTS13/
VWEF ratio is generally moderately decreased (0.18—0.35) in patients with severe COVID-19. When these patients experience
cytokine storms, both interleukin-8 and TNFa stimulate VWF release from vascular endothelial cells, while interleukin-6
inhibits both production of ADAMTS13 and its interaction with VWF, resulting in localized severe deficiency of ADAMTS13
activity. Platelet factor 4 and thrombospondin-1, both released upon platelet activation, bind to the VWF-A2 domain and
enhance the blockade of ADAMTS13 function. Thus, the released unusually-large VWF multimers remain associated with
the vascular endothelial cell surface, via anchoring with syndecan-1 in the glycocalyx. Unfolding of the VWF-A2 domain,
which has high sequence homology with complement factor B, allows the domain to bind to activated complement C3b,
providing a platform for complement activation of the alternative pathway. The resultant C3a and C5a generate tissue factor-
rich neutrophil extracellular traps (NETs), which induce the mixed immunothrombosis, fibrin clots and platelet aggregates
typically seen in patients with severe COVID-19.
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Introduction

COVID-19 caused by SARS-CoV-2 infection is often associ-
ated with the acute respiratory distress syndrome (ARDS),
and complicated with thrombosis of many organs, meeting
the diagnostic criteria for disseminated intravascular coagu-
lation (DIC) [1]. During the clinical course, patients typically
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show a macrophage activation syndrome or cytokine storm,
in which an excess production of inflammatory cytokines
such as interferons, interleukins (IL), chemokines, tumor
necrosis factors (TNFs) or colony-stimulating factors
recruit more immune cells to the site of injury, thus lead-
ing to organ damage. Such thrombosis usually localizes to
the lungs, termed ‘pulmonary intravascular coagulopathy’
[2], characterized by fibrin thrombus in pulmonary small
arteries, and high plasma levels of inflammatory cytokines,
ferritin, D-dimer, tissue-plasminogen activator (t-PA), and
fibrinogen, together with slightly decreased platelet counts.
Autopsies reveal pulmonary small vessels containing mixed
microthrombi consisting of fibrin clots and platelet aggre-
gates with or without megakaryocytes [3]. Some of these
microthrombi react with an antibody against von Willebrand
factor (VWF). These findings, in part, meet pathological
criteria for thrombotic microangiopathy (TMA), manifest-
ing thrombocytopenia, hemolytic anemia, and multi-organ
failures, typically seen in such life-threatening diseases as
thrombotic thrombocytopenic purpura (TTP) and hemolytic
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uremic syndrome (HUS) [4, 5], but differing from common
TMA, because circulating platelet counts are usually not
severely decreased and hemolytic anemia is rare.

Thromboembolic complications associated with COVID-
19 are, therefore, assumed to be induced by several factors
acting together, including coagulopathy, complementopathy
and endotheliopathy, often under cytokine storm [6—8]. In
fact, in COVID-19 patients, complement activation gener-
ates tissue factor (TF)-enriched neutrophil extracellular traps
(NETs), which mediate both thrombosis and endotheliopa-
thy [9, 10]. Important indicators for disease progression
and thrombosis include elevated plasma levels of activated
complement components [11] and of VWF with moderately
decreased activity of ADAMTS13 (VWE-specific cleaving
protease) [12—14].

As yet, a relationship between complement activation
and VWF in COVID-19 thrombosis has received little
attention; however, complement is often activated in con-
cert with elevated VWF levels, as typically shown in con-
genital deficiency of ADAMTS 13 activity [15-17]. Further,
the A-domains of VWF share primary sequence homology
with a 225 amino acid segment of complement factor B
[18-20], indicating that both proteins are descended from a
common ancestor, while factor B binds to complement C3b,
a key protein of the complement activation cascade. These
observations suggest that VWF participates in complement
activation during COVID-19. The present review focuses on
the role of VWF in COVID-19 associated ‘TMA’, in rela-
tion to the structure—function of VWF with the complement
activation mechanism.

VWF, Weibel-Palade body and ADAMTS13

VWEF is exclusively produced by vascular endothelial cells
(ECs) and stored in Weibel-Palade bodies (WPBs), which
are small intracellular organelles of vascular ECs, not
only for storage of unusually large VWF multimers (UL-
VWEFMs) but also of various proteins involved in hemosta-
sis, inflammation, and angiogenesis, including factor VIII,
VWF-propeptide, P-selectin, angiopoietin-2 (Ang-2), IL-8,
t-PA, etc. [21, 22]. It is well established that in vitro, sev-
eral substances such as thrombin and histamine can release
UL-VWEMs from cultured ECs [21, 22], while in vivo UL-
VWEFMs are released from WPBs upon their stimulation
with epinephrine and 1-desamino-8-D-arginine vasopressin
(DDAVP) [23], plus some inflammatory cytokines.

In addition to acting as a carrier protein for coagulation
factor VIII, plasma VWF has an essential role in primary
hemostasis by anchoring platelets onto denuded vascular
ECs [24]. The VWF-cDNA codes for 2813 amino acids
including 3 structural domains: (1) a signal peptide [22
amino acid (aa) residues], (2) the propeptide including the
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D1 and D2 assemblies (741 aa), and (3) the mature VWF
subunit (2050 aa) including D’-D3-A1-A2-A3-D4-C1-C2-
C3-C4-C5-C6-CK [24, 25], where each of the A1-A2-A3
domains has a loop structure, formed by intra-molecular
disulfide bonds [26] (Fig. 1). Of note, it is well-known that
a variety of ligands involved in thrombosis-hemostasis, com-
plement activation-regulation and various toxins can bind to
specific domain on the monomeric VWF subunit as shown
in Fig. 1: factor VIII [27], platelet GPIb [28], heparin [29],
heparan sulfate [30], P-selectin glycoprotein ligand-1 [31],
collagen type I [32], DNA of NETs [33], platelet factor 4
(PF4) [34], thrombospondin-1(TSP-1) [35], p2-integrins
[36], collagen type III [37], olIbp3 [38], avp3 [39], factor
H [40], C3b [16], C3 [41], snake venoms: botrocetin [42],
bitiscetin-1 [43], bitiscetin-2 [44], Staphylococcus aureus
-Protein A [45] and -VWF binding protein [46], and patho-
logic E.coli-producing Shiga toxin [47]. Notably, the VWF-
A1 domain is cryptic under normal physiological conditions,
but once exposed under high shear stress, it turns to active
conformation, to which a variety of the ligands can bind. In
spite of VWF’s ability to bind many proteins, the physiologi-
cal role(s) of this binding capacity is largely unexplored.
Mature VWF subunits are linked by disulfide bonds
in a head-to-head and tail-to-tail configuration to form
large multimers ranging from 500x 10% to 15x 10° dal-
tons [49]. Before being released into the circulation, UL-
VWFMs undergo proteolytic cleavage at the peptide bond
of Y1605-M1606 [50, 51] by ADAMTS13 under the high
shear stress generated in microvasculatures. In the absence
of ADAMTS13, UL-VWFMs are not cleaved, and stay
anchored or are released without proteolytic processing
[52]. In early studies, the anchor protein was postulated to be
P-selectin or avp3-integrins [39, 53], although a subsequent
report excluded this possibility [54]. Later, the finding that
VWEF can bind to negatively-charged heparin [29], demon-
strated that VWF likely binds to heparan sulfate linked to
syndecan-1 on the glycocalyx of vascular ECs [30].
Although several organs, including liver and vascular ECs,
express ADAMTS13, the highest level of gene expression
occurs in liver [55]. These studies revealed that ADAMTS13
is localized to liver stellate cells [56], which help maintain
plasma levels of ADAMTS13 activity. Although the function
of ADAMTS13 secreted by vascular ECs has not been well
characterized [57], it may co-operate with plasma ADAMTS13
for the cleavage of newly-released UL-VWFMs on the surface
of vascular ECs. Thus, a local inhibition of ADAMTS13 on
the surface of the vascular ECs may foster the formation of
thrombosis in COVID-19 patients. In vitro experiments in both
rat primary hepatic stellate cells and human umbilical cells,
suggest that a local reduction of ADAMTS13 activity may
be caused by inflammatory cytokines such as IFN-y, IL-4,
and TNF-a which inhibit its production without inhibiting
the release of UL-VWFMs [58]. In addition, TSP-1 and PF4,
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Fig.1 Structural domains of
human von Willebrand factor
(VWEF) and its binding ligands.
The cDNA of mature human
VWE subunit includes the
following structural domains:
D’-D3-A1-A2-A3-D4-Cl1-
C2-C3-C4-C5-C6-CK. The
monomeric mature VWF
subunit begins with amino

acid residue number 763 and
ends with 2813 (2050 amino
acid residues). As shown in the
upper panel, each A domain has
a loop structure linked by an
intramolecular disulfide bond.
ADAMTS13 cleaves at the
peptide bond of Y 1605-M1606.
LLG=Leucine-Leucine-
Glycine motif, RGD = Arginine-
Glycine-Aspartate motif. The
lower panel lists the natural
ligands that bind to each VWF
domain involved in thrombo-
sis/hemostasis, complement
activation/inhibition, and
others. TSP-1 =thrombospon-
din-1, PF4 =platelet factor 4,
PSGL-1=P-selectin glyco-
protein ligand-1, NETs =neu-
trophil extracellular traps,
SA-Protein A = Staphylococ-
cus aureus Protein A. SA-
VWEFbp = Staphylococcus
aureus VWF binding protein.
Note that the ligands shown

by the red bars bind to VWF
domains in a shear-dependent
manner. The binding of platelet
GPIb to the Al-domain initiates
platelet activation, alongside
the enhanced proteolysis by
ADAMTS13 [48], as does
factor H [40]. Notably, both
TSP-1 and PF4, released

from a-granules of platelets
upon activation, bind to the
A2-domain, preventing cleavage
by ADAMTS13. (See text in
detail.)
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both released from platelet a-granules upon activation canbind ~ for ADAMTS13 binding, and thus blocking cleavage of UL-
to the unfolded VWF-A2 domain, causing steric hindrance VWFMs by ADAMTS13 [34, 35].
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Pathological features of COVID-19
thrombosis

In COVID-19, the spike (S) protein of SARS-CoV-2 is
cleaved by the host's serine protease (TMPRSS2) to form
S1 and S2 moieties. The two moieties remain together as
the S1 moiety binds to the host’s angiotensin-converting
enzyme-2 (ACE-2) and the S2 moiety fuses with the host
cell [59]. Many organs have high levels of ACE-2 mRNA:
lung, heart, aorta, urinary tract, lymph-nodes, testis, ovary,
salivary gland, mammary gland, gastrointestinal tract,
brain (amygdala, cerebral cortex, brain stem) [60], plate-
lets, and megakaryocytes [61].

Autopsies of COVID-19 patients who died of ARDS
showed extensive necrosis of alveolar cells, type 2 alveo-
lar cell hyperplasia, and fibrin deposition in the alveolar
cells as well as considerable infiltration of CD4-T cells,
but little infiltration of CDS8-T cells [62, 63]. Pulmonary
arterioles contained an incompletely occluded hyaline
thrombus about 1-2 mm in diameter; vascular remodeling
in alveolar capillaries was abnormal with the normal ves-
sel hierarchy of the alveolar plexus substituted by bizarre
blood vessel formation, termed ‘intussusceptive angiogen-
esis’. This was significantly increased in patients with long
hospital stays [62]. Moreover, autopsies of patients who
died of ARDS revealed numerous intrapulmonary arteri-
ole thrombi including fibrin, CD61-positive platelets and
megakaryocytes, with positive immunostaining of VWF
[63]. These patients also had hypercellular bone marrow
[64, 65]. The pathogenesis of mixed thrombi of fibrin and
platelets in the lungs with or without megakaryocytes, and
without a significant reduction of circulating platelets, is
unknown. However, megakaryocytes in human lungs have
long been known [66], while the ratio of platelets to red
blood cells is higher in the cubital artery in the arm than
in the vein, suggesting that the lung may produce platelets
[67]. Proof that the human lung is a source of platelets is
lacking, although in mice, half of the platelets in the circu-
lating blood are produced in the lungs, and the other half
in the bone marrow [68]. Notably, the following studies
also identified ‘megakaryocytopathy’ occurring in hepatic,
cardiac and renal microvasculatures [64, 65], as well as in
cortical capillaries in the brain of a deceased COVID-19
patient who had experienced a brain fog [69].

From the early era of COVID-19, it has been noted that
in severe cases, the plasma level of VWF antigen is mark-
edly increased (278-772% of normal), and ADAMTS13
activity is moderately decreased (40-89% of normal),
resulting in an average ADAMTS13/VWF ratio of
0.18-0.35 [70, 71], usually without severe thrombocytope-
nia. A mild-to-moderate reduction in plasma ADAMTS13
activity in COVID-19 patients has been thought simply to
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reflect a severe inflammation reaction because VWF is a
marker of the acute phase, and is assumed to be a conse-
quence of UL-VWFMs released from vascular endothe-
lial cells under cytokine storms. Subsequent investiga-
tions have confirmed that a low ADAMTS13/VWF ratio
in patient plasma is associated with a high prothrombotic
risk [11-13]. Indeed, these patients sometimes have a vari-
ety of autoimmune complications, such as immune throm-
bocytopenia (ITP) [72], Guillain—Barré syndrome [73],
antiphospholipid syndrome (APS) [74], immune
TTP [75], and more recently anti-factor H associated
aHUS [76]. However, anti-PF4 antibody [77, 78] rarely
appears after SARS-CoV-2 vaccination. Root-Bern-
stein [79] recently proposed as an explanation that SARS-
CoV-2-associated autoimmunity may be enhanced by
coexisting bacterial or viral infections, as these pathogens
have primary amino acid sequence homology with many
human serum proteins. However, a direct link between
the autoantibodies and the mild-to-moderate reduction
of ADAMTSI13 activity in COVID-19 patients is not
known. A large increase in VWF released from vascular
ECs, metaphorically a ‘“VWF flood’, leaves UL-VWFMs
not only on ECs, but also in circulation without efficient
cleavage by ADAMTS13. These UL-VWFMs induce
platelet activation and aggregation, but curiously without
severe reduction of platelet counts. The elevated VWF
levels of patient plasma often lack UL-VWFMs or high
molecular weight (HMW)-VWFMs [80]. The propor-
tion of UL-HMW-VWFMs tended to decline in long-
term hospitalization patients in the ICU, possibly due to
selective consumption of UL-HMW-VWFMs involved
in platelet aggregates in TMA or to heightened cleavage
by ADAMTS13 under high shear stress generated during
extracorporeal membrane oxygenation (ECMO) applied to
severely ill patients [80, 81].

In severely ill patients, additional markers for vascular EC
damage, such as soluble (s) P-selectin, s-thrombomodulin
(TM), and sCD40L were elevated, along with cytokines
including TNFa, IL-6 and IL-10, but not IL-1b [82]. These
cytokines are likely released both directly and indirectly
from type 1 alveolar cells and alveolar resident cells, such
as neutrophils, lymphocytes and macrophages.

Complement activation

The complement system is part of the innate immune sys-
tem. It protects against pathogens in several ways including
opsonization, which facilitates the phagocytosis of patho-
gens, activation of leukocytes, and the production of ana-
phylatoxins (C3a and C5a). The three complement pathways
are the classical, lectin and alternative pathways (AP) [7].
The classical pathway is initiated by antibody production



COVID-19 microthrombosis: unusually large VWF multimers are a platform for activation of the... 461

and subsequent binding of antibodies to microorganisms,
in turn triggering a cascade of several complement pro-
teins, whereas in the lectin pathway, a lectin such as man-
nose binding lectin (MBL) binds to mannose moieties on
the surface of pathogens and initiates the complement cas-
cade through mannose associated serine protease (MASP1,
MASP2). The final product of the complement activation
cascade, termed a membrane attack complex (MAC/C5b-
9), results in phagocytosis of the microorganisms. In both
the classic and lectin pathways, the central C3 convertase
consists of two complement proteins, C4bC2a. However, the
activation of the AP is unique and does not require either a
pathogen recognition mechanism or C4b or C2a [7].
Figure 2 diagrams complement activation in the AP,
according to Pangburn and Miiller—Eberhard [83]. In this
pathway, plasma C3, which has a thioester domain, is spon-
taneously hydrolyzed by H,0 to form C3(H,0), to which
binds factor B, leading to proteolysis by factor D releas-
ing a 32 kDa-Ba protein and thereby generating C3(H,0)
Bb, which is the initiation C3-convertase. This convertase

then cleaves C3 into 2 fragments—C3a and metastable C3b.
The latter further changes either to the fluid-phase C3b by
hydrolysis or to the surface-bound C3b through covalent
binding of a thioester bond to the cell surface [84-86].

C3b when bound to microorganisms (activator surface)
forms C3bBb, due to the activity of C3-convertase; C3bBb
in turn binds to properdin (P or factor P) for stabilization.
Together they form an amplification cycle of C3 activation,
followed by the generation of C5-convertase in the alterna-
tive pathway (AP) that generates C3bBbC3b, resulting in
formation of C5b-9 (MAC), and leading to the death of the
microorganism [7]. The surface-bound C3b has been well
characterized, but the fluid-phase ‘soluble’ C3b, particularly
its function, has been little studied in vitro, presumably due
to its instability in vivo (Table 1).

In contrast, under normal physiological conditions (non-
activator surface), the surface-bound C3b is inactivated by
complement factor I, a serine protease, in cooperation with
two additional proteins: (1) complement factor H bound
to sulfated glycosaminoglycan (GAG) expressed on the
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Fig.2 Activation and amplification of the complement alternative
pathway (AP), according to Pangburn and Miiller-Eberhard [83]. In
this pathway, plasma C3, which has a thioester domain, is spontane-
ously hydrolyzed by H,0 to form C3(H,0), to which binds factor B,
leading to proteolysis by factor D releasing a 32 kDa-Ba protein and
thereby generating C3(H,0)Bb, which is the initiation C3-convertase.
This convertase then cleaves C3 into 2 fragments—C3a and metasta-

ble C3b. The latter further changes either to the fluid-phase C3b by
hydrolysis or to the surface-bound C3b through covalent binding of
a thioester bond to the cell surface. The surface-bound C3b has been
well characterized, but the fluid-phase ‘soluble’ C3b, particularly its
function, has been little studied in vitro, presumably due to its insta-
bility in vivo (See text in detail.)
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Table 1 Comparison of activation and regulation for the complement alternative pathway (AP) in non-COVID-19 and COVID-19

C3b binding Non-COVID-19 COVID-19

Platform Activator surface (microor- Non-activator surface (vascu- UL-VWEFEMs anchored to
ganisms etc.) lar ECs) vascular ECs

Mode C3b covalently binds via thioester groups to sugar chains or ~ S-protein of SARS-CoV-2 Non-covalent binding of C3b

amino acids containing hydroxyl groups

Ca’*-dependency No

binds to the glyocalyx of to the unfolded VWF-A2

vascular ECs, that competes ~ domain
with Factor H binding
No Yes

Regulation Tic-over EC-bound C3b is inactivated SARS-CoV-2 infection 1. SARS-CoV-2 infection
by complement and its 2. Cytokine storm
regulatory factors 3. Release of UL-VWFMs

4. Suppression of
ADAMTS13
Complement AP Activation Inhibition Activation Activation

AP alternative pathway, EC endothelial cell, UL-VWFM unusually large von Willebrand factor multimer

vascular EC surface, and (2) membrane cofactor protein
(MCP) or CD46 (figure not shown) [7, 87]. The gene muta-
tions responsible for such complement and its regulatory
factors often induce the uncontrolled complement activation,
termed atypical HUS [87].

NETs in COVID-19 thrombosis

The spike (S) protein of SARS-CoV-2 binds not only to
ACE-2, but also in vitro to heparan sulfate on the glycocalyx
of cultured vascular ECs, to which factor H, a complement
regulatory protein, also binds under physiological conditions
[88]. These two ligands may compete with each other for
binding, resulting in uncontrolled activation of the AP. This
finding is important, but its clinical significance needs to be
evaluated, since most patients infected with SARS-CoV-2
have only low levels of the virus in their circulation and
do not develop thromboses. A study updated by a French
group indicated that severe COVID-19 patients with under-
lying TMA had mutations in complement and its regula-
tory factors that were indistinguishable from those in aHUS
[89]. This finding is also relevant, because severe infections
including influenza etc. are often strong inducers for TMA
bouts in aHUS patients.

On the other hand, another recent study showed that
human vascular ECs express little or almost no ACE-2 [90].
This finding may in part address why SARS-CoV-2 infec-
tion has not been confirmed by blood transfusion [91], and
further strengthens the idea that COVID-19 endotheliopathy
is associated with an indirect cause rather than with direct
SARS-CoV-2 infection, as discussed above. For example, an
anti-SARS-CoV-2 spike (S) IgG with an aberrant glycosyla-
tion site (low fucose and high galactose) on the Fc domain was
found in severely ill COVID-19 patients [92, 93], and a similar
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antibody complexed with recombinant SARS-CoV-2 spike (S)
protein induced platelet activation via binding of the complex
to the platelet IgG-Fc receptor (FcyRIIA) [94]. Platelet acti-
vation was assumed to generate intracellular signal transduc-
tion to activate the platelet GPIb/IX complex, to which VWF
binds and forms platelet thrombi in vitro. This suggests that the
immune complex itself may activate the classic complement
pathway. In contrast, the role of the lectin pathway in comple-
ment activation during SARS-CoV-2 infection seems clear,
because it is initiated by the binding of mannose binding lectin
(MBL) to the spike (S) protein of SARS-CoV-2, leading to the
activation of MBL-associated serine protease 2 (MASP-2) [7].

In patients with COVID-19 thrombosis, plasma levels of
NETs, TF, the thrombin—antithrombin (TAT) complex, and
soluble (s) C5b-9 (MAC) are elevated [9, 10]. Also, neutro-
phils isolated from healthy individuals and stimulated with
platelet-rich plasma from patients with COVID-19, but not
with plasma devoid of platelets, efficiently release TF-bear-
ing NETs, indicating a critical role of platelets. Importantly,
the release of NETs from neutrophils was totally abolished
by inhibition either of complement activation with a C5aR1
antagonist or with a thrombin inhibitor (dabigatran) or a pro-
tease-activated receptor-1 (PAR-1) inhibitor. These results
indicate that TF-bearing NETs generated by a double-hit
phenomenon function as a driver of COVID-19 thrombosis,
where C5a binding to C5aR1 on the neutrophil surface gener-
ates intracellular TF, and thrombin is released from platelets
activated by C3a through its binding to the surface receptor
PAR-1 [9].
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Activation and amplification

of the alternative complement pathway
in congenital deficiency of ADAMTS13
activity

Congenital TTP (¢cTTP), termed Upshaw-Schulman syn-
drome, is a hereditary deficiency of ADAMTS13 activity
caused by biallelic ADAMTS13 gene mutations [95-97].
A hallmark of cTTP is severe neonatal hemolytic jaundice
necessitating exchange blood transfusions, that is gener-
ated under high shear stress induced by shrinkage of the
patent ductus arteriosus, usually within 2-3 days after
birth [98]. Beyond this period, these patients exhibit either
the early- or late-onset phenotype of TTP bouts [99, 100].
In both, however, there is often severe renal dysfunction
during the acute phase [14—-16]. Kidney biopsies revealed
deposits of complement C3 and C5b-9 in the renal cor-
tex [14]. Moreover, in these patients, the plasma level of
sC5b-9 was remarkably increased during the acute phase
[15], even without the accompanying gene mutations of
complement and its regulatory factors responsible for
atypical HUS [16, 17], while ex vivo assays showed that
patient serum induced C3 and C5b-9 deposits on cultured
vascular ECs. These deposits were eliminated by spiking
cTTP serum with recombinant ADAMTS13, indicating
that in these patients, complement is activated via the AP
on the surface of vascular ECs [16].

Additional evidence of a relationship between VWF
and complement is that the A domain of VWF shares the
primary sequence homology with complement factor B
[18-20]. When factor B binds to C3b followed by cleavage
by factor D, the complex becomes C3-convertase (C3bBb)
with release of Ba. The Bb moiety consists of the N-ter-
minal VWF-A (homologous) domain and the C-terminal
serine protease domain. Competition assays and mass
spectrometry showed that the recombinant (factor B)
VWF-A domains are responsible for binding to C3b [19].
However, in spite of a high sequence homology between
both A-domains, it had been uncertain whether C3b can
bind to the VWF-A domain, but that was shown by Bettoni
et al. [16] (below).

Under the flow of medium lacking ADAMTS13, con-
fluent cell cultures of vascular ECs from human umbilical
cord (HUVEC:) released UL-VWFMs that formed strings
anchored on the cell surface [52]. Washed platelets, subse-
quently added, adhered to these EC-anchored UL-VWFMs
like a bead necklace. However, added ADAMTS13 imme-
diately cleaved these UL-VWFMs. In addition, TNF«,
IL-8, and a complex of IL-6 and sIL-6R, like hista-
mine, induced UL-VWFM release from HUVECs. Curi-
ously, IL-6 alone at a high concentration did not induce
UL-VWFM release and rather significantly inhibited

ADAMTSI13 activity under flow conditions [101]. The
inhibition mechanism is still unclear, but none occurred
under non-flow static conditions, suggesting that inhibi-
tion by IL-6 occurs in a conformation-dependent manner
through interaction either with VWF or ADAMTS13. This
finding is extremely important and further indicates that
under a cytokine storm with high concentrations of several
cytokines, the hyperactive UL-VWFMs are not efficiently
cleaved by ADAMTS13 and accumulate on the vascular
EC surface via anchors, providing a platform for both
platelet thrombosis and activation of the AP.

In 2013, long before the emergence of COVID-19, Turner
and Moake [102] reported an extremely fascinating result, in
which under ex vivo flow and in the absence of exogenous
ADAMTS13, HUVECs upon stimulation with histamine
released several members of the AP and their regulatory
factors, which then bound to UL-VWFMs simultaneously
released from and anchored onto HUVECsS. These proteins
included C3, factor B, factor D, properdin, C5, factor H,
factor I, but notably not C4 [102]. This observation also
raised a question on the role on EC-derived ADAMTS13 in
regulating VWF multimeric size. In addition, in 2017 Bet-
toni et al. [16] demonstrated a consistent result, in which
‘soluble’ C3b can bind to the A2 domain of monomeric
VWEF coated onto microtiter wells under static conditions,
and after normal human serum addition to the wells, form
C3-/C5-convertase, in a Ca2+—dependent manner, that differs
from a Ca?*-independent activation process of the AP on
C3b covalently bound to cell surfaces [85, 86] (compari-
son shown in Table 1). More importantly, they also showed
that the ‘soluble’ C3b bound neither to plasma-derived nor
to recombinant multimeric VWF under static conditions,
indicating that C3b binding to VWF depends on the VWF
conformation [16]. Since both the classical and the lectin
pathways require C4b to form C3- or C5-convertase, but the
AP does not, complement activation in a VWF-dependent
manner must be via the AP.

UL-VWFMs are involved in activation

of the alternative complement pathway

on the micro-vasculatures during COVID-19
thrombosis

Under physiological conditions, C3b bound covalently to
the vascular ECs is inactivated by complement factor I,
a serine protease, in cooperation with complement fac-
tor H bound to sulfated glycosaminoglycan (GAG) on the
vascular ECs [7]. Factor H can also bind to the A1-A2
domain of VWF under high shear stress, promoting the
enhanced proteolysis of VWF by ADAMTS13 [40]. In the
absence of ADAMTS13, however, factor H bound to VWF
fails to dysregulate AP activation presumably due to the
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physiologically different positional relationship of C3b
and FH. Taking these scenarios together with the experi-
mental data discussed above, a model of VWF-dependent
complement activation of the AP during COVID-19 can be
proposed as shown in Fig. 3. First, SARS-CoV-2 invades
the lung alveoli from the respiratory tract and infects type

@ Springer

2 alveolar epithelial cells and macrophages. This causes
release of cytokines from resident cells, such as mac-
rophages, CD4-T lymphocytes and neutrophils. Inflam-
matory cytokines further stimulate release of cytokines
from blood cells and vascular ECs, generating a cytokine
storm [103]. Consequently, IL-8, TNFa, and a complex of



COVID-19 microthrombosis: unusually large VWF multimers are a platform for activation of the... 465

«Fig.3 The role of UL-VWFMs in activation of the alternative com-
plement pathway (AP) in the microvasculatures during COVID-19
thrombosis. SARS-CoV-2 invades lung alveoli from the respiratory
tract and infects type 2 alveolar pneumocytes and macrophages. This
causes release of cytokines from resident cells, such as macrophages,
CD4-T lymphocytes and neutrophils. Inflammatory cytokines fur-
ther stimulate release of cytokines from blood cells and vascular
ECs, generating a cytokine storm. Consequently, IL-8, TNFa, and a
complex of IL-6 and its soluble receptor (sIL-6R) stimulate vascu-
lar ECs, and induce exocytosis of UL-VWFMs from Weibel-Palade
Bodies (WPBs). Under a high shear flow, UL-VWFMs undergo a
conformational change, allowing ADAMTS13 more accessibility;
however, IL-6 interferes with this interaction, resulting in inhibition
of ADAMTSI13 activity. In such microenvironments, the Al-loop
domain of VWF binds platelets, forming platelet aggregates with or
without involving resident megakaryocytes. The activated platelets
release PF4 and TSP-1 from the a-granules, both of which bind to
the A2-domain of VWF and block cleavage by ADAMTS13. The
Al-loop domain of VWF binds to the heparan sulfate of syndecan-1
on the vascular EC surface, while the A2 domain binds to C3b gener-
ated by the AP activation. C3b bound to UL-VWFM anchored on the
EC surface binds factor B, which is proteolyzed by factor D. Then
binding of properdin to the C3b moiety as a stabilizer results in the
formation of C3-convertase in the AP. Subsequent activation through
the AP (C5-convertase) (C3bBbC3b) produces C5b, to which C6~C9
bind, finally forming C5b-9 (MAC), which in turn activates endothe-
lial cells (EC) together with endotheliopathy, UL-VWEM is a major
constituent of WPBs, which also contain IL-8, Ang-2, t-PA, etc. The
secretion of IL-8 into the circulation enhances UL-VWFM release
and accelerates C3b binding to UL-VWEM on the vascular EC sur-
face, promoting platelet thrombi formation. The released t-PA gen-
erates plasmin under microenvironments in which thrombomodulin
(TM) on the vascular EC surface undergoes shedding. TM binds to
thrombin to form a complex that inhibits thrombin activity, but acti-
vates protein C and thrombin-activatable fibrinolysis inhibitor (TAFI)
to TAFla (carboxypeptidase), which can proteolytically inactivate
both C3a and C5a. Shedding of TM loses the antithrombotic function
of vascular ECs, turning them into the thrombogenic surface

IL-6 and its soluble receptor (sIL-6R) stimulate vascular
ECs, and induce exocytosis of UL-VWFMs from WPBs.
Under high shear flow, UL-VWFMs undergo a conforma-
tional change, allowing ADAMTS13 more accessibility;
however, IL-6 interferes with this interaction, resulting in
inhibition of ADAMTS13 activity [101]. This inhibitory
effect could also be heightened by the binding of TSP-1
and/or PF4 to VWF-A2 domain [34, 35]. In such microen-
vironments, the 3-loop domains (A1-A2-A3) of VWF are
exposed on the molecular surface. The Al-loop domain
binds to the heparan sulfate of syndecan-1 on the vascular
EC surface [30], while the A2 domain binds to C3b gen-
erated by AP activation, without interference of factor H,
as mentioned.

In summary, C3b bound to UL-VWFM anchored on
the EC surface binds factor B, which is proteolyzed by
factor D, and then binding of properdin, as a stabilizer, to
the C3b moiety results in the formation of C3-convertase
in the AP. Subsequent activation through the AP (C5-con-
vertase) (C3bBbC3b) produces C5b, to which C6 ~C9

bind, finally forming C5b-9 (MAC), which in turn causes
EC activation together with endotheliopathy,

UL-VWFM is a major constituent of WPBs, which
also contain IL-8, Ang-2, t-PA, etc. [21, 22], as described
above. The secretion of IL-8 into the circulation enhances
UL-VWEFM release and also accelerates binding of C3b to
UL-VWFM on the vascular EC surface, promoting plate-
let thrombi formation. The released t-PA generates plasmin
under microenvironments in which TM on the vascular EC
surface undergoes shedding. Physiologically, TM binds to
thrombin to form a complex, inhibiting thrombin activity,
but activating protein C and thrombin-activatable fibrinoly-
sis inhibitor (TAFI) to TAFIa (carboxypeptidase), which can
proteolytically inactivate both C3a and C5a. The shedding
of TM loses the antithrombotic function of vascular ECs,
turning them into the thrombogenic surface. Further, both
VWF and Ang-2 are constituents of WPBs and co-operate
in vascular angiogenesis, where VWF signals via olIbp3-
integrins to promote smooth muscle proliferation, and Ang-2
via VEGFR?2 signaling for endothelial cell migration/prolif-
eration [104, 105]. Thus, the imbalance between these two
signals may in part address why fragile blood vessels, as in
‘intussusceptive angiogenesis’ in the lung, are formed during
longer hospitalization of COVID-19 patients [62].

Conclusions

NETs are an important driver for COVID-19 immunothrom-
bosis [10], more profoundly in concert with complement
activation; thus the plasma levels of activated complement
components are excellent indicators for the disease sever-
ity [11]. In this setting, both classical and lectin pathways
of complement activation are well characterized [7], but
the AP has been poorly understood. Binding of the spike
(S) protein of SARS-CoV-2 to heparan sulfate on vascular
ECs [88] indicates competition for binding with factor H,
thus mediating activation of the AP. However, a majority
of infected patients do not develop thrombosis, emphasiz-
ing the requirement of the amplification mechanism for AP
activation. Such absence of blood-born infection of SARS-
CoV-2 might be because human vascular ECs apparently
express little or almost no ACE-2 [91].

A low ADAMTS13/VWEF ratio has been an independent
indicator of COVID-19 severity apart from complement acti-
vation [12—14]. Whereas, amplification of AP activation is
a phenomenon lately recognized in congenital deficiency of
ADAMTS13 activity [15, 16]. Although COVID-19 patients
do not show severe deficiency of plasma ADAMTS13
activity, during a cytokine storm, large amounts of VWF
are released and ADAMTS13 activity is suppressed spe-
cifically by IL-6 under the high shear stress generated in
microenvironments in concert with binding of TSP-1 and
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PF4 which bind to the VWF-A2 domain, where VWF func-
tions as a platform for AP activation and amplification. This
hypothesis is suggested by historical reviews concerning the
common decent of VWF and complement factor B [18-20],
and appears to fit with the direction of current therapeutic
options. Further, recent studies on SARS-CoV-2 vaccine-
induced thrombotic thrombocytopenia have focused on its
association with PF4, ADAMTS13 and complement acti-
vation. In particular, autoantibodies against PF4 resulting
in increased stability of UL-VWFMs have been implicated
in vaccine-induced thrombosis (VITT), although a possible
role of the alternative complement pathway in VITT has not
been characterized [77, 78].

In sum, the clinical and experimental data on blood clot-
ting disorders together with the clinical data on COVID-
19 point to the complex scheme outlined in Fig. 3 whereby
infection with SARS-CoV-2 in the lungs induces a cytokine
storm that in turn acts on the vascular endothelium to release
VWF and other proteins such as t-PA from vascular ECs,
at the same time inhibiting secretion and function of the
protease ADAMTS13, that normally cleaves UL-VWFMs.
The alternative complement pathway is activated, further
promoting release of VWF, t-PA and thrombomodulin from
vascular ECs. The end result of the combination of excess
UL-VWEMs tethered to the vascular endothelial surface plus
elevated concentrations of several clotting factors is wide-
spread microthrombosis.
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