
Nature Methods

nature methods

https://doi.org/10.1038/s41592-022-01674-1Article

SVDSS: structural variation discovery
in hard-to-call genomic regions using
sample-specific strings from accurate
long reads

Luca Denti1,6, Parsoa Khorsand2,6, Paola Bonizzoni    3,7  ,
Fereydoun Hormozdiari    2,4,5,7  & Rayan Chikhi    1,7 

Structural variants (SVs) account for a large amount of sequence variability
across genomes and play an important role in human genomics and
precision medicine. Despite intense efforts over the years, the discovery
of SVs in individuals remains challenging due to the diploid and highly
repetitive structure of the human genome, and by the presence of SVs that
vastly exceed sequencing read lengths. However, the recent introduction
of low-error long-read sequencing technologies such as PacBio HiFi
may finally enable these barriers to be overcome. Here we present SV
discovery with sample-specific strings (SVDSS)—a method for discovery
of SVs from long-read sequencing technologies (for example, PacBio HiFi)
that combines and effectively leverages mapping-free, mapping-based
and assembly-based methodologies for overall superior SV discovery
performance. Our experiments on several human samples show that
SVDSS outperforms state-of-the-art mapping-based methods for discovery
of insertion and deletion SVs in PacBio HiFi reads and achieves notable
improvements in calling SVs in repetitive regions of the genome.

SVs are defined as medium to large-size genomic rearrangements1,2. SVs
can range from tens of basepairs to over megabases of sequence. Differ-
ent types of SVs include balanced SVs, such as inversions and transloca-
tions, and unbalanced SVs, such as insertions and deletions3. The study
and characterization of SVs has been driven by constant improvements
in the technologies available to assay variants. Although SVs are not the
most ubiquitous type of genetic variants, the total volume of basepairs
impacted by SVs is far more than any other type of genetic variant,
including single nucleotide variants (SNVs)4,5. Furthermore, recent
studies of SVs using orthogonal technologies have shown that SVs are

the least well-characterized type of genetic variant, with many basic
questions, such as the average number of SVs per sample or sequence
biases contributing to their formation, still not completely resolved6–9.
In addition, the homology-driven mechanisms behind SV formation
(for example, nonallelic homologous recombination) have contributed
to the complexity of their systematic study10. It is believed that a large
fraction of polymorphic SVs are still not fully characterized11,12.

As our current understanding of SVs evolves, it is becoming clear
that SVs are a main contributing factor to human diseases13–15, popu-
lation genomics5,16 and evolution17. The comparative study of SVs in

Received: 23 February 2022

Accepted: 8 October 2022

Published online: xx xx xxxx

 Check for updates

1Sequence Bioinformatics, Department of Computational Biology, Institut Pasteur, Paris, France. 2Genome Center, UC Davis, Davis, CA, USA. 3Department
of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy. 4UC Davis MIND Institute, Sacramento, CA, USA. 5Department of
Biochemistry and Molecular Medicine, Sacramento, UC Davis, Sacramento, CA, USA. 6These authors contributed equally: Luca Denti, Parsoa Khorsand. 7These
authors jointly supervised this work: Paola Bonizzoni, Fereydoun Hormozdiari, Rayan Chikhi.  e-mail: paola.bonizzoni@unimib.it; fhormozd@ucdavis.edu;
rayan.chikhi@pasteur.fr

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01674-1
http://orcid.org/0000-0001-7289-4988
http://orcid.org/0000-0003-2703-9274
http://orcid.org/0000-0003-1099-8735
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01674-1&domain=pdf
mailto:paola.bonizzoni@unimib.it
mailto:fhormozd@ucdavis.edu
mailto:rayan.chikhi@pasteur.fr

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

aligned to the reference genome to detect SVs. The main advantage
of using SFS is that they are not limited to fixed-length seeds (unlike
k-mers) and the algorithm can dynamically find the shortest string for
covering the breakpoints of each variant, thus making SFS ideal for
anchoring potential SV breakpoints.

SVDSS has three main steps as depicted in Fig. 1, sketched here and
explained in more detail in the Online Methods:

	(1)	 Read smoothing: reads are modified to remove sequencing er-
rors, single nucleotide polymorphisms (SNPs) and small indels
(<20 basepairs (bp)) that may interfere with SV calling (step (1);
Fig. 1 and Supplementary Fig. 3). Smoothing greatly reduces the
number of extracted SFS while increasing their specificity for
the purpose of SV calling.

	(2)	SFS superstring construction: SFS are computed from the
smoothed reads using the optimal Ping-Pong algorithm53 (2A;
Fig. 1) and then assembled into superstrings to reduce redun-
dancy (2B).

	(3)	SV prediction using SFS superstrings: SFS superstrings are clus-
tered based on position and extended to include unique anchor-
ing sequences from the reference genome (step 3A; Fig. 1), fur-
ther subclustered by length then assembled based on a partial
order alignment (POA) approach to generate haplotype candi-
dates (3B). Finally, SVs are called by aligning the resulting POA
consensus(es) (3C).
In the following sections, using experimental analysis on mul-

tiple WGS samples, we demonstrate that SVDSS accurately predicts
SVs and outperforms state-of-the-art approaches. We further show
that the main contribution of our proposed approach is the ability to
more accurately predict SVs falling in repeated regions of the genome
compared with other methods.

Benchmark and evaluation callsets
One complexity in comparing different tools for calling SVs is the
imperfectness of available callsets. Missing variants and potentially
false predictions affect almost all published callsets, and even the most
high-quality callsets have been reported to have a false discovery rate
(FDR) of around 5% and a much higher false negative rate6. Furthermore,
many callsets are constructed using state-of-the-art but imperfect
SV prediction tools and are thus biased toward these methods54. For
these reasons, we have opted out of using pre-existing callsets such
as the 2020 Genome In A Bottle (GIAB) v.0.6 callset45 in our experi-
mental benchmarking. Instead we constructed our ground truth SV
callsets from scratch using high-quality haplotype-resolved de novo
assemblies generated by using many technologies (T2T CHM13 v.1.1,
HG002 and HG007, described in Comprehensive detection of inser-
tions and deletions). A similar ground truth construction strategy was
employed in a 2022 GIAB benchmark51, although focusing on a subset
of medically relevant genes. We applied the assembly-to-assembly SV
calling tool dipcall54 to each assembly versus the entire GRCh38 refer-
ence genome (see Supplementary Information Section A for more
details). The three VCFs built using dipcall and used as ground truth in
our experimental evaluation are available at https://github.com/ldenti/
SVDSS-experiments. For a detailed comparison of the HG002 callset
built with dipcall and the v.0.6 callset provided by the GIAB project, we
refer the reader to Supplementary Information Section B.

Comprehensive detection of insertions and deletions
We experimentally validated the accuracy of the SVDSS pipeline in
calling SVs from three whole-genome sequenced samples sequenced
using PacBio HiFi technology: the homozygous CHM13 sample from
the telomore-to-telomere (T2T) project52 and the HG002 and HG007
samples corrected using DeepConsensus55. These samples were
chosen because of the availability of high-quality and effectively
complete assemblies for them. Furthermore, the DeepConsensus
corrected HG002 and HG007 samples show higher accuracy than

several closely related species (for example, great apes) has shown the
considerable contribution of SVs to evolution (for example, through
gene duplication or deletion18,19). Furthermore, the study of rare and
de novo SVs in disease such as autism and epilepsy has proven the
notable contribution of these variants in such conditions15,20–23. It is
also known that somatic SVs are one of the main causative variants in
different types of cancer24–27.

With the advent of short- and long-read high-throughput
sequencing technologies in the past decade, noteworthy progress
has been made in our understanding of the abundance, complex-
ity and importance of SVs28–31. Many methods have been developed
for prediction of SVs using whole-genome sequencing (WGS) data
produced from different sequencing technologies32–42. Most of these
methods try to predict variants by detecting certain SV signatures
(that is, read-depth, read-pair or split-read) in mappings of the reads
to the reference genome6,43,44 and are hence known as ‘mapping-based’
methods. Mapping-based methods have contributed to our under-
standing of the abundance of SVs in the general population and their
role in disease11,45,46. Mapping-free methods are a more recent group of
approaches that try to predict SVs without mapping the reads to the
reference genome and instead by comparing sequence data between
different genomes34,47. Finally, assembly-based approaches first assem-
ble the sequenced reads into longer contigs and use the assembled
contigs to predict variants48–50. Assembly-based methods have recently
been shown to provide superior performance to mapping-based tools51.

There are limiting factors for predicting SVs using each of these
frameworks. Since most SV prediction tools use mappings of the reads
to the reference genome for making SV calls, predicting SVs in highly
repeated regions of the genome (for example, segmental duplications)
where mappings can be inaccurate would be prone to false discovery.
Reference genome gaps and misassemblies further complicate the
prediction of SVs in these regions and result in decreased accuracy
and increased variability across tools8. The mapping-free approaches,
on the other hand, suffer from not being able to provide the loci of
the event. Furthermore, fixed-length (k-mer) sequence comparisons
performed in mapping-free tools can result in collapse of repeats and
lower sensitivity/accuracy. Finally, assembly-based approaches are
very computationally resource intensive and often require integration
of data from multiple different technologies (that is, long reads, short
reads and Hi-C)51,52, higher sequencing depths (35× was reported51), and
extensive polishing and postprocessing to yield a high-quality de novo
assembly suitable for variant prediction, thus making them impractical
for SV discovery across large populations.

Here, we propose a method called SVDSS that combines advan-
tages of all three mapping-based, mapping-free and assembly-based
approaches for predicting SVs. Our method uses mapping-free
sample-specific signatures53 along with mapping information to cluster
reads potentially including SVs, and then performs local assembly and
alignment of the clusters for SV prediction. With the combination of
different analysis methods, our algorithm is able to improve SV calling
performance particularly in repetitive areas of the genome compared
with other contemporary approaches.

Results
Overview of SVDSS
We present SVDSS—a method for the discovery of SVs from accurate
long reads (for example, PacBio HiFi). SVDSS takes as input a reference
genome and a mapped BAM file and produces SV calls in VCF format
along with assembled contigs for SV sites in SAM format. We use the
concept of sample-specific strings (SFS), which we introduced previ-
ously as all the shortest substrings unique to one string set with regards
to another string set53. We employ SFS here to pinpoint differences
between reads and a reference genome53. Our method computes SFS
for coarse-grained identification of potential SV sites. It assembles
clusters of SFS from such sites to produce contigs that are then locally

http://www.nature.com/naturemethods
https://github.com/ldenti/SVDSS-experiments
https://github.com/ldenti/SVDSS-experiments

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

Extended SFS superstring

Cluster window
Unique perfectly mapped 7 bp anchors

(3A) SFS are clustered based on their position on the reference genome
and extended until 7 bp mappable k-mer anchors

Reference genome

Mapped reads
Sequencing errors

SNPs

(1) Reads are smoothed to remove errors, SNPs and small INDELs

(2A) Sample-specific strings (SFS) are extracted from reads

(3C) POA consensus for each haplotype is locally aligned back to the reference for SV detection

POA consensus sequence

Local alignment CIGAR

SV calls

(2B) Overlapping SFS are merged into superstrings

 SFS superstringsOverlapping SFS

Heterozygous insertion (SV)

(3B) SFS are clustered based on length and assembled with POA
up to two length-based subclusters, each is considered a haplotype

TCG

A

C

C T C T T C

TCG

TCGGC

A

Lengthwise superstring clusters

POA alignment graphs
T

G

TG

Haplotype 1 Haplotype 2

Fig. 1 | Overview of the SVDSS SV prediction pipeline. In step (1), reads are
smoothed to remove SNPs and sequencing errors. SFS are extracted from reads
(step 2A) and assembled into superstrings (step 2B). In step 3A, superstrings
(gray) are clustered based on their placements on the reference genome and
extended to uniquely mappable 7 bp anchors on each side (colored). Each cluster

is further clustered into up to two subclusters based on length of the superstring
(step 3B). Each subcluster represents a potential haplotype. The subclusters
are assembled with POA to generate a consensus sequence (step 3C). The POA
consensus for each cluster is aligned locally to the reference genome and SVs are
called from the mapping information.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

standard HiFi samples corrected using only pbccs55. The use of both
homozygous (CHM13) and heterozygous (HG002 and HG007) sam-
ples allows for more comprehensive analysis and comparison of SV
calling methods.

We mapped each sample against the reference genome using
pbmm2 and then called SVs on each sample using the SVDSS pipeline.
We compared our approach to five state-of-the-art mapping-based
SV callers: pbsv, cuteSV56, sniffles41, SVIM57 and a recent preprint on a
POA-based method, debreak58. We ran each caller setting the minimum
SV support to four when analyzing the 30× CHM13 sample and to two
when analyzing the 15× HG002 and HG007 samples. We then examined
their insertions and deletions calls. We validated the calls of each tool
against the set of SVs constructed with dipcall using Truvari59, a SV
evaluation framework that reports precision, recall and F1 score for
each method. We ignored genotype-level accuracy, that is, we checked
only for the presence of the corrected allele (see Supplementary Infor-
mation Section D for more information on how we ran Truvari, as well
as other tools used in our analysis). From this comparison, we further
exclude calls made in regions of the reference genome not covered by
both haplotypes, as any such call would be classified as false positive
regardless of correctness.

On HG002 and HG007 samples, SVDSS outperforms the recall of
the other callers by 5–10% while achieving the highest (or second high-
est) precision on the full genome (Table 1, Full Genome rows). SVDSS has
been able to report 2,342 (+10% relative to second-best approach) more
correct calls on HG002 and 1,631 (+8%) more calls on HG007 without
introducing many false calls. SVDSS also achieves the highest recall
on CHM13 and reports 782 (+2%) more true positive calls than other
methods while maintaining a very high precision. While SVDSS has the
highest F1 score on CHM13, we note that the whole-genome improve-
ments achieved by SVDSS over other approaches is less pronounced
for this sample compared with the other two samples (improvement
of 2–5% in recall and 1% in F1 while achieving similar precision to other

tools). This is probably due to the homozygous nature of CHM13 mak-
ing SV calling relatively easier for all approaches.

Figure 2a reports the length distribution of the SVs called by each
tool on the HG007 sample. On HG007, the number of SVs reported by
each tool ranges from 34,827 to 38,659, with SVIM reporting the lowest
number of SVs and SVDSS reporting the highest number. Overall, all the
tools report more insertions than deletions with shorter SVs (≤100 bp)
being more frequent than longer SVs. Moreover, all the tools show a
clear peak at around 300 bp, reflecting Alu mobile elements.

We also repeated the above experiment on HG007 using differ-
ent aligners to test how SV callers are influenced by how reads are
aligned. We tested all six callers in combination with minimap2 (ref. 60)
and ngmlr41 (Supplementary Table 2). We also noticed that SVDSS
substantially improves our ability to predict SVs in comparison with
state-of-the-art approaches using minimap2 mapper, while being one
of top performer tools using ngmlr mapper (Supplementary Table 2).

We also investigated how read coverage affects SV calling per-
formance. To this aim, we subsampled the HG007 sample (coverage
15×) down to 5× and 10× and we ran the six considered approaches on
these two newly created samples. Our SVDSS approach was also able to
outperform other approaches using 10× sequencing coverage in all the
metrics of interest (precision, recall and F1; Fig. 2b and Supplementary
Table 3). When sample coverage is low (5×), pbsv achieves the highest
recall (63.2%) at the expense of lower precision (58.6%), whereas other
tools achieve similar high precision (ranging from 87.4% of SVIM to
92.9% of SVDSS) but low recall (ranging from 46.2% achieved by SVDSS
to 51.6% achieved by cuteSV). As already pointed out by Chen et al.58,
debreak works poorly with low-coverage samples. On the other hand,
with higher coverages of 10× and 15×, SVDSS achieves the best precision
and recall, outperforming other approaches.

Finally, our pipeline has the second-lowest runtime among the
considered methods behind cuteSV. More details on runtime and
performance are available in Online Methods.

Table 1 | Comparison of performance of SVDSS and other methods on calling SVs

HG002 HG007 CHM13

Region Tool P R F1 P R F1 P R F1

Full Genome SVDSS 88.4 78.2 83.0 90.1 76.5 82.7 87.3 84.6 86.0

cuteSV 86.0 68.6 76.3 88.3 68.1 76.9 87.1 79.7 83.2

pbsv 86.9 68.8 76.8 84.9 68.6 75.9 84.6 82.7 83.6

sniffles 82.0 67.3 73.9 86.7 64.1 73.7 86.4 81.4 83.8

SVIM 83.5 65.1 73.2 84.9 64.7 73.4 90.1 79.9 84.7

debreak 88.6 67.5 76.6 90.1 64.2 75.0 83.7 79.6 81.6

Tier 1 SVDSS 95.2 85.5 90.1 95.2 82.7 88.5 95.3 93.4 94.5

cuteSV 90.9 82.9 86.7 93.0 79.9 86.0 94.8 93.1 93.9

pbsv 95.7 83.1 89.0 89.7 80.5 84.9 94.0 93.7 93.9

sniffles 87.7 81.1 84.3 92.3 75.9 83.3 87.2 93.6 90.3

SVIM 90.1 81.1 85.4 91.5 77.9 84.2 96.6 92.5 94.5

debreak 96.8 82.5 89.1 96.2 76.4 85.2 93.7 93.0 93.3

Extended Tier 2 SVDSS 82.7 72.3 77.2 84.6 70.2 76.7 80.3 77.4 78.8

cuteSV 80.9 57.0 66.9 82.3 56.0 66.6 79.9 68.1 73.6

pbsv 78.4 57.2 66.1 78.8 56.4 65.7 76.0 73.3 74.6

sniffles 77.8 56.1 65.2 80.3 52.1 63.2 72.7 73.2 72.9

SVIM 76.4 52.0 61.9 76.2 51.2 61.2 83.4 69.3 75.7

debreak 80.4 55.3 65.5 82.3 51.9 63.7 74.4 68.1 71.1

Results are shown in terms of P, R and F1 with bold faced numbers indicating best performance. Results are further broken down by considered regions of the genome. Tier 1 accounts for
nearly half of SVs and consists of 86% of the genome. Extended Tier 2 accounts for the remaining 14% of the genome and 50% of SVs and includes repetitive regions that are more difficult to
genotype. See Supplementary Fig. 5 for more detail on tiers. F1, F-measure; P, precision; R, recall

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

Improved SVs calling in hard-to-analyze regions
For further analysis, we partitioned the genome into two sets of inter-
vals (tiers) as previously done by GIAB45. Tier 1 accounts for nearly
86% of the genome spanning 2.51 Gbp, includes 50% or less of the total
expected number of SVs and is probably biased toward easy-to-call
SVs (as stated in the README of the GIAB v.0.6 callset provided at
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
analysis/NIST_SVs_Integration_v0.6/README_SV_v0.6.txt). Tier 2
accounts for nearly 0.8% of the genome and consists of around 6,000
difficult-to-genotype sites. The remaining 13% of the genome con-
sists mostly of centromeres, telomeres and microsatellite regions (for
example, short tandem repeats), which are generally more difficult to
genotype because of their repeat structure and due to the ambiguities
of the reference genome. Because the high-quality assemblies that are
the basis of our analysis include effectively complete genomes for each
individual, we decided to extend Tier 2 to also include these remaining
13% regions (Extended Tier 2). This way, we are able to more thoroughly
evaluate the accuracy of each method across the entire human genome
and we do not limit our analysis to easier-to-call regions (that is, Tier 1).
Our final partitioning consists of Tier 1 and Extended Tier 2, represented
in Supplementary Fig. 5.

In this analysis, we considered the callsets produced by SVDSS,
cuteSV, pbsv, sniffles, debreak and SVIM starting from pbmm2 align-
ments. Table 1 reports the results of this analysis. Results on both tiers
follow the same trend as with the full genome, with SVDSS managing to
call more correct SVs without introducing many false calls. As expected,
all tools achieve higher accuracy on Tier 1 regions, which are easier to
analyze. Furthermore, we observed that the improvement between
performance of SVDSS and other tools widens in the Extended Tier 2

regions of the genome (Table 1). Remarkably, on difficult-to-analyze
regions (that is, Extended Tier 2), SVDSS achieves the highest recall,
outperforming other callers by 15%, 14% and 4% on the HG002, HG007
and CHM13 samples, respectively.

To further provide evidence of correctness for true positive calls
in these hard regions, we analyzed how these calls are shared among
the tested callers using an upset plot61. Upset plots are an alternative
to Venn diagrams that represent more conveniently the intersections
of multiple sets. Figure 2c shows that, out of the 10,333 total SVs in the
truth set for HG007 (that is, the dipcall callset), 3,720 (36%) are cor-
rectly called by all the tested approaches, whereas 2,399 (23%) are not
detected by any tool. Remarkably, 739 SVs (7%) are detected only by our
pipeline, partially explaining the higher recall it is able to achieve. SVIM
has the second highest number of specific calls at 130. Supplementary
Fig. 14 shows the distribution of SVDSS-specific versus SVIM-specific
calls on chr1, chr2 and chr3 of the HG007 sample. SVDSS also detects
the highest number of SVs that would have been exclusive to other
tools, that is, 172 (1.6%) calls are shared by SVDSS and sniffles, and 169
(1.6%) are shared between SVDSS and pbsv.

We manually investigated some of the SVs that are exclusively
called by SVDSS. Some of these calls are SVs that exhibit two different
alleles on the two haplotypes. These SVs account for heterozygous SVs
with two nonreference alleles (as defined in Denti et al.62), that is, SVs
genotyped 1/2 (see two examples in Supplementary Figs. 10 and 11) as
well as pairs of close SVs whose alleles come from different haplotypes
(see an example in Supplementary Fig. 12). We observed that a total of
343 SVs called exclusively by SVDSS and matching dipcall predictions
on the HG007 genome were located at exactly the same position as
another called SV and are heterozygous SVs with two nonreference

0.25

Deletions

a

c

b d

Insertions

0.20

0.15

D
en

si
ty

Re
ca

ll

0.10

0.05

0
108 106 104 102 102 104

Length
106 108

100

90

80

70

60

Tool Coverage
5x
10x
15x

SVDSS
VCF

SVDSS

3,000

2,000

In
te

rs
ec

tio
n

si
ze

1,000

0

5,0
00 0

CuteSV

CuteSV
pbsv

pbsv
Sni�les

Sni�les

SVIM

SVDSS
CuteSV
pbsv
Sni�les
SVIM

Debreak

SVDSS
CuteSV
pbsv
Sni�les
SVIM
Debreak

SVIM
Debreak

30

20
50 60 70 80

Precision
90 100

0

0
0 0

0

0

0

0 0

0

000

0
0

0
0

0
0

0 0
3

2

2

7

1

1

211
2

5
0

40

50

Fig. 2 | Extended comparative analysis of SV calls across methods. a,
Distribution of SVs lengths reported by different tools on HG007 (Full Genome).
b, Lineplot presenting results of the coverage titration for 5×, 10× and 15×.
c, Analysis of shared calls (True Positives) between different tools on HG007
(Extended Tier 2). d, Venn diagram showing shared calls (True Positives) between

different tools on the 273 medically relevant genes considered in the CMRG
callset. To keep the Venn diagram cleaner, we decided to exclude debreak since it
called the fewest True Positives. A supervenn figure including all tools is shown in
Supplementary Fig. 7.

http://www.nature.com/naturemethods
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/README_SV_v0.6.txt
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/README_SV_v0.6.txt

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

alleles, while a total of 227 SVs are close (≤ 100 bp) to another predicted
SV (Supplementary Fig. 6).

Hard-to-analyze regions harbor SVs of clinical importance
To perform a more thorough analysis of the HG002 individual, we
considered the Challenging Medically Relevant Genes (CMRG) callset
provided in Wagner et al.51 and we evaluated callers’ accuracy against
it. The CMRG callset consists of 250 SVs falling in 126 challenging and
medically relevant genes that were excluded from the previously pub-
lished GIAB benchmark45 due to their complexity: compound heterozy-
gous insertions, complex variants in segmental duplications and long
tandem repeats. The CMRG callset was created by diploid assembly of
the haplotypes using hifiasm and then dipcall, proving once again the
effectiveness of assembly-based methods for detecting hard-to-analyze
SVs when well-curated assemblies are available.

As done previously, we computed the accuracy of SVDSS and the
other five SV callers using Truvari. Out of the 250 SVs contained in the
CMRG callset, SVDSS correctly called 232 SVs followed by pbsv (228)
and cuteSV (225), SVIM (221), debreak (220) and sniffles (218). As shown
in Fig. 2d (and Supplementary Fig. 7, where all tools are considered),
five SVs are exclusive to SVDSS, while two are missed exclusively by
SVDSS: one was reported but with a length just under the evaluation
threshold of Truvari; the other was missed due to being detectable
only in clipped reads, which SVDSS does not consider by default. We
then manually investigated the SVs that were exclusively called by
SVDSS, discovering that all exhibited two alleles, one per haplotype
(that is, heterozygous SVs with two nonreference alleles). This result
confirms previous findings51 that heterozygous insertions in tandem
repeats are among the most challenging classes of SVs to discover with
current methods.

Figure 3 shows one of the SVDSS-exclusive SVs, a double inser-
tion inside the SLC27A5 gene on chromosome 19. Although the two
haplotypes can be distinguished easily by visual inspection of adjacent
heterozygous SNPs, the tested callers disagree on which allele to call.
For instance only SVDSS calls two alleles of length 168 bp and 224 bp
agreeing with the CMRG callset, whereas pbsv and sniffles report only
one of the two (168 bp). Surprisingly, cuteSV, SVIM and debreak report a
single allele of length 185 bp, which does not match any of the evidence
from read alignment. Additionally, we considered the portion of the
high-quality HG002 assembly covering that locus (chr19:58487900–
58488500) and we checked its alignment against the reference genome
(Fig. 3 and Supplementary Fig. 8). Although the considered locus is
in a repetitive region (as also proven by the noisiness of the dotplots
shown in Supplementary Fig. 8), the haplotype alignment confirms the
presence of two allelic insertions of different lengths.

SVDSS has extremely low baseline error rate
Finally, we further investigated the lower bound on baseline FDR
of SVDSS by comparing the HiFi reads from CHM13 against the
high-quality T2T assembly52 of the same sample. Given the almost
perfect T2T CHM13 assembly produced using multiple orthogonal
technologies, it is expected that an ideal SV caller would predict no
SVs when comparing CHM13 reads against this assembly. Thus, we
propose an experiment to establish a lower bound on the baseline FDR
of different methods by comparing how many SV calls they report on
the CHM13 HiFi reads against its T2T assembly.

Ideally, the SVDSS pipeline should generate zero SVs calls in this
scenario as no SFS should be extracted when querying smoothed
CHM13 reads against the T2T assembly. However, this will not be the
case in practice due to mapping ambiguities in repetitive regions of the
genome. Still, we expect the method to produce very few variant calls.

As a side-objective, we will also investigate the resulting SV calls
to find if our method has discovered any true SVs missing from the T2T
assembly. Due to the effectively homozygous nature of the CHM13
genome, any true variant discovered must be homozygous. However,

it is possible that artifacts accumulated in the cell-line and actual het-
erozygosities in the genome may result in heterozygous SVs being
reported.

We built the FMD index for v.1.1 of the CHM13 assembly and
extracted SFS from CHM13 HiFi reads smoothed against the T2T
assembly using this index. We then passed the SFS through the SVDSS
pipeline for SV discovery. Our pipeline discovers a total of 102 SVs. For
comparison, we repeated the above experiment with the other tools
pbsv, cuteSV, SVIM, debreak and sniffles. Table 2 includes a summary of
the results. We calculated the baseline FDR for each tool as the number
of calls it makes against T2T divided by the number of calls it makes
against GRCh38. SVDSS has the lowest number of calls against the T2T
assembly and also has the lowest baseline error rate.

We further investigate if any of our calls are indeed true variants.
The T2T project provides a list of known heterozygous sites on CHM13
(refs. 52,63) and 13 of our SV calls intersect these regions, suggesting that
they may be actual heterozygous alleles missing from the homozygous
assembly. We also report the number of intersecting calls in Table 2
for every tool. SVDSS has the highest ratio of calls intersecting known
heterozygous regions. We performed additional filtering of the calls
using Merfin64—a variant call polishing tool that filters VCF files based
on whether the variants introduce k-mers not found in the sequencing
reads. Only one of our calls passes Merfin’s filtering and we verify that
the call seems to be a heterozygous site (Supplementary Fig. 9).

In summary, SVDSS produces only 102 calls using CHM13 HiFi
reads against the T2T CHM13 assembly, some of which may be actual
true heterozygous variants. Furthermore, with our earlier experiments
showing an average of 33,000 SV calls per sample, this amounts to a
baseline error rate of less than 0.4% showing that SVDSS is robust to
false detection of variants.

Discussion
We introduced SVDSS—a method for SV discovery that combines advan-
tages of different SV discovery approaches to achieve considerable
improvements in SV calling. A highlight of SVDSS is its much higher
recall compared with other approaches in repeated regions of the
genome (that is, Extended Tier 2), and also its overall higher accuracy,
in particular in repetitive and traditionally hard-to-genotype regions
of the genome. We also observed that reducing sequencing coverage
impacts SVDSS less than other approaches. Thus SVDSS can accurately
predict SVs in low-coverage sequenced samples. Furthermore, using
the recent CHM13 assembly produced by T2T consortium, we could
estimate baseline error rare for each methods and further observed
that SVDSS has the lowest baseline error rate, followed by sniffles.

While the availability of low-error long-read data enables more
extensive variant discovery on new samples, SV discovery in repetitive
regions of the genome such as STRs and microsatellites remains chal-
lenging but also hard to evaluate. This is evidenced by comparisons
presented in this manuscript. Despite the considerable performance
improvements of SVDSS in repetitive regions, precision and recall in
these regions are still lower than in the rest of the genome.

SVDSS currently supports the discovery of unbalanced SVs, that
is, deletions and insertions; however, as the underlying SFS signatures
capture nearly all variation in the genome, a next step could be to
extend the method to finding other classes of SVs such as inversions
and duplications. Our current best technique for creating SV truth sets
(dipcall) does not evaluate inversions and duplications, yet a recent
study28 provides one of the first gold standards.

Throughout this work, we highlight the importance of accurate
benchmarks of SV calling methods. We evaluated SVDSS on a recent
benchmark extensively curated over the HG002 sample51 with the
specific purpose of producing SVs occurring in genes of medical rel-
evance. These genes are considered challenging for mapping-based
and assembly-based SV prediction methods even from highly accurate
long reads. This benchmark revealed that other methods fail to call

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

heterozygous indels in highly homozygous regions or erroneous indels
interpreted by a consensus approach. SVDSS is the only method able to
discover five such SVs in medically relevant gene regions. We believe the
current examples of accurate prediction of multiallelic heterozygous
events based on SVDSS indicates the merit of extending this approach
for genotype prediction of SVs.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41592-022-01674-1.

References
1.	 Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation

discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

2.	 Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the
human genome. Nat. Rev. Genet. 7, 85–97 (2006).

3.	 Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the
sequencing era. Nat. Rev. Genet. 21, 171–189 (2020).

4.	 Mills, R. E. et al. Mapping copy number variation by
population-scale genome sequencing. Nature 470, 59–65 (2011).

5.	 Sudmant, P. H. et al. An integrated map of structural variation in
2,504 human genomes. Nature 526, 75–81 (2015).

6.	 Chaisson, M. J. et al. Resolving the complexity of the human
genome using single-molecule sequencing. Nature 517, 608–611
(2015).

7.	 Ebert, P. et al. Haplotype-resolved diverse human genomes and
integrated analysis of structural variation. Science 372, eabf7117
(2021).

8.	 Khayat, M. M. et al. Hidden biases in germline structural variant
detection. Genome Biol. 22, 347 (2021).

9.	 Sekar, S. et al. Complex mosaic structural variations in human
fetal brains. Genome Res. 30, 1695–1704 (2020).

10.	 Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural
variant formation in genomic disorders. Nat. Rev. Genet. 17,
224–238 (2016).

11.	 Audano, P. A. et al. Characterizing the major structural variant
alleles of the human genome. Cell 176, 663–675 (2019).

12.	 Zhao, X. et al. Expectations and blind spots for structural variation
detection from long-read assemblies and short-read genome
sequencing technologies. Am. J. Human Genet. 108, 919–928
(2021).

13.	 Stankiewicz, P. & Lupski, J. R. Structural variation in the human
genome and its role in disease. Annu. Rev. Med. 61, 437–455
(2010).

14.	 Sharp, A. J., Cheng, Z. & Eichler, E. E. Structural variation of the
human genome. Annu. Rev. Genomics Hum. Genet. 7, 407–442
(2006).

15.	 Collins, R. L. et al. A structural variation reference for medical and
population genetics. Nature 581, 444–451 (2020).

58,487,900 bp 58,488,500

602 bp

Fig. 3 | Example of an SV at a medically relevant gene that has been
correctly called exclusively by SVDSS. Right, IGV sketch of the 602 bp
region around the SV (full region reported in Supplementary Fig. 13). The
sketch reports the HiFi reads alignment along with the haplotype alignment

performed using minimap2(as part of the dipcall pipeline). Left, details of
the SVs reported by the CMRG callset, SVDSS, and the other alignment-based
callers considered in our evaluation.

Table 2 | Comparison of baseline FDR rate of SVDSS with
other methods

Tool GRCh38
calls

T2T
calls

Baseline
FDR

Het
Intersections

Het
Precision

svdss 23,777 102 0.4% 13 12.7%

cuteSV 22,654 667 2.94% 23 3.4%

pbsv 23,707 616 2.59% 28 4.5%

sniffles 22,680 314 1.38% 22 7.0%

SVIM 22,176 948 4.27% 29 3.0%

debreak 23,432 834 3.55% 24 2.8%

Number of SV calls against both the reference genome and the CHM13 assembly is included.
Baseline FDR is calculated as division of first two columns for each tool. The last two columns
report the number of known CHM13 heterozygous (Het) sites covered by each method and
the precision of the method calculated as the number of covered heterozygous sites divided
by the number of predicted calls. Boldface indicates best performance

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01674-1

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

16.	 Sudmant, P. H. et al. Global diversity, population stratification, and
selection of human copy-number variation. Science 349, aab3761
(2015).

17.	 Sudmant, P. H. et al. Evolution and diversity of copy number
variation in the great ape lineage. Genome Res. 23, 1373–1382
(2013).

18.	 Fortna, A. et al. Lineage-specific gene duplication and loss in
human and great ape evolution. PLoS Biol. 2, e207 (2004).

19.	 Hurles, M. Gene duplication: the genomic trade in spare parts.
PLoS Biol. 2, e206 (2004).

20.	 Wala, J. A. et al. Svaba: genome-wide detection of structural
variants and indels by local assembly. Genome Res. 28, 581–591
(2018).

21.	 Walsh, T. et al. Rare structural variants disrupt multiple genes in
neurodevelopmental pathways in schizophrenia. Science 320,
539–543 (2008).

22.	 Conrad, D. F. et al. Origins and functional impact of copy number
variation in the human genome. Nature 464, 704–712 (2010).

23.	 Marshall, C. R. et al. Structural variation of chromosomes in
autism spectrum disorder. Am. J. Human Genet. 82, 477–488
(2008).

24.	 The, I., of Whole, T. P.-C. A. & Consortium, G. et al. Pan-cancer
analysis of whole genomes. Nature 578, 82 (2020).

25.	 Li, Y. et al. Patterns of somatic structural variation in human
cancer genomes. Nature 578, 112–121 (2020).

26.	 Ye, K. et al. Systematic discovery of complex insertions and
deletions in human cancers. Nature Med. 22, 97–104 (2016).

27.	 Scott, E. C. et al. A hot l1 retrotransposon evades somatic
repression and initiates human colorectal cancer. Genome Res.
26, 745–755 (2016).

28.	 Porubsky, D. et al. Recurrent inversion polymorphisms in humans
associate with genetic instability and genomic disorders. Cell
185, 1986–2005 (2022).

29.	 Porubsky, D. et al. Recurrent inversion toggling and great ape
genome evolution. Nature Genet. 52, 849–858 (2020).

30.	 Wang, S. et al. Long read sequencing reveals sequential complex
rearrangements driven by hepatitis B virus integration. Preprint at
bioRxiv https://doi.org/10.1101/2021.12.09.471697 (2021).

31.	 Zook, J. M. et al. A robust benchmark for detection of germline
large deletions and insertions. Nat. Biotechnol. 38, 1347–1355
(2020).

32.	 Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an
approach to discover, genotype, and characterize typical and
atypical CNVs from family and population genome sequencing.
Genome Res. 21, 974–984 (2011).

33.	 Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo
assembly and genotyping of variants using colored de Bruijn
graphs. Nat. Genet. 44, 226–232 (2012).

34.	 Chen, S. et al. Paragraph: a graph-based structural variant
genotyper for short-read sequence data. Genome Biol. 20, 291
(2019).

35.	 Lin, J. et al. Mako: a graph-based pattern growth approach
to detect complex structural variants. Genomics Proteomics
Bioinformatics 20, 205–218 (2022).

36.	 Gardner, E. J. et al. The mobile element locator tool (melt):
population-scale mobile element discovery and biology. Genome
Res. 27, 1916–1929 (2017).

37.	 Soylev, A., Le, T. M., Amini, H., Alkan, C. & Hormozdiari, F.
Discovery of tandem and interspersed segmental duplications
using high-throughput sequencing. Bioinformatics 35, 3923–
3930 (2019).

38.	 Ebler, J., Schönhuth, A. & Marschall, T. Genotyping inversions and
tandem duplications. Bioinformatics 33, 4015–4023 (2017).

39.	 Michaelson, J. J. & Sebat, J. forestSV: structural variant discovery
through statistical learning. Nat. Methods 9, 819–821 (2012).

40.	 Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a
probabilistic framework for structural variant discovery. Genome
Biol. 15, R84 (2014).

41.	 Sedlazeck, F. J. et al. Accurate detection of complex structural
variations using single-molecule sequencing. Nat. Methods 15,
461–468 (2018).

42.	 Sindi, S., Helman, E., Bashir, A. & Raphael, B. J. A geometric
approach for classification and comparison of structural variants.
Bioinformatics 25, i222–i230 (2009).

43.	 Medvedev, P., Stanciu, M. & Brudno, M. Computational methods
for discovering structural variation with next-generation
sequencing. Nat. Methods 6, S13–S20 (2009).

44.	 Mahmoud, M. et al. Structural variant calling:
the long and the short of it. Genome Biol. 20,
246 (2019).

45.	 Zook, J. M. et al. A robust benchmark for detection of germline
large deletions and insertions. Nat. Biotechnol. 38, 1347–1355
(2020).

46.	 Belyeu, J. R. et al. De novo structural mutation rates and
gamete-of-origin biases revealed through genome sequencing of
2,396 families. Am. J. Human Genet. 108, 597–607 (2021).

47.	 Khorsand, P. & Hormozdiari, F. Nebula: ultra-efficient
mapping-free structural variant genotyper. Nucleic Acids Res. 49,
e47–e47 (2021).

48.	 Maretty, L. et al. Sequencing and de novo assembly of 150
genomes from Denmark as a population reference. Nature 548,
87–91 (2017).

49.	 Zhang, J.-Y. et al. Using de novo assembly to identify structural
variation of eight complex immune system gene regions. PLoS
Comput. Biol. 17, e1009254 (2021).

50.	 Zhang, L., Zhou, X., Weng, Z. & Sidow, A. De novo diploid genome
assembly for genome-wide structural variant detection. NAR
Genom. Bioinform. 2, lqz018 (2020).

51.	 Wagner, J. et al. Curated variation benchmarks for challenging
medically relevant autosomal genes. Nat. Biotechnol. 40,
672–680 (2022).

52.	 Nurk, S. et al. The complete sequence of a human genome.
Science 376, 44–53 (2022).

53.	 Khorsand, P. et al. Comparative genome analysis using
sample-specific string detection in accurate long reads.
Bioinform. Adv. 1, vbab005 (2021).

54.	 Li, H. et al. A synthetic-diploid benchmark for accurate
variant-calling evaluation. Nat. Methods 15, 595–597 (2018).

55.	 Baid, G. et al. DeepConsensus improves the accuracy of
sequences with a gap-aware sequence transformer. Nat.
Biotechnol. https://doi.org/10.1038/s41587-022-01435-7 (2022).

56.	 Jiang, T. et al. Long-read-based human genomic structural
variation detection with cuteSV. Genome Biol. 21, 189 (2020).

57.	 Heller, D. & Vingron, M. SVIM: structural variant identification
using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

58.	 Chen, Y. et al. DeBreak: deciphering the exact breakpoints of
structural variations using long sequencing reads. Res. Square
https://doi.org/10.21203/rs.3.rs-1261915/v1 (2022).

59.	 English, A. C., Menon, V. K., Gibbs, R., Metcalf, G. A. &
Sedlazeck, F. J. Truvari: refined structural variant comparison
preserves allelic diversity. Preprint at bioRxiv https://doi.
org/10.1101/2022.02.21.481353 (2022).

60.	 Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

61.	 Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H.
UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput.
Graph. 20, 1983–1992 (2014).

62.	 Denti, L., Previtali, M., Bernardini, G., Schönhuth, A. & Bonizzoni,
P. Malva: genotyping by mapping-free allele detection of known
variants. iScience 18, 20–27 (2019).

http://www.nature.com/naturemethods
https://doi.org/10.1101/2021.12.09.471697
https://doi.org/10.1038/s41587-022-01435-7
https://doi.org/10.21203/rs.3.rs-1261915/v1
https://doi.org/10.1101/2022.02.21.481353
https://doi.org/10.1101/2022.02.21.481353

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

63.	 Mc Cartney, A, M. et al. Chasing perfection: validation and
polishing strategies for telomere-to-telomere genome
assemblies. Nat. Methods 19, 687–695 (2022).

64.	 Formenti, G. et al. Merfin: improved variant filtering, assembly
evaluation and polishing via k-mer validation. Nat. Methods 19,
696–704 (2022).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and
applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2022

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

Methods
Sample-specific string computation and assembly
Sample-specific SFS are defined as sequences that are specific to a
‘target’ set of strings (a genome or sequencing sample) with respect
to another ‘reference’ set of strings (another genome or sequencing
sample)53. The ‘substring-free’ part means that they do not occur as
substrings of each other. Note that, in the context of SV discovery, the
‘reference’ will always be an assembled reference genome, for example,
GRCh38, and the ‘target’ here is a set of reads. SFS can be optimally com-
puted using the Ping-Pong algorithm, presented in Khorsand et al.53.
Ping-Pong builds the FMD index65 of the reference genome and queries
the reads of the target sample against this index to report substrings
that are not present in the index. The FMD index is a bidirectional text
index with constant-time forward and backward search operations,
thus allowing for efficient computation of SFS.

When SFS are computed between a reference genome and a target
sample, they capture nearly all variations expressed in the sample
with respect to the reference genome, as shown in Khorsand et al.53.
Indeed, each sequencing read including a variant produces at least
one SFS supporting the variant; hence, a variant will be supported by
at least one SFS per read covering it. SV breakpoints usually result in
new sequences that are captured as SFS. However, due to the ‘shortest’
property of SFS, the entire SV sequence is not necessarily covered by a
single SFS: a read may produce several overlapping SFS for long varia-
tions. To remove unnecessary redundancy in the information captured
by overlapping SFS, we newly assemble all such overlapping SFS into
longer strings called ‘superstrings.’ Assembling SFS into superstrings
also reduces the number of SFS by an order of magnitude, making any
downstream analysis more efficient.

As SFS on each read are naturally sorted based on their start posi-
tions, the assembly stage can be implemented as a single pass over the
SFS on each read, merging each SFS with the next one if they overlap.
The resulting superstring can further be merged with the next SFS if
they also overlap, and so on. More formally, on a read R where k con-
secutive SFS are overlapping such that R[i1, j1] overlaps with R[i2, j2] and
R[i2, j2] overlaps with R[i3, j3] and …R[ik−1, jk−1] overlaps with R[ik, jk], we
merge the strings into the single superstring R[i1, jk].

The SFS assembly procedure effectively merges all the SFS belong-
ing to the same variant into a single long superstring. This results in
superstrings from the same variant to have similar length, sequence
and position with respect to the reference genome which allows them
to be clustered easily for SV prediction.

Read smoothing
The SFS extraction step (Ping-Pong algorithm) requires reads with low
error rates for optimal performance as sequencing errors can result in
millions of undesirable SFS. While most such SFS can be filtered later
on, they can negatively affect the accuracy and will increase runtime
by adding excess processing. Furthermore, the presence of millions of
SNPs and small indels in a sample also results in tens of millions of addi-
tional SFS being extracted that are not directly useful for genotyping
SVs. To solve both of the above problems, we introduce a preprocessing
step called ‘read smoothing’ that aims to eliminate both sequencing
errors and short variants from input reads. The smoothing algorithm
starts from read alignments (a BAM file) and uses information from
the CIGAR strings of each alignment to remove any short mismatch
between a read and the reference genome.

In more detail, for segments reported as a match between a read
and the reference genome (CIGAR operation ‘M’), the algorithm replaces
the read sequence with the corresponding sequence from the reference
genome, automatically removing any single-base mismatches (that is,
sequencing errors or potential SNPs) in the process. For short deletions
(CIGAR operation ‘D’), the algorithm removes the deletion from the read
by copying back the deleted bases from the reference sequence. Short
insertions (CIGAR operation ‘I’) are similarly smoothed by removing the

inserted bases from the read. Using the default parameters, deletions and
insertions are smoothed if they are shorter than 20 bp. Note that smooth-
ing insertions or deletions, that is, removing them from the alignment,
results in the extension of the ‘M’ sections of the CIGAR string. Finally,
soft-clipped regions (CIGAR operation ‘S’) are retained as they include
potentially long inserted or deleted sequences: any SNP or sequencing
error inside clipped regions cannot be corrected as a result. As a result
of the smoothing algorithm, a smoothed read’s CIGAR strings will have
fewer edit operations than that the original read and it will consist of one
or more very long ‘M’ segments with large INDELs in between, poten-
tially surrounded with soft-clipped regions. Supplementary Fig. 3 illus-
trates the smoothing procedure on an example read. We note that the
Ping-Pong algorithm will not produce any SFS that is entirely contained
in an ‘M’section of a smoothed read as the corresponding sequence has
been replaced base-by-base with reference genome sequence. There-
fore, the number of SFS extracted from smoothed reads is substantially
smaller than the number of SFS extracted from original reads.

The smoothing algorithm only works with primary alignments
and nonprimary alignments are ignored. This is to avoid complications
arising from having multiple different smoothed version of reads with
multiple alignments.

Smoothing relies on correctness of read alignments. If an align-
ment is thought to be inaccurate, the smoothing algorithm does not
modify it. To this aim, during its execution, the algorithm keeps track
of the average number of mismatches between the ‘M’ segments of
alignments and the corresponding reference sequence: any read that
has more than three times the average mismatch rate is ignored, that
is, is not modified.

On a more technical note, we point out that the above modifica-
tions do not change the overall mapping of the read as the mapping
positions (begin and end) remain the same. As a result, the algorithm
will not change the order of the reads in a sorted BAM file. This allows
us to quickly reconstruct a sorted BAM file without the need to sort it
again. However, because the size of the reads may have changed, the
index of the original BAM files is no longer valid for the smoothed BAM
and it has to be indexed again with samtools index.

In our experiments, smoothing effectively reduces the number of
extracted SFS by over 90%, while having effectively no impact on the
SV calling pipeline’s recall. Out of the 6.2 million reads for the CHM13
samples, around 5 million are smoothed and the rest are deemed to
have unreliable mappings and are discarded. The 1.2 million nons-
moothed reads from CHM13 are responsible for more than 82% of all
SFS extracted from that sample after smoothing. However, the SFS
extracted from nonsmoothed reads do not contribute to increasing the
method’s recall at all. Indeed excluding the SFS extracted from nons-
moothed reads increases the method’s precision while leaving the recall
unaffected. This justifies the exclusion of nonsmoothed reads from the
SVDSS pipeline. Further analysis shows that nearly all nonsmoothed
reads map to centromere regions of the CHM13. Supplementary Fig. 4
shows the distribution of mapping positions of reads from chr1 on
both CHM13 and GRCh38. The large gap around the centromere when
mapping to GRCh38 explains the poor performance of nonsmoothed
reads when predicting SVs against the reference genome.

In summary, read smoothing is a critical preprocessing step of the
SVDSS pipeline. It reduces the number of retrieved SFS and increases
the specificity of the extracted SFS which results in higher precision
in predicting SVs without deteriorating recall. The procedure is also
computationally very lightweight, as it essentially rewrites the BAM
file in a single pass with minor modifications. As a result, smoothing is
an effective method for increasing the specificity of SFS for SV calling
and improving the computational efficiency of the pipeline.

SV Discovery
The main SV calling algorithm consists of three main steps (Fig. 1 steps
3A, 3B and 3C):

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

	(1)	 Superstrings constructed from the SFS strings are ‘placed’ on
the reference genome by extracting their alignments from read
alignments. The superstrings are then clustered based on their
aligned loci. Each cluster represents one or more SVs that are
close to each other and may also contain multiple alleles.

	(2)	 Each cluster is further clustered based on length to generate up
to two haplotype candidates (taking into account the diploidy
of the human genome). Each haplotype cluster candidate is as-
sembled with POA to yield a consensus sequence.

	(3)	 Each haplotype candidate is locally realigned back to the refer-
ence genome region corresponding to its cluster and SVs are
called based on the alignment.

We will explain each step in more details in the following
subsections.

Superstring placement and clustering. Aligning superstrings back
to the reference genome would be time-consuming and error-prone
due to their relatively short lengths. However these superstrings were
already (indirectly) mapped as part of the mapping of the reads they
are part of. Hence, in practice we do not align superstrings directly to
the reference genome but instead their alignment is extracted from
the alignment of their originating reads. We refer to this as superstring
placement. Assuming R[i, j] is a superstring that spans positions i…j on
read R, by knowing the mapping position of R, we can easily place the
superstring on the reference genome by analyzing the correspond-
ing CIGAR portion (that is, CIGAR sections covering positions i…j).
As already pointed out, thanks to read smoothing, SFS (and conse-
quently superstrings) cannot be contained entirely in an ‘M’ section
of a smoothed read alignment (CIGAR) and therefore span its ‘I’ and
‘D’ sections. For superstrings spanning a ‘D’ section, all the bases are
already placed on the reference genome and no additional computation
is necessary. On the other hand, when a superstring spans an ‘I’ section,
it often covers just a portion of the inserted sequence. In such a case,
since the inserted sequence cannot be placed on the reference genome,
it is challenging to fully place the superstring. To deal with this issue, we
extend each superstring that does not fully cover an ‘I’ section until it
fully covers it. In other words, we extend the superstring until it covers
(on each side) a base that can be placed on the reference genome (that
is, that is not part of the inserted sequence).

To further boost the informative content of the superstrings and
to make the following steps of the pipeline easier and more accurate,
each placed superstring is further extended on the read on both sides
until we reach a perfectly mappable (can be mapped to the reference
genome with no errors) and locally unique (not repeated in the consid-
ered window) k-mer anchor. The default value for k is 7 and the default
window size is 100 bp on each side of the superstring. The superstrings
that cannot be extended in this manner are ignored. Figure 1, step 3A
shows this extension procedure. The k-mer anchoring idea was influ-
enced by LongShot66.

Finally, we cluster the superstrings based on their mapping loca-
tions: superstrings that have close enough mappings (by default less
than 500 bp apart) are placed in the same cluster. The resulting cluster’s
interval is defined as the smallest interval in the genome that com-
pletely includes all of its superstrings and the includes either a single SV
or several close or overlapping SVs possibly from different haplotypes.

POA assembly and SV detection. Each cluster so far includes one
or more close SVs. However, as the human genome is diploid, the SVs
might indeed be from different haplotypes. To resolve the different
haplotypes, we further split each cluster into subclusters of super-
strings of similar size and sequence. This is based on the assumption
that different alleles at each site have different length and sequence.
The similarity of sequences is calculated using rapidfuzz (available at
https://github.com/maxbachmann/rapidfuzz-cpp). The two largest

resulting subclusters (in terms of number of superstrings) are selected
as haplotype candidates (considering the human genome is diploid).
If only one subcluster is returned, it suggests a homozygous variant.
SVDSS then computes a consensus sequence for each subcluster
using POA.

Assume that a cluster c spans the interval G[sc, ec] of the reference
genome G. Most strings of the cluster only partially cover this interval
(that is, they align to positions [s,e] with sc≤s<e≤ec) while some others
span the entire interval (that is, they align to positions covering at
least [sc,ec]). To perform a more accurate POA, SVDSS extends all the
strings in a cluster to be of the same length. Therefore, SVDSS fills the
gaps preceding or following a superstring using the reference genome.
For instance, if a superstring S aligns to [s,e] with sc<s < e < ec, then the
resulting sequence will be G[sG, s − 1] + S + G[e + 1, eG] (where + is the
string concatenation operator). The main goal of this extension is to
summarize the information contained in a cluster and to minimize the
difference between the superstrings coming from different reads. The
extended superstrings in each subcluster are then aligned to each other
using abPOA67 to generate a consensus (Fig. 1 step 3B).

Finally, each POA consensus sequence is realigned locally to the
reference genome window corresponding to its cluster using parasail68.
The alignment’s CIGAR information is analyzed to call and detect inser-
tion and deletion SVs (Fig. 1 step 3C). A weight is assigned to each SV
prediction based on the number of superstrings that support it. A higher
support indicates a more confident call. By default, we filter out SV calls
having less than four supporting superstrings. The confidence thresh-
old can also be set at runtime using the --min--cluster--weight option.

SV chain filtering. Reads originating from loci in repetitive parts of
the genome such as STRs may map to slightly different coordinates
due to the similarity of the local sequence. This will result in multiple
clusters (relatively close to each other) and multiple SV calls for the
same variant but at slightly different positions. To reduce the number
of false positives and eliminate such redundant calls, we perform a
‘chain filtering’ postprocessing step. This step sorts all predicted SVs
based on coordinates and filters out consecutive SVs of the same type
with similar sizes, keeping only the one with the highest number of
supporting superstrings.

Implementation details
As a result of its many steps and the complexity of extraction SFS,
SVDSS is more compute-intensive than other SV discovery methods,
yet remains fast due to heavy optimization and deep parallelization.
In this section, we elaborate on the performance of each of the steps
and compare our runtime with other methods.

The FMD index creation and querying are handled internally by
the FMD implementation from Li65. FMD index creation for the GRC38
reference genome takes around 30 min on 16 cores. The index can be
reused for any number of samples so its creation is a one-time expense.

Read smoothing is an IO-intensive step and greatly benefits from
enabling the multithreaded BAM decoding functionality built into
htslib69 by setting the bgzf_mt flag when opening a BAM file. To further
improve BAM decompression performance, we require that htslib is
built with libdeflate in place of the default BAM decoder. For HiFi data
at 30× coverage the smoothing algorithm takes about 15 min to run
on 16 cores.

SFS extraction is the most computationally intensive step and
takes about 45 min on 16 threads for the CHM13 HiFi data. Finally, the
SV calling steps is very fast and takes less than 8 min to run despite the
computational load of POA and local alignment. Overall, the runtime of
the SVDSS pipeline is less than 70 min for a high-coverage HiFi sample
on 16 cores, excluding index creation time. In comparison, the fastest
SV caller was cuteSV, taking 5 min, and the slowest was sniffles, taking
upwards of 3 h. The remaining method debreak, pbsv and SVIM each
took between 90 and 100 min to run.

http://www.nature.com/naturemethods
https://github.com/maxbachmann/rapidfuzz-cpp

Nature Methods

Article https://doi.org/10.1038/s41592-022-01674-1

All tools needed less than 64 GB of memory with SVDSS peaking at
34 GB of memory during the SV calling stage. Our SFS extraction and
smoothing stages each use constant memory; however, the SV calling
stage uses the most memory due to simultaneous handling of several
(depending on the number of threads) POA graphs and local alignment
dynamic programming tables in memory.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All described datasets are publicly available through the correspond-
ing repositories. In our experimental evaluation we used data publicly
available at: GRCh38 reference genome: https://hgdownload.cse.ucsc.
edu/goldenpath/hg38/bigZips/hg38.fa.gz; GRCh37 reference genome:
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz; HG002 PacBio
HiFi data: https://storage.googleapis.com/brain-genomics-public/
research/deepconsensus/publication/deepconsensus_predictions/
hg002_15kb/two_smrt_cells/HG002_15kb_222723_002822_2fl_DC_
hifi_reads.fastq; HG002 assembly: https://console.cloud.google.com/
storage/browser/brain-genomics-public/research/deepconsensus/
publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/
dc; CMRG callset: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSa-
mples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_
v1.00/GRCh38/StructuralVariant/; HG007 PacBio HiFi data: https://
storage.googleapis.com/brain-genomics-public/research/deep-
consensus/publication/deepconsensus_predictions/hg007_15kb/
three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq;
HG007 assembly: https://console.cloud.google.com/storage/browser/
brain-genomics-public/research/deepconsensus/publication/analysis/
genome_assembly/hg007_15kb/two_smrt_cells/dc; CHM13 PacBio HiFi
data: https://github.com/marbl/CHM13#hifi-data; CHM13 T2T assem-
bly v1.1: https://s3-us-west-2.amazonaws.com/human-pangenomics/
T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz. The three call-
set built using dipcall are available at https://github.com/ldenti/
SVDSS-experiments.

Code availability
SVDSS is open source and publicly available at https://github.com/
Parsoa/SVDSS. Scripts to reproduce the experimental evaluations
described in the manuscript are available at https://github.com/
ldenti/SVDSS-experiments. Other software tools used in the study
are either referenced or provided as links here: pbmm2 (https://github.
com/PacificBiosciences/pbmm2) and pbsv (https://github.com/
PacificBiosciences/pbsv).

References
65.	 Li, H. Exploring single-sample SNP and INDEL calling with whole-

genome de novo assembly. Bioinformatics 28, 1838–1844 (2012).

66.	 Edge, P. & Bansal, V. Longshot enables accurate variant calling
in diploid genomes from single-molecule long read sequencing.
Nat. Commun. 10, 4660 (2019).

67.	 Gao, Y. et al. abPOA: an SIMD-based C library for fast partial order
alignment using adaptive band. Bioinformatics 37, 2209–2211
(2021).

68.	 Daily, J. parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments. BMC Bioinformatics 17, 81 (2016).

69.	 Bonfield, J. K. et al. Htslib: C library for reading/writing
high-throughput sequencing data. Gigascience 10, giab007
(2021).

Acknowledgements
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grants agreements No. 872539 and 956229 (P.B.
and R.C.). This work has also been supported in part by NSF award DBI-
2042518 to F.H. R.C was supported by ANR Transipedia, SeqDigger,
GenoPIM, Inception and PRAIRIE grants (ANR-18-CE45-0020, ANR-
19-CE45-0008, ANR-21-CE46-0012, PIA/ANR16-CONV-0005, and ANR-
19-P3IA-0001). This project has received funding from the European
Union’s Horizon Europe programme for research and innovation under
grant agreement No. 101047160. The funding body had no role in the
design of the study and collection, analysis, and interpretation of data
and in writing the manuscript.

Author contributions
L.D. and P.K. devised and implemented the approach. L.D. and P.K.
performed the experimental evaluation. P.B., F.H. and R.C. conceived
the study, supervised and coordinated the work. All authors wrote,
reviewed, edited and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41592-022-01674-1.

Correspondence and requests for materials should be addressed to
Paola Bonizzoni, Fereydoun Hormozdiari or Rayan Chikhi.

Peer review information Nature Methods thanks Andrew Carroll
and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. Peer reviewer reports are available.
Primary Handling Editor: Lin Tang, in collaboration with the
Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg002_15kb/two_smrt_cells/HG002_15kb_222723_002822_2fl_DC_hifi_reads.fastq
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg002_15kb/two_smrt_cells/HG002_15kb_222723_002822_2fl_DC_hifi_reads.fastq
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg002_15kb/two_smrt_cells/HG002_15kb_222723_002822_2fl_DC_hifi_reads.fastq
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg002_15kb/two_smrt_cells/HG002_15kb_222723_002822_2fl_DC_hifi_reads.fastq
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/dc
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/dc
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/dc
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/dc
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg007_15kb/three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg007_15kb/three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg007_15kb/three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq
https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg007_15kb/three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg007_15kb/two_smrt_cells/dc
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg007_15kb/two_smrt_cells/dc
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/hg007_15kb/two_smrt_cells/dc
https://github.com/marbl/CHM13#hifi-data
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz
https://github.com/ldenti/SVDSS-experiments
https://github.com/ldenti/SVDSS-experiments
https://github.com/Parsoa/SVDSS
https://github.com/Parsoa/SVDSS
https://github.com/ldenti/SVDSS-experiments
https://github.com/ldenti/SVDSS-experiments
https://github.com/PacificBiosciences/pbmm2
https://github.com/PacificBiosciences/pbmm2
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv
https://doi.org/10.1038/s41592-022-01674-1
http://www.nature.com/reprints

	SVDSS: structural variation discovery in hard-to-call genomic regions using sample-specific strings from accurate long read ...
	Results

	Overview of SVDSS

	Benchmark and evaluation callsets

	Comprehensive detection of insertions and deletions

	Improved SVs calling in hard-to-analyze regions

	Hard-to-analyze regions harbor SVs of clinical importance

	SVDSS has extremely low baseline error rate

	Discussion

	Online content

	Fig. 1 Overview of the SVDSS SV prediction pipeline.
	Fig. 2 Extended comparative analysis of SV calls across methods.
	Fig. 3 Example of an SV at a medically relevant gene that has been correctly called exclusively by SVDSS.
	Table 1 Comparison of performance of SVDSS and other methods on calling SVs.
	Table 2 Comparison of baseline FDR rate of SVDSS with other methods.

