
Nature Methods

nature methods

https://doi.org/10.1038/s41592-022-01674-1Article

SVDSS: structural variation discovery 
in hard-to-call genomic regions using 
sample-specific strings from accurate  
long reads

Luca Denti1,6, Parsoa Khorsand2,6, Paola Bonizzoni    3,7  , 
Fereydoun Hormozdiari    2,4,5,7   & Rayan Chikhi    1,7 

Structural variants (SVs) account for a large amount of sequence variability 
across genomes and play an important role in human genomics and 
precision medicine. Despite intense efforts over the years, the discovery 
of SVs in individuals remains challenging due to the diploid and highly 
repetitive structure of the human genome, and by the presence of SVs that 
vastly exceed sequencing read lengths. However, the recent introduction 
of low-error long-read sequencing technologies such as PacBio HiFi 
may finally enable these barriers to be overcome. Here we present SV 
discovery with sample-specific strings (SVDSS)—a method for discovery 
of SVs from long-read sequencing technologies (for example, PacBio HiFi) 
that combines and effectively leverages mapping-free, mapping-based 
and assembly-based methodologies for overall superior SV discovery 
performance. Our experiments on several human samples show that 
SVDSS outperforms state-of-the-art mapping-based methods for discovery 
of insertion and deletion SVs in PacBio HiFi reads and achieves notable 
improvements in calling SVs in repetitive regions of the genome.

SVs are defined as medium to large-size genomic rearrangements1,2. SVs 
can range from tens of basepairs to over megabases of sequence. Differ-
ent types of SVs include balanced SVs, such as inversions and transloca-
tions, and unbalanced SVs, such as insertions and deletions3. The study 
and characterization of SVs has been driven by constant improvements 
in the technologies available to assay variants. Although SVs are not the 
most ubiquitous type of genetic variants, the total volume of basepairs 
impacted by SVs is far more than any other type of genetic variant, 
including single nucleotide variants (SNVs)4,5. Furthermore, recent 
studies of SVs using orthogonal technologies have shown that SVs are 

the least well-characterized type of genetic variant, with many basic 
questions, such as the average number of SVs per sample or sequence 
biases contributing to their formation, still not completely resolved6–9. 
In addition, the homology-driven mechanisms behind SV formation 
(for example, nonallelic homologous recombination) have contributed 
to the complexity of their systematic study10. It is believed that a large 
fraction of polymorphic SVs are still not fully characterized11,12.

As our current understanding of SVs evolves, it is becoming clear 
that SVs are a main contributing factor to human diseases13–15, popu-
lation genomics5,16 and evolution17. The comparative study of SVs in 
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aligned to the reference genome to detect SVs. The main advantage 
of using SFS is that they are not limited to fixed-length seeds (unlike 
k-mers) and the algorithm can dynamically find the shortest string for 
covering the breakpoints of each variant, thus making SFS ideal for 
anchoring potential SV breakpoints.

SVDSS has three main steps as depicted in Fig. 1, sketched here and 
explained in more detail in the Online Methods:

	(1)	 Read smoothing: reads are modified to remove sequencing er-
rors, single nucleotide polymorphisms (SNPs) and small indels 
(<20 basepairs (bp)) that may interfere with SV calling (step (1); 
Fig. 1 and Supplementary Fig. 3). Smoothing greatly reduces the 
number of extracted SFS while increasing their specificity for 
the purpose of SV calling.

	(2)	SFS superstring construction: SFS are computed from the 
smoothed reads using the optimal Ping-Pong algorithm53 (2A; 
Fig. 1) and then assembled into superstrings to reduce redun-
dancy (2B).

	(3)	SV prediction using SFS superstrings: SFS superstrings are clus-
tered based on position and extended to include unique anchor-
ing sequences from the reference genome (step 3A; Fig. 1), fur-
ther subclustered by length then assembled based on a partial 
order alignment (POA) approach to generate haplotype candi-
dates (3B). Finally, SVs are called by aligning the resulting POA 
consensus(es) (3C).
In the following sections, using experimental analysis on mul-

tiple WGS samples, we demonstrate that SVDSS accurately predicts 
SVs and outperforms state-of-the-art approaches. We further show 
that the main contribution of our proposed approach is the ability to 
more accurately predict SVs falling in repeated regions of the genome 
compared with other methods.

Benchmark and evaluation callsets
One complexity in comparing different tools for calling SVs is the 
imperfectness of available callsets. Missing variants and potentially 
false predictions affect almost all published callsets, and even the most 
high-quality callsets have been reported to have a false discovery rate 
(FDR) of around 5% and a much higher false negative rate6. Furthermore, 
many callsets are constructed using state-of-the-art but imperfect 
SV prediction tools and are thus biased toward these methods54. For 
these reasons, we have opted out of using pre-existing callsets such 
as the 2020 Genome In A Bottle (GIAB) v.0.6 callset45 in our experi-
mental benchmarking. Instead we constructed our ground truth SV 
callsets from scratch using high-quality haplotype-resolved de novo 
assemblies generated by using many technologies (T2T CHM13 v.1.1, 
HG002 and HG007, described in Comprehensive detection of inser-
tions and deletions). A similar ground truth construction strategy was 
employed in a 2022 GIAB benchmark51, although focusing on a subset 
of medically relevant genes. We applied the assembly-to-assembly SV 
calling tool dipcall54 to each assembly versus the entire GRCh38 refer-
ence genome (see Supplementary Information Section A for more 
details). The three VCFs built using dipcall and used as ground truth in 
our experimental evaluation are available at https://github.com/ldenti/
SVDSS-experiments. For a detailed comparison of the HG002 callset 
built with dipcall and the v.0.6 callset provided by the GIAB project, we 
refer the reader to Supplementary Information Section B.

Comprehensive detection of insertions and deletions
We experimentally validated the accuracy of the SVDSS pipeline in 
calling SVs from three whole-genome sequenced samples sequenced 
using PacBio HiFi technology: the homozygous CHM13 sample from 
the telomore-to-telomere (T2T) project52 and the HG002 and HG007 
samples corrected using DeepConsensus55. These samples were 
chosen because of the availability of high-quality and effectively 
complete assemblies for them. Furthermore, the DeepConsensus 
corrected HG002 and HG007 samples show higher accuracy than 

several closely related species (for example, great apes) has shown the 
considerable contribution of SVs to evolution (for example, through 
gene duplication or deletion18,19). Furthermore, the study of rare and 
de novo SVs in disease such as autism and epilepsy has proven the 
notable contribution of these variants in such conditions15,20–23. It is 
also known that somatic SVs are one of the main causative variants in 
different types of cancer24–27.

With the advent of short- and long-read high-throughput 
sequencing technologies in the past decade, noteworthy progress 
has been made in our understanding of the abundance, complex-
ity and importance of SVs28–31. Many methods have been developed 
for prediction of SVs using whole-genome sequencing (WGS) data 
produced from different sequencing technologies32–42. Most of these 
methods try to predict variants by detecting certain SV signatures 
(that is, read-depth, read-pair or split-read) in mappings of the reads 
to the reference genome6,43,44 and are hence known as ‘mapping-based’ 
methods. Mapping-based methods have contributed to our under-
standing of the abundance of SVs in the general population and their 
role in disease11,45,46. Mapping-free methods are a more recent group of 
approaches that try to predict SVs without mapping the reads to the 
reference genome and instead by comparing sequence data between 
different genomes34,47. Finally, assembly-based approaches first assem-
ble the sequenced reads into longer contigs and use the assembled 
contigs to predict variants48–50. Assembly-based methods have recently 
been shown to provide superior performance to mapping-based tools51.

There are limiting factors for predicting SVs using each of these 
frameworks. Since most SV prediction tools use mappings of the reads 
to the reference genome for making SV calls, predicting SVs in highly 
repeated regions of the genome (for example, segmental duplications) 
where mappings can be inaccurate would be prone to false discovery. 
Reference genome gaps and misassemblies further complicate the 
prediction of SVs in these regions and result in decreased accuracy 
and increased variability across tools8. The mapping-free approaches, 
on the other hand, suffer from not being able to provide the loci of 
the event. Furthermore, fixed-length (k-mer) sequence comparisons 
performed in mapping-free tools can result in collapse of repeats and 
lower sensitivity/accuracy. Finally, assembly-based approaches are 
very computationally resource intensive and often require integration 
of data from multiple different technologies (that is, long reads, short 
reads and Hi-C)51,52, higher sequencing depths (35× was reported51), and 
extensive polishing and postprocessing to yield a high-quality de novo 
assembly suitable for variant prediction, thus making them impractical 
for SV discovery across large populations.

Here, we propose a method called SVDSS that combines advan-
tages of all three mapping-based, mapping-free and assembly-based 
approaches for predicting SVs. Our method uses mapping-free 
sample-specific signatures53 along with mapping information to cluster 
reads potentially including SVs, and then performs local assembly and 
alignment of the clusters for SV prediction. With the combination of 
different analysis methods, our algorithm is able to improve SV calling 
performance particularly in repetitive areas of the genome compared 
with other contemporary approaches.

Results
Overview of SVDSS
We present SVDSS—a method for the discovery of SVs from accurate 
long reads (for example, PacBio HiFi). SVDSS takes as input a reference 
genome and a mapped BAM file and produces SV calls in VCF format 
along with assembled contigs for SV sites in SAM format. We use the 
concept of sample-specific strings (SFS), which we introduced previ-
ously as all the shortest substrings unique to one string set with regards 
to another string set53. We employ SFS here to pinpoint differences 
between reads and a reference genome53. Our method computes SFS 
for coarse-grained identification of potential SV sites. It assembles 
clusters of SFS from such sites to produce contigs that are then locally 
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Fig. 1 | Overview of the SVDSS SV prediction pipeline. In step (1), reads are 
smoothed to remove SNPs and sequencing errors. SFS are extracted from reads 
(step 2A) and assembled into superstrings (step 2B). In step 3A, superstrings 
(gray) are clustered based on their placements on the reference genome and 
extended to uniquely mappable 7 bp anchors on each side (colored). Each cluster 

is further clustered into up to two subclusters based on length of the superstring 
(step 3B). Each subcluster represents a potential haplotype. The subclusters 
are assembled with POA to generate a consensus sequence (step 3C). The POA 
consensus for each cluster is aligned locally to the reference genome and SVs are 
called from the mapping information.
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standard HiFi samples corrected using only pbccs55. The use of both 
homozygous (CHM13) and heterozygous (HG002 and HG007) sam-
ples allows for more comprehensive analysis and comparison of SV 
calling methods.

We mapped each sample against the reference genome using 
pbmm2 and then called SVs on each sample using the SVDSS pipeline. 
We compared our approach to five state-of-the-art mapping-based 
SV callers: pbsv, cuteSV56, sniffles41, SVIM57 and a recent preprint on a 
POA-based method, debreak58. We ran each caller setting the minimum 
SV support to four when analyzing the 30× CHM13 sample and to two 
when analyzing the 15× HG002 and HG007 samples. We then examined 
their insertions and deletions calls. We validated the calls of each tool 
against the set of SVs constructed with dipcall using Truvari59, a SV 
evaluation framework that reports precision, recall and F1 score for 
each method. We ignored genotype-level accuracy, that is, we checked 
only for the presence of the corrected allele (see Supplementary Infor-
mation Section D for more information on how we ran Truvari, as well 
as other tools used in our analysis). From this comparison, we further 
exclude calls made in regions of the reference genome not covered by 
both haplotypes, as any such call would be classified as false positive 
regardless of correctness.

On HG002 and HG007 samples, SVDSS outperforms the recall of 
the other callers by 5–10% while achieving the highest (or second high-
est) precision on the full genome (Table 1, Full Genome rows). SVDSS has 
been able to report 2,342 (+10% relative to second-best approach) more 
correct calls on HG002 and 1,631 (+8%) more calls on HG007 without 
introducing many false calls. SVDSS also achieves the highest recall 
on CHM13 and reports 782 (+2%) more true positive calls than other 
methods while maintaining a very high precision. While SVDSS has the 
highest F1 score on CHM13, we note that the whole-genome improve-
ments achieved by SVDSS over other approaches is less pronounced 
for this sample compared with the other two samples (improvement 
of 2–5% in recall and 1% in F1 while achieving similar precision to other 

tools). This is probably due to the homozygous nature of CHM13 mak-
ing SV calling relatively easier for all approaches.

Figure 2a reports the length distribution of the SVs called by each 
tool on the HG007 sample. On HG007, the number of SVs reported by 
each tool ranges from 34,827 to 38,659, with SVIM reporting the lowest 
number of SVs and SVDSS reporting the highest number. Overall, all the 
tools report more insertions than deletions with shorter SVs (≤100 bp) 
being more frequent than longer SVs. Moreover, all the tools show a 
clear peak at around 300 bp, reflecting Alu mobile elements.

We also repeated the above experiment on HG007 using differ-
ent aligners to test how SV callers are influenced by how reads are 
aligned. We tested all six callers in combination with minimap2 (ref. 60)  
and ngmlr41 (Supplementary Table 2). We also noticed that SVDSS 
substantially improves our ability to predict SVs in comparison with 
state-of-the-art approaches using minimap2 mapper, while being one 
of top performer tools using ngmlr mapper (Supplementary Table 2).

We also investigated how read coverage affects SV calling per-
formance. To this aim, we subsampled the HG007 sample (coverage 
15×) down to 5× and 10× and we ran the six considered approaches on 
these two newly created samples. Our SVDSS approach was also able to 
outperform other approaches using 10× sequencing coverage in all the 
metrics of interest (precision, recall and F1; Fig. 2b and Supplementary 
Table 3). When sample coverage is low (5×), pbsv achieves the highest 
recall (63.2%) at the expense of lower precision (58.6%), whereas other 
tools achieve similar high precision (ranging from 87.4% of SVIM to 
92.9% of SVDSS) but low recall (ranging from 46.2% achieved by SVDSS 
to 51.6% achieved by cuteSV). As already pointed out by Chen et al.58, 
debreak works poorly with low-coverage samples. On the other hand, 
with higher coverages of 10× and 15×, SVDSS achieves the best precision 
and recall, outperforming other approaches.

Finally, our pipeline has the second-lowest runtime among the 
considered methods behind cuteSV. More details on runtime and 
performance are available in Online Methods.

Table 1 | Comparison of performance of SVDSS and other methods on calling SVs

HG002 HG007 CHM13

Region Tool P R F1 P R F1 P R F1

Full Genome SVDSS 88.4 78.2 83.0 90.1 76.5 82.7 87.3 84.6 86.0

cuteSV 86.0 68.6 76.3 88.3 68.1 76.9 87.1 79.7 83.2

pbsv 86.9 68.8 76.8 84.9 68.6 75.9 84.6 82.7 83.6

sniffles 82.0 67.3 73.9 86.7 64.1 73.7 86.4 81.4 83.8

SVIM 83.5 65.1 73.2 84.9 64.7 73.4 90.1 79.9 84.7

debreak 88.6 67.5 76.6 90.1 64.2 75.0 83.7 79.6 81.6

Tier 1 SVDSS 95.2 85.5 90.1 95.2 82.7 88.5 95.3 93.4 94.5

cuteSV 90.9 82.9 86.7 93.0 79.9 86.0 94.8 93.1 93.9

pbsv 95.7 83.1 89.0 89.7 80.5 84.9 94.0 93.7 93.9

sniffles 87.7 81.1 84.3 92.3 75.9 83.3 87.2 93.6 90.3

SVIM 90.1 81.1 85.4 91.5 77.9 84.2 96.6 92.5 94.5

debreak 96.8 82.5 89.1 96.2 76.4 85.2 93.7 93.0 93.3

Extended Tier 2 SVDSS 82.7 72.3 77.2 84.6 70.2 76.7 80.3 77.4 78.8

cuteSV 80.9 57.0 66.9 82.3 56.0 66.6 79.9 68.1 73.6

pbsv 78.4 57.2 66.1 78.8 56.4 65.7 76.0 73.3 74.6

sniffles 77.8 56.1 65.2 80.3 52.1 63.2 72.7 73.2 72.9

SVIM 76.4 52.0 61.9 76.2 51.2 61.2 83.4 69.3 75.7

debreak 80.4 55.3 65.5 82.3 51.9 63.7 74.4 68.1 71.1

Results are shown in terms of P, R and F1 with bold faced numbers indicating best performance. Results are further broken down by considered regions of the genome. Tier 1 accounts for 
nearly half of SVs and consists of 86% of the genome. Extended Tier 2 accounts for the remaining 14% of the genome and 50% of SVs and includes repetitive regions that are more difficult to 
genotype. See Supplementary Fig. 5 for more detail on tiers. F1, F-measure; P, precision; R, recall
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Improved SVs calling in hard-to-analyze regions
For further analysis, we partitioned the genome into two sets of inter-
vals (tiers) as previously done by GIAB45. Tier 1 accounts for nearly 
86% of the genome spanning 2.51 Gbp, includes 50% or less of the total 
expected number of SVs and is probably biased toward easy-to-call 
SVs (as stated in the README of the GIAB v.0.6 callset provided at 
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
analysis/NIST_SVs_Integration_v0.6/README_SV_v0.6.txt). Tier 2 
accounts for nearly 0.8% of the genome and consists of around 6,000 
difficult-to-genotype sites. The remaining 13% of the genome con-
sists mostly of centromeres, telomeres and microsatellite regions (for 
example, short tandem repeats), which are generally more difficult to 
genotype because of their repeat structure and due to the ambiguities 
of the reference genome. Because the high-quality assemblies that are 
the basis of our analysis include effectively complete genomes for each 
individual, we decided to extend Tier 2 to also include these remaining 
13% regions (Extended Tier 2). This way, we are able to more thoroughly 
evaluate the accuracy of each method across the entire human genome 
and we do not limit our analysis to easier-to-call regions (that is, Tier 1). 
Our final partitioning consists of Tier 1 and Extended Tier 2, represented 
in Supplementary Fig. 5.

In this analysis, we considered the callsets produced by SVDSS, 
cuteSV, pbsv, sniffles, debreak and SVIM starting from pbmm2 align-
ments. Table 1 reports the results of this analysis. Results on both tiers 
follow the same trend as with the full genome, with SVDSS managing to 
call more correct SVs without introducing many false calls. As expected, 
all tools achieve higher accuracy on Tier 1 regions, which are easier to 
analyze. Furthermore, we observed that the improvement between 
performance of SVDSS and other tools widens in the Extended Tier 2 

regions of the genome (Table 1). Remarkably, on difficult-to-analyze 
regions (that is, Extended Tier 2), SVDSS achieves the highest recall, 
outperforming other callers by 15%, 14% and 4% on the HG002, HG007 
and CHM13 samples, respectively.

To further provide evidence of correctness for true positive calls 
in these hard regions, we analyzed how these calls are shared among 
the tested callers using an upset plot61. Upset plots are an alternative 
to Venn diagrams that represent more conveniently the intersections 
of multiple sets. Figure 2c shows that, out of the 10,333 total SVs in the 
truth set for HG007 (that is, the dipcall callset), 3,720 (36%) are cor-
rectly called by all the tested approaches, whereas 2,399 (23%) are not 
detected by any tool. Remarkably, 739 SVs (7%) are detected only by our 
pipeline, partially explaining the higher recall it is able to achieve. SVIM 
has the second highest number of specific calls at 130. Supplementary 
Fig. 14 shows the distribution of SVDSS-specific versus SVIM-specific 
calls on chr1, chr2 and chr3 of the HG007 sample. SVDSS also detects 
the highest number of SVs that would have been exclusive to other 
tools, that is, 172 (1.6%) calls are shared by SVDSS and sniffles, and 169 
(1.6%) are shared between SVDSS and pbsv.

We manually investigated some of the SVs that are exclusively 
called by SVDSS. Some of these calls are SVs that exhibit two different 
alleles on the two haplotypes. These SVs account for heterozygous SVs 
with two nonreference alleles (as defined in Denti et al.62), that is, SVs 
genotyped 1/2 (see two examples in Supplementary Figs. 10 and 11) as 
well as pairs of close SVs whose alleles come from different haplotypes 
(see an example in Supplementary Fig. 12). We observed that a total of 
343 SVs called exclusively by SVDSS and matching dipcall predictions 
on the HG007 genome were located at exactly the same position as 
another called SV and are heterozygous SVs with two nonreference 
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alleles, while a total of 227 SVs are close (≤ 100 bp) to another predicted 
SV (Supplementary Fig. 6).

Hard-to-analyze regions harbor SVs of clinical importance
To perform a more thorough analysis of the HG002 individual, we 
considered the Challenging Medically Relevant Genes (CMRG) callset 
provided in Wagner et al.51 and we evaluated callers’ accuracy against 
it. The CMRG callset consists of 250 SVs falling in 126 challenging and 
medically relevant genes that were excluded from the previously pub-
lished GIAB benchmark45 due to their complexity: compound heterozy-
gous insertions, complex variants in segmental duplications and long 
tandem repeats. The CMRG callset was created by diploid assembly of 
the haplotypes using hifiasm and then dipcall, proving once again the 
effectiveness of assembly-based methods for detecting hard-to-analyze 
SVs when well-curated assemblies are available.

As done previously, we computed the accuracy of SVDSS and the 
other five SV callers using Truvari. Out of the 250 SVs contained in the 
CMRG callset, SVDSS correctly called 232 SVs followed by pbsv (228) 
and cuteSV (225), SVIM (221), debreak (220) and sniffles (218). As shown 
in Fig. 2d (and Supplementary Fig. 7, where all tools are considered), 
five SVs are exclusive to SVDSS, while two are missed exclusively by 
SVDSS: one was reported but with a length just under the evaluation 
threshold of Truvari; the other was missed due to being detectable 
only in clipped reads, which SVDSS does not consider by default. We 
then manually investigated the SVs that were exclusively called by 
SVDSS, discovering that all exhibited two alleles, one per haplotype 
(that is, heterozygous SVs with two nonreference alleles). This result 
confirms previous findings51 that heterozygous insertions in tandem 
repeats are among the most challenging classes of SVs to discover with 
current methods.

Figure 3 shows one of the SVDSS-exclusive SVs, a double inser-
tion inside the SLC27A5 gene on chromosome 19. Although the two 
haplotypes can be distinguished easily by visual inspection of adjacent 
heterozygous SNPs, the tested callers disagree on which allele to call. 
For instance only SVDSS calls two alleles of length 168 bp and 224 bp 
agreeing with the CMRG callset, whereas pbsv and sniffles report only 
one of the two (168 bp). Surprisingly, cuteSV, SVIM and debreak report a 
single allele of length 185 bp, which does not match any of the evidence 
from read alignment. Additionally, we considered the portion of the 
high-quality HG002 assembly covering that locus (chr19:58487900–
58488500) and we checked its alignment against the reference genome 
(Fig. 3 and Supplementary Fig. 8). Although the considered locus is 
in a repetitive region (as also proven by the noisiness of the dotplots 
shown in Supplementary Fig. 8), the haplotype alignment confirms the 
presence of two allelic insertions of different lengths.

SVDSS has extremely low baseline error rate
Finally, we further investigated the lower bound on baseline FDR 
of SVDSS by comparing the HiFi reads from CHM13 against the 
high-quality T2T assembly52 of the same sample. Given the almost 
perfect T2T CHM13 assembly produced using multiple orthogonal 
technologies, it is expected that an ideal SV caller would predict no 
SVs when comparing CHM13 reads against this assembly. Thus, we 
propose an experiment to establish a lower bound on the baseline FDR 
of different methods by comparing how many SV calls they report on 
the CHM13 HiFi reads against its T2T assembly.

Ideally, the SVDSS pipeline should generate zero SVs calls in this 
scenario as no SFS should be extracted when querying smoothed 
CHM13 reads against the T2T assembly. However, this will not be the 
case in practice due to mapping ambiguities in repetitive regions of the 
genome. Still, we expect the method to produce very few variant calls.

As a side-objective, we will also investigate the resulting SV calls 
to find if our method has discovered any true SVs missing from the T2T 
assembly. Due to the effectively homozygous nature of the CHM13 
genome, any true variant discovered must be homozygous. However, 

it is possible that artifacts accumulated in the cell-line and actual het-
erozygosities in the genome may result in heterozygous SVs being 
reported.

We built the FMD index for v.1.1 of the CHM13 assembly and 
extracted SFS from CHM13 HiFi reads smoothed against the T2T 
assembly using this index. We then passed the SFS through the SVDSS 
pipeline for SV discovery. Our pipeline discovers a total of 102 SVs. For 
comparison, we repeated the above experiment with the other tools 
pbsv, cuteSV, SVIM, debreak and sniffles. Table 2 includes a summary of 
the results. We calculated the baseline FDR for each tool as the number 
of calls it makes against T2T divided by the number of calls it makes 
against GRCh38. SVDSS has the lowest number of calls against the T2T 
assembly and also has the lowest baseline error rate.

We further investigate if any of our calls are indeed true variants. 
The T2T project provides a list of known heterozygous sites on CHM13 
(refs. 52,63) and 13 of our SV calls intersect these regions, suggesting that 
they may be actual heterozygous alleles missing from the homozygous 
assembly. We also report the number of intersecting calls in Table 2 
for every tool. SVDSS has the highest ratio of calls intersecting known 
heterozygous regions. We performed additional filtering of the calls 
using Merfin64—a variant call polishing tool that filters VCF files based 
on whether the variants introduce k-mers not found in the sequencing 
reads. Only one of our calls passes Merfin’s filtering and we verify that 
the call seems to be a heterozygous site (Supplementary Fig. 9).

In summary, SVDSS produces only 102 calls using CHM13 HiFi 
reads against the T2T CHM13 assembly, some of which may be actual 
true heterozygous variants. Furthermore, with our earlier experiments 
showing an average of 33,000 SV calls per sample, this amounts to a 
baseline error rate of less than 0.4% showing that SVDSS is robust to 
false detection of variants.

Discussion
We introduced SVDSS—a method for SV discovery that combines advan-
tages of different SV discovery approaches to achieve considerable 
improvements in SV calling. A highlight of SVDSS is its much higher 
recall compared with other approaches in repeated regions of the 
genome (that is, Extended Tier 2), and also its overall higher accuracy, 
in particular in repetitive and traditionally hard-to-genotype regions 
of the genome. We also observed that reducing sequencing coverage 
impacts SVDSS less than other approaches. Thus SVDSS can accurately 
predict SVs in low-coverage sequenced samples. Furthermore, using 
the recent CHM13 assembly produced by T2T consortium, we could 
estimate baseline error rare for each methods and further observed 
that SVDSS has the lowest baseline error rate, followed by sniffles.

While the availability of low-error long-read data enables more 
extensive variant discovery on new samples, SV discovery in repetitive 
regions of the genome such as STRs and microsatellites remains chal-
lenging but also hard to evaluate. This is evidenced by comparisons 
presented in this manuscript. Despite the considerable performance 
improvements of SVDSS in repetitive regions, precision and recall in 
these regions are still lower than in the rest of the genome.

SVDSS currently supports the discovery of unbalanced SVs, that 
is, deletions and insertions; however, as the underlying SFS signatures 
capture nearly all variation in the genome, a next step could be to 
extend the method to finding other classes of SVs such as inversions 
and duplications. Our current best technique for creating SV truth sets 
(dipcall) does not evaluate inversions and duplications, yet a recent 
study28 provides one of the first gold standards.

Throughout this work, we highlight the importance of accurate 
benchmarks of SV calling methods. We evaluated SVDSS on a recent 
benchmark extensively curated over the HG002 sample51 with the 
specific purpose of producing SVs occurring in genes of medical rel-
evance. These genes are considered challenging for mapping-based 
and assembly-based SV prediction methods even from highly accurate 
long reads. This benchmark revealed that other methods fail to call 
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heterozygous indels in highly homozygous regions or erroneous indels 
interpreted by a consensus approach. SVDSS is the only method able to 
discover five such SVs in medically relevant gene regions. We believe the 
current examples of accurate prediction of multiallelic heterozygous 
events based on SVDSS indicates the merit of extending this approach 
for genotype prediction of SVs.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-022-01674-1.
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Methods
Sample-specific string computation and assembly
Sample-specific SFS are defined as sequences that are specific to a 
‘target’ set of strings (a genome or sequencing sample) with respect 
to another ‘reference’ set of strings (another genome or sequencing 
sample)53. The ‘substring-free’ part means that they do not occur as 
substrings of each other. Note that, in the context of SV discovery, the 
‘reference’ will always be an assembled reference genome, for example, 
GRCh38, and the ‘target’ here is a set of reads. SFS can be optimally com-
puted using the Ping-Pong algorithm, presented in Khorsand et al.53. 
Ping-Pong builds the FMD index65 of the reference genome and queries 
the reads of the target sample against this index to report substrings 
that are not present in the index. The FMD index is a bidirectional text 
index with constant-time forward and backward search operations, 
thus allowing for efficient computation of SFS.

When SFS are computed between a reference genome and a target 
sample, they capture nearly all variations expressed in the sample 
with respect to the reference genome, as shown in Khorsand et al.53. 
Indeed, each sequencing read including a variant produces at least 
one SFS supporting the variant; hence, a variant will be supported by 
at least one SFS per read covering it. SV breakpoints usually result in 
new sequences that are captured as SFS. However, due to the ‘shortest’ 
property of SFS, the entire SV sequence is not necessarily covered by a 
single SFS: a read may produce several overlapping SFS for long varia-
tions. To remove unnecessary redundancy in the information captured 
by overlapping SFS, we newly assemble all such overlapping SFS into 
longer strings called ‘superstrings.’ Assembling SFS into superstrings 
also reduces the number of SFS by an order of magnitude, making any 
downstream analysis more efficient.

As SFS on each read are naturally sorted based on their start posi-
tions, the assembly stage can be implemented as a single pass over the 
SFS on each read, merging each SFS with the next one if they overlap. 
The resulting superstring can further be merged with the next SFS if 
they also overlap, and so on. More formally, on a read R where k con-
secutive SFS are overlapping such that R[i1, j1] overlaps with R[i2, j2] and 
R[i2, j2] overlaps with R[i3, j3] and …R[ik−1, jk−1] overlaps with R[ik, jk], we 
merge the strings into the single superstring R[i1, jk].

The SFS assembly procedure effectively merges all the SFS belong-
ing to the same variant into a single long superstring. This results in 
superstrings from the same variant to have similar length, sequence 
and position with respect to the reference genome which allows them 
to be clustered easily for SV prediction.

Read smoothing
The SFS extraction step (Ping-Pong algorithm) requires reads with low 
error rates for optimal performance as sequencing errors can result in 
millions of undesirable SFS. While most such SFS can be filtered later 
on, they can negatively affect the accuracy and will increase runtime 
by adding excess processing. Furthermore, the presence of millions of 
SNPs and small indels in a sample also results in tens of millions of addi-
tional SFS being extracted that are not directly useful for genotyping 
SVs. To solve both of the above problems, we introduce a preprocessing 
step called ‘read smoothing’ that aims to eliminate both sequencing 
errors and short variants from input reads. The smoothing algorithm 
starts from read alignments (a BAM file) and uses information from 
the CIGAR strings of each alignment to remove any short mismatch 
between a read and the reference genome.

In more detail, for segments reported as a match between a read 
and the reference genome (CIGAR operation ‘M’), the algorithm replaces 
the read sequence with the corresponding sequence from the reference 
genome, automatically removing any single-base mismatches (that is, 
sequencing errors or potential SNPs) in the process. For short deletions 
(CIGAR operation ‘D’), the algorithm removes the deletion from the read 
by copying back the deleted bases from the reference sequence. Short 
insertions (CIGAR operation ‘I’) are similarly smoothed by removing the 

inserted bases from the read. Using the default parameters, deletions and 
insertions are smoothed if they are shorter than 20 bp. Note that smooth-
ing insertions or deletions, that is, removing them from the alignment, 
results in the extension of the ‘M’ sections of the CIGAR string. Finally, 
soft-clipped regions (CIGAR operation ‘S’) are retained as they include 
potentially long inserted or deleted sequences: any SNP or sequencing 
error inside clipped regions cannot be corrected as a result. As a result 
of the smoothing algorithm, a smoothed read’s CIGAR strings will have 
fewer edit operations than that the original read and it will consist of one 
or more very long ‘M’ segments with large INDELs in between, poten-
tially surrounded with soft-clipped regions. Supplementary Fig. 3 illus-
trates the smoothing procedure on an example read. We note that the 
Ping-Pong algorithm will not produce any SFS that is entirely contained 
in an ‘M’section of a smoothed read as the corresponding sequence has 
been replaced base-by-base with reference genome sequence. There-
fore, the number of SFS extracted from smoothed reads is substantially 
smaller than the number of SFS extracted from original reads.

The smoothing algorithm only works with primary alignments 
and nonprimary alignments are ignored. This is to avoid complications 
arising from having multiple different smoothed version of reads with 
multiple alignments.

Smoothing relies on correctness of read alignments. If an align-
ment is thought to be inaccurate, the smoothing algorithm does not 
modify it. To this aim, during its execution, the algorithm keeps track 
of the average number of mismatches between the ‘M’ segments of 
alignments and the corresponding reference sequence: any read that 
has more than three times the average mismatch rate is ignored, that 
is, is not modified.

On a more technical note, we point out that the above modifica-
tions do not change the overall mapping of the read as the mapping 
positions (begin and end) remain the same. As a result, the algorithm 
will not change the order of the reads in a sorted BAM file. This allows 
us to quickly reconstruct a sorted BAM file without the need to sort it 
again. However, because the size of the reads may have changed, the 
index of the original BAM files is no longer valid for the smoothed BAM 
and it has to be indexed again with samtools index.

In our experiments, smoothing effectively reduces the number of 
extracted SFS by over 90%, while having effectively no impact on the 
SV calling pipeline’s recall. Out of the 6.2 million reads for the CHM13 
samples, around 5 million are smoothed and the rest are deemed to 
have unreliable mappings and are discarded. The 1.2 million nons-
moothed reads from CHM13 are responsible for more than 82% of all 
SFS extracted from that sample after smoothing. However, the SFS 
extracted from nonsmoothed reads do not contribute to increasing the 
method’s recall at all. Indeed excluding the SFS extracted from nons-
moothed reads increases the method’s precision while leaving the recall 
unaffected. This justifies the exclusion of nonsmoothed reads from the 
SVDSS pipeline. Further analysis shows that nearly all nonsmoothed 
reads map to centromere regions of the CHM13. Supplementary Fig. 4  
shows the distribution of mapping positions of reads from chr1 on 
both CHM13 and GRCh38. The large gap around the centromere when 
mapping to GRCh38 explains the poor performance of nonsmoothed 
reads when predicting SVs against the reference genome.

In summary, read smoothing is a critical preprocessing step of the 
SVDSS pipeline. It reduces the number of retrieved SFS and increases 
the specificity of the extracted SFS which results in higher precision 
in predicting SVs without deteriorating recall. The procedure is also 
computationally very lightweight, as it essentially rewrites the BAM 
file in a single pass with minor modifications. As a result, smoothing is 
an effective method for increasing the specificity of SFS for SV calling 
and improving the computational efficiency of the pipeline.

SV Discovery
The main SV calling algorithm consists of three main steps (Fig. 1 steps 
3A, 3B and 3C):
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	(1)	 Superstrings constructed from the SFS strings are ‘placed’ on 
the reference genome by extracting their alignments from read 
alignments. The superstrings are then clustered based on their 
aligned loci. Each cluster represents one or more SVs that are 
close to each other and may also contain multiple alleles.

	(2)	 Each cluster is further clustered based on length to generate up 
to two haplotype candidates (taking into account the diploidy 
of the human genome). Each haplotype cluster candidate is as-
sembled with POA to yield a consensus sequence.

	(3)	 Each haplotype candidate is locally realigned back to the refer-
ence genome region corresponding to its cluster and SVs are 
called based on the alignment.

We will explain each step in more details in the following 
subsections.

Superstring placement and clustering. Aligning superstrings back 
to the reference genome would be time-consuming and error-prone 
due to their relatively short lengths. However these superstrings were 
already (indirectly) mapped as part of the mapping of the reads they 
are part of. Hence, in practice we do not align superstrings directly to 
the reference genome but instead their alignment is extracted from 
the alignment of their originating reads. We refer to this as superstring 
placement. Assuming R[i, j] is a superstring that spans positions i…j on 
read R, by knowing the mapping position of R, we can easily place the 
superstring on the reference genome by analyzing the correspond-
ing CIGAR portion (that is, CIGAR sections covering positions i…j). 
As already pointed out, thanks to read smoothing, SFS (and conse-
quently superstrings) cannot be contained entirely in an ‘M’ section 
of a smoothed read alignment (CIGAR) and therefore span its ‘I’ and 
‘D’ sections. For superstrings spanning a ‘D’ section, all the bases are 
already placed on the reference genome and no additional computation 
is necessary. On the other hand, when a superstring spans an ‘I’ section, 
it often covers just a portion of the inserted sequence. In such a case, 
since the inserted sequence cannot be placed on the reference genome, 
it is challenging to fully place the superstring. To deal with this issue, we 
extend each superstring that does not fully cover an ‘I’ section until it 
fully covers it. In other words, we extend the superstring until it covers 
(on each side) a base that can be placed on the reference genome (that 
is, that is not part of the inserted sequence).

To further boost the informative content of the superstrings and 
to make the following steps of the pipeline easier and more accurate, 
each placed superstring is further extended on the read on both sides 
until we reach a perfectly mappable (can be mapped to the reference 
genome with no errors) and locally unique (not repeated in the consid-
ered window) k-mer anchor. The default value for k is 7 and the default 
window size is 100 bp on each side of the superstring. The superstrings 
that cannot be extended in this manner are ignored. Figure 1, step 3A 
shows this extension procedure. The k-mer anchoring idea was influ-
enced by LongShot66.

Finally, we cluster the superstrings based on their mapping loca-
tions: superstrings that have close enough mappings (by default less 
than 500 bp apart) are placed in the same cluster. The resulting cluster’s 
interval is defined as the smallest interval in the genome that com-
pletely includes all of its superstrings and the includes either a single SV 
or several close or overlapping SVs possibly from different haplotypes.

POA assembly and SV detection. Each cluster so far includes one 
or more close SVs. However, as the human genome is diploid, the SVs 
might indeed be from different haplotypes. To resolve the different 
haplotypes, we further split each cluster into subclusters of super-
strings of similar size and sequence. This is based on the assumption 
that different alleles at each site have different length and sequence. 
The similarity of sequences is calculated using rapidfuzz (available at 
https://github.com/maxbachmann/rapidfuzz-cpp). The two largest 

resulting subclusters (in terms of number of superstrings) are selected 
as haplotype candidates (considering the human genome is diploid). 
If only one subcluster is returned, it suggests a homozygous variant. 
SVDSS then computes a consensus sequence for each subcluster 
using POA.

Assume that a cluster c spans the interval G[sc, ec] of the reference 
genome G. Most strings of the cluster only partially cover this interval 
(that is, they align to positions [s,e] with sc≤s<e≤ec) while some others 
span the entire interval (that is, they align to positions covering at 
least [sc,ec]). To perform a more accurate POA, SVDSS extends all the 
strings in a cluster to be of the same length. Therefore, SVDSS fills the 
gaps preceding or following a superstring using the reference genome. 
For instance, if a superstring S aligns to [s,e] with sc<s < e < ec, then the 
resulting sequence will be G[sG, s − 1] + S + G[e + 1, eG] (where + is the 
string concatenation operator). The main goal of this extension is to 
summarize the information contained in a cluster and to minimize the 
difference between the superstrings coming from different reads. The 
extended superstrings in each subcluster are then aligned to each other 
using abPOA67 to generate a consensus (Fig. 1 step 3B).

Finally, each POA consensus sequence is realigned locally to the 
reference genome window corresponding to its cluster using parasail68. 
The alignment’s CIGAR information is analyzed to call and detect inser-
tion and deletion SVs (Fig. 1 step 3C). A weight is assigned to each SV 
prediction based on the number of superstrings that support it. A higher 
support indicates a more confident call. By default, we filter out SV calls 
having less than four supporting superstrings. The confidence thresh-
old can also be set at runtime using the --min--cluster--weight option.

SV chain filtering. Reads originating from loci in repetitive parts of 
the genome such as STRs may map to slightly different coordinates 
due to the similarity of the local sequence. This will result in multiple 
clusters (relatively close to each other) and multiple SV calls for the 
same variant but at slightly different positions. To reduce the number 
of false positives and eliminate such redundant calls, we perform a 
‘chain filtering’ postprocessing step. This step sorts all predicted SVs 
based on coordinates and filters out consecutive SVs of the same type 
with similar sizes, keeping only the one with the highest number of 
supporting superstrings.

Implementation details
As a result of its many steps and the complexity of extraction SFS, 
SVDSS is more compute-intensive than other SV discovery methods, 
yet remains fast due to heavy optimization and deep parallelization. 
In this section, we elaborate on the performance of each of the steps 
and compare our runtime with other methods.

The FMD index creation and querying are handled internally by 
the FMD implementation from Li65. FMD index creation for the GRC38 
reference genome takes around 30 min on 16 cores. The index can be 
reused for any number of samples so its creation is a one-time expense.

Read smoothing is an IO-intensive step and greatly benefits from 
enabling the multithreaded BAM decoding functionality built into 
htslib69 by setting the bgzf_mt flag when opening a BAM file. To further 
improve BAM decompression performance, we require that htslib is 
built with libdeflate in place of the default BAM decoder. For HiFi data 
at 30× coverage the smoothing algorithm takes about 15 min to run 
on 16 cores.

SFS extraction is the most computationally intensive step and 
takes about 45 min on 16 threads for the CHM13 HiFi data. Finally, the 
SV calling steps is very fast and takes less than 8 min to run despite the 
computational load of POA and local alignment. Overall, the runtime of 
the SVDSS pipeline is less than 70 min for a high-coverage HiFi sample 
on 16 cores, excluding index creation time. In comparison, the fastest 
SV caller was cuteSV, taking 5 min, and the slowest was sniffles, taking 
upwards of 3 h. The remaining method debreak, pbsv and SVIM each 
took between 90 and 100 min to run.

http://www.nature.com/naturemethods
https://github.com/maxbachmann/rapidfuzz-cpp
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All tools needed less than 64 GB of memory with SVDSS peaking at 
34 GB of memory during the SV calling stage. Our SFS extraction and 
smoothing stages each use constant memory; however, the SV calling 
stage uses the most memory due to simultaneous handling of several 
(depending on the number of threads) POA graphs and local alignment 
dynamic programming tables in memory.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All described datasets are publicly available through the correspond-
ing repositories. In our experimental evaluation we used data publicly 
available at: GRCh38 reference genome: https://hgdownload.cse.ucsc.
edu/goldenpath/hg38/bigZips/hg38.fa.gz; GRCh37 reference genome: 
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz; HG002 PacBio 
HiFi data: https://storage.googleapis.com/brain-genomics-public/
research/deepconsensus/publication/deepconsensus_predictions/
hg002_15kb/two_smrt_cells/HG002_15kb_222723_002822_2fl_DC_
hifi_reads.fastq; HG002 assembly: https://console.cloud.google.com/
storage/browser/brain-genomics-public/research/deepconsensus/
publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/
dc; CMRG callset: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSa-
mples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_
v1.00/GRCh38/StructuralVariant/; HG007 PacBio HiFi data: https://
storage.googleapis.com/brain-genomics-public/research/deep-
consensus/publication/deepconsensus_predictions/hg007_15kb/
three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq; 
HG007 assembly: https://console.cloud.google.com/storage/browser/
brain-genomics-public/research/deepconsensus/publication/analysis/
genome_assembly/hg007_15kb/two_smrt_cells/dc; CHM13 PacBio HiFi 
data: https://github.com/marbl/CHM13#hifi-data; CHM13 T2T assem-
bly v1.1: https://s3-us-west-2.amazonaws.com/human-pangenomics/
T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz. The three call-
set built using dipcall are available at https://github.com/ldenti/
SVDSS-experiments.

Code availability
SVDSS is open source and publicly available at https://github.com/
Parsoa/SVDSS. Scripts to reproduce the experimental evaluations 
described in the manuscript are available at https://github.com/
ldenti/SVDSS-experiments. Other software tools used in the study 
are either referenced or provided as links here: pbmm2 (https://github.
com/PacificBiosciences/pbmm2) and pbsv (https://github.com/
PacificBiosciences/pbsv).
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