nature methods

Article

https://doi.org/10.1038/s41592-022-01674-1

SVDSS: structural variation discovery
in hard-to-callgenomicregions using
sample-specific strings fromaccurate

longreads

Received: 23 February 2022

Accepted: 8 October 2022

Published online: 22 December 2022

Luca Denti"®, Parsoa Khorsand?®, Paola Bonizzoni® 37/,
Fereydoun Hormozdiari ® >457

& Rayan Chikhi®"’

% Check for updates

Structural variants (SVs) account for alarge amount of sequence variability
across genomes and play animportant role in human genomics and

precision medicine. Despite intense efforts over the years, the discovery
of SVsinindividuals remains challenging due to the diploid and highly
repetitive structure of the human genome, and by the presence of SVs that
vastly exceed sequencing read lengths. However, the recent introduction
of low-error long-read sequencing technologies such as PacBio HiFi

may finally enable these barriers to be overcome. Here we present SV
discovery with sample-specific strings (SVDSS)—a method for discovery
of SVs from long-read sequencing technologies (for example, PacBio HiFi)
that combines and effectively leverages mapping-free, mapping-based
and assembly-based methodologies for overall superior SV discovery
performance. Our experiments on several human samples show that
SVDSS outperforms state-of-the-art mapping-based methods for discovery
ofinsertion and deletion SVsin PacBio HiFireads and achieves notable
improvements in calling SVs in repetitive regions of the genome.

SVsare defined as medium to large-size genomic rearrangements'2. SVs
canrange fromtens of basepairs to over megabases of sequence. Differ-
enttypes of SVsinclude balanced SVs, suchasinversions and transloca-
tions, and unbalanced SVs, such asinsertions and deletions®. The study
and characterization of SVs has been driven by constantimprovements
inthe technologies available to assay variants. Although SVs are not the
most ubiquitous type of genetic variants, the total volume of basepairs
impacted by SVs is far more than any other type of genetic variant,
including single nucleotide variants (SNVs)*°. Furthermore, recent
studies of SVs using orthogonal technologies have shown that SVs are

the least well-characterized type of genetic variant, with many basic
questions, such as the average number of SVs per sample or sequence
biases contributing to their formation, still not completely resolved®™’.
In addition, the homology-driven mechanisms behind SV formation
(forexample, nonallelichomologous recombination) have contributed
to the complexity of their systematic study™. Itis believed that alarge
fraction of polymorphic SVs are still not fully characterized"-.
Asour current understanding of SVs evolves, it is becoming clear
that SVs are a main contributing factor to human diseases” ", popu-
lation genomics®'® and evolution”. The comparative study of SVs in
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several closely related species (for example, great apes) has shown the
considerable contribution of SVs to evolution (for example, through
gene duplication or deletion'®"). Furthermore, the study of rare and
de novo SVs in disease such as autism and epilepsy has proven the
notable contribution of these variants in such conditions™?° %, It is
also known that somatic SVs are one of the main causative variants in
different types of cancer* ™.

With the advent of short- and long-read high-throughput
sequencing technologies in the past decade, noteworthy progress
has been made in our understanding of the abundance, complex-
ity and importance of SVs***. Many methods have been developed
for prediction of SVs using whole-genome sequencing (WGS) data
produced from different sequencing technologies® **. Most of these
methods try to predict variants by detecting certain SV signatures
(thatis, read-depth, read-pair or split-read) in mappings of the reads
tothereference genome®**** and are hence known as ‘mapping-based’
methods. Mapping-based methods have contributed to our under-
standing of the abundance of SVs in the general population and their
roleindisease™***¢, Mapping-free methods are amore recent group of
approaches that try to predict SVs without mapping the reads to the
reference genome and instead by comparing sequence data between
different genomes®**. Finally, assembly-based approaches first assem-
ble the sequenced reads into longer contigs and use the assembled
contigs to predict variants**~°, Assembly-based methods have recently
beenshown to provide superior performance to mapping-based tools’".

There are limiting factors for predicting SVs using each of these
frameworks. Since most SV prediction tools use mappings of thereads
to the reference genome for making SV calls, predicting SVs in highly
repeated regions of the genome (for example, segmental duplications)
where mappings canbe inaccurate would be prone to false discovery.
Reference genome gaps and misassemblies further complicate the
prediction of SVs in these regions and result in decreased accuracy
and increased variability across tools®. The mapping-free approaches,
on the other hand, suffer from not being able to provide the loci of
the event. Furthermore, fixed-length (k-mer) sequence comparisons
performed in mapping-free tools canresultin collapse of repeats and
lower sensitivity/accuracy. Finally, assembly-based approaches are
very computationally resource intensive and often require integration
of datafrom multiple different technologies (thatis, long reads, short
reads and Hi-C)**?, higher sequencing depths (35x was reported®'), and
extensive polishing and postprocessing toyield a high-quality de novo
assembly suitable for variant prediction, thus making them impractical
for SV discovery across large populations.

Here, we propose a method called SVDSS that combines advan-
tages of all three mapping-based, mapping-free and assembly-based
approaches for predicting SVs. Our method uses mapping-free
sample-specific signatures® along with mapping information to cluster
reads potentially including SVs, and then performs local assembly and
alignment of the clusters for SV prediction. With the combination of
different analysis methods, our algorithmis able toimprove SV calling
performance particularly in repetitive areas of the genome compared
with other contemporary approaches.

Results

Overview of SVDSS

We present SVDSS—a method for the discovery of SVs from accurate
long reads (for example, PacBio HiFi). SVDSS takes as input areference
genome and a mapped BAM file and produces SV calls in VCF format
along with assembled contigs for SV sites in SAM format. We use the
concept of sample-specific strings (SFS), which we introduced previ-
ously asall the shortest substrings unique to one string set with regards
to another string set*>. We employ SFS here to pinpoint differences
between reads and a reference genome®, Our method computes SFS
for coarse-grained identification of potential SV sites. It assembles
clusters of SFS from such sites to produce contigs that are then locally

aligned to the reference genome to detect SVs. The main advantage
of using SFS is that they are not limited to fixed-length seeds (unlike
k-mers) and the algorithm can dynamically find the shortest string for
covering the breakpoints of each variant, thus making SFS ideal for
anchoring potential SV breakpoints.

SVDSS has three mainsteps as depicted in Fig. 1, sketched here and
explained in more detail in the Online Methods:

(1) Read smoothing: reads are modified to remove sequencing er-
rors, single nucleotide polymorphisms (SNPs) and small indels
(<20 basepairs (bp)) that may interfere with SV calling (step (1);
Fig.1and Supplementary Fig. 3). Smoothing greatly reduces the
number of extracted SFS while increasing their specificity for
the purpose of SV calling.

(2) SFS superstring construction: SFS are computed from the
smoothed reads using the optimal Ping-Pong algorithm™ (2A;
Fig. 1) and then assembled into superstrings to reduce redun-
dancy (2B).

(3) SV prediction using SFS superstrings: SFS superstrings are clus-
tered based on position and extended to include unique anchor-
ing sequences from the reference genome (step 3A; Fig. 1), fur-
ther subclustered by length then assembled based on a partial
order alignment (POA) approach to generate haplotype candi-
dates (3B). Finally, SVs are called by aligning the resulting POA
consensus(es) (3C).

In the following sections, using experimental analysis on mul-
tiple WGS samples, we demonstrate that SVDSS accurately predicts
SVs and outperforms state-of-the-art approaches. We further show
that the main contribution of our proposed approach is the ability to
moreaccurately predict SVsfalling inrepeated regions of the genome
compared with other methods.

Benchmark and evaluation callsets

One complexity in comparing different tools for calling SVs is the
imperfectness of available callsets. Missing variants and potentially
false predictions affect almost all published callsets, and even the most
high-quality callsets have beenreported to have afalse discovery rate
(FDR) of around 5% and amuch higher false negative rate®. Furthermore,
many callsets are constructed using state-of-the-art but imperfect
SV prediction tools and are thus biased toward these methods**. For
these reasons, we have opted out of using pre-existing callsets such
as the 2020 Genome In A Bottle (GIAB) v.0.6 callset® in our experi-
mental benchmarking. Instead we constructed our ground truth SV
callsets from scratch using high-quality haplotype-resolved de novo
assemblies generated by using many technologies (T2T CHM13 v.1.1,
HGO002 and HG0O07, described in Comprehensive detection of inser-
tions and deletions). A similar ground truth construction strategy was
employedina2022 GIAB benchmark®, although focusing on a subset
of medically relevant genes. We applied the assembly-to-assembly SV
calling tool dipcall** to each assembly versus the entire GRCh38 refer-
ence genome (see Supplementary Information Section A for more
details). The three VCFs built using dipcall and used as ground truthin
ourexperimental evaluationare available at https://github.com/Identi/
SVDSS-experiments. For a detailed comparison of the HGOO2 callset
built with dipcall and the v.0.6 callset provided by the GIAB project, we
refer the reader to Supplementary Information Section B.

Comprehensive detection of insertions and deletions

We experimentally validated the accuracy of the SVDSS pipeline in
calling SVs from three whole-genome sequenced samples sequenced
using PacBio HiFitechnology: the homozygous CHM13 sample from
the telomore-to-telomere (T2T) project®>and the HG0O02 and HG007
samples corrected using DeepConsensus®. These samples were
chosen because of the availability of high-quality and effectively
complete assemblies for them. Furthermore, the DeepConsensus
corrected HGO02 and HGOO7 samples show higher accuracy than
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Fig.1| Overview of the SVDSS SV prediction pipeline. Instep (1), reads are is further clustered into up to two subclusters based on length of the superstring
smoothed to remove SNPs and sequencing errors. SFS are extracted from reads (step 3B). Each subcluster represents a potential haplotype. The subclusters
(step 2A) and assembled into superstrings (step 2B). In step 3A, superstrings are assembled with POA to generate a consensus sequence (step 3C). The POA
(gray) are clustered based on their placements on the reference genome and consensus for each cluster is aligned locally to the reference genome and SVs are

extended to uniquely mappable 7 bp anchors on each side (colored). Each cluster  called from the mapping information.

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-022-01674-1

Table 1| Comparison of performance of SVDSS and other methods on calling SVs

HG002 HGOO7 CHM13
Region Tool P R F1 P R F1 P R F1
Full Genome SVDSS 88.4 78.2 83.0 901 76.5 827 87.3 84.6 86.0
cuteSv 86.0 68.6 76.3 88.3 68.1 76.9 871 79.7 83.2
pbsv 86.9 68.8 76.8 84.9 68.6 75.9 84.6 827 83.6
sniffles 82.0 67.3 73.9 86.7 64.1 737 86.4 81.4 83.8
SVIM 83.5 651 73.2 84.9 64.7 734 901 79.9 84.7
debreak 88.6 67.5 76.6 901 64.2 75.0 83.7 79.6 81.6
Tier1 SVDSS 95.2 85.5 901 95.2 827 88.5 95.3 93.4 94.5
cuteSV 90.9 82.9 86.7 93.0 79.9 86.0 94.8 931 93.9
pbsv 957 831 89.0 897 80.5 84.9 94.0 93.7 93.9
sniffles 877 811 84.3 92.3 75.9 83.3 87.2 93.6 90.3
SVIM 90.1 811 85.4 91.5 779 84.2 96.6 92.5 94.5
debreak 96.8 82.5 89.1 96.2 76.4 85.2 937 93.0 93.3
Extended Tier 2 SVDSS 827 723 71.2 84.6 70.2 767 80.3 774 78.8
cutesv 80.9 57.0 66.9 82.3 56.0 66.6 79 68.1 73.6
pbsv 78.4 572 66.1 78.8 56.4 65.7 76.0 73.3 74.6
sniffles 718 56.1 65.2 80.3 521 63.2 72.7 73.2 72.9
SVIM 76.4 52.0 61.9 76.2 51.2 61.2 83.4 69.3 75.7
debreak 80.4 55.3 65.5 82.3 51.9 63.7 74.4 68.1 AN

Results are shown in terms of P, R and F1 with bold faced numbers indicating best performance. Results are further broken down by considered regions of the genome. Tier 1 accounts for
nearly half of SVs and consists of 86% of the genome. Extended Tier 2 accounts for the remaining 14% of the genome and 50% of SVs and includes repetitive regions that are more difficult to

genotype. See Supplementary Fig. 5 for more detail on tiers. F1, F-measure; P, precision; R, recall

standard HiFi samples corrected using only pbcces®. The use of both
homozygous (CHM13) and heterozygous (HGO02 and HGOO7) sam-
ples allows for more comprehensive analysis and comparison of SV
calling methods.

We mapped each sample against the reference genome using
pbmm2 and then called SVs on each sample using the SVDSS pipeline.
We compared our approach to five state-of-the-art mapping-based
SV callers: pbsv, cuteSV*®, sniffles*, SVIM*” and a recent preprinton a
POA-based method, debreak’®. We ran each caller setting the minimum
SV support to four when analyzing the 30x CHM13 sample and to two
whenanalyzing the15x HGO02 and HGOO7 samples. We then examined
theirinsertions and deletions calls. We validated the calls of each tool
against the set of SVs constructed with dipcall using Truvari*’, a SV
evaluation framework that reports precision, recall and F1 score for
eachmethod. Weignored genotype-level accuracy, thatis, we checked
only forthe presence of the corrected allele (see Supplementary Infor-
mation Section D for more information on how we ran Truvari, as well
asother tools used in our analysis). From this comparison, we further
exclude calls madeinregions of the reference genome not covered by
both haplotypes, as any such call would be classified as false positive
regardless of correctness.

OnHGO002 and HGOO7 samples, SVDSS outperforms the recall of
the other callers by 5-10% while achieving the highest (or second high-
est) precisiononthe fullgenome (Table 1, Full Genome rows). SVDSS has
beenabletoreport2,342 (+10%relative to second-best approach) more
correct calls on HG002 and 1,631 (+8%) more calls on HGOO7 without
introducing many false calls. SVDSS also achieves the highest recall
on CHM13 and reports 782 (+2%) more true positive calls than other
methods while maintainingavery high precision. While SVDSS has the
highest F1score on CHM13, we note that the whole-genome improve-
ments achieved by SVDSS over other approaches is less pronounced
for this sample compared with the other two samples (improvement
of 2-5%inrecalland 1% in F1 while achieving similar precision to other

tools). Thisis probably due to the homozygous nature of CHM13 mak-
ing SV calling relatively easier for all approaches.

Figure 2areports thelength distribution of the SVs called by each
toolonthe HGOO7 sample. On HGOO7, the number of SVs reported by
eachtool rangesfrom34,827t0 38,659, with SVIM reporting the lowest
number of SVs and SVDSS reporting the highest number. Overall, all the
tools report more insertions than deletions with shorter SVs (<100 bp)
being more frequent than longer SVs. Moreover, all the tools show a
clear peak at around 300 bp, reflecting Alu mobile elements.

We also repeated the above experiment on HGOO7 using differ-
ent aligners to test how SV callers are influenced by how reads are
aligned. We tested all six callers in combination with minimap2 (ref. *°)
and ngmlIr* (Supplementary Table 2). We also noticed that SVDSS
substantially improves our ability to predict SVs in comparison with
state-of-the-art approaches using minimap2 mapper, while being one
of top performer tools using ngmlir mapper (Supplementary Table 2).

We also investigated how read coverage affects SV calling per-
formance. To this aim, we subsampled the HGOO7 sample (coverage
15x) down to 5x and 10x and we ran the six considered approaches on
these two newly created samples. Our SVDSS approachwas also able to
outperformother approaches using 10x sequencing coveragein all the
metrics of interest (precision, recalland F1; Fig. 2b and Supplementary
Table 3). When sample coverage is low (5%), pbsv achieves the highest
recall (63.2%) at the expense of lower precision (58.6%), whereas other
tools achieve similar high precision (ranging from 87.4% of SVIM to
92.9% of SVDSS) but low recall (ranging from 46.2% achieved by SVDSS
to 51.6% achieved by cuteSV). As already pointed out by Chen et al.*®,
debreak works poorly with low-coverage samples. Onthe other hand,
with higher coverages of 10x and 15, SVDSS achieves the best precision
and recall, outperforming other approaches.

Finally, our pipeline has the second-lowest runtime among the
considered methods behind cuteSV. More details on runtime and
performance are available in Online Methods.
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Fig.2 | Extended comparative analysis of SV calls across methods. a,
Distribution of SVs lengths reported by different tools on HGOO7 (Full Genome).
b, Lineplot presenting results of the coverage titration for 5x,10x and 15x.

¢, Analysis of shared calls (True Positives) between different tools on HGOO7
(Extended Tier 2).d, Venn diagram showing shared calls (True Positives) between

different tools on the 273 medically relevant genes considered in the CMRG
callset. To keep the Venn diagram cleaner, we decided to exclude debreak since it
called the fewest True Positives. A supervenn figure including all tools is shown in
Supplementary Fig. 7.

Improved SVs calling in hard-to-analyze regions

For further analysis, we partitioned the genome into two sets of inter-
vals (tiers) as previously done by GIAB*. Tier 1 accounts for nearly
86% of the genome spanning 2.51 Gbp, includes 50% or less of the total
expected number of SVs and is probably biased toward easy-to-call
SVs (as stated in the README of the GIAB v.0.6 callset provided at
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
analysis/NIST_SVs_Integration_v0.6/README_SV_v0.6.txt). Tier 2
accounts for nearly 0.8% of the genome and consists of around 6,000
difficult-to-genotype sites. The remaining 13% of the genome con-
sists mostly of centromeres, telomeres and microsatellite regions (for
example, short tandem repeats), which are generally more difficult to
genotype because of their repeat structure and due to the ambiguities
ofthereference genome. Because the high-quality assemblies that are
the basis of our analysis include effectively complete genomes for each
individual, we decided to extend Tier 2to also include these remaining
13% regions (Extended Tier 2). This way, we are able to more thoroughly
evaluate the accuracy of each method across the entire human genome
and we do not limit our analysis to easier-to-call regions (that is, Tier 1).
Our final partitioning consists of Tier 1and Extended Tier 2, represented
in Supplementary Fig. 5.

In this analysis, we considered the callsets produced by SVDSS,
cuteSV, pbsy, sniffles, debreak and SVIM starting from pbmm2 align-
ments. Table 1reports the results of this analysis. Results onboth tiers
follow the same trend as with the full genome, with SVDSS managing to
callmore correct SVswithoutintroducing many false calls. As expected,
alltools achieve higher accuracy on Tier 1regions, which are easier to
analyze. Furthermore, we observed that the improvement between
performance of SVDSS and other tools widens in the Extended Tier 2

regions of the genome (Table 1). Remarkably, on difficult-to-analyze
regions (that is, Extended Tier 2), SVDSS achieves the highest recall,
outperforming other callers by 15%,14% and 4% on the HG002, HGOO7
and CHM13 samples, respectively.

To further provide evidence of correctness for true positive calls
in these hard regions, we analyzed how these calls are shared among
the tested callers using an upset plot®. Upset plots are an alternative
to Venn diagrams that represent more conveniently the intersections
of multiple sets. Figure 2c shows that, out of the 10,333 total SVsin the
truth set for HGOO7 (that is, the dipcall callset), 3,720 (36%) are cor-
rectly called by all the tested approaches, whereas 2,399 (23%) are not
detected by any tool. Remarkably, 739 SVs (7%) are detected only by our
pipeline, partially explaining the higher recallitis able to achieve. SVIM
has the second highest number of specific calls at 130. Supplementary
Fig. 14 shows the distribution of SVDSS-specific versus SVIM-specific
calls on chrl, chr2 and chr3 of the HGOO7 sample. SVDSS also detects
the highest number of SVs that would have been exclusive to other
tools, thatis, 172 (1.6%) calls are shared by SVDSS and sniffles, and 169
(1.6%) are shared between SVDSS and pbsv.

We manually investigated some of the SVs that are exclusively
called by SVDSS. Some of these calls are SVs that exhibit two different
allelesonthe two haplotypes. These SVsaccount for heterozygous SVs
with two nonreference alleles (as defined in Denti et al.?), that is, SVs
genotyped1/2 (see two examplesin Supplementary Figs.10 and 11) as
well as pairs of close SVs whose alleles come from different haplotypes
(seeanexampleinSupplementary Fig.12). We observed that a total of
343 SVs called exclusively by SVDSS and matching dipcall predictions
on the HGOO7 genome were located at exactly the same position as
another called SV and are heterozygous SVs with two nonreference
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alleles, while atotal of 227 SVs are close (< 100 bp) to another predicted
SV (Supplementary Fig. 6).

Hard-to-analyze regions harbor SVs of clinical importance

To perform a more thorough analysis of the HGO02 individual, we
considered the Challenging Medically Relevant Genes (CMRG) callset
provided in Wagner et al.”' and we evaluated callers’ accuracy against
it. The CMRG callset consists of 250 SVs falling in 126 challenging and
medically relevant genes that were excluded from the previously pub-
lished GIAB benchmark® due to their complexity: compound heterozy-
gous insertions, complex variants in segmental duplications and long
tandemrepeats. The CMRG callset was created by diploid assembly of
the haplotypes using hifiasm and then dipcall, proving once again the
effectiveness of assembly-based methods for detecting hard-to-analyze
SVs when well-curated assemblies are available.

As done previously, we computed the accuracy of SVDSS and the
other five SV callers using Truvari. Out of the 250 SVs contained in the
CMRG callset, SVDSS correctly called 232 SVs followed by pbsv (228)
and cuteSV (225),SVIM (221), debreak (220) and sniffles (218). As shown
in Fig. 2d (and Supplementary Fig. 7, where all tools are considered),
five SVs are exclusive to SVDSS, while two are missed exclusively by
SVDSS: one was reported but with a length just under the evaluation
threshold of Truvari; the other was missed due to being detectable
only in clipped reads, which SVDSS does not consider by default. We
then manually investigated the SVs that were exclusively called by
SVDSS, discovering that all exhibited two alleles, one per haplotype
(that is, heterozygous SVs with two nonreference alleles). This result
confirms previous findings® that heterozygous insertions in tandem
repeats are among the most challenging classes of SVs to discover with
current methods.

Figure 3 shows one of the SVDSS-exclusive SVs, a double inser-
tion inside the SLC27AS gene on chromosome 19. Although the two
haplotypes canbe distinguished easily by visual inspection of adjacent
heterozygous SNPs, the tested callers disagree on which allele to call.
For instance only SVDSS calls two alleles of length 168 bp and 224 bp
agreeing withthe CMRG callset, whereas pbsv and sniffles report only
oneofthe two (168 bp). Surprisingly, cuteSV, SVIMand debreak report a
single allele of length 185 bp, which does not match any of the evidence
fromread alignment. Additionally, we considered the portion of the
high-quality HGO02 assembly covering that locus (chr19:58487900-
58488500) and we checked its alignment against the reference genome
(Fig. 3 and Supplementary Fig. 8). Although the considered locus is
in a repetitive region (as also proven by the noisiness of the dotplots
showninSupplementaryFig. 8), the haplotype alignment confirms the
presence of two allelicinsertions of different lengths.

SVDSS has extremely low baseline error rate

Finally, we further investigated the lower bound on baseline FDR
of SVDSS by comparing the HiFi reads from CHM13 against the
high-quality T2T assembly® of the same sample. Given the almost
perfect T2T CHM13 assembly produced using multiple orthogonal
technologies, it is expected that an ideal SV caller would predict no
SVs when comparing CHM13 reads against this assembly. Thus, we
propose an experiment to establish alower bound on the baseline FDR
of different methods by comparing how many SV calls they report on
the CHM13 HiFireads against its T2T assembly.

Ideally, the SVDSS pipeline should generate zero SVs calls in this
scenario as no SFS should be extracted when querying smoothed
CHM13 reads against the T2T assembly. However, this will not be the
caseinpractice due to mapping ambiguitiesin repetitive regions of the
genome. Still, we expect the method to produce very few variant calls.

As aside-objective, we will also investigate the resulting SV calls
tofind if our method has discovered any true SVs missing fromthe T2T
assembly. Due to the effectively homozygous nature of the CHM13
genome, any true variant discovered must be homozygous. However,

itis possible thatartifacts accumulated in the cell-line and actual het-
erozygosities in the genome may result in heterozygous SVs being
reported.

We built the FMD index for v.1.1 of the CHM13 assembly and
extracted SFS from CHM13 HiFi reads smoothed against the T2T
assembly using thisindex. We then passed the SFS through the SVDSS
pipeline for SV discovery. Our pipeline discovers a total of 102 SVs. For
comparison, we repeated the above experiment with the other tools
pbsv, cuteSV, SVIM, debreak and sniffles. Table 2 includes asummary of
theresults. We calculated the baseline FDR for each tool as the number
of calls it makes against T2T divided by the number of calls it makes
against GRCh38.SVDSS has the lowest number of calls against the T2T
assembly and also has the lowest baseline error rate.

We further investigate if any of our calls are indeed true variants.
The T2T project provides alist of known heterozygous sites on CHM13
(refs.*>**yand 13 of our SV calls intersect these regions, suggesting that
they may be actual heterozygous alleles missing from the homozygous
assembly. We also report the number of intersecting calls in Table 2
for every tool. SVDSS has the highest ratio of calls intersecting known
heterozygous regions. We performed additional filtering of the calls
using Merfin®*—avariant call polishing tool that filters VCF files based
onwhether the variantsintroduce k-mersnot found in the sequencing
reads. Only one of our calls passes Merfin’s filtering and we verify that
the call seems to be a heterozygous site (Supplementary Fig. 9).

In summary, SVDSS produces only 102 calls using CHM13 HiFi
reads against the T2T CHM13 assembly, some of which may be actual
true heterozygous variants. Furthermore, with our earlier experiments
showing an average of 33,000 SV calls per sample, this amounts to a
baseline error rate of less than 0.4% showing that SVDSS is robust to
false detection of variants.

Discussion

Weintroduced SVDSS—amethod for SV discovery that combines advan-
tages of different SV discovery approaches to achieve considerable
improvements in SV calling. A highlight of SVDSS is its much higher
recall compared with other approaches in repeated regions of the
genome (thatis, Extended Tier 2), and also its overall higher accuracy,
in particular in repetitive and traditionally hard-to-genotype regions
of the genome. We also observed that reducing sequencing coverage
impacts SVDSS less than other approaches. Thus SVDSS can accurately
predict SVs in low-coverage sequenced samples. Furthermore, using
the recent CHM13 assembly produced by T2T consortium, we could
estimate baseline error rare for each methods and further observed
that SVDSS has the lowest baseline error rate, followed by sniffles.

While the availability of low-error long-read data enables more
extensive variant discovery on new samples, SV discovery inrepetitive
regions of the genome such as STRs and microsatellites remains chal-
lenging but also hard to evaluate. This is evidenced by comparisons
presented in this manuscript. Despite the considerable performance
improvements of SVDSS in repetitive regions, precision and recall in
theseregions aresstill lower thanin the rest of the genome.

SVDSS currently supports the discovery of unbalanced SVs, that
is, deletions and insertions; however, as the underlying SFS signatures
capture nearly all variation in the genome, a next step could be to
extend the method to finding other classes of SVs such as inversions
and duplications. Our current best technique for creating SV truth sets
(dipcall) does not evaluate inversions and duplications, yet a recent
study? provides one of the first gold standards.

Throughout this work, we highlight the importance of accurate
benchmarks of SV calling methods. We evaluated SVDSS on a recent
benchmark extensively curated over the HGO02 sample® with the
specific purpose of producing SVs occurring in genes of medical rel-
evance. These genes are considered challenging for mapping-based
and assembly-based SV prediction methods even from highly accurate
long reads. This benchmark revealed that other methods fail to call
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Fig.3| Example of an SV at amedically relevant gene that has been
correctly called exclusively by SVDSS. Right, IGV sketch of the 602 bp
region around the SV (full region reported in Supplementary Fig.13). The
sketch reports the HiFireads alignment along with the haplotype alignment

performed using minimap2(as part of the dipcall pipeline). Left, details of
the SVs reported by the CMRG callset, SVDSS, and the other alignment-based
callers considered in our evaluation.

Table 2 | Comparison of baseline FDR rate of SVDSS with
other methods

Tool GRCh38 T2T Baseline Het Het
calls calls FDR Intersections  Precision

svdss 23,777 102 0.4% 13 12.7%
cuteSV 22,654 667 2.94% 23 3.4%
pbsv 23,707 616 2.59% 28 4.5%
sniffles 22,680 314 1.38% 22 7.0%
SVIM 22,176 948 4.27% 29 3.0%
debreak 23,432 834 3.55% 24 2.8%

Number of SV calls against both the reference genome and the CHM13 assembly is included.
Baseline FDR is calculated as division of first two columns for each tool. The last two columns
report the number of known CHM13 heterozygous (Het) sites covered by each method and
the precision of the method calculated as the number of covered heterozygous sites divided
by the number of predicted calls. Boldface indicates best performance

heterozygousindelsin highly homozygousregions or erroneousindels
interpreted by a consensus approach. SVDSS is the only method able to
discover five such SVsin medically relevant gene regions. We believe the
current examples of accurate prediction of multiallelic heterozygous
eventsbased on SVDSS indicates the merit of extending this approach
for genotype prediction of SVs.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41592-022-01674-1.
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Methods

Sample-specific string computation and assembly
Sample-specific SFS are defined as sequences that are specificto a
‘target’ set of strings (a genome or sequencing sample) with respect
to another ‘reference’ set of strings (another genome or sequencing
sample)*’. The ‘substring-free’ part means that they do not occur as
substrings of each other. Note that, in the context of SV discovery, the
‘reference’ will always be an assembled reference genome, for example,
GRCh38, and the ‘target’ hereisaset of reads. SFS can be optimally com-
puted using the Ping-Pong algorithm, presented in Khorsand et al.*.
Ping-Pong builds the FMD index® of the reference genome and queries
the reads of the target sample against this index to report substrings
thatare not presentintheindex. The FMD indexis abidirectional text
index with constant-time forward and backward search operations,
thus allowing for efficient computation of SFS.

When SFS are computed between areference genome and a target
sample, they capture nearly all variations expressed in the sample
with respect to the reference genome, as shown in Khorsand et al.*.
Indeed, each sequencing read including a variant produces at least
one SFS supporting the variant; hence, a variant will be supported by
at least one SFS per read covering it. SV breakpoints usually result in
new sequencesthat are captured as SFS. However, due to the ‘shortest’
property of SFS, the entire SV sequence is not necessarily covered by a
single SFS: aread may produce several overlapping SFS for long varia-
tions. Toremove unnecessary redundancy in the information captured
by overlapping SFS, we newly assemble all such overlapping SFS into
longer strings called ‘superstrings. Assembling SFS into superstrings
alsoreduces the number of SFS by an order of magnitude, making any
downstream analysis more efficient.

AsSFSoneachread are naturally sorted based on their start posi-
tions, the assembly stage can beimplemented as a single pass over the
SFS on eachread, merging each SFS with the next one if they overlap.
The resulting superstring can further be merged with the next SFS if
they also overlap, and so on. More formally, on aread R where k con-
secutive SFS are overlapping such that R[i,, j;] overlaps with R[i,, j,] and
Rli,, j,] overlaps with R[i;, j,] and ...R[i,,, /] overlaps with R[i,, /], we
merge the strings into the single superstring R[i,, j].

The SFS assembly procedure effectively merges all the SFS belong-
ing to the same variant into a single long superstring. This results in
superstrings from the same variant to have similar length, sequence
and position with respect to the reference genome which allows them
to be clustered easily for SV prediction.

Read smoothing

The SFS extraction step (Ping-Pong algorithm) requires reads with low
errorrates for optimal performance as sequencing errors canresultin
millions of undesirable SFS. While most such SFS can be filtered later
on, they can negatively affect the accuracy and will increase runtime
by adding excess processing. Furthermore, the presence of millions of
SNPs and smallindelsin asample also results in tens of millions of addi-
tional SFS being extracted that are not directly useful for genotyping
SVs. Tosolve both of the above problems, we introduce a preprocessing
step called ‘read smoothing’ that aims to eliminate both sequencing
errors and short variants from input reads. The smoothing algorithm
starts from read alignments (a BAM file) and uses information from
the CIGAR strings of each alignment to remove any short mismatch
between aread and the reference genome.

In more detail, for segments reported as a match between a read
andthereference genome (CIGAR operation‘M’), the algorithm replaces
theread sequence with the corresponding sequence fromthereference
genome, automatically removing any single-base mismatches (that is,
sequencingerrors or potential SNPs) inthe process. For short deletions
(CIGAR operation ‘D’), the algorithm removes the deletion from theread
by copying back the deleted bases from the reference sequence. Short
insertions (CIGAR operation‘I') are similarly smoothed by removing the

inserted bases fromtheread. Using the default parameters, deletions and
insertions are smoothed ifthey are shorter than 20 bp. Note that smooth-
inginsertions or deletions, that is, removing them from the alignment,
resultsinthe extension of the ‘M’ sections of the CIGAR string. Finally,
soft-clipped regions (CIGAR operation ‘S’) are retained as they include
potentially longinserted or deleted sequences: any SNP or sequencing
error inside clipped regions cannot be corrected as aresult. As a result
ofthe smoothing algorithm, asmoothed read’s CIGAR strings will have
fewer edit operations thanthat the original read and it will consist of one
or more very long ‘M’ segments with large INDELs in between, poten-
tially surrounded with soft-clipped regions. Supplementary Fig. 3illus-
trates the smoothing procedure on an example read. We note that the
Ping-Pongalgorithm will not produce any SFS that is entirely contained
inan‘M’section of asmoothed read as the corresponding sequence has
been replaced base-by-base with reference genome sequence. There-
fore, the number of SFS extracted from smoothed reads is substantially
smaller than the number of SFS extracted from original reads.

The smoothing algorithm only works with primary alignments
and nonprimary alignments areignored. Thisis to avoid complications
arising from having multiple different smoothed version of reads with
multiple alignments.

Smoothing relies on correctness of read alignments. If an align-
ment is thought to be inaccurate, the smoothing algorithm does not
modify it. To this aim, during its execution, the algorithm keeps track
of the average number of mismatches between the ‘M’ segments of
alignments and the corresponding reference sequence: any read that
has more than three times the average mismatch rate is ignored, that
is, isnot modified.

On amore technical note, we point out that the above modifica-
tions do not change the overall mapping of the read as the mapping
positions (begin and end) remain the same. As aresult, the algorithm
will not change the order of the reads in asorted BAM file. This allows
us to quickly reconstruct a sorted BAM file without the need to sort it
again. However, because the size of the reads may have changed, the
index of the original BAM files is no longer valid for the smoothed BAM
and it hasto be indexed again with samtools index.

Inour experiments, smoothing effectively reduces the number of
extracted SFS by over 90%, while having effectively no impact on the
SV calling pipeline’s recall. Out of the 6.2 million reads for the CHM13
samples, around 5 million are smoothed and the rest are deemed to
have unreliable mappings and are discarded. The 1.2 million nons-
moothed reads from CHM13 are responsible for more than 82% of all
SFS extracted from that sample after smoothing. However, the SFS
extracted fromnonsmoothed reads do not contribute toincreasing the
method’s recall at all. Indeed excluding the SFS extracted from nons-
moothedreadsincreasesthe method’s precision while leaving the recall
unaffected. Thisjustifies the exclusion of nonsmoothed reads from the
SVDSS pipeline. Further analysis shows that nearly all nonsmoothed
reads map to centromere regions of the CHM13. Supplementary Fig. 4
shows the distribution of mapping positions of reads from chrl on
both CHM13 and GRCh38. The large gap around the centromere when
mapping to GRCh38 explains the poor performance of nonsmoothed
reads when predicting SVs against the reference genome.

Insummary, read smoothingisacritical preprocessing step of the
SVDSS pipeline. It reduces the number of retrieved SFS and increases
the specificity of the extracted SFS which results in higher precision
in predicting SVs without deteriorating recall. The procedure is also
computationally very lightweight, as it essentially rewrites the BAM
filein asingle pass with minor modifications. As aresult, smoothing is
an effective method for increasing the specificity of SFS for SV calling
and improving the computational efficiency of the pipeline.

SV Discovery
The main SV calling algorithm consists of three main steps (Fig.1steps
3A,3Band 3C):
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(1) Superstrings constructed from the SFS strings are ‘placed’ on
the reference genome by extracting their alignments from read
alignments. The superstrings are then clustered based on their
aligned loci. Each cluster represents one or more SVs that are
close to each other and may also contain multiple alleles.

(2) Eachcluster is further clustered based on length to generate up
to two haplotype candidates (taking into account the diploidy
of the human genome). Each haplotype cluster candidate is as-
sembled with POA to yield a consensus sequence.

(3) Each haplotype candidate is locally realigned back to the refer-
ence genome region corresponding to its cluster and SVs are
called based on the alignment.

We will explain each step in more details in the following
subsections.

Superstring placement and clustering. Aligning superstrings back
to the reference genome would be time-consuming and error-prone
duetotheirrelatively shortlengths. However these superstrings were
already (indirectly) mapped as part of the mapping of the reads they
are part of. Hence, in practice we do not align superstrings directly to
the reference genome but instead their alignment is extracted from
the alignment oftheir originating reads. We refer to this as superstring
placement. Assuming R[i, jlis asuperstring that spans positionsi...jon
read R, by knowing the mapping position of R, we can easily place the
superstring on the reference genome by analyzing the correspond-
ing CIGAR portion (that is, CIGAR sections covering positions i...j).
As already pointed out, thanks to read smoothing, SFS (and conse-
quently superstrings) cannot be contained entirely in an ‘M’ section
of a smoothed read alignment (CIGAR) and therefore span its ‘I and
‘D’ sections. For superstrings spanning a ‘D’ section, all the bases are
already placed onthe reference genome and no additional computation
isnecessary.Onthe other hand, whenasuperstring spansan ‘I’ section,
it often covers just a portion of the inserted sequence. In such a case,
sincetheinserted sequence cannot be placed onthe reference genome,
itis challengingto fully place the superstring. To deal with thisissue, we
extend each superstring that does not fully cover an ‘I’ section until it
fully coversit.In other words, we extend the superstring until it covers
(oneachside) abase thatcanbe placed on the reference genome (that
is, thatis not part of the inserted sequence).

To further boost the informative content of the superstrings and
to make the following steps of the pipeline easier and more accurate,
eachplaced superstringis further extended on the read onboth sides
until we reach a perfectly mappable (can be mapped to the reference
genome with no errors) and locally unique (not repeated in the consid-
ered window) k-mer anchor. The default value for kis 7 and the default
windowssizeis100 bp on each side of the superstring. The superstrings
that cannot be extended in this manner are ignored. Figure 1, step 3A
shows this extension procedure. The k-mer anchoring idea was influ-
enced by LongShot®°.

Finally, we cluster the superstrings based on their mapping loca-
tions: superstrings that have close enough mappings (by default less
than 500 bp apart) are placed in the same cluster. The resulting cluster’s
interval is defined as the smallest interval in the genome that com-
pletelyincludes all of its superstrings and the includes either a single SV
orseveral close or overlapping SVs possibly from different haplotypes.

POA assembly and SV detection. Each cluster so far includes one
or more close SVs. However, as the human genome is diploid, the SVs
might indeed be from different haplotypes. To resolve the different
haplotypes, we further split each cluster into subclusters of super-
strings of similar size and sequence. This is based on the assumption
that different alleles at each site have different length and sequence.
The similarity of sequencesis calculated using rapidfuzz (available at
https://github.com/maxbachmann/rapidfuzz-cpp). The two largest

resulting subclusters (in terms of number of superstrings) are selected
as haplotype candidates (considering the human genome is diploid).
If only one subcluster is returned, it suggests a homozygous variant.
SVDSS then computes a consensus sequence for each subcluster
using POA.

Assume that a cluster c spans theinterval G[s,, e.] of the reference
genome G. Most strings of the cluster only partially cover this interval
(thatis, they align to positions [s,e] with s.<s<e<e,) while some others
span the entire interval (that is, they align to positions covering at
least [s.e.]). To perform a more accurate POA, SVDSS extends all the
strings ina cluster to be of the same length. Therefore, SVDSS fills the
gaps preceding or following asuperstring using the reference genome.
Forinstance, if a superstring S aligns to [s,e] withs.<s<e<e, thenthe
resulting sequence will be G[s;, s —1] + S + Gle + 1, e;] (Where + is the
string concatenation operator). The main goal of this extension is to
summarize the information contained in a cluster and to minimize the
difference between the superstrings coming from different reads. The
extended superstrings in each subcluster are thenaligned to each other
using abPOA®’ to generate a consensus (Fig. 1step 3B).

Finally, each POA consensus sequence is realigned locally to the
reference genome window corresponding to its cluster using parasail®®.
Thealignment’s CIGAR informationis analyzed to calland detect inser-
tion and deletion SVs (Fig. 1 step 3C). A weight is assigned to each SV
prediction based on the number of superstrings that supportit. A higher
supportindicates amore confident call. By default, we filter out SV calls
havingless than four supporting superstrings. The confidence thresh-
old can also be set at runtime using the --min--cluster--weight option.

SV chain filtering. Reads originating from loci in repetitive parts of
the genome such as STRs may map to slightly different coordinates
due to the similarity of the local sequence. This will result in multiple
clusters (relatively close to each other) and multiple SV calls for the
same variant but at slightly different positions. To reduce the number
of false positives and eliminate such redundant calls, we perform a
‘chain filtering’ postprocessing step. This step sorts all predicted SVs
based on coordinates and filters out consecutive SVs of the same type
with similar sizes, keeping only the one with the highest number of
supporting superstrings.

Implementation details

As aresult of its many steps and the complexity of extraction SFS,
SVDSS is more compute-intensive than other SV discovery methods,
yet remains fast due to heavy optimization and deep parallelization.
In this section, we elaborate on the performance of each of the steps
and compare our runtime with other methods.

The FMD index creation and querying are handled internally by
the FMD implementation from Li®. FMD index creation for the GRC38
reference genome takes around 30 min on 16 cores. The index can be
reused for any number of samples so its creation is a one-time expense.

Read smoothingis anlO-intensive step and greatly benefits from
enabling the multithreaded BAM decoding functionality built into
htslib® by setting the bgzf mt flag when opening a BAM file. To further
improve BAM decompression performance, we require that htslib is
built withlibdeflate in place of the default BAM decoder. For HiFi data
at 30x coverage the smoothing algorithm takes about 15 min to run
on1é6 cores.

SFS extraction is the most computationally intensive step and
takes about 45 min on 16 threads for the CHM13 HiFi data. Finally, the
SV calling stepsis very fast and takes less than 8 min to run despite the
computationalload of POA and local alignment. Overall, the runtime of
the SVDSS pipelineis less than 70 minfor a high-coverage HiFi sample
on16 cores, excluding index creation time. In comparison, the fastest
SV caller was cuteSV, taking 5 min, and the slowest was sniffles, taking
upwards of 3 h. The remaining method debreak, pbsv and SVIM each
took between 90 and 100 min to run.
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Alltools needed less than 64 GB of memory with SVDSS peaking at
34 GB of memory during the SV calling stage. Our SFS extraction and
smoothing stages each use constant memory; however, the SV calling
stage uses the most memory due to simultaneous handling of several
(depending on the number of threads) POA graphs and local alignment
dynamic programming tablesin memory.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Alldescribed datasets are publicly available through the correspond-
ing repositories. Inour experimental evaluation we used data publicly
available at: GRCh38reference genome: https://hgdownload.cse.ucsc.
edu/goldenpath/hg38/bigZips/hg38.fa.gz; GRCh37 reference genome:
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
phase2_reference_assembly sequence/hs37d5.fa.gz; HGOO2 PacBio
HiFi data: https://storage.googleapis.com/brain-genomics-public/
research/deepconsensus/publication/deepconsensus_predictions/
hg002_15kb/two_smrt_cells/HG002_15kb 222723 002822 2f] DC_
hifi_reads.fastq; HGO02 assembly: https://console.cloud.google.com/
storage/browser/brain-genomics-public/research/deepconsensus/
publication/analysis/genome_assembly/hg002_15kb/two_smrt_cells/
dc; CMRG callset: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSa-
mples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_
v1.00/GRCh38/StructuralVariant/; HGOO7 PacBio HiFi data: https://
storage.googleapis.com/brain-genomics-public/research/deep-
consensus/publication/deepconsensus_predictions/hg007_15kb/
three_smrt_cells/HG007_230654 115437 _2fl DC_hifi_reads.fastq;
HGOO07 assembly: https://console.cloud.google.com/storage/browser/
brain-genomics-public/research/deepconsensus/publication/analysis/
genome_assembly/hg007_15kb/two_smrt_cells/dc; CHM13 PacBio HiFi
data: https://github.com/marbl/CHM13#hifi-data; CHM13 T2T assem-
bly v1.1: https://s3-us-west-2.amazonaws.com/human-pangenomics/
T2T/CHM13/assemblies/chm13.draft_vl1.1.fasta.gz. The three call-
set built using dipcall are available at https://github.com/ldenti/
SVDSS-experiments.

Code availability

SVDSS is open source and publicly available at https://github.com/
Parsoa/SVDSS. Scripts to reproduce the experimental evaluations
described in the manuscript are available at https://github.com/
Identi/SVDSS-experiments. Other software tools used in the study
areeither referenced or provided as links here: pomm2 (https://github.
com/PacificBiosciences/pbmm2) and pbsv (https://github.com/
PacificBiosciences/pbsv).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
|:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

D A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The software dipcall (vO.3) has been used to produce the SVs callsets used in our experimental evaluation.

Data analysis The manuscript describes the SVDSS tool, which is freely available at https://github.com/Parsoa/SVDSS . In the experimental evaluation, we
used the following softwares, which are all openly available:
- minimap2 (v2.22-r1101), https://github.com/Ih3/minimap2
- pbmm2 (v1.7.0), https://github.com/PacificBiosciences/pbmm?2
-ngmlr (v0.2.7), https://github.com/philres/ngmir
- pbsv (v2.6.2), https://github.com/PacificBiosciences/pbsv
- cuteSV (v1.0.11), https://github.com/tjiangHIT/cuteSV
- svim (v1.4.2), https://github.com/eldariont/svim
- sniffles (v1.0.12), https://github.com/fritzsedlazeck/Sniffles
- debreak (v1.0.2), https://github.com/Maggi-Chen/DeBreak
- truvari (v3.0.1), https://github.com/ACEnglish/truvari

Extensive description on on experiments reproducibility is available at https://github.com/Identi/SVDSS-experiments .

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All described datasets are publicly available through the corresponding repositories. In our experimental evaluation we used data publicly available at:

- GRCh38 reference genome: https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz

- GRCh37 reference genome: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz

- HG002 PacBio HiFi data: https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg002_15kb/
two_smrt_cells/HG002_15kb_222723 002822 _2fl_DC_hifi_reads.fastq

- HG002 assembly: https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/
hg002_15kb/two_smrt_cells/dc

- CMRG callset: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
- HGOO7 PacBio HiFi data: https://storage.googleapis.com/brain-genomics-public/research/deepconsensus/publication/deepconsensus_predictions/hg007_15kb/
three_smrt_cells/HG007_230654_115437_2fl_DC_hifi_reads.fastq

- HGOO07 assembly: https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsensus/publication/analysis/genome_assembly/
hg007_15kb/two_smrt_cells/dc

- CHM13 PacBio HiFi data: https://github.com/marbl/CHM13#hifi-data

- CHM13 T2T assembly v1.1: https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz

The three callset produced in this work are available at https://github.com/Identi/SVDSS-experiments .
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size is the one determined by the publicly available human long-read sequencing data from Genome In A Bottle (GIAB) consortium
and the Telomere-to-Telomere (T2T) consortium for this study.

Data exclusions  No data were excluded. We have used publicly available human long-read sequencing data from Genome In A Bottle (GIAB) consortium and
the Telomere-to-Telomere (T2T) consortium for this study.

Replication Not applicable since this study describes a deterministic algorithms without statistical analysis. Moreover, this study does not involve wet lab
experiments.

Randomization  Not applicable since this study have no experimental or control groups. Moreover, this study introduces a method and does not include
biological hypothesis analysis.

Blinding Not applicable since this study does not involve statistical analysis and data acquisition. The method introduced in this study and all softwares
used in the experimental evaluation are deterministic and do not take advantages from knowning the origin of the input data.
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