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Abstract

We present a Langevin model describing the local structure of the interplanetary magnetic field lines. It is
established on the basis of the analysis of the Lagrangian properties of strong Alfvénic turbulence, which provides
a new perspective on the critical balance condition. The model is consistent with the -k 2

 spectrum of magnetic
fluctuations derived from in situ measurements. We show that the magnetic field line diffusivity at the spacecraft
position can be inferred from the wavelet analysis of one-point measurements of the fluctuating magnetic fields in
the solar wind independently of the three-dimensional nature of the anisotropy.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interplanetary turbulence (830)

1. Introduction

The large-scale structure of the interplanetary magnetic field
is on average given by Parker spirals threading the entire
heliosphere (Parker 1958). To a first approximation, they
represent the trajectories of suprathermal particles accelerated
at the Sun (Parker & Tidman 1958). Soon after the first
diagnosis of turbulence in the solar wind, Jokipii & Parker
(1968) argued that these spirals are stochastic. Their primary
motivation was to provide an explanation for the angular
spread of solar energetic particles inferred from the measure-
ments by the Pioneer missions (Fan et al. 1968). Stochastic
Parker spirals can be well represented by realizations of a
random walk on a sphere of varying radii superimposed on the
angular drift due to the solar rotation (Bian & Li 2021, 2022).
Exploring the mechanisms that transport the charged particles
accelerated to suprathermal energies during solar eruptions
remains the fundamental objective of the Parker Solar Probe
and the Solar Orbiter missions. The velocity and the magnetic
field fluctuations measured by spacecraft in the solar wind are
anisotropic (Matthaeus et al. 1990). They display power spectra
proportional to a-k with α; 2 over a wide range of k∥, the
component of the fluctuation wavevector in the direction
parallel to the local magnetic field (Horbury et al. 2008;
Podesta 2009; Wicks et al. 2010). The extraction of a parallel
power index close to −2 from the time series of the field
fluctuations involves a complex wavelet analysis of the data
set. It also requires that the Taylor hypothesis, which connects
one-point temporal statistics and two-point spatial statistics, is
valid. A parallel spectral index equal to −2 was originally
predicted by Goldreich & Sridhar (1995) in their theory
enlightening the role of the critical balance condition in strong
Alfvénic turbulence. Their prediction was also confirmed by
numerical simulations of magnetohydrodynamics (MHD)
turbulence at large Reynolds numbers (Cho & Vishniac 2000;
Maron & Goldreich 2001; Beresnyak 2015). The effects of
nonlinear interactions between Alfvén waves can effectively be
singled out within the framework of reduced MHD. The
reduced MHD equations, which decouple Alfvén and

compressive modes, can be obtained either from an asymptotic
expansion of the compressible MHD equations or from the
gyrokinetic equations for the guiding centers (Schekochihin
et al. 2009).

2. The Lagrangian Properties of Strong Alfvénic
Turbulence and the Local Structure of Stochastic Parker

Spirals

From Alfvén wave polarized magnetic field fluctuations
δB⊥(r, t) perpendicular to the guiding magnetic field B0z, one
can define the magnetic field lines. The magnetic field lines are
the curves r⊥(z) everywhere tangent to the magnetic field B(r,
t)= B0z+ δB⊥(r, t) at a given instant in time. They are the
solutions of the ordinary differential equations

d
=^ ^ ^r B rd z

dz

z

B

,
, 1

0

( ) ( ) ( )

which is valid to first order in the fluctuation amplitude. The
velocity and the magnetic field fluctuations can be evaluated
along the magnetic field lines in order to investigate their
turbulent structure. The set of magnetic field lines provides a
map between planes orthogonal to the guide field direction.
Because Alfvén-polarized fluctuations are transverse, the
magnetic field lines cannot cross the same perpendicular plane
twice. In addition to being area preserving, this map is therefore
invertible. Thus, the velocity and the magnetic field fluctuations
evaluated along the magnetic field lines only depend on the
coordinate z along the guide field: δV⊥(z)= δV⊥(r⊥(z), z),
δB⊥(z)= δB⊥(r⊥(z), z). We work in a frame where there is no
fluid particle flux along the guide field but where there remains
a continuous Poynting flux of electromagnetic Alfvén waves in
this direction.
The magnetic field line motions are correlated to the fluid

particle motions in highly conducting fluids. A given magnetic
field line always connects the same fluid particles drifting with
the velocity δV⊥(r, t)= δE⊥(r, t)× B0/c, where δE⊥(r, t) is the
perpendicular component of the electric field fluctuations and c
is the speed of light. Therefore, the motions of fluid particles
are two dimensional in planes perpendicular to the guide field.
Each individual fluid particle moves with the Lagrangian
velocity δV⊥(t)= δV⊥(r⊥(t), t): the Eulerian velocity field
evaluated along the fluid particle trajectories, which depends on
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time only. The perpendicular fluid velocity derives from the
common electric drift velocity of the ions and the electrons in
the plasma, which is independent of their charge and their
mass. The perpendicular electric field fluctuations measured in
the solar wind display a frequency spectrum following a power
law ω−β, with β;− 5/3 over a wide range of frequencies
(Bale et al. 2005). While the spatial anisotropy of the electric
field fluctuations in the solar wind, including its magnetic field
aligned component (Bian & Kontar 2010), remains an open
subject for investigation, the measurements by Bale et al.
(2005) show that the flow of electromagnetic energy is
consistent with the Alfvén speed in this frequency regime.
The Lagrangian velocity δV⊥(t) has a different dependence on
time t than the Eulerian velocity field evaluated at a fixed
position in space, inasmuch as the fluid particle moves a
distance of the order of Δr⊥ in a time Δt. It is also true that the
field fluctuations δV⊥(z) and δB⊥(z) have a different depend-
ence on z than the Eulerian velocity and magnetic field
fluctuations evaluated at a given time along the fixed direction
of the guide field, inasmuch as the turbulent magnetic field
lines meander by an amount Δr⊥∼ (δB⊥/B0)Δz over a
distance Δz due to the random fluctuations in the magnetic
field direction θ∼Δr⊥/Δz∼ δB⊥/B0∼ δV⊥/VA. The Alfvén
speed pr=V B 4A 0 , where ρ is the mass density, represents
the guide field intensity in velocity units. In the Iroshnikov–
Kraichnan phenomenology of strong MHD turbulence (Irosh-
nikov 1963; Kraichnan 1965), the cascade efficiency is
depleted with respect to the nominal Kolmogorov value by a
factor of the order of the magnetic inclination angle θ:
t t q~ K

NL
IK

NL , where the nonlinear Kolmogorov cascade time
is t ~ D ^l VK

lNL and ΔlV⊥ is the velocity increment.
Combined with the Kolmogorov hypothesis of a constant rate
ò of kinetic energy transfer through scales l in the inertial range

t= D V̂l
2

NL( ) , this yields the Iroshnikov–Kraichnan scaling
D ~V̂ V ll A

1 4( ) instead of the Kolmogorov scaling
ΔlV⊥∼ (òl)1/3. Alfvénic turbulence is anisotropic. The recent
theory by Boldyrev (2006), the first to introduce a scale-
dependent dynamic alignment, also predicts the Iroshnikov–
Kraichnan scaling while capturing the strong nature of the
turbulence as well as its anisotropy. We shall now develop a
phenomenological description of strong Alfvénic turbulence
based on the analysis of its Lagrangian properties. A closely
related hypothesis will be adopted in order to justify the scaling
with time of the second-order structure function of the
Lagrangian velocity δV⊥(t) and the scaling with distance of
the second-order structure functions of both δV⊥(z) and δB⊥(z).

We evaluate the velocity increment δV⊥(t+Δt,
r⊥(t+Δt))− δV⊥(t, r⊥(t)) along a fluid particle trajectory
r⊥(t) and assume the existence of an inertial range of time
increments Δt, where the mean square only depends on the
average amount of kinetic energy ò dissipated per unit mass and
per unit time and on the time increment Δt. Dimensional
analysis yields the scaling of the Lagrangian second-order
structure function in the form given by Landau & Lifshitz
(1959) and Tennekes & Lumley (1972):

d t d< + - > = D^ ^V Vt t C t, 22
0( ( ) ( )) ( )

where C0 is a constant. Equation (2) corresponds to the
Kolmogorov spectrum,

w wµ -E . 3V
2( ) ( )

The Lagrangian frequency spectrum given by Equation (3) has
been observed in numerical simulations of three-dimensional
MHD turbulence (Busse et al. 2010). Such a w2 spectrum is
well established from laboratory experiments and numerical
simulations of hydrodynamic turbulence (Pope 1994; Mordant
et al. 2001), which is isotropic at small scales. Note that the
linear dependence on Δt of the Kolmogorov scaling law (2) is
suggestive of a velocity space diffusion with C0ò representing
the average rate of the stochastic acceleration of the fluid
particles. We now evaluate the velocity increment δV⊥(z+Δz,
r⊥(z+Δz))− δV⊥(z, r⊥(z)) along a magnetic field line r⊥(z)
and assume the existence of a range of spatial increments Δz,
where the mean square only depends on the average rate of
kinetic energy dissipated per unit mass and per unit length in
the parallel direction, denoted here by V , and on Δz.
Dimensional analysis yields a linear dependence on Δz of
the second- order structure function:

d d< + D - > = D^ ^V Vz z z C zV V2( ( ) ( ))   , where C V
 is a

constant. Similarly, assuming that
d d< + D - >^ ^B Bz z z 2( ( ) ( )) only depends on the average rate

of magnetic energy dissipated per unit length in the parallel
direction, denoted by B  , and on Δz, then

d d< + D - > = D^ ^B Bz z z C z. 4B B2( ( ) ( )) ( ) 

Therefore, the velocity fluctuations evaluated along fluid
particle trajectories and the velocity and magnetic field
fluctuations evaluated along the magnetic field lines all share
the same regularity properties as those of realizations of a
Wiener process, corresponding to the Holder continuous
functions with an H-exponent equal to 1/2. The scaling law
(4) is tantamount to the inertial range energy spectrum

µ -E k k . 5B
B 2( ) ( )  

A two-way bridge between the Lagrangian frequency
spectrum EV(ω) and the perpendicular wavenumber spectrum
EV(k⊥), where k⊥ is the component of the wavevector
transverse to the local magnetic field direction, can be built
upon the relation w t~ - k̂NL

1 ( ) together with
EV(ω)dω∼ EV(k⊥)dk⊥. Taking t t~^ ^k kK

NL NL( ) ( ) leads from
the Kolmogorov form (3) of the Lagrangian frequency
spectrum to the Eulerian spectrum µ^ ^

-E k kV
K 2 3 5 3( )  , as it

was originally predicted by the Goldreich–Sridhar phenomen-
ological description of strong Alfvénic turbulence. However,
from the estimate of the nonlinear energy transfer timescale in
the form given by t t q~^ ^k kK

NL
IK

NL( ) ( ) , the very same bridge
recovers the Iroshnikov–Kraichnan spectrum

µ^ ^
-E k V kV

IK
A

1 2 3 2( ) ( ) but is restricted to k⊥, a result
consistent with the analysis by Boldyrev (2006; see also
Schekochihin 2020). Note that choosing the length scale Λ,
which represents the onset of the inertial range scale-dependent
dynamic alignment, as L ~ VA

3  in µ L^ ^
-E k kV

1 6 2 3 3 2( ) 
taken from Perez et al. (2012), also yields ^E kV

IK ( ). A
Lagrangian–Eulerian bridge based on the relation
w t~ - kNL

1 ( ) is discussed by Tennekes & Lumley (1972) in
the context of three-dimensional isotropic hydrodynamic
turbulence. Now following Beresnyak (2015), a two-way
bridge relation between EV(ω) and EV(k∥) can be built upon the
Alfvén wave dispersion ω∼ VAk∥ leading from the Kolmo-
gorov spectrum (3) to µ -E k V kV A

2( ) ( )  and vice versa.
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Therefore, the average amount of kinetic energy dissipated per
unit length in the parallel direction can be related to ò by

~ VV
A( )  . And similarly, the average amount of magnetic

energy dissipated per unit length in the parallel direction can be
related to ò by ~ B VB

0
2

A
3  . The rates of kinetic and magnetic

energy dissipation are expected to be spatially fragmented due
to processes associated with turbulent magnetic reconnections
(Lazarian & Vishniac 1999; Eyink et al. 2011). Finally,
eliminating the frequency between these two Lagrangian–
Eulerian bridges results in the critical balance condition
t ~- k̂ k VNL

1
A( )  that connects the kinetic energy spectra

EV(k⊥) and EV(k∥), as well as the magnetic energy spectra
EB(k⊥) to EB(k∥). The situation can be summarized as follows:

t w~ ~- k̂ k V . 6NL
1

A( ) ( )

Overall, the Lagrangian perspective clarifies the reasons why
conflicting phenomenological descriptions of strong Alfvénic
turbulence predict a similar form of the k∥ spectra differing
only in the form of the predicted scale-dependent anisotropy.
Our aim is now to establish a Langevin model describing the
local structure of the turbulent magnetic field lines in the solar
wind in a way consistent with measurements of µ -E k kB

2( ) 
and remaining valid for any form of the scale-dependent
anisotropy. We shall motivate it further by first considering few
fundamental properties of stochastic magnetic field line
dispersion.

The running magnetic field line diffusivity Dm(z) is, by
definition, the rate of variation of the field line displacement
variance per unit distance along the parallel direction:

= < >^D z d r z dz2m
2( ) ( ) (Jokipii & Parker 1969). Using

the magnetic field line Equation (1), it can be shown that

ò d d= < ¢ > ¢^ ^B BD z B z dz1 0
z

m 0
2

0
( ) ( ) ( ) · ( )/ . Therefore, Dm(z)

can equivalently be expressed in terms of the parallel
wavenumber spectrum EB(k∥) via the relation

ò=
D

D z
E k

B

k z

k
dk

sin
. 7

B
m

0
2

( )
( )

( ) 




Taylor’s relation (7) explicitly shows how each individual
parallel wavenumber component of the spectrum EB(k∥)
contributes to the perpendicular displacement variance of the
magnetic field lines as a function of z. When z→ 0, the
wavenumber dependent weighting function k z k zsin ,( ) 
and thus all the k∥ components of the spectrum EB(k∥)
contribute equally to the integral on the right-hand side of
Equation (7), resulting in d< > = < >^ ^r z B B z ,2 2

0
2 2( ) ( ) where

òd< > =B̂ E k dkB
2 ( )  is the turbulent magnetic energy density.

In the opposite far field limit, the weighting function converges
to the Dirac distribution pdk z k ksin( ) ( )   . The large k∥
components of the spectrum are progressively filtered out,
resulting in only the k∥= 0 that contributes to the field line
perpendicular displacement variance when z? λL. Here,
l p d= = < >^E k B0L B

2( )/ stands for the integral correlation
length scale of the magnetic field fluctuations evaluated along
magnetic field lines. The diffusive regime is thus attained when
the running magnetic field line diffusivity becomes sufficiently

close to the constant given by

l
d

=
< >^D

B

B
, 8Lm

2

0
2

( )

which is, by definition, the magnetic field line diffusivity, and
hence, < > =r̂ z D z22

m( ) in this regime. The inertial range of
the turbulence is involved in the intermediate behavior that
connects these two “universal” asymptotic regimes of magnetic
field line dispersion. The quasilinear approximation is
tantamount to taking k∥= kz in Equation (7). The quasilinear
magnetic field line diffusivity is thus given in this case by

l d= < >^D B BQL
zm

2
0
2 (Jokipii 1966), which is an approx-

imation of the definition (Equation (8)), valid for a sufficiently
small magnetic Kubo number. In the pathological cases when
the turbulent magnetic field fluctuations lack any power at zero
parallel wavenumber, i.e., EB(k∥= 0)= 0, or when it is
divergent, i.e., EB(k∥= 0)=+∞ , the far field diffusive
behavior cannot be guaranteed anymore, and a refined analysis
should be carried out, if necessary.
A finite variance stochastic process describing the magnetic

field fluctuations in a way consistent with the inertial range
energy spectrum (Equation (5)) is the Ornstein–Uhlenbeck
process (Chandrasekhar 1943). Its spectral energy density is the
Lorentzian distribution

p
l d

l
=

< >
+

^E k
B

k

1

1
, 9B

L

L

2

2
( )

( )
( )



which smoothly rolls-over the uniform distribution when
λLk∥→ 0. As a consequence, the turbulent magnetic field lines
r⊥(z) can be modeled by the solutions of the following
differential equations

d^ ^dr z

dz

B z

B
, 10

0

( ) ( ) ( )

d zd
l

d
l

= - +
< >^ ^ ^B Bd z

dz

z B
z , 11

L L

2( ) ( ) ( ) ( )

where ζ(z) is the two-dimensional unit Gaussian white noise.
From Equation (11), one can deduce that

d d d l< + D - > = < > D^ ^ ^B Bz z z B zL
2 2( ( ) ( )) ( ) when

Δz= λL. Therefore, it is required that d l< > =B̂ CL
B B2  

in order for the Langevin model to yield the multiplicative
constant of Δz in the scaling law (4). Using the Duhamel
principle in Equation (11), the magnetic field fluctuations are
expressed in terms of a convolution of two-dimensional Wiener
processes:

òd
d
l

=
< >

^
^ -

¢l
- ¢

B Wz
B

e d , 12
L

z

z

2

0

z z

L( ) ( )
( )

where we have used the notation dWz= ζ(z)dz. The magnetic
field line equation can in turn be integrated to give

ò= -^
-

¢l
- ¢

r Wz D e d1 . 13
z

zm
0

z z

L( ) ( ) ( )
( )

The magnetic field line distribution function P(r⊥, z) is
therefore the two-dimensional Gaussian distribution, and its

3

The Astrophysical Journal, 941:58 (4pp), 2022 December 10 Bian & Li



variance, which is given by

l< > = + -^
-lr z D z e2 1 , 14L

2
m

z
L( ) [ ( )] ( )

satisfies ipso facto the two asymptotic constraints imposed by
the exact relation (Equation (7)). In the singular Markov limit
where the integral length scale λL→ 0 while keeping the
magnetic field line diffusivity Dm finite, the magnetic field
fluctuations evaluated along the magnetic field lines tend to the

Gaussian white noise zd l d= < >^ ^B z B zL
2( ) ( ). Their

spectral energy density becomes independent of k∥, and the
magnetic field lines become realizations of a Wiener process

=r̂ Wz D zm( ) ( ). The Brownian description of turbulent
magnetic field lines in the solar wind was introduced in the
seminal works of Jokipii & Parker (1968, 1969). Since then, it
has remained the main framework for modeling the turbulent
cross-field transport of solar energetic particles and their
angular spread in the heliosphere, which is observed to only
weakly depend on the charge-to-mass ratio (Cohen et al. 2017).

3. Discussion and Conclusions

Our work provides a resolution to the long-standing
conundrum that magnetic field lines undergoing a heliospheric
Brownian diffusion and thus, locally described by the equation

=r̂ Wz D zm( ) ( ) (Jokipii & Parker 1968, 1969), are
nowhere differentiable and therefore have infinite path lengths.
Instead, the sample paths of the integrated Ornstein–Uhlenbeck
process ò= -^

-
¢l

- ¢
r Wz D e d1

z
zm 0

z z

L( ) ( )
( )

, which is not Mar-
kov, are smooth differentiable functions with finite path
lengths. The variance < >r̂ z2 ( ) has the properties that it
satisfies: in this case the two asymptotic constraints imposed by
Taylor’s relation (Equation (7)): d< > = < >^ ^r z B B z2 2

0
2 2( ) ( )

when z→ 0 and < > =r̂ z D z22
m( ) when z? λL. Moreover,

the Langevin equation (Equation (11)), describing here the
local structure of stochastic Parker spirals, is consistent with the
inertial range spectrum µ -E k kB

B 2( )    of the magnetic field
fluctuations measured in the solar wind. This suggests that the
Lagrangian frequency spectrum of the perpendicular velocity
fluctuations obeys the Kolmogorov law EV(ω)∼ òω−2 in the
inertial range of solar wind turbulence. The running magnetic
field line diffusivity can be obtained from in situ observations
by using Taylor’s relation (Equation (7)) together with the
spectrum EB(k∥) that is derived from the wavelet analysis of
one-point measurements of the fluctuating magnetic fields. The
field line diffusivity of stochastic Parker spirals, which is
related to EB(k∥) by p= =D E k B0Bm 0

2( ) , can therefore be
inferred from measurements by extrapolating the spectrum
EB(k∥) toward k∥→ 0. The diffusivity Dm does not depend on
the scale-dependent anisotropy of the turbulence. The Langevin
model was motivated by the analysis of the Lagrangian
properties of Alfvénic turbulence. The Lagrangian perspective
tends to unify theories, which are based on the critical balance

condition (Equation (6)). They predict different scale-depen-
dent anisotropy but a similar form of the parallel wavenumber
spectrum EB(k∥) in the inertial range. In passing, we note that
dimensional arguments in anisotropic turbulence can lead to a
family of spectral indices for E(k⊥) while ~ -E k k 2( )  . The
form of the parallel wavenumber spectrum EB(k∥) is also
fundamental to the description of the resonant scattering of
charged particles by turbulent magnetic fields in the solar wind
and other astrophysical environments.
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