

Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Synthesis of ultrathin, nano-sized $Ti_3C_2T_x$ with abundant =O and -OH terminals and high transparency as a cocatalyst: Enabling design of high-performance Titania- $Ti_3C_2T_x$ hybrid photocatalysts

Ahmed Al Mayyahi ^a, Swagotom Sarker ^a, Brian M.Everhart ^a, Bade Tonyali ^b, Umut Yucel ^b, Placidus B Amama ^a, ^{*}

ARTICLE INFO

Keywords: Hybrid photocatalysts TiO₂ MXene Cocatalyst Gas and liquid phase reactions

ABSTRACT

Conventional Ti₃C₂T_x used in photocatalysis usually has properties that are detrimental to the process such as thick layers, a micro-sized structure with low transparency, and a high concentration of fluorine terminals. Herein, we demonstrate the synthesis of ultrathin, nano-sized Ti₃C₂T_x with abundant oxygen-containing groups (=O and -OH) and high transparency (designated as N-Ti₃C₂T_x) as an alternative cocatalyst in liquid and gas phase photocatalysis. N-Ti₃C₂T_x is prepared by a two-step process that involves etching Al from Ti₃AlC₂ via fluorine treatment followed by simultaneous exfoliation and fluorine reduction. N-Ti₃C₂T_x is then coupled with TiO2 via hydration and dehydration approaches to form a photocatalyst (TiO2-N-Ti3C2Tx) with distinct morphology and surface chemistry. The small size of N-Ti₃C₂T_x facilitates a strong interfacial contact with TiO₂, thereby enhancing electron transport between TiO₂ and N-Ti₃C₂T_x, and electron-hole separation; and (2) the high transparency of $N-Ti_3C_2T_x$ facilitates photon- TiO_2 interactions. As a consequence, the photocatalytic activity of TiO_2 -N- $Ti_3C_2T_x$ is superior to that of pristine TiO_2 , TiO_2 coupled with thin, micro-sized $Ti_3C_2T_x$ that is characterized by low transparency and fluorine terminals, and the widely used Ti₃C₂T_x-based photocatalyst synthesized by thermal nucleation of TiO₂ on Ti₃C₂T_x. The high photocatalytic activity of TiO₂–N–Ti₃C₂T_x is also attributed to the presence of abundant = O and -OH terminals on $N-Ti_3C_2T_x$ that boosts pollutant adsorption. The study provides a rational approach for coupling TiO2 and Ti3C2Tx to promote beneficial charge transfer properties and synergistic effects that have far-reaching applications in photocatalysis.

1. Introduction

Two-dimensional transition metal carbides and nitrides, known as MXenes, have received immense attention since their discovery at Drexel University in 2011 [1]. The general formula of MXenes is $M_{n+1}X_nT_n$, where M is early transition metal, X is carbon or nitrogen, and T is surface functional terminals (= O, –OH, and/or –F). The most widely used MXene is titanium carbide ($Ti_3C_2T_x$) and is characterized by unique properties that are of massive benefit to photocatalysis: (1) high mobility of charge carriers that can promote migration and separation of photoexcited electron-hole pairs [2], (2) Ti sites on $Ti_3C_2T_x$ surface that may provide stronger redox reactivity compared to the traditional carbon material [3], and (3) unique surface chemistry of $Ti_3C_2T_x$ represented by its hydrophilic nature and abundant functional terminals that

can adsorb a variety of molecules and ionic species [4,5]. The distinctive properties of $Ti_3C_2T_x$ highlighted have impelled the design of $Ti_3C_2T_x$ -based photocatalysts with the aim of increasing mobility of the charge carriers, reactant adsorption, and surface reactivity. In this regard, numerous $Ti_3C_2T_x$ -based photocatalysts such as $BiOBr-Ti_3C_2T_x$, $CdS-Ti_3C_2T_x$, $Ag_3PO_4-Ti_3C_2T_x$, $RuO_2-TiO_2-Ti_3C_2T_x$, $g-C_3N_4-Ti_3C_2T_x$ and $CuFe_2O_4-Ti_3C_2T_x$ have been designed and employed in various applications including water splitting, O_2 production, N_2 fixation, and bacterial inactivation [6–12].

Hybrids formed by coupling $Ti_3C_2T_x$ and TiO_2 have emerged as a promising family of environmental photocatalysts, in which the resulting Schottky junction formed between them leads to effective separation of photo-generated electron-hole pairs, while the presence of functional terminals on $Ti_3C_2T_x$ (particularly, =O and =OH groups) facilitates

E-mail address: pamama@ksu.edu (P. B Amama).

^a Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA

^b Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA

^{*} Corresponding author.

pollutant adsorption and degradation on the catalyst surface. One approach that has been utilized to synthesize TiO2-Ti3C2Tx hybrid is the nucleation of TiO2 nanoparticles on Ti3C2Tx surface through thermal treatment. The hybrids produced by oxidation of Ti₃C₂T_x at elevated temperatures (160-800 °C) have shown noticeable performance in photocatalytic degradation of environmental pollutants [13–18]. However, the conversion of a Ti layer into TiO2 sacrifices the structural integrity of Ti₃C₂T_x and possibly reduces its ability to accept the photogenerated charges, undermining the benefit of utilizing Ti₃C₂T_x in photocatalysis. As an alternative approach, coupling commercial TiO2 with thin/layered, micro-sized Ti₃C₂T_x through hydration and dehydration has been used to produce TiO2-Ti3C2Tx hybrid while preserving the structural integrity of Ti₃C₂T_x [4]. However, the average size of Ti₃C₂T_x used (several hundred nanometers to a few micrometers) in coupling is significantly larger than that of TiO₂ nanoparticles (typically in the range of 20-200 nm). This considerable size difference can diminish the quality of interfacial contact formed between TiO2 and Ti₃C₂T_x, and in turn, impede the mobility of charge carriers in the hybrid structure. Also, light transmittance of Ti₃C₂T_x is linearly dependent on its thickness that decreases with the number of layers and is independent of wavelength. For instance, a transmittance of 68% was attained by a 17-nm thin film of Ti₃C₂T_x, indicating 32% of incident light was absorbed or scattered [19,20]. The photon interaction with the semiconductor (TiO₂ nanoparticles) is a critical first step in photocatalysis as it yields the reactive oxygen species; therefore, a cocatalyst that potentially obstructs penetration of photons to TiO2 is undesired. Furthermore, the conventional Ti₃C₂T_x used in photocatalysis is typically terminated by fluorine groups that are inevitably attached to the surface during the fabrication process. These terminals are undesired in photocatalysis as they mitigate the adsorption of pollutants on the surface of MXene-based photocatalysts [4,21-23]. For the full potential of Ti₃C₂T_x-based photocatalysts to be realized, the aforementioned challenges that are directly connected to the photocatalytic process would have to be addressed.

A recent study reveals that ultrathin MXene (Ti₃C₂T_x film with thickness of less than 2.5 nm) possesses a transmittance of 90% while returning high conductivity exceeding 6500 S cm⁻¹ [24]. Also, a previous investigation involving the coupling of TiO2 and graphene suggests utilizing a nano-sized graphitic structure as opposed to a micro-sized one as it maximizes the interfacial contact and promotes electron-hole separation [25]. Hence, it is reasonable to hypothesize that coupling ultrathin, nanosized Ti₃C₂T_x and TiO₂ has the potential to maximize the interfacial contact in Ti₃C₂T_x-TiO₂ photocatalysts and promote migration and separation of charge carriers without interrupting photon flux to TiO2. Therefore, herein, we demonstrate synthesis of ultrathin, nano-sized Ti₃C₂T_x (N-Ti₃C₂T_x) that is characterized by high transparency and abundant = O and -OH groups (reduced fluorine content), and subsequent coupling with TiO2 to produce a hybrid photocatalyst (designated as TiO2-N-Ti3C2Tx). The photocatalytic activity of the photocatalysts was evaluated in liquid phase via methylene blue (MB) degradation and in gas phase via NO_x oxidation. Our results reveal the superior photocatalytic activity TiO2-N-Ti3C2Tx in comparison to pristine TiO2 and TiO2 coupled with thin, micro-sized Ti₃C₂T_x (TiO₂-M-Ti₃C₂T_x) that is characterized by low transparency and fluorine terminals on the surface. Comprehensive morphological, optical, and chemical characterization of the photocatalysts has enabled elucidation of the observed differences in photocatalytic activity. Our findings will benefit current efforts aimed at exploiting the outstanding properties of MXenes in the design of efficient hybrid photocatalysts.

2. Experimental section

2.1. Synthesis of M-Ti₃C₂T_x and N-Ti₃C₂T_x

The reaction between HCl and LiF was exploited to etch Al from MAX

phase (Ti₃AlC₂) and exfoliate the sheets to produce M-Ti₃C₂T_v [26,27]. 1 g of LiF (Sigma-Aldrich, USA) was added to freshly prepared 9 M HCl (Sigma-Aldrich, USA) aqueous solution. The mixture was stirred for 10 min to dissolve the salt, followed by the slow addition of 1 g Ti₃AlC₂ powder (Carbon, Ukraine; particle size: 40 µm). The mixture was maintained at 40 °C for 36 h. Thereafter, the resulting residue was washed repeatedly with DI water after centrifugation (10 min per cycle at 4000 rmp) until the pH of the supernatant reached approximately 6. The final product was filtered using a nylon filter and dried in air. Tetrapropyl ammonium hydroxide (TPAOH) treatment was used to further exfoliate the M-Ti₃C₂T_x and produce N-Ti₃C₂T_x. Two grams of M-Ti₃C₂T_x was immersed in TPAOH (25 wt% aqueous solution; Fisher-Scientific, USA) and stirred for three days at room temperature. Thereafter, the resulting residue was collected by cycles of centrifugation with water and ethanol and dried in air. A schematic illustration of the fabrication process for M-Ti₃C₂T_x and N-Ti₃C₂T_x is shown in Fig. 1a.

2.2. Synthesis of TiO_2 -M- $Ti_3C_2T_x$ and TiO_2 -N- $Ti_3C_2T_x$ hybrid photocatalysts

Anatase TiO₂ nanoparticles (100 nm) were first treated with 3-aminopropyl-trimethoxysilane (APTMS: Fisher-Scientific, USA), following the procedure reported by Lee et al. [28], to facilitate the interaction between TiO₂ and Ti₃C₂T_x. For synthesis of TiO₂-M-Ti₃C₂T_x hybrids, two solutions were first prepared. Solution A: 40 mg of TiO₂ was dispersed in 40 mL distilled water by sonication for 50 min. Solution B: a specific weight percentage of M-Ti₃C₂T_x (2.5, 5, 10, 15 or 30 wt% with respect to TiO₂) was dispersed in 10 mL distilled water by ultrasonication for 50 min. Then, solution B was added dropwise to solution A under stirring and the resulting mixture was stirred for 50 min. Thereafter, the TiO₂-M-Ti₃C₂T_x hybrid was collected by centrifugation and dried in air. For synthesis of TiO2-N-Ti3C2Tx, the same procedure was followed except M-Ti₃C₂T_x was replaced with N-Ti₃C₂T_x. The schematic illustration of the fabrication process for TiO₂–N–Ti₃C₂T_x is shown in Fig. 1b. For comparison, TiO₂–O–Ti₃C₂T_x was also synthesized by calcination of 300 mg of M-Ti₃C₂T_x in air at 450 $^{\circ}$ C for 4 h. TiO₂–N-Ti₃C₂T_x and TiO2-M-Ti3C2Tx were synthesized following the process used in the synthesis of TiO2-N-Ti3C2Tx and TiO2-M-Ti3C2Tx but by using TiO2 (Degussa P25).

2.3. Characterization

Images were acquired with a scanning electron microscope (SEM, Hitachi S4700 II cFEG) at an accelerating voltage of 10 kV using the secondary electron detector. Transmission electron microscopy (TEM) was conducted with a Thermo Fisher Scientific G2 Tecnai F30 FEG highresolution microscope. SEM and TEM were used to characterize the morphologies of Ti₃C₂T_x and the synthesized photocatalysts. For TEM, a small amount of the sample was dispersed in ethanol by sonication and drop cast on a copper microgrid coated with lacey carbon. The images were acquired at an accelerating voltage of 300 kV. Fourier transform infrared (FTIR) was exploited to detect the presence of functional groups on the surface of Ti₃C₂T_x and the hybrid photocatalyst. FTIR spectra were recorded on a Cary 630 Agilent spectrometer at a resolution of 4 cm⁻¹. Raman spectroscopy was utilized to study the compositions and surface functional groups of Ti₃C₂T_x and the hybrid photocatalysts. Raman spectra were obtained by Renishaw InVia Raman microscope with an excitation wavelength of 532 nm. X-ray photoelectron spectroscopy (XPS) was used to probe the surface chemistry of Ti₃C₂T_x and the hybrid photocatalysts. XPS data were collected using a PHI 5000 VersaProbe II (Physical Electronics Inc.) system at ultrahigh vacuum (1 $\times~10^{-9}$ bar) with a monochromated Al k_{α} X-ray source. The charge compensation was achieved with a combination of electron and argon ion flood guns. The X-ray beam size was 100 µm and survey spectra were recorded with pass energy (PE) of 117 eV, step size of 1 eV and dwell time of 20 m s; whereas high-energy resolution spectra were recorded

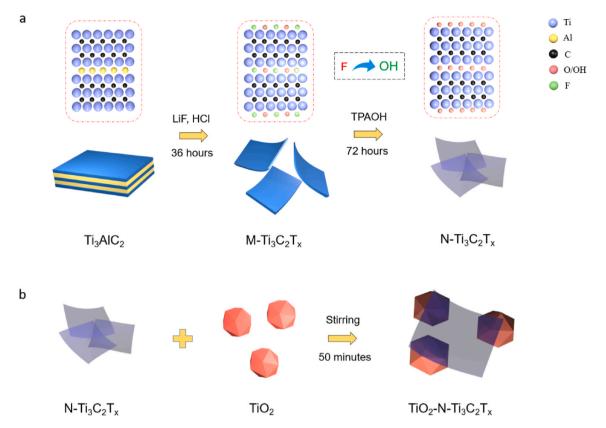


Fig. 1. Schematic illustrations of the synthesis steps of N-Ti₃C₂T_x (a) and TiO₂-N-Ti₃C₂T_x (b).

with PE of 47 eV, step size 0.1 eV and dwell time of 20 m s. Auto-z (i.e., automated height adjustment to the highest intensity) was performed before each measurement to find the analyzer's focal point. The number of average sweeps of each of the elements was adjusted (5–15 sweeps) to obtain the optimal signal-to-noise ratio. Raman and XPS data were fit to Gaussian curves by OriginPro® [29].

Optical properties of Ti₃C₂T_x and the hybrid photocatalysts were studied using a variety of spectroscopic techniques. UV-Visible (UV-Vis) spectra were obtained using a Shimadzu UV-2600 spectrometer with BaSO₄ as the background material. Photoluminescence (PL) spectroscopy was utilized to investigate electron-hole recombination in the hybrid photocatalysts. PL spectra were acquired via a spectraMax i3x multi-mode microplate reader over the range of 400-700 nm using an excitation wavelength of 360 nm. Electron paramagnetic resonance (EPR) spectroscopy was employed to detect the generation of •OH radicals on the hybrid photocatalysts using 5,5-dimethyl-1-pyrroline Noxide (DMPO, Enzo Life Sciences, Plymouth Meeting, MI, USA) as a spin trap. In brief, an aliquot (950 µL) of aqueous dispersion of the hybrid photocatalyst (1 mg in 5 mL water) was mixed with 50 µL aqueous solution of DMPO to a final spin probe concertation of 100 μM . The mixture was exposed to UV-light for 5 min to generate •OH radicals, then sampled into borosilicate EPR tubes (100 µL) for subsequent EPR analysis (SpinscanX, ADANI, Minsk, Belarus). The formation of DMPO spin adducts was quantified by calculating the total area under the curve via double-integration of the characteristic EPR peaks using GRAMS/ AI™ Spectroscopy Software (Thermo Scientific™, Version 9).

2.4. Photocatalytic activity evaluation

2.4.1. Liquid phase

Photocatalytic activity of TiO_2 and synthesized photocatalysts in liquid phase were evaluated by the degradation of MB in a batch reactor under UV light irradiation at room temperature and pH=7. In a typical experiment, an aqueous solution of MB (8 mL of 0.04 mg/mL) was

placed in the batch reactor, and 4 mg of photocatalyst was added under constant stirring. In the dark, the mixture was stirred for 30 min to achieve adsorption and desorption equilibrium between the photocatalyst and MB. Thereafter, the stirring was continued under UV illumination and a small amount of slurry was taken every 5 min and analyzed by UV–Vis spectroscopy. The illumination system consists of two 25 W UV lamps (Sylvania 21703) without reflectors and the main wavelength of the lamp is 356 nm. Prior to UV–Vis analysis, the photocatalyst was recovered by centrifugation; MB concentration was determined by recording the change in absorbance at 664 nm. Based on the experimental data, the photocatalytic degradation of MB was fitted to a pseudo first-order reaction:

$$\frac{c}{c_0} = e^{-kt}$$

where k is the apparent constant of reaction rate, c is the concentration of MB, and t is the reaction time.

2.4.2. Gas phase

Photocatalytic activity of ${\rm TiO_2}$ and synthesized photocatalysts in gas phase was evaluated by the oxidation of ${\rm NO_x}$ in a continuous flow reactor, described elsewhere [30,31]. A substrate coated with a photocatalyst was loaded into the reactor and irradiated with UV light for 1 h under continuous airflow to remove adsorbed contaminants. Then, the light was turned off and the ${\rm NO_x}$ was introduced to the reactor for adequate adsorption of gaseous molecules on the photocatalyst surface. After 30 min, the light was turned on and the reaction was monitored at 1.0 ppm NOx with a total airflow of 3000 sccm at a relative humidity of 50%. After 2 h of reaction, the light was turned off and ${\rm NO_x}$ was allowed to re-equilibrate. Average concentrations of NO, ${\rm NO_2}$ and ${\rm NO_x}$ were determined by averaging all data obtained during the oxidation reaction.

To compare the photocatalytic activity, $DeNO_x$ index, an objective figure of merit for photocatalytic NO_x abatement, was utilized. DeNOx

index quantifies the net NO_x removal by considering NO conversion and product selectivity, defined as the percentage of NO completely oxidized to nitrates versus the total amount of NO oxidized to NO_2 . To calculate DeNOx index, the photonic efficiency for NO_2 and NO_x was first calculated using Equation (1) [32].

$$\xi = \frac{(c_d - c_i)\dot{V}p}{\varphi ART} \tag{1}$$

where ξ is the photonic efficiency of a given specie; c_d is the species concentrations in the dark; c_i is the species concentrations under illumination; \dot{V} is the volumetric flow rate; p is the pressure in system (1 atm); φ is the photon flux at the photocatalyst surface (dependent of light wavelength and intensity); A is the catalyst irradiated area; R is the gas constant; T is the temperature.

The calculated photonic efficiencies were then used to calculate the DeNO_x index and the selectivity by using Equations (2) and (3), respectively.

$$DeNO_x index = \xi_{NO_x} \left(3 - \frac{2}{S} \right)$$
 (2)

$$S = \frac{\xi_{NO_X}}{\xi_{NO}} \tag{3}$$

3. Results and discussion

3.1. Characterization of M- $Ti_3C_2T_x$ and N- $Ti_3C_2T_x$

3.1.1. Morphology

From the SEM image of Ti₃AlC₂ in Fig. 2a, the characteristic smooth surface of MAX phase is apparent. After etching the MAX phase with LiF and HCl, the resulting exfoliated M-Ti₃C₂T_x (Fig. 2b) exhibits the typical morphology of MXene produced by the so called "minimally intensive layer exfoliation" process [33]. Subsequent treatment with TPAOH yielded highly exfoliated MXene flakes as verified by the SEM image in Fig. 2c, where the separated flakes can be easily observed. It is clear from the TEM images (Fig. 2d and e) that the flakes of N-Ti₃C₂T_x are thinner and smaller than those of M-Ti₃C₂T_x. TEM-derived lateral dimensions of M-Ti₃C₂T_x and N-Ti₃C₂T_x were determined by averaging the length (longest distance) and width (shortest distance) of MXene sheets, following the approach reported by Xia et al. [34]. For both M-Ti₃C₂T_x and N-Ti₃C₂T_x, lateral dimensions of 106 sheets were first determined and the dimensions obtained are shown using a histogram with a curve of the fitted log-normal distribution (Fig. 2g and h and Fig. S1). Our analysis reveals that the average lateral dimensions of M-Ti₃C₂T_x and $N-Ti_3C_2T_v$ are 1.34 \pm 0.5 μm and 181 \pm 86 nm, respectively. The HR-TEM image of N-Ti₃C₂T_x (Fig. 2f) confirms the sheets are ultrathin, and the corresponding fast Fourier transform (FFT) reveals a highly crystalline lattice of N-Ti₃C₂T_x basal plane. UV-Vis spectra of M-Ti₃C₂T_x

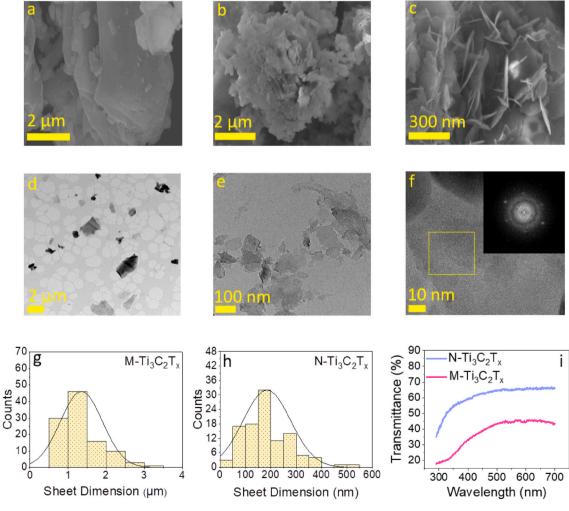


Fig. 2. SEM images of Ti_3AlC_2 (a), $M-Ti_3C_2T_x$ (b), and $N-Ti_3C_2T_x$ (c). TEM images of $M-Ti_3C_2T_x$ (d) and $N-Ti_3C_2T_x$ (e). HR-TEM image of $N-Ti_3C_2T_x$ (f) and the FFT pattern corresponding to the yellow square in f (inset). Dimension distribution histograms of $M-Ti_3C_2T_x$ (g) and $N-Ti_3C_2T_x$ (h) from TEM images. UV-Vis spectra of $M-Ti_3C_2T_x$ and $N-Ti_3C_2T_x$ dispersions in water (i).

and N–Ti $_3$ C $_2$ T $_x$ dispersions in water (Fig. 2i), reveal a transmittance of approximately 65% for N–Ti $_3$ C $_2$ T $_x$ and 40% for M-Ti $_3$ C $_2$ T $_x$, indicating N–Ti $_3$ C $_2$ T $_x$ is more transparent than M-Ti $_3$ C $_2$ T $_x$. The strong absorption peak below 300 nm is attributed to the optical glass cuvettes used in the measurement.

Further structural characterization of the MXenes was carried out using XRD and Raman spectroscopy. XRD spectra of Ti₃AlC₂, M-Ti₃C₂T_x, and N-Ti₃C₂T_x are presented in Fig. 3a. The peaks at $2\Theta = 9.5^{\circ}$, 19.2° , 34.0°, 36.8°, 39.0°, 41.8°, 44.9°, 48.5°, 52.4°, 56.5°, and 60.3° are indexed to the (002), (004), (101), (103), (104), (105), (106), (107), (108), (109), and (110) planes of Ti₃AlC₂, respectively [35,36]. The decrease in structural order and crystallinity are apparent after Al etching, as evidenced by the broadening of the diffraction peaks of $M-Ti_3C_2T_x$ and $N-Ti_3C_2T_x$. For $M-Ti_3C_2T_x$, the (002) peak broadens and shifts to lower angle ($2\Theta = 6.2^{\circ}$) due to the increase in *d*-spacing, which is a consequence of expansion of the lattice from Al removal and introduction of terminal functional groups. Interestingly, the shift in (002) peak is regarded as an indication of the successful exfoliation of MXene sheets [36]. In the case of $N-Ti_3C_2T_x$, the (002) peak also shifts to lower angle ($2\theta = 5.5^{\circ}$), indicating a change in surface terminal groups and the formation of highly exfoliated sheets. In both M-Ti₃C₂T_v and N-Ti₃C₂T_v, the peaks at 35.9 and 41.7 can also be ascribed to TiC impurities, most likely formed during the fabrication process of Ti₃AlC₂ [37]. Raman spectra of Ti₃AlC₂, M-Ti₃C₂T_x, and N-Ti₃C₂T_x are shown in Fig. 3b. The decrease in the intensities of peaks in the region between 200 and 700 cm⁻¹ for M-Ti₃C₂T_x and N-Ti₃C₂T_x after Al etching is due to their structural deterioration and loss of crystallinity, which is consistent with the XRD results [1,36,38]. The phenomenon is accompanied by broadening of Raman peaks corresponding to the D-band (\sim 1319 cm $^{-1}$) and G-band (\sim 1596 cm $^{-1}$); these features are usually apparent after exfoliation of MXenes and generation of graphitic carbon and defects [39,40].

3.1.2. Chemical properties

It has been shown that the lattice vibration of Ti₃C₂T_x is very sensitive to the type of terminal functional groups attached to the surface [41,42]. Raman spectroscopy is therefore a powerful tool for investigating the surface chemistry of Ti₃C₂T_x. In this regard, the Raman spectra of $M-Ti_3C_2T_x$ and $N-Ti_3C_2T_x$ were deconvoluted into three regions as shown in Fig. 3c and d. The three regions in M-Ti₃C₂T_x (Fig. 3c) are classified as the flake region, functional terminal region, and carbon region. First, the flake region between 100 and 210 cm⁻¹ corresponds to a group vibration of carbon and two Ti layers. In this region, the two peaks at 154 and 190 cm⁻¹ represent the in-plane vibrations of surface Ti2 and C atoms in Ti₃C₂ and the out-of-plane vibration of Ti2 and C atoms in Ti₃C₂F₂, respectively [39,43,44]. Second, the functional terminal region between 210 and 500 cm⁻¹ corresponds to the vibrations of surface groups. In this region, the peaks at 251, 399 and 430 cm^{-1} are assigned to the in-plane vibrations of surface groups attached to Ti atoms in Ti₃C₂O(OH), Ti₃C₂(OH)₂ and Ti₃C₂O(OH), respectively [42]. Third, the carbon region between 500 and 800 cm⁻¹ corresponds to in-plane and out-of-plane C atom vibrations. The peaks at 599 and 709

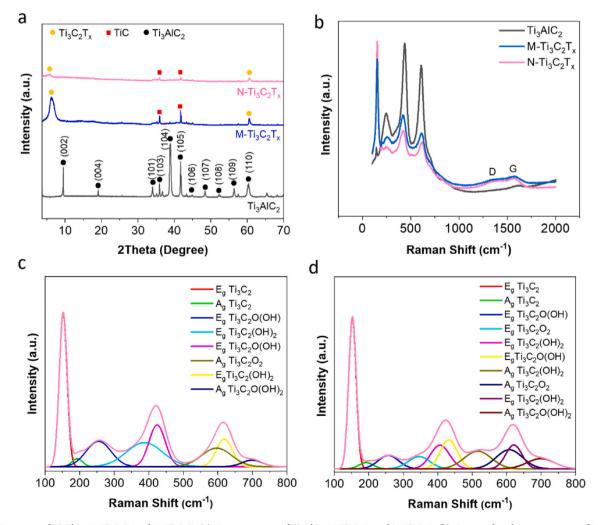


Fig. 3. XRD spectra of Ti_3AlC_2 , $M-Ti_3C_2T_x$ and $N-Ti_3C_2T_x$ (a). Raman spectra of Ti_3AlC_2 , $M-Ti_3C_2T_x$ and $N-Ti_3C_2T_x$ (b). Deconvoluted Raman spectra of $M-Ti_3C_2T_x$ (c) and $N-Ti_3C_2T_x$ (d).

cm $^{-1}$ are attributed to out-of-plane vibration of C atoms in $Ti_3C_2O_2$ and $Ti_3C_2O(OH)_2$, respectively [42], whereas the peak at 622 cm $^{-1}$ is assigned to the in-plane vibration of C atoms in $Ti_3C_2(OH)_2$ [39,45]. In the case of N– $Ti_3C_2T_x$ (Fig. 3d), the appearance of peaks at 347 cm $^{-1}$ in the functional terminal region (corresponding to the in-plane vibration of functional groups in $Ti_3C_2O_2$) and 514 cm $^{-1}$ in the carbon region (corresponding to the out-of-plane vibration of C atoms in $Ti_3C_2(OH)_2$) reveals the change in surface groups upon treating the M- $Ti_3C_2T_x$ with TPAOH [42,44]. The change in the terminal functional groups of M- $Ti_3C_2T_x$ upon TPAOH treatment was corroborated by FTIR analysis, evidenced by peaks corresponding to C–O, C–O, OH and COOH exhibiting substantially higher intensities in N– $Ti_3C_2T_x$ than M- $Ti_3C_2T_x$ (Fig. S2).

To further investigate the surface chemistry of Ti₃C₂T_x, highresolution XPS of Ti 2p, O 1s and C 1s core levels were conducted for M-Ti₃C₂T_x and N-Ti₃C₂T_x and the results are shown in Fig. 4. For M- $Ti_3C_2T_x$, the $Ti\ 2p_{3/2}\ (2p_{1/2})$ spectrum (Fig. 4a) was deconvoluted into six peaks, corresponding to Ti–C, Ti(II), Ti(III), Ti(IV), TiO_{2-x}F_x and Ti–F. The peak at 454.4 (460.6) eV is assigned to Ti-C and originates from the interior Ti atoms in M-Ti₃C₂T_v [18,46,47]. The peaks at 455.7 (461.8), 457.7 (463.3) and 458.8 (464.5) eV correspond to Ti oxidation states and can be attributed to OH/O-Ti²⁺-C, OH/O-Ti³⁺-C and TiO₂, respectively [46,47]. The peaks at 459.5 (465.2) and 460.5 (466.5) eV are assigned to TiO2-xFx and C-Ti-F [48]. The O 1s spectrum was deconvoluted into five peaks (Fig. 4b) at 529.7, 530, 530.6, 531.8 and 533.1 eV and assigned to TiO2. TiO2-xFx, C-Ti-Ox, C-Ti-(OH)x and H₂O_{ads}, respectively [20,46,48]. The deconvolution of C 1s spectrum produces seven peaks (Fig. 4c) at 281 and 282.2, 284, 284.7, 285, 286 and 288.7 eV and are attributed to C–Ti-T_x, C=C, C–C, C–H, C–O and COO, respectively [46,48-52]. XPS peak fitting shows the dominant terminals on M-Ti₃C₂T_x surface are = O, –OH and –F, consistent with the Raman analysis.

For $N-Ti_3C_2T_x$, the binding energies of Ti peaks are shifted to lower

values (Fig. 4d), most likely due to the introduction of defects as a result of TPAOH treatment—a phenomenon that has been observed in transition metal carbides [48]. The Ti-C, (OH or O)-Ti²⁺-C, (OH or O)-Ti³⁺-C, TiO₂ and C-Ti-F_x are located at 453.8 (459.5), 455.8 (461.5), 457.0 (462.7), 457.6 (463.5) and 458.4 (464.4) eV [39,48,53]. The peaks corresponding to TiO2 (528.9 eV), C-Ti-Ox (531.4 eV) and C-Ti-(OH)x (530.4 eV) in O 1s region are preserved (Fig. 4e) [39,46]. In C 1s region (Fig. 4f), the peaks corresponding to C-Ti, C-Ti-T_x, C=C, C-C, and C-O are located at 280.3, 282.7, 284, 285 and 286.7 eV, respectively. In comparison to M-Ti₃C₂T_x, the intensity of peaks corresponding to sp² C and sp³ C in N–Ti₃C₂T_x is higher, indicating an increase in the amounts of graphitic carbon and defects in N-Ti₃C₂T_x as observed in the Raman results. In contrast to M-Ti₃C₂T_x, no peak corresponding to TiO_{2-x}F_x is observed in the Ti 2p and C 1s of $N-Ti_3C_2T_x$. We therefore conclude that TPAOH treatment reduces the amount of fluorine on the surface of Ti₃C₂T_x. Besides, the high-resolution XPS spectra in F 1s region show the decrease in the intensity of F_x peak for $N-Ti_3C_2T_x$ in comparison to that of M-Ti₃C₂T_x (Fig. S3). This observation, corroborated by FTIR and Raman analysis, indicates the N-Ti₃C₂T_v is mainly terminated by = O and -OH functional groups. It is worth mentioning that the adsorption of pollutants such as MB, CO₂ and thiophene on Ti₃C₂T_y surface is primarily controlled by -O and -OH functional groups [4,21-23]. Hence, the role of TPAOH is not only beneficial in altering the morphology of MXene, but also in adapting the surface chemistry for enhanced pollutant adsorption.

3.2. Characterization of TiO_2 -N- $Ti_3C_2T_x$ and TiO_2 -M- $Ti_3C_2T_x$ photocatalysts

TEM was utilized to investigate the morphology and interfacial contact between $Ti_3C_2T_x$ and TiO_2 in $TiO_2\text{-M-Ti}_3C_2T_x$ and $TiO_2\text{-N-Ti}_3C_2T_x$ hybrid photocatalysts. Fig. 5a and b reveal the highly exfoliated and transparent N–Ti $_3C_2T_x$ is in direct contact with TiO_2

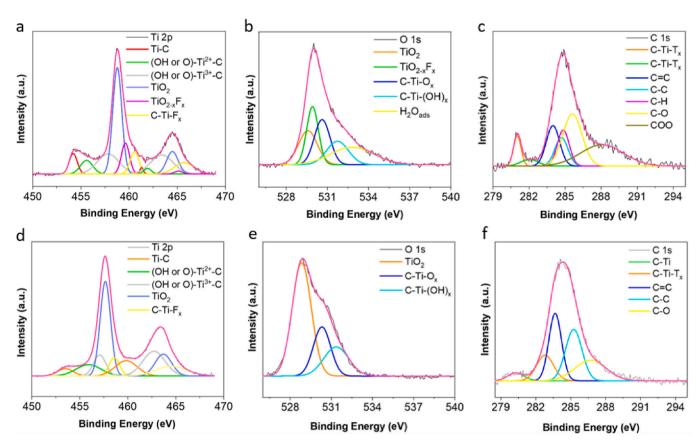


Fig. 4. High-resolution XPS spectra of M-Ti₃C₂T_x in (a) Ti 2p, (b) O 1s and (c) C 1s. High-resolution spectra of N-Ti₃C₂T_x in (d) Ti 2p, (e) O 1s and (f) C 1s.

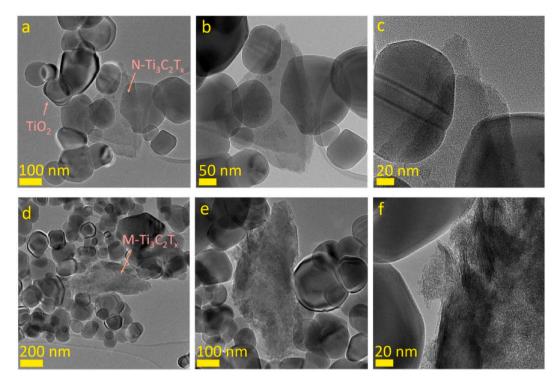


Fig. 5. TEM images of TiO₂-N-Ti₃C₂T_x at different magnifications (a, b and c). TEM images of TiO₂-M-Ti₃C₂T_x at different magnifications (d, e and f).

nanoparticles, and the high-magnification image (Fig. 5c) reveals the intimate interaction between N–Ti₃C₂T_x and TiO₂ nanoparticles. The strong interfacial contact between N–Ti₃C₂T_x and TiO₂ undoubtedly improves the quality of the junction formed between them, and is expected to facilitate charge carrier mobility across the interface. On the other hand, even though M-Ti₃C₂T_x is exfoliated, the sample is thicker than N–Ti₃C₂T_x, and the TiO₂ nanoparticles tend to aggregate on the edges of M-Ti₃C₂T_x (Fig. 5d and e). In addition, the high-magnification image in Fig. 5f shows the poor interfacial contact between TiO₂ nanoparticles and M-Ti₃C₂T_x — in fact, only a small fraction of the nanoparticles is in direct contact with M-Ti₃C₂T_x due to the low-quality junctions formed between the two components. The charge carrier mobility across the interface in TiO₂-M-Ti₃C₂T_x is therefore diminished in comparison to TiO₂–N-Ti₃C₂T_x.

XRD spectra of TiO_2 –N– $Ti_3C_2T_x$ and TiO_2 -M- $Ti_3C_2T_x$ photocatalysts are shown in Fig. S4 a and b, where the peaks ascribed to anatase TiO_2 are obvious and consistent with the literature [54,55]. For TiO_2 –N– $Ti_3C_2T_x$, the (002) peak of $Ti_3C_2T_x$ was not detected at low concentration of N– $Ti_3C_2T_x$, an observation that is consistent with our previous study whereby low amounts of SWCNTs were coupled with TiO_2 to facilitate electron-hole separation [56]. However, the peak intensity increases with concentration of N– $Ti_3C_2T_x$. A similar trend was observed for TiO_2 -M- $Ti_3C_2T_x$, whereby the (002) peak of $Ti_3C_2T_x$ becomes dominant at high concentration of M- $Ti_3C_2T_x$. No peak associated with Ti_3AlC_2 was detected in both photocatalysts and the position of (002) peak for N– $Ti_3C_2T_x$ is still located at a lower angle than that of M- $Ti_3C_2T_x$ as observed in Fig. 3a, an indication that the highly exfoliated $Ti_3C_2T_x$ did not restack after coupling with TiO_2 .

The Raman spectra of the pristine TiO_2 and TiO_2 modified with different concentrations of $N-Ti_3C_2T_x$ and $M-Ti_3C_2T_x$ are shown in Figs. S4c and d. The Raman spectra reveal the four characteristic peaks attributed to anatase vibration modes of TiO_2 [57,58]. Because the amount of $N-Ti_3C_2T_x$ and $M-Ti_3C_2T_x$ in the hybrids is small compared to that of TiO_2 , no peak corresponding to $Ti_3C_2T_x$ is observed in the spectra of $TiO_2-N-Ti_3C_2T_x$ and $TiO_2-M-Ti_3C_2T_x$. However, at high concentrations of $N-Ti_3C_2T_x$ and $M-Ti_3C_2T_x$, the intensities of these dominant anatase vibrational modes dramatically decreased, indicating the

existence of $Ti_3C_2T_x$ in the photocatalysts. To analyze the chemical composition of TiO_2 –N– $Ti_3C_2T_x$ and TiO_2 -M- $Ti_3C_2T_x$, XPS analysis was conducted and the results are summarized in Fig. S5. Because Ti and O coexist in both $Ti_3C_2T_x$ and TiO_2 and to avoid the possible overlap of the distinct peaks of TiO_2 and $Ti_3C_2T_x$ in Ti 2p and O 1s regions, our surface analysis of the compounds focuses on the high-resolution C 1s spectrum because carbon does not naturally exist in both compounds. The C 1s spectrum for TiO_2 –N– $Ti_3C_2T_x$ was deconvoluted into six peaks (Fig. S5a) at 281, 283.2, 284, 284.6, 285.8 and 288 eV and attributed to T-C, Ti–C–O, C=C, C–C, CO and COO, respectively. On the other hand, the C 1s spectrum of TiO_2 -M- $Ti_3C_2T_x$ (Fig. S5b) reveals peaks associated with Ti–O–C, C=C. C–C, CO and COO and located at 283.6, 284.3, 285.1, 286.4 and 288 eV, respectively [50,59], further confirming the existence of $Ti_3C_2T_x$ in the photocatalysts.

3.3. Photocatalytic activity of TiO_2 –N– $Ti_3C_2T_x$ and TiO_2 -M- $Ti_3C_2T_x$ in liquid phase

The photocatalytic activity of TiO₂-N-Ti₃C₂T_x and TiO₂-M-Ti₃C₂T_x in the degradation of MB (Fig. 6a, b and c) is sensitive to the amount of Ti₃C₂T_x in the hybrid photocatalysts. Significant improvement in the photocatalytic activity of TiO2 was achieved when the amounts of N-Ti₃C₂T_x and M-Ti₃C₂T_x in the hybrids were 30 wt% and 2.5 wt%, respectively; these compositions were considered as the optimum for the respective photocatalysts. The rate constant (k) for MB degradation using the optimized $\text{TiO}_2\text{-N-Ti}_3\text{C}_2\text{T}_x$ photocatalyst with 30 wt% N-Ti₃C₂T_x is 0.046 min⁻¹, which is over three times higher than that of TiO₂ (0.013 min⁻¹), and two times higher than that of optimized TiO₂- $M-Ti_3C_2T_x$ with 2.5 wt% $M-Ti_3C_2T_x$ (0.023 min⁻¹). Selfphotosensitization of MB under UV light is not considered as MB removal in the absence of a photocatalyst was negligible (data not shown for the sake of brevity). Interestingly, $TiO_2-N-Ti_3C_2T_x$ shows extremely high photocatalytic activity when compared to TiO2--O-Ti₃C₂T_x as shown in Fig. 7a and b. The nucleation of TiO₂ nanoparticles on $Ti_3C_2T_x$ surface and subsequent generation of TiO₂–O–Ti₃C₂T_x by thermal oxidation was confirmed by TEM, FT-IR and PL analysis as shown in Fig. S6. The rate constant obtained for reaction

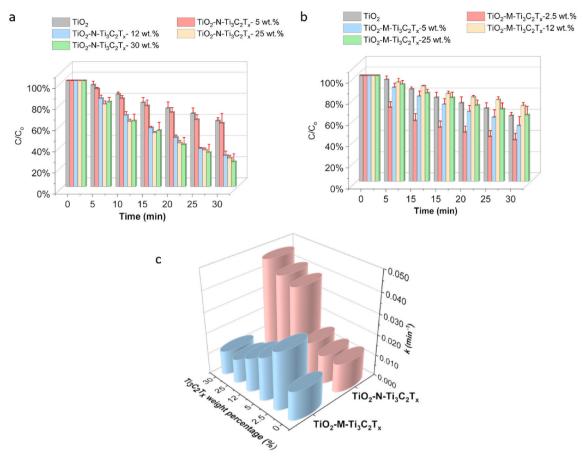
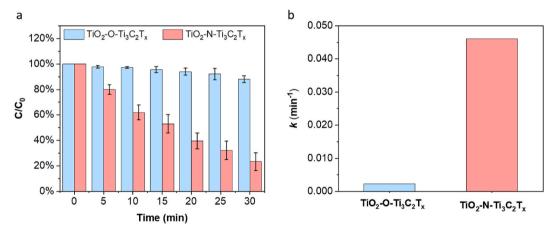



Fig. 6. Photocatalytic degradation of MB using TiO_2 –N– $Ti_3C_2T_x$ (a) and TiO_2 -M- $Ti_3C_2T_x$ (b) as a function of the amount of $Ti_3C_2T_x$ in the hybrids. Rate constant for MB photodegradation using TiO_2 -N– $Ti_3C_2T_x$ and TiO_2 -M- $Ti_3C_2T_x$ as a function of amount of $Ti_3C_2T_x$ (c). TiO_2 coupled with 2.5 wt% N– $Ti_3C_2T_x$ and 30 wt% M- $Ti_3C_2T_x$ are not included in (a) and (b) as their performance is similar to pristine TiO_2 .

 $\label{eq:constant} \textbf{Fig. 7.} \ \ Photocatalytic degradation of MB using } \ \ TiO_2-O-Ti_3C_2T_x \ \ and \ \ TiO_2-N-Ti_3C_2T_x \ \ (a). \ \ Rate \ \ constant \ \ for \ \ MB \ \ photodegradation \ \ by \ \ TiO_2-O-Ti_3C_2T_x \ \ and \ \ TiO_2-N-Ti_3C_2T_x \ \ (b).$

over TiO_2 –N– $Ti_3C_2T_x$ is 20 times higher than that of TiO_2 –O– $Ti_3C_2T_x$ ($k=0.002~\text{min}^{-1}$). Furthermore, TiO_2 –N– $Ti_3C_2T_x$ exhibited good stability in four consecutive MB degradation experiments (Fig. S7).

Direct comparison of the activity of TiO_2 –N– $Ti_3C_2T_x$ with other state-of-the-art photocatalysts in the literature can be misleading without a good understanding of the photocatalytic reaction conditions. Therefore, for meaningful comparison with our work, photocatalyst concentration, light wavelength, MB concentration and MB removal percentage from recent seminal studies are summarized in Table S1. It is clear that

 TiO_2 –N– $Ti_3C_2T_x$ exhibits superior performance to other state-of-the-art photocatalysts especially at relatively low catalyst amount.

To rationalize the superior photocatalytic performance of $TiO_2-N-Ti_3C_2T_x$, we probed the PL emissions of TiO_2 , $TiO_2-M-Ti_3C_2T_x$ and $TiO_2-N-Ti_3C_2T_x$. Fig. 8a shows the quenching in PL intensity after the addition of $Ti_3C_2T_x$, in which $TiO_2-N-Ti_3C_2T_x$ shows the lowest intensity. Since PL emissions are generated from free carrier recombination, a lower PL intensity indicates higher electron-hole separation [60]. The PL intensities reveal decreased electron-hole recombination was

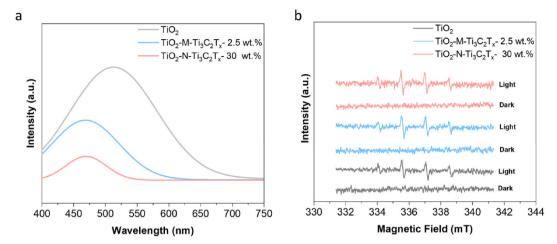
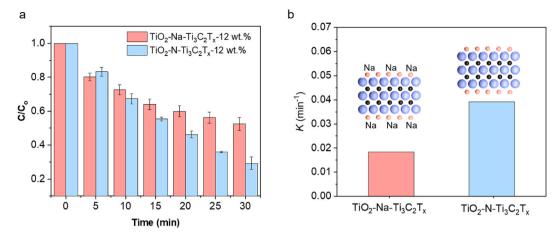
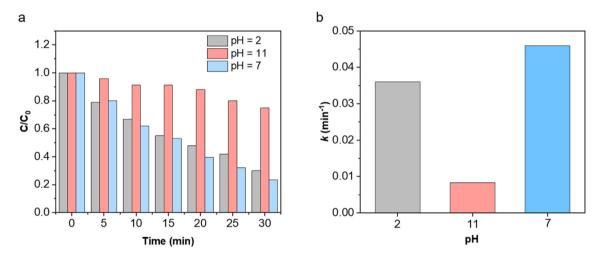


Fig. 8. PL spectra of TiO_2 , TiO_2 -M- $Ti_3C_2T_x$, and TiO_2 -N- $Ti_3C_2T_x$ (a); and EPR spectra of DMPO-hydroxyl radical spin adducts produced from TiO_2 , TiO_2 -M- $Ti_3C_2T_x$ and TiO_2 -N- $Ti_3C_2T_x$ in aqueous dispersion (0.2 mg/mL) after 5 min of UV irradiation (b).

achieved in TiO_2 that is coupled with $N-Ti_3C_2T_x$, which we attribute to the intimate interfacial contact between them, as verified earlier by TEM (Fig. 5c). The generation of \bullet OH radicals on the catalyst surface, a key step in the photocatalytic degradation process, is generally attributed to the interaction between photogenerated holes and water molecules [61]. This claim is supported by our results in Fig. S8 that show poor MB degradation by $TiO_2-N-Ti_3C_2T_x$ in the presence of a hole scavenger (ethanol). To investigate the generation of \bullet OH radicals on TiO_2 and the hybrid photocatalysts, EPR with a DMPO spin trap approach was utilized. As shown in Fig. 8b, the peaks detected in EPR spectra of TiO_2 , $TiO_2-M-Ti_3C_2T_x$ and $TiO_2-N-Ti_3C_2T_x$ were negligible before light exposure.


Contrarily, after 5 min of light irradiation, the three photocatalysts show noticeable peaks which are attributed to the photogeneration of •OH radicals [2,62]. The intensity of EPR peaks detected in the presence of TiO2-N-Ti3C2Tx was greater than that of pristine TiO2 and TiO2-M--Ti₃C₂T_x; the areas under the characteristic DMPO quadruplet spectra of TiO_2 , TiO_2 -M- $Ti_3C_2T_x$ and TiO_2 -N- $Ti_3C_2T_x$ were 230, 243.5, and 260 (a. u.), respectively. Based on EPR theory, the areas calculated via double-integration are proportional to the number of spin adducts formed by •OH radicals and DMPO integrated [63], and therefore, higher values indicate higher concentration of •OH radicals on catalyst surface. The EPR analysis further confirms the effective electron-hole separation in TiO2-N-Ti3C2Tx and subsequent generation of •OH radicals on the surface. As shown earlier, the UV-Vis data reveal the high transparency of N-Ti₃C₂T_x, indicating its presence in the hybrid structure does not hinder light penetration to TiO2, which ensures excellent photon-TiO₂ interactions during photocatalytic reaction, as opposed to the thick M-Ti₃C₂T_x with relatively lower transparency.

Furthermore, it has been shown that the positively charged MB molecules can be easily adsorbed on negatively charged terminals (particularly, on oxygen-containing terminals) of Ti₃C₂T_x, leading to their subsequent removal from water [21,22]. Hence, it is reasonable to hypothesize that the abundant oxygen-containing terminals on N-Ti₃C₂T_x are also contributing to the superior degradation of MB achieved by TiO2-N-Ti3C2Tx. To test the hypothesis, we reduced the number of sites available for MB adsorption through sodium ion-intercalation. It has been shown that upon dispersion of Ti₃C₂T_x in NaOH aqueous solution, the negatively charged groups on the surface are compensated by Na⁺ [64]. The attachment to the negatively charged functional groups, which occurs most likely via ionic bonds, should reduce the available sites for MB adsorption and as a result hamper the non-photocatalytic route for MB removal. N-Ti₃C₂T_x with Na⁺, designated as Na-Ti₃C₂T_x was obtained after treatment with NaOH. The presence of Na⁺ on MXene surface was confirmed by XPS as shown in the high-resolution scan in Fig. S9, where a peak at 1072 eV, attributed to Na+, is detected [65]. Na-Ti₃C₂T_x was then coupled with TiO₂ to produce a hybrid structure (designated as TiO₂-Na-Ti₃C₂T_x), which was also used in photocatalytic removal of MB. Results in Fig. 9a and b show MB removal by TiO2-Na-Ti3C2Tx is lower than that achieved by TiO₂-N-Ti₃C₂T_x. The reduction in catalyst activity upon using Na-Ti₃C₂T_x as a cocatalyst instead of N-Ti₃C₂T_x is attributed to the decrease of sites available for MB adsorption and subsequent decrease in the removal rate of MB by the non-photocatalytic route. It is important to highlight the following: (1) treating MXene with NaOH does not compromise its ability to separate the photogenerated charges [4]; (2) although adsorption of MB on Na-Ti₃C₂T_x can still occur via ion exchange between MB and Na⁺, previous investigations showed that the attachment of adsorbates on functional terminals of MXene is dominated by electrostatic attraction and hydrogen bonds [21,22,66]. We therefore conclude that the high photon-TiO2 interaction and MB adsorption, as well as the reduced electron-hole recombination are responsible for the superior photocatalytic activity of TiO2-N-Ti3C2Tx.


For liquid-phase reactions, pH of solution is an important factor that should be considered as it impacts both the surface charge of photocatalysts and the generation of •OH radicals. Hence, we conducted the degradation of MB in acidic and basic solutions using TiO2-N-Ti3C2Tx photocatalyst (Fig. 10a and b). In basic solution (pH = 11), the photocatalytic activity is significantly lower than that achieved at neutral environment (pH = 7). In the basic solution, the generation of \bullet OH radicals is suppressed due to deprotonation of photocatalytic reaction intermediate on TiO₂ [67], and hence, the degradation rate of MB decreases. In addition, it has been suggested that increasing the basicity of the solution (i.e. pH > 8) favors electron-hole recombination on catalyst surface [68], which could be another reason for the observed reduction in the photocatalytic activity. In contrast, at pH = 2, the photocatalytic removal rate of MB decreased slightly compared to that at pH = 7. Since previous investigations imply that increasing the acidity of solution has no influence on the generation of ROS [68,69], this slight reduction in photocatalytic activity is attributed to the reduction in MB adsorption on N-Ti₃C₂T_x. In acidic solution, the negative zeta potential of N-Ti₃C₂T_x decreases, and in turn, decreases the electrostatic attraction between the cationic MB and N-Ti₃C₂T_x surface [70], inhibiting the adsorption of MB on the catalyst surface and subsequent MB removal via the non-photocatalytic route.

3.4. Photocatalytic activity of $TiO_2-N-Ti_3C_2T_x$ and $TiO_2-M-Ti_3C_2T_x$ in gas phase

To demonstrate the versatility of $N-Ti_3C_2T_x$ as a cocatalyst in

 $\textbf{Fig. 9.} \ \ Photocatalytic \ degradation \ of \ MB \ using \ TiO_2-Na-Ti_3C_2T_x \ and \ TiO_2-N-Ti_3C_2T_x \ (a). \ Rate \ constant \ for \ MB \ photodegradation \ by \ TiO_2-Na-Ti_3C_2T_x \ and \ TiO_2-N-Ti_3C_2T_x \ (b).$

 $\textbf{Fig. 10.} \ \ Photocatalytic \ degradation \ of \ MB \ (a) \ and \ the \ rate \ constant \ for \ MB \ photodegradation \ (b) \ by \ TiO_2-N-Ti_3C_2T_x \ at \ different \ pH.$

photocatalytic applications, we coupled N–Ti $_3$ C $_2$ T $_x$ with TiO $_2$ and the resulting hybrid was used in the photocatalytic degradation of NO $_x$. The activity of TiO $_2$ –N–Ti $_3$ C $_2$ T $_x$ was evaluated by NO conversion and NO $_x$ storage selectivity (Fig. 11a) and DeNOx index (Fig. 11b) and compared to pristine TiO $_2$ and TiO $_2$ -M-Ti $_3$ C $_2$ T $_x$. TiO $_2$ exhibited reasonable NO conversion (53%), but produced massive amount of NO $_2$ with low NO $_x$ storage selectivity (58%) and a negative DeNO $_x$ index (–0.101), in

agreement with previous reports [71–73]. In other words, TiO_2 oxidizes NO to NO_2 but fails to further oxidize NO_2 to other less toxic compounds such as nitrate and nitrite. Due to the high amount of NO_2 produced by TiO_2 and the higher toxicity of NO_2 than NO, it is apparent that TiO_2 is an ineffective photocatalyst for NO_x abatement. NO_x storage selectivity and $DeNO_x$ index achieved by TiO_2 -M- $Ti_3C_2T_x$ were 62 and -0.055, respectively, indicating the inadequacy of utilizing TiO_2 -M- $Ti_3C_2T_x$ in

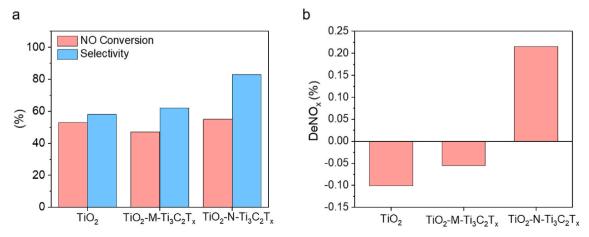


Fig. 11. NO conversion and NO_x storage selectivity (a) and DeNO_x index (b) for TiO₂, TiO₂-M-Ti₃C₂T_x, and TiO₂-N-Ti₃C₂T_x.

photocatalytic NO_x oxidation. In contrast, $TiO_2-N-Ti_3C_2T_x$ exhibited high NO_x abatement performance, with very high NO_x storage selectivity (85%) and a positive $DeNO_x$ index (0.215) while maintaining the same NO conversion (55%). The high photocatalytic NO_x removal achieved by $TiO_2-N-Ti_3C_2T_x$ is attributed to the high photon- TiO_2 interaction and the reduced electron-hole recombination in $TiO_2-N-Ti_3C_2T_x$. It is noteworthy that recent studies dealing with gas sensor fabrication suggested that NO_x adsorbs effectively on oxygen-contain groups of MXene, where it can be stored in the form of other less toxic compounds (i.e. nitrite) [74,75]. Hence, it is reasonable to hypothesize that the abundant oxygen-containing groups available on $N-Ti_3C_2T_x$ provide adoption sites for NO_x in $TiO_2-N-Ti_3C_2T_x$, enabling the removal of NO_x through a non-photocatalytic route as well.

3.5. Charge carrier dynamics and photocatalytic activity of TiO_2 –N– $Ti_3C_2T_x$ and TiO_2 -M- $Ti_3C_2T_x$

A schematic illustrations of charge carrier dynamics in $TiO_2-N-Ti_3C_2T_x$ and $TiO_2-M-Ti_3C_2T_x$ and subsequent removal of MB and NO_x are illustrated in Fig. 12a and b. It is well known the conduction band (CB) and valence band (VB) of TiO_2 are located at -0.29 and 2.91 eV (vs. normal hydrogen electrode), respectively. For Ti_3AlC_2 , the valance state which is located below the Fermi level (E_F) is split into two sub-bands: (1) Ti 3d-Al 3p orbital close to the E_F (Band I) and (2) the hybridized Ti 3d-Al 3s and Ti 3d-C 2p orbitals (Band II). After Al etching from Ti_3AlC_2 and the formation of $Ti_3C_2T_x$, Band II is dominated by Ti 3d and C 2p, and linked to Band I. Therefore, the weaker Ti-O coupling in energy state II results in the metallic phase of $Ti_3C_2T_x$ [2].

 $Ti_3C_2T_x$ has a E_F of -0.04 eV with high density of free carriers (8 \pm 3 \times $10^{21}~cm^{-3})$ and electrical conductivity (4600 \pm 1100 S cm $^{-1}$). Consequently, the energy level of CB of TiO_2 is more negative than the Fermi level of $Ti_3C_2T_x$, making it possible for photoexcited electrons to travel from CB of TiO_2 to $Ti_3C_2T_x$, leaving holes in VB. In contrast to $TiO_2\text{-M-}Ti_3C_2T_x$, the concentration of electron-hole pairs is high in $TiO_2\text{-N-}Ti_3C_2T_x$ due to the high transparency of N–Ti $_3C_2T_x$ and the

intimate interfacial contact between TiO_2 and $N-Ti_3C_2T_x$. Electrons and holes react with oxygen and water molecules, respectively, to form $\bullet OH$ radicals (most active ROS in MB and NO_x degradation) and \bullet O_2^- radicals that are also capable of degrading MB and NO_x pollutants. This phenomenon is robust in $TiO_2-N-Ti_3C_2T_x$ due to the intimate interfacial contact between TiO_2 and $N-Ti_3C_2T_x$. Also, the abundant oxygencontaining terminals on $N-Ti_3C_2T_x$ in $TiO_2-N-Ti_3C_2T_x$ can act as adsorption sites to facilitate the non-photocatalytic removal of MB and NO_x .

4. Conclusions

We have successfully fabricated N-Ti₃C₂T_x with high transparency and abundant = O and -OH terminals using TPAOH as an exfoliating and fluorine-reducing agent. Coupling TiO2 and N-Ti3C2Tx results in a hybrid catalyst with unique morphology and surface chemistry, as well as outstanding photocatalytic activity in liquid and gas phases. The photocatalytic performances achieved by TiO_2 –N– $Ti_3C_2T_x$ in liquid phase and gas phase reactions are superior to those of other well-known TiO₂-Ti₃C₂T_x hybrids. Results show that due to the small size and high transparency of N-Ti₃C₂T_x, it exhibits intimate interfacial contact with TiO₂ that enables effective electron-hole separation without interrupting photon flux to TiO2. In addition, the unique surface chemistry of N-Ti₃C₂T_x facilitates efficient pollutant adsorption. Our findings show that N-Ti₃C₂T_x is a promising and high-performance cocatalyst with TiO_2 . Therefore, the utilization of $N-Ti_3C_2T_x$ as an alternative cocatalyst to conventional Ti₃C₂T_x would enable the outstanding properties of MXenes to be fully exploited in photocatalysis.

CRediT authorship contribution statement

Ahmed Al Mayyahi: Methodology, Investigation, Data curation, Formal analysis, Writing – original draft. Swagotom Sarker: Methodology, Supervision, Writing – review & editing. Brian M. Everhart: Resources. Bade Tonyali: Investigation. Umut Yucel: Investigation.

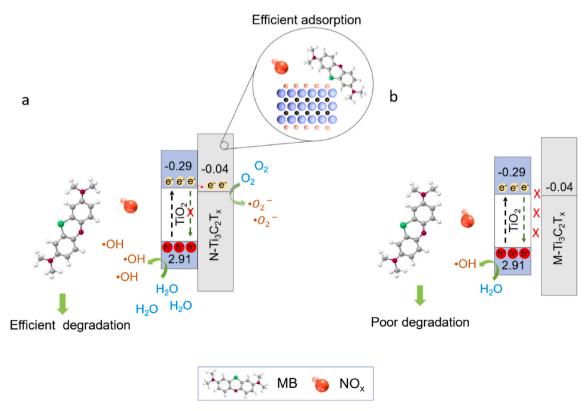


Fig. 12. Schematic illustration of charge carrier dynamics and removal of MB and NO_x on TiO₂-N-Ti₃C₂T_x (a) and TiO₂-M-Ti₃C₂T_x (b) hybrid photocatalysts.

Placidus Amama: Supervision, Conceptualization, Formal analysis, Resources, Funding acquisition, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This study was supported by the National Science Foundation under the NSF CAREER program (Grant No. 1653527).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpcs.2022.110875.

References

- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti₃AlC₂, Adv. Mater. 23 (2011) 4248–4253.
- [2] H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng, W. Tu, S. Wu, H.Y. Lee, Y.Z. Tan, J. W. Chew, Formation of quasi-core-shell In₂S₃/anatase TiO₂@metallic Ti₃C₂T_x hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance, Appl. Catal. B Environ. 233 (2018) 213–225.
- [3] T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu, S. Luo, Ag₃PO₄/Ti₃C₂ MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance, Appl. Catal. B Environ. 239 (2018) 545–554.
- [4] M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst, ChemSusChem 11 (2018) 1606–1611.
- [5] N. My Tran, Q. Thanh Hoai Ta, A. Sreedhar, J.-S. Noh, Ti₃C₂T_x MXene playing as a strong methylene blue adsorbent in wastewater, Appl. Surf. Sci. 537 (2021), 148006
- [6] Z. Li, H. Zhang, L. Wang, X. Meng, J. Shi, C. Qi, Z. Zhang, L. Feng, C. Li, 2D/2D BiOBr/Ti₃C₂ heterojunction with dual applications in both water detoxification and water splitting, J. Photochem. Photobiol. Chem. 386 (2020), 112099.
- [7] Y. Wang, X. Wang, Y. Ji, R. Bian, J. Li, X. Zhang, J. Tian, Q. Yang, F. Shi, Ti₃C₂ MXene coupled with CdS nanoflowers as 2D/3D heterostructures for enhanced photocatalytic hydrogen production activity, Int. J. Hydrogen Energy 47 (52) (2022) 22045–22053.
- [8] C. Zhao, X. Yang, C. Han, J. Xu, Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag₃PO₄/MXene hybrids, Solar RRL 4 (2020), 1900434.
- [9] C. Hao, Y. Liao, Y. Wu, Y. An, J. Lin, Z. Gu, M. Jiang, S. Hu, X. Wang, RuO₂-loaded TiO₂–MXene as a high performance photocatalyst for nitrogen fixation, J. Phys. Chem. Solid. 136 (2020), 109141.
- [10] C. Sun, Z. Chen, J. Cui, K. Li, H. Qu, H. Xie, Q. Zhong, Site-exposed Ti₃C₂ MXene anchored in N-defect g-C₃N₄ heterostructure nanosheets for efficient photocatalytic N2 fixation, Catal. Sci. Technol. 11 (2021) 1027–1038.
- [11] I.A. Alsafari, S. Munir, S. Zulfiqar, M.S. Saif, M.F. Warsi, M. Shahid, Synthesis, characterization, photocatalytic and antibacterial properties of copper Ferrite/ MXene (CuFe₂O₄/Ti₃C₂) nanohybrids, Ceram. Int. 47 (2021) 28874–28883.
- [12] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Ti₃C₂ MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8 (2017), 13907.
- [13] C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity, ACS Appl. Mater. Interfaces 8 (2016) 6051–6060.
- [14] W. Yuan, L. Cheng, Y. Zhang, H. Wu, S. Lv, L. Chai, X. Guo, L. Zheng, 2D-Layered carbon/TiO₂ hybrids derived from Ti₃C₂ MXenes for photocatalytic hydrogen evolution under visible light irradiation, Adv. Mater. Interfac. 4 (2017), 1700577.
- [15] A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K. A. Mahmoud, D.S. Lee, Heterostructural TiO₂/Ti₃C₂Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine, Chem. Eng. J. 349 (2018) 748–755.
- [16] S. Sukidpaneenid, C. Chawengkijwanich, C. Pokhum, T. Isobe, P. Opaprakasit, P. Sreearunothai, Multi-function adsorbent-photocatalyst MXene-TiO₂ composites for removal of enrofloxacin antibiotic from water, J. Environ. Sci. 124 (2023) 414–428.

- [17] N. My Tran, Q. Thanh Hoai Ta, J.-S. Noh, Unusual synthesis of safflower-shaped TiO₂/Ti₃C₂ heterostructures initiated from two-dimensional Ti₃C₂ MXene, Appl. Surf. Sci. 538 (2021), 148023.
- [18] J. Chen, H. Zheng, Y. Zhao, M. Que, X. Lei, K. Zhang, Y. Luo, Preparation of facet exposed TiO₂/Ti₃C₂T_x composites with enhanced photocatalytic activity, J. Phys. Chem. Solid. 145 (2020), 109565.
- [19] K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti₃C₂T_x MXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mater. 2 (2016), 1600050.
- [20] J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.-Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive twodimensional titanium carbide epitaxial thin films, Chem. Mater. 26 (2014) 2374–2381.
- [21] P. Zhang, M. Xiang, H. Liu, C. Yang, S. Deng, Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: insight into removal performance and mechanism, ACS Appl. Mater. Interfaces 11 (2019) 24027–24036.
- [22] H. Lei, Z. Hao, K. Chen, Y. Chen, J. Zhang, Z. Hu, Y. Song, P. Rao, Q. Huang, Insight into adsorption performance and mechanism on efficient removal of methylene blue by accordion-like V₂CT_x MXene, J. Phys. Chem. Lett. 11 (2020) 4253–4260.
- [23] Q. Zhang, J. He, X. Fu, S. Xie, R. Fan, H. Lai, W. Cheng, P. Ji, J. Sheng, Q. Liao, W. Zhu, H. Li, Fluorine-free strategy for hydroxylated Ti₃C₂/Ti₃AlC₂ catalysts with enhanced aerobic oxidative desulfurization and mechanism, Chem. Eng. J. 430 (2022), 132950.
- [24] A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May, Y. Gogotsi, M.W. Barsoum, A.T. Fafarman, Highly conductive optical quality solution-processed films of 2D titanium carbide, Adv. Funct. Mater. 26 (2016) 4162–4168.
- [25] H.-i. Kim, G.-h. Moon, D. Monllor-Satoca, Y. Park, W. Choi, Solar photoconversion using graphene/TiO₂ composites: nanographene shell on TiO₂ core versus TiO₂ nanoparticles on graphene sheet, J. Phys. Chem. C 116 (2012) 1535–1543.
- [26] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature 516 (2014) 78–81.
- [27] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti₃C₂T_x MXene), Chem. Mater. 29 (2017) 7633–7644.
- [28] J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO₂ nanoparticles wrapped by graphene, Adv. Mater. 24 (2012) 1084–1088.
- [29] E. Ramos-Moore, P. Ferrari, D.E. Diaz-Droguett, D. Lederman, J.T. Evans, Raman and x-ray photoelectron spectroscopy study of ferroelectric switching in Pb(Nb,Zr, Ti)O₃ thin films, J. Appl. Phys. 111 (2012), 014108.
- [30] A.A. Mayyahi, S. Sarker, B.M. Everhart, X. He, P.B. Amama, One-step fluorine-free synthesis of delaminated, OH-terminated Ti₃C₂: high photocatalytic NO_x storage selectivity enabled by coupling TiO₂ and Ti₃C₂-OH, Mater. Today Commun. (2022), 103835.
- [31] B.M. Everhart, B. McAuley, A. Al Mayyahi, B. Tonyali, U. Yucel, P.B. Amama, Photocatalytic NO_x mitigation under relevant conditions using carbon nanotubemodified titania, Chem. Eng. J. 446 (2022), 136984.
- [32] M.J. Friedrich, Air pollution is greatest environmental threat to health, JAMA 319 (2018) 1085.
- [33] T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo, T. Qiu, J. Yang, Synthesis of twodimensional Ti₃C₂T_x MXene using HCl+LiF etchant: enhanced exfoliation and delamination, J. Alloys Compd. 695 (2017) 818–826.
- [34] Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes, Nature 557 (2018) 409–412.
- [35] P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, X. Zhang, Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte, J. Power Sources 284 (2015) 38–43.
- [36] C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 15661–15667.
- [37] C. Peng, P. Wei, X. Chen, Y. Zhang, F. Zhu, Y. Cao, H. Wang, H. Yu, F. Peng, A hydrothermal etching route to synthesis of 2D MXene (Ti₃C₂, Nb₂C): enhanced exfoliation and improved adsorption performance, Ceram. Int. 44 (2018) 18886–18893
- [38] H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang, X. Zhang, Q. Jiang, Enhancement of the electrical properties of MXene $\mathrm{Ti}_3\mathrm{C}_2$ nanosheets by post-treatments of alkalization and calcination, Mater. Lett. 160 (2015) 537–540.
- [39] S. Nam, S. Umrao, S. Oh, K.H. Shin, H.S. Park, I.-K. Oh, Sonochemical self-growth of functionalized titanium carbide nanorods on Ti₃C₂ nanosheets for high capacity anode for lithium-ion batteries, Compos. B Eng. 181 (2020), 107583.
- [40] M. Naguib, O. Mashtalir, M.R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, M.W. Barsoum, One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes, Chem. Commun. 50 (2014) 7420–7423.
- [41] D.B. Lioi, G. Neher, J.E. Heckler, T. Back, F. Mehmood, D. Nepal, R. Pachter, R. Vaia, W.J. Kennedy, Electron-withdrawing effect of native terminal groups on the lattice structure of Ti₃C₂T_x MXenes studied by resonance Raman scattering: implications for embedding MXenes in electronic composites, ACS Appl. Nano Mater. 2 (2019) 6087–6091.
- [42] A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti₃C₂T_x MXene, Chem. Mater. 32 (2020) 3480–3488.
- [43] R. Liu, W. Li, High-thermal-stability and high-thermal-conductivity Ti₃C₂T_x MXene/poly(vinyl alcohol) (PVA) composites, ACS Omega 3 (2018) 2609–2617.

- [44] T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, X. Wang, Vibrational properties of Ti_3C_2 and $Ti_3C_2T_2$ (T = O, F, OH) monosheets by first-principles calculations: a comparative study, Phys. Chem. Chem. Phys. 17 (2015) 9997–10003.
- [45] A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan, H. Minassian, M. Yoshimura, Y. Gogotsi, Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate, J. Phys. Chem. C 121 (2017) 19983–19988.
- [46] S.A. Shah, T. Habib, H. Gao, P. Gao, W. Sun, M.J. Green, M. Radovic, Template-free 3D titanium carbide (Ti₃C₂T_x) MXene particles crumpled by capillary forces, Chem. Commun. 53 (2017) 400–403.
- [47] Y. He, L. Wang, X. Wang, C. Shen, Q. Hu, A. Zhou, X. Liu, Surface reformation of 2D MXene by in situ LaF₃-decorated and enhancement of energy storage in lithium-ion batteries, J. Mater. Sci. Mater. Electron. 31 (2020) 6735–6743.
- [48] J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, M.W. Barsoum, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci. 362 (2016) 406–417.
- [49] J. Halim, I. Persson, E.J. Moon, P. Kühne, V. Darakchieva, P.O.Å. Persson, P. Eklund, J. Rosen, M.W. Barsoum, Electronic and optical characterization of 2D Ti₂C and Nb₂C (MXene) thin films, J. Phys. Condens. Matter 31 (2019), 165301.
- [50] H.-W. Tien, Y.-L. Huang, S.-Y. Yang, J.-Y. Wang, C.-C.M. Ma, The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films, Carbon 49 (2011) 1550–1560.
- [51] G. Zorn, L.-H. Liu, L. Árnadóttir, H. Wang, L.J. Gamble, D.G. Castner, M. Yan, X-Ray photoelectron spectroscopy investigation of the nitrogen species in photoactive perfluorophenylazide-modified surfaces, J. Phys. Chem. C 118 (2014) 376–383
- [52] G. Liu, C. Han, M. Pelaez, D. Zhu, S. Liao, V. Likodimos, N. Ioannidis, A.G. Kontos, P. Falaras, P.S.M. Dunlop, J.A. Byrne, D.D. Dionysiou, Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO₂ nanoparticles, Nanotechnology 23 (2012), 294003.
- [53] V. Schier, H.J. Michel, J. Halbritter, ARXPS-analysis of sputtered TiC, SiC and Ti_{0.5}Si_{0.5}C layers, Fresen. J. Anal. Chem. 346 (1993) 227–232.
- [54] Y. Huang, D. Chen, X. Hu, Y. Qian, D. Li, Preparation of TiO₂/carbon nanotubes/ reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of rhodamine B, Nanomaterials 8 (2018).
- [55] Y. Li, Z. Wang, X.-J. Lv, N-doped TiO₂ nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery, J. Mater. Chem. 2 (2014) 15473–15479.
- [56] A. Al Mayyahi, B.M. Everhart, T.B. Shrestha, T.C. Back, P.B. Amama, Enhanced charge separation in TiO₂/nanocarbon hybrid photocatalysts through coupling with short carbon nanotubes, RSC Adv. 11 (2021) 11702–11713.
- [57] M. Cao, F. Wang, L. Wang, W. Wu, W. Lv, J. Zhu, Room temperature oxidation of Ti₃C₂MXene for supercapacitor electrodes, J. Electrochem. Soc. 164 (2017) A3933–A3942.
- [58] H. Liu, S. Liu, Z. Zhang, X. Dong, T. Liu, Hydrothermal etching fabrication of TiO₂@graphene hollow structures: mutually independent exposed {001} and {101} facets nanocrystals and its synergistic photocaltalytic effects, Sci. Rep. 6 (2016). 33839.
- [59] B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu, Y. Wang, Highly dispersive {001} facets-exposed nanocrystalline TiO₂ on high quality

- graphene as a high performance photocatalyst, J. Mater. Chem. 22 (2012) 7484–7491
- [60] S.P. Lim, A. Pandikumar, H.N. Lim, R. Ramaraj, N.M. Huang, Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N,S-Co-Doped-TiO₂ photoanode, Sci. Rep. 5 (2015), 11922.
- [61] Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (•OH) generation processes in photocatalysis, ACS Energy Lett. 1 (2016) 356–359.
- [62] H. Huang, Y. Song, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, One-step in-situ preparation of N-doped TiO₂@C derived from Ti₃C₂ MXene for enhanced visiblelight driven photodegradation, Appl. Catal. B Environ. 251 (2019) 154–161.
- [63] X. Wang, Z. Xu, M. Rommel, B. Dong, L. Song, C.A.T.H. Tee, F. Fang, Electron paramagnetic resonance characterization of aluminum ion implantation-induced defects in 4H-SiC, Nanotechnol. Precis. Eng. 2 (2019) 157–162.
- [64] V. Natu, R. Pai, O. Wilson, E. Gadasu, H. Badr, A. Karmakar, A.J.D. Magenau, V. Kalra, M.W. Barsoum, Effect of base/nucleophile treatment on interlayer ion intercalation, surface terminations, and osmotic swelling of Ti₃C₂T_z MXene multilayers, Chem. Mater. 34 (2) (2022) 678–693.
- [65] M. Kalapsazova, R. Stoyanova, E. Zhecheva, G. Tyuliev, D. Nihtianova, Sodium deficient nickel–manganese oxides as intercalation electrodes in lithium ion batteries, J. Mater. Chem. 2 (2014) 19383–19395.
- [66] B.-M. Jun, S. Kim, H. Rho, C.M. Park, Y. Yoon, Ultrasound-assisted Ti₃C₂T_x MXene adsorption of dyes: removal performance and mechanism analyses via dynamic light scattering, Chemosphere 254 (2020), 126827.
- [67] Y. Nakabayashi, Y. Nosaka, The pH dependence of OH radical formation in photoelectrochemical water oxidation with rutile TiO₂ single crystals, Phys. Chem. Chem. Phys. 17 (2015) 30570–30576.
- [68] F. Wu, W. Liu, J. Qiu, J. Li, W. Zhou, Y. Fang, S. Zhang, X. Li, Enhanced photocatalytic degradation and adsorption of methylene blue via TiO₂ nanocrystals supported on graphene-like bamboo charcoal, Appl. Surf. Sci. 358 (2015) 425–435.
- [69] S. Wardiayati, S.H. Dewi, Influence of Fe₃O₄ addition in TiO₂ catalyst on the degradation process of methylene blue, J. Phys. Conf. 1091 (2018), 012015.
- [70] L. Zhang, D. Huang, P. Zhao, G. Yue, L. Yang, W. Dan, Highly efficient methylene blue removal by TMAOH delaminated Ti₃C₂T_x MXene suspension and the mechanistic aspect, Separ. Purif. Technol. 288 (2022), 120718.
- [71] M. Balci Leinen, D. Dede, M.U. Khan, M. Çağlayan, Y. Koçak, H.V. Demir, E. Ozensoy, CdTe quantum dot-functionalized P25 titania composite with enhanced photocatalytic NO₂ storage selectivity under UV and vis irradiation, ACS Appl. Mater. Interfaces 11 (2019) 865–879.
- [72] M. Çağlayan, M. Irfan, K.E. Ercan, Y. Kocak, E. Ozensoy, Enhancement of photocatalytic NO_x abatement on titania via additional metal oxide NO_x-storage domains: interplay between surface acidity, specific surface area, and humidity, Appl. Catal. B Environ. 263 (2020), 118227.
- [73] L. Yang, A. Hakki, F. Wang, D.E. Macphee, Different roles of water in photocatalytic DeNO_x mechanisms on TiO₂: basis for engineering nitrate selectivity? ACS Appl. Mater. Interfaces 9 (2017) 17034–17041.
- [74] S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti₃C₂T_x MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano 12 (2018) 986–993.
- [75] Y. Zhang, Y. Jiang, Z. Duan, Q. Huang, Y. Wu, B. Liu, Q. Zhao, S. Wang, Z. Yuan, H. Tai, Highly sensitive and selective NO₂ sensor of alkalized V₂CT_x MXene driven by interlayer swelling, Sensor. Actuator. B Chem. 344 (2021), 130150.