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Microbial necromass response
to soil warming: A meta-analysis

Megan F. Mitchell 1,2, Meghan Graham MacLean3

and Kristen M. DeAngelis2*

1Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts,
Amherst, MA, United States, 2Department of Microbiology, University of Massachusetts, Amherst,
MA, United States, 3Department of Environmental Conservation, University of Massachusetts,
Amherst, MA, United States
Microbial-derived soil organic matter (SOM), or necromass, is an important

source of SOM and is sensitive to climate warming. Soil classification systems

consider soil physicochemical properties that influence SOM, hinting at the

potential utility of incorporating classification systems in soil carbon (C)

projections. Currently, there is no consensus on climate warming effects on

necromass and if these responses vary across reference soil groups. To

estimate the vulnerability of necromass to climate warming, we performed a

meta-analysis of publications examining in situ experimental soil warming

effects on microbial necromass via amino sugar analysis. We built

generalized linear models (GLM) to explore if soil groups and warming

methodologies can be used to predict necromass stocks. Our results

showed that warming effect sizes on necromass were not uniform across

reference soil groups. Specifically, warming effect sizes were generally positive

in permafrost soils but negative in calcic soils. However, warming did not

significantly change average necromass. Our GLMs detected significant

differences in necromass across soil groups with similar texture and clay

percentage. Thus, we advocate for further research to define what predictors

of necromass are captured in soil group but not in soil texture. We also show

warming methodology is a significant predictor of necromass, depending on

the necromass biomarker. Future research efforts should uncover the

mechanistic reason behind how passive versus active warming methodology

influences necromass responses. Our study highlights the need for more in situ

soil warming experiments measuring microbial necromass as this will improve

predictions of SOM feedback under future climate scenarios.
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1 Introduction

Climate warming will affect microbial-mediated soil organic

matter (SOM) dynamics, but predicting the magnitude and

direction of these effects is a major challenge in climate

forecasting (1, 2);. Soils contain more carbon (C) in SOM than

C contained in both the atmosphere and vegetation combined (3,

4). Empirical and theoretical data showcase a multitude of

plausible climate change scenarios: soil C feedback can exhibit

multi-phase microbial responses (5), and is influenced by

microbial physiology (6), C use efficiency (7), thermal

adaptations (8, 9);, depletion of labile C stocks (10, 11);,

community structure changes (12), and evolutionary

adaptations (13, 14);. Understanding SOM dynamics in a

warming world is critical for climate change mitigation strategies.

Microbes influence SOM in both life and death, though

much more is understood about living microbes than is known

about dead microbes, or necromass (15). Living microbes

decompose SOM, including necromass, and sequester C as

biomass (15, 16);. When microbes die, their necromass may be

recycled as a source of nutrients by other microbes or become

stabilized as SOM in the soil matrix (16). Many methods are

used to measure microbial necromass (16), but the most

common method is measuring soil amino sugars as a

necromass biomarker (16–18);. Amino sugars are components

of microbial cell walls, and include glucosamine (abundant in

fungi), muramic acid (exclusive to bacteria), galactosamine, and

mannosamine (16–18). Newly deposited SOM is the most

vulnerable to decomposition and loss (19), meaning that

understanding the fate of necromass in a warming world may

help to predict longer-term soil C stocks and their stability.

Soil warming experiments are used as a way of approximating

the future effects of climate change on terrestrial ecosystems.

These studies show that warming initially stimulates SOM

decomposition but that this feedback weakens with duration of

warming (5, 20). Defining the warming effects on microbial

biomass turnover may help to elucidate the mechanistic reason

for this attenuation of warming effects over time. Meta-analyses

have shown that warming effect sizes onmicrobial biomass and/or

abundance can be positive (21, 22); or negative (23, 24); and vary

across ecosystems (22, 23, 25, 26) and soil type (23). For instance,

warming effects on microbial abundance were positive in histosol

soils (23), which are dominated by organic material, but negative

in podzols (23), which are sandy acidic soils rich in metal oxides.

A recent study measuring soil amino sugars indicated

necromass can account for up to 60% of C in SOM (27), but

this can vary across biomes, latitude, and bedrock (27–29). Since

multiple soil types can be present in a given geographic area,

unique microbe-SOM interactions are not always captured at

latitudinal or ecosystem scales. Two clear examples of this are a

review that showed SOM formation and stability is soil-specific
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(30) and empirical findings of pedogenic-specific distribution

patterns in bacterial communities (31). It follows that microbial-

derived SOM formation and stabilization may also exhibit soil

specific trends. Soil-specificity can be explored by utilizing soil

classification systems such as the World Reference Base for Soil

Resources (WRB) and USDA Soil Taxonomy. These systems

characterize soils as groups (WRB) or orders (USDA) based on

soil attributes. Accordingly, their inclusion in soil C models and

climate change mitigation strategies is warranted (30, 32).

However, more research is needed to forecast SOM dynamics

in soil groups that are poorly represented in the literature (30).

Because SOM, microbial communities, and warming effects

on microbial abundance can vary with soil type (23, 30, 31) we

wanted to explore whether warming effects on necromass vary

by soil type. SOM is a commonly used index for soil health but

there is no consensus on how climate warming will affect

microbial necromass dynamics (16, 33);. Studies indicate soil

warming can increase (34–37), decrease (38–43), or not

significantly change (44) (33); microbial necromass. The

question remains whether climate warming will lead to the

destabilization of microbial necromass, and if so, can we

predict this feedback?

To better understand how warming will impact microbial-

derived SOM, we conducted a cross-soils meta-analysis on

publications examining warming effects on microbial

necromass. We used the PRISMA method to discover all soil

warming experiment papers that measure necromass stocks in

response to warming (45). We hypothesized that 1) microbial

necromass responses to warming vary with reference soil group

and 2) that microbial necromass stocks are soil-group specific.
2 Methods

2.1 Literature survey

Using the PRISMA method, which utilizes a 27-item checklist

that ensures reviews are transparent and repeatable, we conducted

a systematic review of the literature. Then, we compiled the data

from the review into a meta-analysis to explore climate warming

effects on microbial necromass. Using these compiled data, we test

our hypotheses that 1) microbial necromass responses to warming

vary across soil groups and 2) that microbial necromass stocks are

soil-group specific. Google scholar and Web of Science were used

to acquire relevant literature. The literature search was performed

using the following keywords: soil warming * microbial

necromass, soil warming * amino sugar, soil warming *

microbial residue, soil warming * muramic acid, soil

warming * galactosamine, soil warming * glucosamine, and soil

warming * mannosamine. Our last literature search date took

place June 1st, 2022.
frontiersin.org
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2.2 Inclusion criteria

Only in situ soil warming experiments were included that also

measured microbial necromass via amino sugar analysis; amino

sugars included glucosamine (glu), galactosamine (gal), muramic

acid (mur), mannosamine (man), and total amino sugars (TAS),

which is the sum of individual amino sugars. We included

experiments that either directly warmed the soil or warmed

canopy air. We excluded incubation experiments (n = 2) that

measured necromass unless soils originated from in situ soil

warming experiments. However, we excluded any incubations

that added substrates to soil. We excluded climate gradient soil

warming experiments (n = 7) as experimental warming-induced

changes are likely to better reflect long-term processes (46). We

also excluded climate gradient experiments that utilized litterbags

(n = 2) as warming effects in litter bags may not reflect warming

effects on in situ litter layers (47) We excluded experiments that

measured necromass via branched glycerol dialkyl glycerol

tetraethers (n =1) since these biomarkers are derived mostly

from archaea (16). We excluded non-warming treatment effect

interactions in studies such as drought, root exclusion,

precipitation, CO2 enrichment, and fertilizer amendments.

Finally, we excluded soil amino sugar data measured at soil

depths greater than 50 cm because necromass content and

dynamics varies between top soils and subsoils (48, 49). At this

point, we excluded 12 publications from a total of 24 publications.

Papers that met the above criteria were only included if

authors reported both control and warmed amino sugar data as

well as warming methodology (method, duration, and

magnitude) and soil sampling depth. Soil classification had to

also be reported in the study, or if it was not, could be acquired

from a different source. For instance (39), and (40) did not

report soil type, which was determined to be an argixeroll

(mollisol) from Web Soil Survey (50).
2.3 Data acquisition

In total, we acquired 12 publications that met all our criteria

and thus, were included in this meta-analysis (Table 1).

Experiments were conducted primarily in grasslands within

two continents, Asia and North America (Supplementary

Figure S1). We extracted data from tables, Supplementary

Material, or from plots using WebPlotDigitizer (51). Data

include average measurements of amino sugars, number of

replicates, and standard deviation (SD) or standard error (SE)

for each treatment and sampling depth. If sample sizes were not

reported (n = 2), we assumed the sample size was equal to the

number of replicate warmed plots or the number of replicate

control plots. We converted SE to SD using the following

formula: SD=SE(n1/2). In situ warming methodology included

continuous warming (n = 12) or winter warming (n= 1) with

either open top chambers (n = 5) or infrared radiators (n= 7).
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Warming duration ranged from 3 to 9 years and warming

magnitude ranged from 0.1 to 4.9 degrees Celsius above

ambient soil temperatures.

Publications reported soil type using either WRB or USDA

soil taxonomy. In total, there were 9 reference soil groups and 5

types of soil textures reported by publications. Soil types

included gelisols (WRB cryosol), gelic cambisols (USDA

inceptisols), gelic arenosols (USDA entisols), argic rustic ustic

cambisols (USDA inceptisols), gleyic stagnic anthrosols (USDA

plaggen inceptisols), haplic calcisols (USDA aridisols), glacic

historthels (USDA histosols/glacic historthels), calcic

kastanozems (USDA mollisols), and an argixeroll, which is a

mollisol (WRB chernozem and kastanozems). Soils had loamy

textures, including sandy clay loam, sandy loam, clay loam,

loamy clay, and loam.

Every study but one (n = 11) reported soil amino sugars as

the average value of replicates from the respective treatment

group and/or sampling depth. Because of this, we averaged

replicate soil amino sugar data extracted from one

publication ’s Supplementary Material (34) to avoid

disproportionally influencing downstream analysis. All amino

sugar data were converted to the same units of mg amino sugar

g-1 soil. We excluded mannosamine from further analysis

because less than 20% of included papers measured and

reported this amino sugar.
2.4 Data analysis

2.4.1 Warming effect sizes on necromass
To quantify the magnitude and direction of warming effects on

necromass, we estimated effect sizes by calculating the natural

logarithm of response ratios (lnRR) between treatment

groups. Using lnRR to estimate effect sizes is a common practice

in ecological meta-analysis (52). All analysis was conducted in R

(53). We used the metafor package (54) to compute effect sizes,

which calculates lnRR using this equation: y = ln( x1x2 ), where x1

and x2 are mean values of warmed and control amino sugars,

respectively. We also calculated variance using the same package.

One study was excluded from effect size calculations (33) because

the SD or SE was not reported. Consequently, we could not

calculate warming effect sizes on necromass in histosol soils.

Using the same package (54), we then calculated pooled

effect sizes in each soil group, except for soils where only one

lnRR was available. We generated grouped forest plots of pooled

effect sizes and the 95% confidence intervals across soils for TAS,

mur, glu, and gal using the ggforestplot package (55). An lnRR of

0 indicates warming had no effect on necromass in the reference

soil group. A positive lnRR indicates that experimental warming

increased necromass in the soil group relative to controls,

whereas a negative lnRR indicates that experimental warming

decreased necromass in the soil group relative to controls. If

confidence intervals did not overlap with zero, effect sizes were
frontiersin.org
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significant. Our first hypothesis would be supported if the pooled

lnRR varies across soil groups. We tested for publication bias by

generating funnel plots of lnRR grouped by soil (54). Then, we

computed Egger’s regression test for funnel plot asymmetry

using the meta package (56).

The distribution of effect sizes grouped by biomarker (rather

than soil type and biomarker) violated normality assumptions.

Thus, we could not estimate warming’s overall effect size on total

or individual amino sugars or perform ordinary linear regression

on lnRR. We used a nonparametric test (Kruskal-Wallis) to see if

unpooled lnRR differed across soils. If significant results were

obtained, we followed up with post-hoc pairwise comparison

analysis via the Wilcoxon Rank-Sum test. In lieu of performing

ordinary linear regression on lnRRs, we built GLM’s (see

subsection “Generalized Linear Model” in methods) to

investigate if reference soil group, soil texture, soil sampling

depth, biome, warming method, warming magnitude, and

warming duration are predictors of microbial necromass.
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2.4.2 Difference in necromass between
treatment groups

Similar to lnRRs, the distribution of averaged soil amino

sugars extracted directly from publications were not normal, as

determined by the Shapiro-Wilk test of normality and visual

exploration (53). Accordingly, we used nonparametric tests for

hypothesis testing.

We tested our hypotheses by exploring the distribution of

necromass between treatment groups and across soils using the

Kruskal Wallis test (53). If significant results were obtained (p-

value< 0.05), we then performed post-hoc pairwise comparison

analysis (Wilcoxon Rank-Sum) to detect specific group

differences by comparing all variables to the population’s base

mean. We visualized the outcome of these test by generating

boxplots with pairwise (Wilcoxon Rank-Sum) p-values using the

ggplot2, ggbeeswarm, ggstatsplot, ggpubr, ggthemes, and ggeasy

packages, and then used the patchwork package to create a panel

of plots (57–62).
TABLE 1 Soil warming experiment publications and associated geographic and climatic data that were included in this meta-analysis.

Study Site Coordinates Biome Soil group Warm
method

Warm
duration

Warm
magnitude

Chang et al,
2021

Qinghai Tibetan Plateau, China 34.728600,
92.892783

Alpine grassland Gelisol
Loamy Clay

OTC 3-6 years 2.4 -4.9°C

Zhu et al,
2021

Haibei Alpine Grassland Ecosystem Research
Station, Qinghai Tibetan Plateau, China

37.600000,
101.316667

Alpine grassland Gelic cambisol
Clay loam

IR 5 years 1.65°C

Ding et al,
2020

Beiluhe Observation
and Research Station, Qinghai Tibetan Plateau,
China

34.850000,
92.933333

Alpine grassland Gelic arenosol,
Sandy clay
loam

OTC 5 years 0.45–1.55°C

Ding et al,
2020

Beiluhe Observation
and Research Station, Qinghai Tibetan Plateau,
China

34.850000,
92.933333

Alpine Meadow Calcic
kastanozem
Sandy loam

OTC 5 years 0.45–1.55°C

Ding et al,
2019

Beiluhe Observation
and Research Station, Qinghai Tibetan Plateau,
China

34.850000,
92.933333

Alpine meadow Gelic arenosol
Sandy clay
loam

OTC 3 years 0.1 – 1.4°C

Jing et al,
2019

Baotianman Nature Reserve, Central China, 33.49511,
111.92359

Temperate
deciduous forest

Haplic Luvisol
Sandy clay
loam

IR 3 years 1.6°C

Liang and
Balser, 2012

Jasper Ridge Global Change Experiment, California,
USA

37.40311,
122.24428

Semi-arid
grassland

Xeroll
Loam

IR 9 years 1°C

Liang et al,
2015

Jasper Ridge Global Change Experiment, California,
USA

37.40311,
122.24428

Semi-arid
grassland

Xeroll
Loam

IR 9 years 1°C

Ma et al,
2022

Luancheng Agroecosystem Experimental Station,
Hebei province, North China

37.883333,
114.683333

Temperate
cropland

Argic rustic
ustic cambisol
Sandy loam

IR 9 years 2°C

Shao et al,
2018

Duolun county, Mongolia 42.033333,
116.283333

Semi-arid
grassland

Haplic calcisol
Sandy loam

IR 5 years 1°C

Tian et al,
2021

Damxung Grassland Station, Qinghai Tibetan
Plateau, China

30.850000,
90.083333

Alpine meadow Gelic cambisol
Sandy loam

OTC 5 years 1-1.3°C

Zhang et al,
2022

Greater Khingan Mountains, Northeast China 52.933333,
122.850000

Permafrost
peatland

Histosol
Texture NA

OTC 6 years 0.47°C

Liu et al,
2021

Kangbo village, Jiangsu Province, China 31.500000,
120.550000

Sub-tropical
Cropland

Gleyic stagnic
Anthrosol
Clay loam

IR 8 years 2°C
f

Soil group includes the reference soil group and soil texture (italicized).
rontiersin.org
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2.4.3 Generalized linear model
We built generalized linear models (GLMs) to explore

whether aspects of experimental soil warming, including

reference soil group, soil texture, soil sampling depth, biome,

warming method, warming magnitude, or warming duration, can

be used to predict necromass. Specifically, we generated GLMs

with both inverse Gaussian and gamma distributions using the

stats package in R (53); these distributions are suited for right

skewed positive continuous datasets. GLMs use a link function to

connect the response variable with its linear predictor, making

them ideal for modeling non-normal ecological data. We did not

model variation in lnRRs across soils using GLMs because 1)

lnRRs take on negative values and 2) we could not explore our

second hypothesis that microbial necromass stocks vary across

reference soil groups using this approach.

Our response variables were the average values of TAS, mur,

glu, and gal. Independent variables included treatment group

(control or warm), reference soil group, soil texture, biome,

sampling depth, warming method, warming magnitude, and

warming duration. To account for contrasting pedogenesis, we

separated the cambisol soils into two groups to distinguish the

wildland soil (gelic cambisols, or “cambisol_a”) from the

agricultural soil (argic rustic ustic cambisols, or “cambisol_b”).

We did this because agricultural soils are intensively managed

(tilled, fertilized, and irrigated) to generate soil conditions that

maximize crop yield.

GLMs included the null model (i.e., model coefficients are equal

to zero) and single predictor, interactive, or additive full models

with both inverse Gaussian and gamma distributions. We used the

DHARMa package to validate our GLMs (63) and checked for

multicollinearity via the variance inflation factor. We then used the

AICcmodavg package to choose the best model via the Akaike

Information Criterion (AIC) (64).

After model validation, we generated model summary tables

and compared the GLMs estimated parameters, including model

coefficient significance (p-value< 0.05) and model null deviance

relative to residual deviance. If model null deviance is larger than

the residual deviance, then inclusion of the predictor variable

improved model goodness of fit. If model coefficients are

statistically significant (p-value< 0.05), then the model

coefficient (reference soil group) is a significant predictor of

necromass. Anthrosol soils or infrared radiation warming were

used as the intercept groups for GLM coefficient comparison in

models that predict necromass with reference soil group or

warming method, respectively. Our best models were chosen

based on the DHARMa simulated residuals, residual deviance to

null deviance, and lowest AIC value.

We conducted a post-hoc pairwise comparison on validated

GLM’s that predict necromass by first computing the models

estimated marginal means (EMMs) using the emmeans package

(65). Then, we generated a table of pairwise comparisons among

EMMs showing the contrast, standard error, and statistical

significance (p-value< 0.05) using the gt package (66).
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3 Results

3.1 Warming effect sizes

Warming effect sizes (lnRR) varied on total amino sugars

(TAS) and individual amino sugars (glu, gal, and mur) across

reference soil groups, although there was some redundancy.

Significant positive warming effect sizes were detected on TAS in

gelisols and on TAS, glu, gal, and mur in gelic arenosols and ustic

cambisols (Figure 1). Warming had a negative effect on glu but a

positive effect on gal in kastanozems (Figure 1). Warming effects

were negative on TAS, glu, and gal in mollisols and calcisols

(Figure 1). Funnel plot shapes indicated no publication bias

(Supplementary Figure S2), which was confirmed with Egger’s

linear regression test for funnel plot asymmetry (p-value > 0.05).

Kruskal-Wallis’s test indicated significant differences existed

in unpooled lnRR of TAS across soils (p-value< 0.05), although

no differences were detected in lnRR of mur, glu, and gal (p-

value > 0.05). Post-hoc comparison on TAS lnRR indicated

gelisols and mollisols significantly differed from the lnRR base

mean (p-value< 0.05).
3.2 Average soil necromass between
treatment groups and across reference
soil groups

The Kruskal-Wallis’s test indicated warming did not

significantly affect average individual amino sugars (glu, cal,

mur) or TAS when pooled by treatment group (Supplementary

Figure S3). Warming effects were also statistically insignificant

across reference soil groups (Supplementary Figure S4), meaning

that there was no consistent warming effect across the different

soil types. However, substantial differences in necromass were

detected across soil groups (Figure 2). Post-hoc comparison

analysis showed several soil groups significantly differed from

the population’s base mean (Figure 2).
3.3 Predicting necromass with GLMs

We modeled the distribution of microbial necromass using a

GLM with inverse Gaussian or gamma distributions. The null

models, which state model coefficients are equal to zero, had

poor goodness of fit relative to full models, as determined by

model validation and model summary tables. We could not

validate full models for any necromass biomarker that used

biome, treatment group, warming magnitude, or warming

duration as sole predictor variables. As discussed below, the

addition of reference soil group as a predictor variable improved

model goodness of fit for all necromass biomarkers.
frontiersin.org
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3.3.1 GLM predicting total amino sugars
All validated GLMs that predict TAS used an inverse Gaussian

distribution. We validated a GLM that predicted TAS with the

warming method as the sole predictor variable. Our GLMs

detected IR warming as a significant predictor of TAS whereas

OTC warming was not a significant predictor. However, model

performance was poor, as determined by model summary tables.

We also validated GLMs that predicted TAS with the interaction

between reference soil group, warming duration, and treatment

group. These models also detected IR warming was a significant

predictor of TAS, although warming duration and treatment

group were insignificant predictors. Unfortunately, there were

not enough observations to estimate if interactions between these

predictor variables were significant. However, these models

performed poorly relative to the GLM mentioned below.

Our best validated GLM, with the lowest AIC (DAIC > 99.09),

used the reference soil group to predict TAS. Model summary

tables revealed there were significant differences in TAS across

reference soil groups (Table 2), which indicates soil group is a

significant predictor of TAS. In addition to model summary

tables, the estimated marginal means (EMM) of TAS differed
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across reference soil groups (Figure 3). Pairwise comparison on

EMM indicated TAS significantly differed across some, but not all

reference soil groups (Supplementary Table S1).

3.3.2 GLM predicting muramic acid
All validatedmodels that predict mur used a gamma distribution.

We validated models that predicted mur with soil texture, although

this variable was not a significant predictor. We also validated a GLM

that predicted mur with sampling depth and detected sampling

depths of 0-10cm are significant predictors of mur. Other validated

models used the interaction between reference soil group and

method, reference soil group and depth, and reference soil group

and biome. There were not enough observations to explore whether

interactions between these categorical variables were significant.

Our best validated GLM used the reference soil group to

predict variation in mur (DAIC > -231.19). Like TAS, model

summary tables revealed reference soil group is a significant

predictor of mur (Table 3). The EMM of mur also differed across

reference soil groups (Figure 3). Pairwise comparison on EMM

showed mur differed across several reference soil groups

(Supplementary Table S2).
FIGURE 1

Forest plot of pooled natural log response ratios (lnRR) and 95% confidence intervals of total amino sugars (purple), muramic acid (light
blue), glucosamine (red), and galactosamine (dark blue) in response to warming across soil groups. The vertical dashed line represents a lnRR of
zero. Effect sizes are significant (p-value< 0.05) if the confidence intervals do not overlap with zero. Significant effect sizes are shown with filled
in symbols whereas insignificant effect sizes are hollow symbols.
frontiersin.org
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TABLE 2 Summary table of GLM predicting total amino sugars (mg/g) by reference soil group.

Reference Soil Group Estimate SE p-value

Anthrosol (intercept) 1.156 0.411 0.007

Arenosol -1.077 0.412 0.012

Calcisol -0.792 0.446 0.082

Cambisol a -1.132 0.411 0.008

Cambisol b 9.314 1.573 0.000

Gelisol -1.125 0.411 0.009

Histosol 5.917 0.771 0.000

Kastanozem 21.682 2.756 0.000

Luvisol -1.058 0.416 0.014

Mollisol 3.383 0.909 0.000
Frontiers in Soil Science
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Model summary table shows the contrast (Reference soil group), estimate, standard error (SE), and p-value. Bold p-values indicate that the reference soil group is a significant predictor of
the response variable (total amino sugars (mg/g)) at alpha level 0.05. Model null deviance was 66.038 and residual deviance was 4.451.
A B

DC

FIGURE 2

(A) Total amino sugars (mg/g), (B) muramic acid, (C) glucosamine, and (D) galactosamine across all soils. The Kruskal Wallis test detected significant
differences in average individual and total amino sugar content across soils (p-value< 0.05). We performed post-hoc comparison using the
Wilcoxon Rank-Sum test to determine where group differences originated from. The reference group for post-hoc comparison was the mean of all
total or individual amino sugars (mg/g), which is shown by the dashed line. Statistical significance (p-value< 0.05) is indicated by asterisks whereas
no statistical significance (p-value > 0.05) is indicated by "ns".
ersin.org
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3.3.3 GLM predicting glucosamine
All validated GLMs that predicted glu used an inverse

Gaussian distribution. We validated a GLM that predicted glu

with soil texture, which revealed clay loam and sandy loam soils
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are significant predictors of glu. Other validated GLMs that

predict glu use either warming method or soil type as the sole

predictor variables. These models detected OTC warming as a

significant predictor of glu as well as several reference soil groups
TABLE 3 Summary table of GLM predicting muramic acid (mg/g) by reference soil group.

Reference Soil Group Estimate Std. Error p-value

Anthrosol (intercept) 45.455 5.024 1.63E-09

Arenosol -31.464 5.142 1.81E-06

Calcisol -32.683 5.219 1.25E-06

Cambisol a -27.026 5.292 2.54E-05

Cambisol b 38.933 8.291 7.50E-05

Histosol -33.533 5.053 4.87E-07

Kastanozem -1.691 6.078 7.83E-01

Luvisol -42.010 5.039 8.08E-09

Mollisol 1.307 7.208 8.58E-01
fronti
Model summary table shows the contrast (Reference soil group), estimate, standard error (SE), and p-value. Bold p-values indicate that the reference soil group is a significant predictor of
the response variable (muramic acid (mg/g)) at alpha level 0.05. Model null deviance was 23.133 and residual deviance was 0.633.
FIGURE 3

Plot of estimated marginal means (EMMs) from validated GLM’s that predicted total amino sugars (A) and muramic acid (B) using soil type.
The blue bars represent confidence intervals for the EMMs, and the red arrows indicate comparisons between EMM’s. If red arrows from one
soil type overlap with red arrows from another soil type, then no significant difference (p-value< 0.05) in necromass exists between the soil
groups. If arrows do not overlap, then significant differences in necromass exist.
ersin.org
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(anthrosol, cambisol b, histosol, kastanozem). However, the best

GLM that predicted glu used the interaction between reference

soil group and warming method (DAIC > -72.11). There were

not enough observations of glu across soil warming experiments

to estimate if the interaction between these categorical variables

(soil * method) were significant. Because of this, we did not

compute EMM or conduct post-hoc analysis.

3.3.4 GLM predicting galactosamine
Validated GLMs that predict gal use an inverse Gaussian

distribution or gamma distribution. Gal was the only necromass

biomarker that could not be predicted with reference soil group

as the sole predictor variable. We validated GLMs that predict

gal using the warming method with a gamma distribution and

detected IR warming as a significant predictor of gal. We also

validated GLMs that predicted gal with the interaction between

warming magnitude and warming method using both inverse

Gaussian or gamma distributions. Our model did not detect

warming magnitude as a significant predictor of gal.

Our best model that predicted gal used the interaction

between reference soil group and warming method with an

inverse Gaussian distribution (DAIC > -139.9). Analogous to our

top GLM that predicted glu, there were not enough observations

to estimate if the interaction between categorical variables (soil

group * warming method) were significant. Thus, we did not

compute EMM or conduct post hoc analysis.
4 Discussion

Through a systematic review and meta-analysis of in situ soil

warming experiments, we detected significant warming-induced

effect sizes (lnRR) on necromass. We show that warming effect

sizes on necromass were not uniform across reference soil groups,

which supports our first hypothesis. However, warming did not

significantly affect average necromass between treatment groups

(p-values > 0.05); this contradicts our first hypothesis. These

contrasting findings between effect sizes (lnRR) versus p-values

(averages) may suggest the small sample size used in this analysis

influenced the nonparametric tests, thus increasing the likelihood

of type II errors. For instance, we detected significant differences

in average TAS between treatment groups, specifically in gelisols,

prior to averaging raw data from supplementary text (34). Ideally,

raw data would not have been averaged prior to analysis but >

90% studies reported averaged amino sugars between treatment

groups. Thus, we felt it was best to be consistent and use averaged

values. The trade-off here is smaller sample sizes inflate the p-

value. Ultimately, these findings suggest 1) warming had a variety

of significant effect sizes that largely depend on the reference soil

group and 2) warming did not significantly change average

necromass between treatment groups.

Warming had positive effect sizes on necromass, depending

on the reference soil group. This suggests warming may offset or
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increase microbial necromass production and deposition in the

short term, possibly due to warm-induced increases in microbial

mortality and turnover (16, 67). Soil microbes are primarily C

limited, and the stress of climate change can divert resources

away from growth and nutrient acquisition, altering microbial

biomass composition, growth rates, and necromass deposition

(68, 69).

Warming effect sizes were positive or insignificant on

microbial necromass in frozen soils, including gelisols, gelic

arenosols, and gelic cambisols. These permafrost soils all share

similar pedogenesis (70), thus it is not surprising effect sizes were

similar across these soils. Permafrost soils are generally C rich

(70) so microbial recycling of necromass to satisfy C

requirements is less likely to occur. In addition, average

necromass stocks did not significantly differ across frozen

soils, as per pairwise comparison analysis. These findings may

indicate warming stressed out permafrost soil microbes,

consequently enhancing mortality rates. This could increase

necromass formation and deposition in the short term,

whereas long-term increases in soil necromass would be

accompanied by increased microbial growth and turnover.

However, temperate forest soils exposed to chronic warming

for almost 30 years show longer turnover times and lower mass-

specific growth rates (71), likely due to limiting labile C.

Warming had positive or insignificant effect sizes on soil

amino sugars in agricultural soils, which include gleyic stagnant

anthrosols and argic rustic ustic cambisols. Its plausible that

these agricultural soils are less limited by labile C, nitrogen, and

phosphorus, which could explain why warming did not enhance

microbial decomposition of necromass. However, it is worth

mentioning that although amino sugars are commonly used

necromass biomarkers, they come with limitations. For instance,

amino sugars analysis does not capture necromass turnover

times, only reflects necromass derived from microbial cell

walls, and microbial origins are not always clear (16, 72, 73).

Warming effect sizes on necromass were negative in certain

reference soil groups. This may suggest warming enhances

microbial recycling of necromass and/or facilitates its

destabilization. Microbes may recycle more necromass as a

source of nutrients to cope with warm-induced reductions in

labile C (16). Destabilization of necromass renders previously

physicochemically protected necromass susceptible to

decomposition (16); this can magnify positive soil C feedback

and reduce soil C sequestration. Destabilization of microbial

necromass is the least understood component of necromass

dynamics (16).

Calcium is a commonly used SOM stabilization index since

it promotes aggregation through calcium bridges. Thus, we

would have expected warming would increase necromass

deposition and stabilization in calcium rich soils, which

include the calcic kastanozem, haplic calcisol, and argixeroll.

However, this was not the case. Warming generally had

significant negative effect sizes on glu, a fungal biomarker, and
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TAS in calcic soils. Because fungal contributions to necromass C

can be greater than bacteria (74, 75); the observed negative

warming effect size on TAS in calcisols and mollisols may have

been more driven by reductions in fungal-derived rather than

bacterial-derived necromass. These findings may suggest

calcium is not a suitable indicator of stability for fungal-

derived SOM, as measured by amino sugars.

We also show warming effects on TAS were more

pronounced in mollisols and gelisols, as the unpooled lnRR

significantly differed from the lnRR base mean across all

reference soil groups. This may suggest microbial-derived

SOM in mollisols and gelisols is more susceptible to climate

warming effects relative to other soil groups. Mollisols

(kastanozems or chernozems) are mid-latitude temperate

grassland soils with thick organic horizons, used extensively

for agriculture, and cover about 7% of ice-free land area (76).

Because warming effects on necromass were negative in

mollisols, and SOM is an indicator of soil health, climate

warming may have severe consequences on mollisol health by

reducing microbial-derived SOM sequestration. In contrast,

gelisols (cryosols) are permafrost soils found in high latitude

and elevation ecosystems and cover about 9-13% of ice-free land

area (76). We show warming effect sizes were positive in gelisols,

which suggest warming increased necromass stocks in these

permafrost soils. However, long-term warming effects on

microbial-derived SOM in gelisols is not clear. Gelisols are

extremely carbon rich, except in desert ecosystems such as

Antarctic tundra (76), and thus microbial-derived SOM

feedback to climate warming is of great interest. Indeed, future

research efforts should aim to explore necromass dynamics

across all 32 reference soil groups, but these soils should be

targeted as they are intrinsically linked to human food

production (mollisols) and carbon cycling in northern

latitudes (gelisols).

We modeled the variation of microbial necromass across

soils with inverse Gaussian and gamma GLMs. The best GLM

that predicted TAS and mur used soil type as the sole predictor

variable. We did validate a soil only GLM for glu, but this was

not the best model, so we did not compute EMM or conduct

post-hoc analysis. We could not validate a soil-only GLM that

predicted gal, which may be due to the unclear origins of

galactosamine (72, 73). While mur and glu are generally

considered to be exclusive to bacteria and fungi, respectively,

gal can originate from both fungi and bacteria (72, 73). In any

case, our GLMs show that the reference soil group explains most

of the variation in three widely used necromass biomarkers and

improved model performance.

Model summary tables revealed several reference soil groups

are significant predictors of TAS and mur. Pairwise comparison

analysis on EMM extracted from GLMs indicated TAS and mur

significantly differed between soil groups; this supports our

second hypothesis, although not every pairwise comparison

was significant. Post hoc analysis (Wilcoxon Rank-Sum) on
Frontiers in Soil Science 10
average necromass extracted directly from publications also

pointed to the same conclusion; necromass differed between

many soil groups. These findings may suggest 1) necromass

varies across certain reference soil groups, 2) our sample sizes

were too small to detect significant differences across all

reference soil groups, or 3) other factors that are not

completely unique to a soil group, such as soil texture or pH,

influence necromass. In cases where significant pairwise

differences were detected, this may be due to variation in soil

physicochemical attributes across soil warming experiments,

which differentially influence necromass dynamics. In sum, we

show that reference soil group may be a useful framework for

predicting microbial necromass stocks. However, more research

studying in situ soil warming effects on microbial necromass is

needed, especially in underrepresented soils (30) and

ecosystems (16).

Our GLM that predicted mur with sampling depth detected

soil depths of 0-10 cm are significant predictors of mur, although

subsoil depths were not significant. This could be due to greater

SOM content and microbial abundance in some topsoils versus

subsoils. Although our GLM did not detect subsoil depths as

significant predictors of mur, a recent analysis showed muramic

acid significantly increases with soil depth (49). Our findings

may be an artifact of our small sample size when compared to

the large dataset analyzed by Ni et al, 2020. Furthermore, our

model performed poorly when compared to the GLM that

predicted mur with reference soil group.

Soil texture, or more specifically clay percentage, is often

incorporated into soil C models. However, pairwise comparison

analysis detected significant differences in necromass between

soil groups that had similar textures and clay percentages. For

instance, TAS significantly differed between haplic calcisols,

calcic kastanozems, and argic rustic ustic cambisols, which all

have a sandy loam texture (see Supplementary Table S1).

Furthermore, GLMs that used soil texture as the sole predictor

variable were either not validated or performed poorly relative to

other predictors, including reference soil groups. Our findings

may suggest the utility of moving beyond soil texture and

incorporating soil classification systems into soil C models.

We show soil warming methodology also influences variation

in necromass across soil warming experiments. Our best GLMs

that predicted glu and gal used the interaction between reference

soil group and warming method. We did validate a GLM that

predicted TAS with the warming method although this was not

the best model.Whereas IR warming was a significant predictor of

TAS and gal, OTC warming was a significant predictor of glu.

This may suggest that necromass biomarkers are differentially

influenced by active warming (IR) versus passive warming (OTC).

Active warming methods such as IR or buried heated cables

apply external heat to the system and are considered to more

closely resemble climate warming scenarios (77). Unfortunately,

these methods are more costly, energy intensive, and cause more

soil disturbance when compared to passive warming methods
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(76). In contrast, temperature fluxes in passive warming

methods are more variable and OTC are not applicable in

forested ecosystems (77). Because sandy soils have lower

specific heat capacity relative to clayey soils, less energy is

required to heat coarse textured soil (78). Likewise, soil

thermal conductivity, or the soil’s ability to conduct heat, is

generally higher in coarse texture soils relative to fine texture

soils (78). This means heat can move more freely in sand versus

clay (78). Thus, active warming may be more appropriate in fine

textured soils whereas passive warming may be just as effective in

coarse textured soils. However, it is important to note soil

specific heat capacity and thermal conductivity are positively

correlated with soil moisture and this should be taken into

account in soil warming experiments (78). How the reference

soil group interacts with active versus passive warming methods

is unknown because 1) there were not enough observations to

estimate if interactions among predictor variables were

significant and 2) a reference soil group can vary in texture.

These findings indicate passive versus active warming

methodology can yield different necromass response patterns.

More research is needed to understand the mechanistic reason for

these methodological driven responses in necromass dynamics

across reference soil groups. Although passive warming methods

can be more variable, they may be advantageous when compared to

active warming, especially in developing nations, as they are more

economic, energy efficient, and cause less soil disturbance (77). OTC

are ideal for ecosystems with low plant stature such as grasslands

(77), whereas greenhouse warming has been shown to be efficient in

higher stature ecosystems such as boreal forest (79). Thus, we

recommend future research efforts measuring necromass to employ

more passive soil warming methods when active warming is not

feasible. Still, researchers must consider soil specific heat capacity

and thermal conductivity in soil warming experiments; these

properties influence the energy required to efficiently heat soil and

the transfer of heat throughout the soil profile.

A major limitation of this study is the small sample size and

unequal observations of necromass across soils, which hampers our

confidence in the models and statistical analysis. Soil groups are not

well represented in our analysis, and it was common that a specific

soil group was only reported by one study. Differences in necromass

content across publications could be attributed to a variety of

climatic factors rather than soil-specific trends. However, soils are

reflective of the climate and biome they formed in and thus, using

reference soil groups to make predictions captures ecosystem data

such as but not limited to precipitation, temperature, elevation,

plant communities, and aspect.

Cross-comparison between studies is also difficult because of

differences in warming methods, magnitude, and duration.

Microbial necromass content and soil properties can vary with

depth (48, 49) but soil sampling depth in our analysis ranged

from 5-50cm. Furthermore, our data are based upon short and

medium length warming experiments since long-term (>10

year) studies are not yet available. Consequently, long-term
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warming effects on microbial necromass are not yet clear.

Finally, grasslands are overrepresented in this meta-analysis

and account for > 70% of all experimental locations.
5 Conclusion

Our study highlights a lack of research available examining

warming effects on microbial-derived SOM. We also show the

warming method can be a significant predictor of necromass.

Although passive warming methods can be more variable, they

may be advantageous when compared to active warming, especially

in developing countries, as they aremore economic, energy efficient,

and cause less soil disturbance (77). Thus, we recommend future

research efforts measuring necromass to employ more passive soil

warmingmethods when active warming is not feasible. Our analysis

should serve as a call to action to encourage more research studying

1) warming effects, especially long-term warming effects, on

microbial necromass across all 32 reference soil groups (with

emphasis on gelisols and mollisols), 2) how experimental soil

warming methods influence necromass dynamics across reference

soil groups, and 3) what predictors of necromass are captured in soil

classification systems (reference soil groups) but not in soil texture

or clay percentage. Further study of climate change effects on

necromass deposition, turnover, and stocks will advance our

understanding of SOM dynamics, strengthen carbon models, and

inform climate change mitigation strategies.
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