? frontiers ‘ Frontiers in Soil Science

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Jacynthe Dessureault-Rompré,
Laval University, Canada

REVIEWED BY
Zhenghu Zhou,

Northeast Forestry University, China
Jessica L. M. Gutknecht,

University of Minnesota Twin Cities,
United States

*CORRESPONDENCE
Kristen M. DeAngelis
deangelis@microbio.umass.edu

SPECIALTY SECTION

This article was submitted to

Soil Organic Matter Dynamics and
Carbon Sequestration,

a section of the journal

Frontiers in Soil Science

RECEIVED 05 July 2022
ACCEPTED 05 September 2022
PUBLISHED 23 September 2022

CITATION
Mitchell MF, MacLean MG and
DeAngelis KM (2022) Microbial
necromass response to soil
warming: A meta-analysis.
Front. Soil Sci. 2:987178.

doi: 10.3389/fs0il.2022.987178

COPYRIGHT
© 2022 Mitchell, MacLean and
DeAngelis. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Soil Science

TYPE Systematic Review
PUBLISHED 23 September 2022
D01 10.3389/fs0il.2022.987178

Microbial necromass response
to soil warming: A meta-analysis

Megan F. Mitchell*?, Meghan Graham MacLean*
and Kristen M. DeAngelis**

tGraduate Program in Organismic and Evolutionary Biology, University of Massachusetts,
Amherst, MA, United States, ?Department of Microbiology, University of Massachusetts, Amherst,
MA, United States, *Department of Environmental Conservation, University of Massachusetts,
Amherst, MA, United States

Microbial-derived soil organic matter (SOM), or necromass, is an important
source of SOM and is sensitive to climate warming. Soil classification systems
consider soil physicochemical properties that influence SOM, hinting at the
potential utility of incorporating classification systems in soil carbon (C)
projections. Currently, there is no consensus on climate warming effects on
necromass and if these responses vary across reference soil groups. To
estimate the vulnerability of necromass to climate warming, we performed a
meta-analysis of publications examining in situ experimental soil warming
effects on microbial necromass via amino sugar analysis. We built
generalized linear models (GLM) to explore if soil groups and warming
methodologies can be used to predict necromass stocks. Our results
showed that warming effect sizes on necromass were not uniform across
reference soil groups. Specifically, warming effect sizes were generally positive
in permafrost soils but negative in calcic soils. However, warming did not
significantly change average necromass. Our GLMs detected significant
differences in necromass across soil groups with similar texture and clay
percentage. Thus, we advocate for further research to define what predictors
of necromass are captured in soil group but not in soil texture. We also show
warming methodology is a significant predictor of necromass, depending on
the necromass biomarker. Future research efforts should uncover the
mechanistic reason behind how passive versus active warming methodology
influences necromass responses. Our study highlights the need for more in situ
soil warming experiments measuring microbial necromass as this will improve
predictions of SOM feedback under future climate scenarios.
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1 Introduction

Climate warming will affect microbial-mediated soil organic
matter (SOM) dynamics, but predicting the magnitude and
direction of these effects is a major challenge in climate
forecasting (1, 2);. Soils contain more carbon (C) in SOM than
C contained in both the atmosphere and vegetation combined (3,
4). Empirical and theoretical data showcase a multitude of
plausible climate change scenarios: soil C feedback can exhibit
multi-phase microbial responses (5), and is influenced by
microbial physiology (6), C use efficiency (7), thermal
adaptations (8, 9);, depletion of labile C stocks (10, 11);,
community structure changes (12), and evolutionary
adaptations (13, 14);. Understanding SOM dynamics in a
warming world is critical for climate change mitigation strategies.

Microbes influence SOM in both life and death, though
much more is understood about living microbes than is known
about dead microbes, or necromass (15). Living microbes
decompose SOM, including necromass, and sequester C as
biomass (15, 16);. When microbes die, their necromass may be
recycled as a source of nutrients by other microbes or become
stabilized as SOM in the soil matrix (16). Many methods are
used to measure microbial necromass (16), but the most
common method is measuring soil amino sugars as a
necromass biomarker (16-18);. Amino sugars are components
of microbial cell walls, and include glucosamine (abundant in
fungi), muramic acid (exclusive to bacteria), galactosamine, and
mannosamine (16-18). Newly deposited SOM is the most
vulnerable to decomposition and loss (19), meaning that
understanding the fate of necromass in a warming world may
help to predict longer-term soil C stocks and their stability.

Soil warming experiments are used as a way of approximating
the future effects of climate change on terrestrial ecosystems.
These studies show that warming initially stimulates SOM
decomposition but that this feedback weakens with duration of
warming (5, 20). Defining the warming effects on microbial
biomass turnover may help to elucidate the mechanistic reason
for this attenuation of warming effects over time. Meta-analyses
have shown that warming effect sizes on microbial biomass and/or
abundance can be positive (21, 22); or negative (23, 24); and vary
across ecosystems (22, 23, 25, 26) and soil type (23). For instance,
warming effects on microbial abundance were positive in histosol
soils (23), which are dominated by organic material, but negative
in podzols (23), which are sandy acidic soils rich in metal oxides.

A recent study measuring soil amino sugars indicated
necromass can account for up to 60% of C in SOM (27), but
this can vary across biomes, latitude, and bedrock (27-29). Since
multiple soil types can be present in a given geographic area,
unique microbe-SOM interactions are not always captured at
latitudinal or ecosystem scales. Two clear examples of this are a
review that showed SOM formation and stability is soil-specific
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(30) and empirical findings of pedogenic-specific distribution
patterns in bacterial communities (31). It follows that microbial-
derived SOM formation and stabilization may also exhibit soil
specific trends. Soil-specificity can be explored by utilizing soil
classification systems such as the World Reference Base for Soil
Resources (WRB) and USDA Soil Taxonomy. These systems
characterize soils as groups (WRB) or orders (USDA) based on
soil attributes. Accordingly, their inclusion in soil C models and
climate change mitigation strategies is warranted (30, 32).
However, more research is needed to forecast SOM dynamics
in soil groups that are poorly represented in the literature (30).

Because SOM, microbial communities, and warming effects
on microbial abundance can vary with soil type (23, 30, 31) we
wanted to explore whether warming effects on necromass vary
by soil type. SOM is a commonly used index for soil health but
there is no consensus on how climate warming will affect
microbial necromass dynamics (16, 33);. Studies indicate soil
warming can increase (34-37), decrease (38-43), or not
significantly change (44) (33); microbial necromass. The
question remains whether climate warming will lead to the
destabilization of microbial necromass, and if so, can we
predict this feedback?

To better understand how warming will impact microbial-
derived SOM, we conducted a cross-soils meta-analysis on
publications examining warming effects on microbial
necromass. We used the PRISMA method to discover all soil
warming experiment papers that measure necromass stocks in
response to warming (45). We hypothesized that 1) microbial
necromass responses to warming vary with reference soil group
and 2) that microbial necromass stocks are soil-group specific.

2 Methods
2.1 Literature survey

Using the PRISMA method, which utilizes a 27-item checklist
that ensures reviews are transparent and repeatable, we conducted
a systematic review of the literature. Then, we compiled the data
from the review into a meta-analysis to explore climate warming
effects on microbial necromass. Using these compiled data, we test
our hypotheses that 1) microbial necromass responses to warming
vary across soil groups and 2) that microbial necromass stocks are
soil-group specific. Google scholar and Web of Science were used
to acquire relevant literature. The literature search was performed
using the following keywords: soil warming * microbial
necromass, soil warming * amino sugar, soil warming *
microbial residue, soil warming * muramic acid, soil
warming * galactosamine, soil warming * glucosamine, and soil
warming * mannosamine. Our last literature search date took
place June 1st, 2022.
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2.2 Inclusion criteria

Only in situ soil warming experiments were included that also
measured microbial necromass via amino sugar analysis; amino
sugars included glucosamine (glu), galactosamine (gal), muramic
acid (mur), mannosamine (man), and total amino sugars (TAS),
which is the sum of individual amino sugars. We included
experiments that either directly warmed the soil or warmed
canopy air. We excluded incubation experiments (n = 2) that
measured necromass unless soils originated from in situ soil
warming experiments. However, we excluded any incubations
that added substrates to soil. We excluded climate gradient soil
warming experiments (n = 7) as experimental warming-induced
changes are likely to better reflect long-term processes (46). We
also excluded climate gradient experiments that utilized litterbags
(n = 2) as warming effects in litter bags may not reflect warming
effects on in situ litter layers (47) We excluded experiments that
measured necromass via branched glycerol dialkyl glycerol
tetraethers (n =1) since these biomarkers are derived mostly
from archaea (16). We excluded non-warming treatment effect
interactions in studies such as drought, root exclusion,
precipitation, CO, enrichment, and fertilizer amendments.
Finally, we excluded soil amino sugar data measured at soil
depths greater than 50 cm because necromass content and
dynamics varies between top soils and subsoils (48, 49). At this
point, we excluded 12 publications from a total of 24 publications.

Papers that met the above criteria were only included if
authors reported both control and warmed amino sugar data as
well as warming methodology (method, duration, and
magnitude) and soil sampling depth. Soil classification had to
also be reported in the study, or if it was not, could be acquired
from a different source. For instance (39), and (40) did not
report soil type, which was determined to be an argixeroll
(mollisol) from Web Soil Survey (50).

2.3 Data acquisition

In total, we acquired 12 publications that met all our criteria
and thus, were included in this meta-analysis (Table 1).
Experiments were conducted primarily in grasslands within
two continents, Asia and North America (Supplementary
Figure S1). We extracted data from tables, Supplementary
Material, or from plots using WebPlotDigitizer (51). Data
include average measurements of amino sugars, number of
replicates, and standard deviation (SD) or standard error (SE)
for each treatment and sampling depth. If sample sizes were not
reported (n = 2), we assumed the sample size was equal to the
number of replicate warmed plots or the number of replicate
control plots. We converted SE to SD using the following
formula: SD=SE(n"'?). In situ warming methodology included
continuous warming (n = 12) or winter warming (n= 1) with
either open top chambers (n = 5) or infrared radiators (n= 7).
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Warming duration ranged from 3 to 9 years and warming
magnitude ranged from 0.1 to 4.9 degrees Celsius above
ambient soil temperatures.

Publications reported soil type using either WRB or USDA
soil taxonomy. In total, there were 9 reference soil groups and 5
types of soil textures reported by publications. Soil types
included gelisols (WRB cryosol), gelic cambisols (USDA
inceptisols), gelic arenosols (USDA entisols), argic rustic ustic
cambisols (USDA inceptisols), gleyic stagnic anthrosols (USDA
plaggen inceptisols), haplic calcisols (USDA aridisols), glacic
historthels (USDA histosols/glacic historthels), calcic
kastanozems (USDA mollisols), and an argixeroll, which is a
mollisol (WRB chernozem and kastanozems). Soils had loamy
textures, including sandy clay loam, sandy loam, clay loam,
loamy clay, and loam.

Every study but one (n = 11) reported soil amino sugars as
the average value of replicates from the respective treatment
group and/or sampling depth. Because of this, we averaged
replicate soil amino sugar data extracted from one
publication’s Supplementary Material (34) to avoid
disproportionally influencing downstream analysis. All amino
sugar data were converted to the same units of mg amino sugar
g soil. We excluded mannosamine from further analysis
because less than 20% of included papers measured and
reported this amino sugar.

2.4 Data analysis

2.4.1 Warming effect sizes on necromass

To quantify the magnitude and direction of warming effects on
necromass, we estimated effect sizes by calculating the natural
logarithm of response ratios (InRR) between treatment
groups. Using InRR to estimate effect sizes is a common practice
in ecological meta-analysis (52). All analysis was conducted in R
(53). We used the metafor package (54) to compute effect sizes,
which calculates InRR using this equation: y = In(4]), where xI
and x2 are mean values of warmed and control amino sugars,
respectively. We also calculated variance using the same package.
One study was excluded from effect size calculations (33) because
the SD or SE was not reported. Consequently, we could not
calculate warming effect sizes on necromass in histosol soils.

Using the same package (54), we then calculated pooled
effect sizes in each soil group, except for soils where only one
InRR was available. We generated grouped forest plots of pooled
effect sizes and the 95% confidence intervals across soils for TAS,
mur, glu, and gal using the ggforestplot package (55). An InRR of
0 indicates warming had no effect on necromass in the reference
soil group. A positive InRR indicates that experimental warming
increased necromass in the soil group relative to controls,
whereas a negative InRR indicates that experimental warming
decreased necromass in the soil group relative to controls. If
confidence intervals did not overlap with zero, effect sizes were
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TABLE 1 Soil warming experiment publications and associated geographic and climatic data that were included in this meta-analysis.

Study Site Coordinates
Chang et al, Qinghai Tibetan Plateau, China 34.728600,
2021 92.892783
Zhu et al, Haibei Alpine Grassland Ecosystem Research 37.600000,
2021 Station, Qinghai Tibetan Plateau, China 101.316667
Ding et al, Beiluhe Observation 34.850000,
2020 and Research Station, Qinghai Tibetan Plateau, 92.933333
China
Ding et al, Beiluhe Observation 34.850000,
2020 and Research Station, Qinghai Tibetan Plateau, 92.933333
China
Ding et al, Beiluhe Observation 34.850000,
2019 and Research Station, Qinghai Tibetan Plateau, 92.933333
China
Jing et al, Baotianman Nature Reserve, Central China, 33.49511,
2019 111.92359
Liang and Jasper Ridge Global Change Experiment, California, 3740311,
Balser, 2012 USA 122.24428
Liang et al, Jasper Ridge Global Change Experiment, California, 37.40311,
2015 USA 122.24428
Ma et al, Luancheng Agroecosystem Experimental Station, 37.883333,
2022 Hebei province, North China 114.683333
Shao et al, Duolun county, Mongolia 42.033333,
2018 116.283333
Tian et al, Damxung Grassland Station, Qinghai Tibetan 30.850000,
2021 Plateau, China 90.083333
Zhang et al,  Greater Khingan Mountains, Northeast China 52.933333,
2022 122.850000
Liu et al, Kangbo village, Jiangsu Province, China 31.500000,
2021 120.550000

Soil group includes the reference soil group and soil texture (italicized).

significant. Our first hypothesis would be supported if the pooled
InRR varies across soil groups. We tested for publication bias by
generating funnel plots of InRR grouped by soil (54). Then, we
computed Egger’s regression test for funnel plot asymmetry
using the meta package (56).

The distribution of effect sizes grouped by biomarker (rather
than soil type and biomarker) violated normality assumptions.
Thus, we could not estimate warming’s overall effect size on total
or individual amino sugars or perform ordinary linear regression
on InRR. We used a nonparametric test (Kruskal-Wallis) to see if
unpooled InRR differed across soils. If significant results were
obtained, we followed up with post-hoc pairwise comparison
analysis via the Wilcoxon Rank-Sum test. In lieu of performing
ordinary linear regression on InRRs, we built GLM’s (see
subsection “Generalized Linear Model” in methods) to
investigate if reference soil group, soil texture, soil sampling
depth, biome, warming method, warming magnitude, and
warming duration are predictors of microbial necromass.
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Biome Soil group  Warm Warm Warm
method duration magnitude
Alpine grassland ~ Gelisol OTC 3-6 years 2.4 -49°C
Loamy Clay
Alpine grassland  Gelic cambisol IR 5 years 1.65°C
Clay loam
Alpine grassland  Gelic arenosol, OTC 5 years 0.45-1.55°C
Sandy clay
loam
Alpine Meadow  Calcic OTC 5 years 0.45-1.55°C
kastanozem
Sandy loam
Alpine meadow  Gelic arenosol ~ OTC 3 years 0.1 - 1.4°C
Sandy clay
loam
Temperate Haplic Luvisol IR 3 years 1.6°C
deciduous forest ~ Sandy clay
loam
Semi-arid Xeroll IR 9 years 1°C
grassland Loam
Semi-arid Xeroll IR 9 years 1°C
grassland Loam
Temperate Argic rustic IR 9 years 2°C
cropland ustic cambisol
Sandy loam
Semi-arid Haplic calcisol IR 5 years 1°C
grassland Sandy loam
Alpine meadow  Gelic cambisol ~OTC 5 years 1-1.3°C
Sandy loam
Permafrost Histosol OTC 6 years 0.47°C
peatland Texture NA
Sub-tropical Gleyic stagnic IR 8 years 2°C
Cropland Anthrosol
Clay loam

2.4.2 Difference in necromass between
treatment groups

Similar to InRRs, the distribution of averaged soil amino
sugars extracted directly from publications were not normal, as
determined by the Shapiro-Wilk test of normality and visual
exploration (53). Accordingly, we used nonparametric tests for
hypothesis testing.

We tested our hypotheses by exploring the distribution of
necromass between treatment groups and across soils using the
Kruskal Wallis test (53). If significant results were obtained (p-
value< 0.05), we then performed post-hoc pairwise comparison
analysis (Wilcoxon Rank-Sum) to detect specific group
differences by comparing all variables to the population’s base
mean. We visualized the outcome of these test by generating
boxplots with pairwise (Wilcoxon Rank-Sum) p-values using the
ggplot2, ggbeeswarm, ggstatsplot, ggpubr, ggthemes, and ggeasy
packages, and then used the patchwork package to create a panel
of plots (57-62).
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2.4.3 Generalized linear model

We built generalized linear models (GLMs) to explore
whether aspects of experimental soil warming, including
reference soil group, soil texture, soil sampling depth, biome,
warming method, warming magnitude, or warming duration, can
be used to predict necromass. Specifically, we generated GLMs
with both inverse Gaussian and gamma distributions using the
stats package in R (53); these distributions are suited for right
skewed positive continuous datasets. GLMs use a link function to
connect the response variable with its linear predictor, making
them ideal for modeling non-normal ecological data. We did not
model variation in InRRs across soils using GLMs because 1)
InRRs take on negative values and 2) we could not explore our
second hypothesis that microbial necromass stocks vary across
reference soil groups using this approach.

Our response variables were the average values of TAS, mur,
glu, and gal. Independent variables included treatment group
(control or warm), reference soil group, soil texture, biome,
sampling depth, warming method, warming magnitude, and
warming duration. To account for contrasting pedogenesis, we
separated the cambisol soils into two groups to distinguish the
wildland soil (gelic cambisols, or “cambisol_a”) from the
agricultural soil (argic rustic ustic cambisols, or “cambisol_b”).
We did this because agricultural soils are intensively managed
(tilled, fertilized, and irrigated) to generate soil conditions that
maximize crop yield.

GLMs included the null model (i.e., model coefficients are equal
to zero) and single predictor, interactive, or additive full models
with both inverse Gaussian and gamma distributions. We used the
DHARMa package to validate our GLMs (63) and checked for
multicollinearity via the variance inflation factor. We then used the
AICcmodavg package to choose the best model via the Akaike
Information Criterion (AIC) (64).

After model validation, we generated model summary tables
and compared the GLMs estimated parameters, including model
coefficient significance (p-value< 0.05) and model null deviance
relative to residual deviance. If model null deviance is larger than
the residual deviance, then inclusion of the predictor variable
improved model goodness of fit. If model coefficients are
statistically significant (p-value< 0.05), then the model
coefficient (reference soil group) is a significant predictor of
necromass. Anthrosol soils or infrared radiation warming were
used as the intercept groups for GLM coefficient comparison in
models that predict necromass with reference soil group or
warming method, respectively. Our best models were chosen
based on the DHARMa simulated residuals, residual deviance to
null deviance, and lowest AIC value.

We conducted a post-hoc pairwise comparison on validated
GLM’s that predict necromass by first computing the models
estimated marginal means (EMMs) using the emmeans package
(65). Then, we generated a table of pairwise comparisons among
EMMs showing the contrast, standard error, and statistical
significance (p-value< 0.05) using the gt package (66).
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3 Results
3.1 Warming effect sizes

Warming effect sizes (InRR) varied on total amino sugars
(TAS) and individual amino sugars (glu, gal, and mur) across
reference soil groups, although there was some redundancy.
Significant positive warming effect sizes were detected on TAS in
gelisols and on TAS, glu, gal, and mur in gelic arenosols and ustic
cambisols (Figure 1). Warming had a negative effect on glu but a
positive effect on gal in kastanozems (Figure 1). Warming effects
were negative on TAS, glu, and gal in mollisols and calcisols
(Figure 1). Funnel plot shapes indicated no publication bias
(Supplementary Figure S2), which was confirmed with Egger’s
linear regression test for funnel plot asymmetry (p-value > 0.05).

Kruskal-Wallis’s test indicated significant differences existed
in unpooled InRR of TAS across soils (p-value< 0.05), although
no differences were detected in InRR of mur, glu, and gal (p-
value > 0.05). Post-hoc comparison on TAS InRR indicated
gelisols and mollisols significantly differed from the InRR base
mean (p-value< 0.05).

3.2 Average soil necromass between
treatment groups and across reference
soil groups

The Kruskal-Wallis’s test indicated warming did not
significantly affect average individual amino sugars (glu, cal,
mur) or TAS when pooled by treatment group (Supplementary
Figure S3). Warming effects were also statistically insignificant
across reference soil groups (Supplementary Figure S4), meaning
that there was no consistent warming effect across the different
soil types. However, substantial differences in necromass were
detected across soil groups (Figure 2). Post-hoc comparison
analysis showed several soil groups significantly differed from
the population’s base mean (Figure 2).

3.3 Predicting necromass with GLMs

We modeled the distribution of microbial necromass using a
GLM with inverse Gaussian or gamma distributions. The null
models, which state model coefficients are equal to zero, had
poor goodness of fit relative to full models, as determined by
model validation and model summary tables. We could not
validate full models for any necromass biomarker that used
biome, treatment group, warming magnitude, or warming
duration as sole predictor variables. As discussed below, the
addition of reference soil group as a predictor variable improved
model goodness of fit for all necromass biomarkers.
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FIGURE 1

Forest plot of pooled natural log response ratios (INRR) and 95% confidence intervals of total amino sugars (purple), muramic acid (light
blue), glucosamine (red), and galactosamine (dark blue) in response to warming across soil groups. The vertical dashed line represents a InRR of
zero. Effect sizes are significant (p-value< 0.05) if the confidence intervals do not overlap with zero. Significant effect sizes are shown with filled

in symbols whereas insignificant effect sizes are hollow symbols.

3.3.1 GLM predicting total amino sugars

All validated GLMs that predict TAS used an inverse Gaussian
distribution. We validated a GLM that predicted TAS with the
warming method as the sole predictor variable. Our GLMs
detected IR warming as a significant predictor of TAS whereas
OTC warming was not a significant predictor. However, model
performance was poor, as determined by model summary tables.
We also validated GLMs that predicted TAS with the interaction
between reference soil group, warming duration, and treatment
group. These models also detected IR warming was a significant
predictor of TAS, although warming duration and treatment
group were insignificant predictors. Unfortunately, there were
not enough observations to estimate if interactions between these
predictor variables were significant. However, these models
performed poorly relative to the GLM mentioned below.

Our best validated GLM, with the lowest AIC (AAIC > 99.09),
used the reference soil group to predict TAS. Model summary
tables revealed there were significant differences in TAS across
reference soil groups (Table 2), which indicates soil group is a
significant predictor of TAS. In addition to model summary
tables, the estimated marginal means (EMM) of TAS differed
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across reference soil groups (Figure 3). Pairwise comparison on
EMM indicated TAS significantly differed across some, but not all
reference soil groups (Supplementary Table S1).

3.3.2 GLM predicting muramic acid

All validated models that predict mur used a gamma distribution.
We validated models that predicted mur with soil texture, although
this variable was not a significant predictor. We also validated a GLM
that predicted mur with sampling depth and detected sampling
depths of 0-10cm are significant predictors of mur. Other validated
models used the interaction between reference soil group and
method, reference soil group and depth, and reference soil group
and biome. There were not enough observations to explore whether
interactions between these categorical variables were significant.

Our best validated GLM used the reference soil group to
predict variation in mur (AAIC > -231.19). Like TAS, model
summary tables revealed reference soil group is a significant
predictor of mur (Table 3). The EMM of mur also differed across
reference soil groups (Figure 3). Pairwise comparison on EMM
showed mur differed across several reference soil groups
(Supplementary Table S2).
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FIGURE 2

(A) Total amino sugars (mg/g), (B) muramic acid, (C) glucosamine, and (D) galactosamine across all soils. The Kruskal Wallis test detected significant
differences in average individual and total amino sugar content across soils (p-value< 0.05). We performed post-hoc comparison using the
Wilcoxon Rank-Sum test to determine where group differences originated from. The reference group for post-hoc comparison was the mean of all
total or individual amino sugars (mg/g), which is shown by the dashed line. Statistical significance (p-value< 0.05) is indicated by asterisks whereas
no statistical significance (p-value > 0.05) is indicated by "ns".

TABLE 2 Summary table of GLM predicting total amino sugars (mg/g) by reference soil group.

Reference Soil Group Estimate SE p-value
Anthrosol (intercept) 1.156 0411 0.007
Arenosol -1.077 0.412 0.012
Calcisol -0.792 0.446 0.082
Cambisol a -1.132 0.411 0.008
Cambisol b 9.314 1.573 0.000
Gelisol -1.125 0.411 0.009
Histosol 5917 0.771 0.000
Kastanozem 21.682 2.756 0.000
Luvisol -1.058 0.416 0.014
Mollisol 3.383 0.909 0.000

Model summary table shows the contrast (Reference soil group), estimate, standard error (SE), and p-value. Bold p-values indicate that the reference soil group is a significant predictor of
the response variable (total amino sugars (mg/g)) at alpha level 0.05. Model null deviance was 66.038 and residual deviance was 4.451.
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FIGURE 3

10.3389/fs0il.2022.987178

Plot of estimated marginal means (EMMs) from validated GLM's that predicted total amino sugars (A) and muramic acid (B) using soil type.
The blue bars represent confidence intervals for the EMMs, and the red arrows indicate comparisons between EMM's. If red arrows from one
soil type overlap with red arrows from another soil type, then no significant difference (p-value< 0.05) in necromass exists between the soil

groups. If arrows do not overlap, then significant differences in necromass exist.

3.3.3 GLM predicting glucosamine

All validated GLMs that predicted glu used an inverse
Gaussian distribution. We validated a GLM that predicted glu
with soil texture, which revealed clay loam and sandy loam soils

are significant predictors of glu. Other validated GLMs that
predict glu use either warming method or soil type as the sole
predictor variables. These models detected OTC warming as a
significant predictor of glu as well as several reference soil groups

TABLE 3 Summary table of GLM predicting muramic acid (mg/g) by reference soil group.

Reference Soil Group Estimate Std. Error p-value
Anthrosol (intercept) 45.455 5.024 1.63E-09
Arenosol -31.464 5.142 1.81E-06
Calcisol -32.683 5219 1.25E-06
Cambisol a -27.026 5.292 2.54E-05
Cambisol b 38.933 8.291 7.50E-05
Histosol -33.533 5.053 4.87E-07
Kastanozem -1.691 6.078 7.83E-01
Luvisol -42.010 5.039 8.08E-09
Mollisol 1.307 7.208 8.58E-01

Model summary table shows the contrast (Reference soil group), estimate, standard error (SE), and p-value. Bold p-values indicate that the reference soil group is a significant predictor of
the response variable (muramic acid (mg/g)) at alpha level 0.05. Model null deviance was 23.133 and residual deviance was 0.633.
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(anthrosol, cambisol b, histosol, kastanozem). However, the best
GLM that predicted glu used the interaction between reference
soil group and warming method (AAIC > -72.11). There were
not enough observations of glu across soil warming experiments
to estimate if the interaction between these categorical variables
(soil * method) were significant. Because of this, we did not
compute EMM or conduct post-hoc analysis.

3.3.4 GLM predicting galactosamine

Validated GLMs that predict gal use an inverse Gaussian
distribution or gamma distribution. Gal was the only necromass
biomarker that could not be predicted with reference soil group
as the sole predictor variable. We validated GLMs that predict
gal using the warming method with a gamma distribution and
detected IR warming as a significant predictor of gal. We also
validated GLMs that predicted gal with the interaction between
warming magnitude and warming method using both inverse
Gaussian or gamma distributions. Our model did not detect
warming magnitude as a significant predictor of gal.

Our best model that predicted gal used the interaction
between reference soil group and warming method with an
inverse Gaussian distribution (AAIC > -139.9). Analogous to our
top GLM that predicted glu, there were not enough observations
to estimate if the interaction between categorical variables (soil
group * warming method) were significant. Thus, we did not
compute EMM or conduct post hoc analysis.

4 Discussion

Through a systematic review and meta-analysis of in situ soil
warming experiments, we detected significant warming-induced
effect sizes (InRR) on necromass. We show that warming effect
sizes on necromass were not uniform across reference soil groups,
which supports our first hypothesis. However, warming did not
significantly affect average necromass between treatment groups
(p-values > 0.05); this contradicts our first hypothesis. These
contrasting findings between effect sizes (InRR) versus p-values
(averages) may suggest the small sample size used in this analysis
influenced the nonparametric tests, thus increasing the likelihood
of type II errors. For instance, we detected significant differences
in average TAS between treatment groups, specifically in gelisols,
prior to averaging raw data from supplementary text (34). Ideally,
raw data would not have been averaged prior to analysis but >
90% studies reported averaged amino sugars between treatment
groups. Thus, we felt it was best to be consistent and use averaged
values. The trade-off here is smaller sample sizes inflate the p-
value. Ultimately, these findings suggest 1) warming had a variety
of significant effect sizes that largely depend on the reference soil
group and 2) warming did not significantly change average
necromass between treatment groups.

Warming had positive effect sizes on necromass, depending
on the reference soil group. This suggests warming may offset or

Frontiers in Soil Science

09

10.3389/fs0il.2022.987178

increase microbial necromass production and deposition in the
short term, possibly due to warm-induced increases in microbial
mortality and turnover (16, 67). Soil microbes are primarily C
limited, and the stress of climate change can divert resources
away from growth and nutrient acquisition, altering microbial
biomass composition, growth rates, and necromass deposition
(68, 69).

Warming effect sizes were positive or insignificant on
microbial necromass in frozen soils, including gelisols, gelic
arenosols, and gelic cambisols. These permafrost soils all share
similar pedogenesis (70), thus it is not surprising effect sizes were
similar across these soils. Permafrost soils are generally C rich
(70) so microbial recycling of necromass to satisfy C
requirements is less likely to occur. In addition, average
necromass stocks did not significantly differ across frozen
soils, as per pairwise comparison analysis. These findings may
indicate warming stressed out permafrost soil microbes,
consequently enhancing mortality rates. This could increase
necromass formation and deposition in the short term,
whereas long-term increases in soil necromass would be
accompanied by increased microbial growth and turnover.
However, temperate forest soils exposed to chronic warming
for almost 30 years show longer turnover times and lower mass-
specific growth rates (71), likely due to limiting labile C.

Warming had positive or insignificant effect sizes on soil
amino sugars in agricultural soils, which include gleyic stagnant
anthrosols and argic rustic ustic cambisols. Its plausible that
these agricultural soils are less limited by labile C, nitrogen, and
phosphorus, which could explain why warming did not enhance
microbial decomposition of necromass. However, it is worth
mentioning that although amino sugars are commonly used
necromass biomarkers, they come with limitations. For instance,
amino sugars analysis does not capture necromass turnover
times, only reflects necromass derived from microbial cell
walls, and microbial origins are not always clear (16, 72, 73).

Warming effect sizes on necromass were negative in certain
reference soil groups. This may suggest warming enhances
microbial recycling of necromass and/or facilitates its
destabilization. Microbes may recycle more necromass as a
source of nutrients to cope with warm-induced reductions in
labile C (16). Destabilization of necromass renders previously
physicochemically protected necromass susceptible to
decomposition (16); this can magnify positive soil C feedback
and reduce soil C sequestration. Destabilization of microbial
necromass is the least understood component of necromass
dynamics (16).

Calcium is a commonly used SOM stabilization index since
it promotes aggregation through calcium bridges. Thus, we
would have expected warming would increase necromass
deposition and stabilization in calcium rich soils, which
include the calcic kastanozem, haplic calcisol, and argixeroll.
However, this was not the case. Warming generally had
significant negative effect sizes on glu, a fungal biomarker, and
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TAS in calcic soils. Because fungal contributions to necromass C
can be greater than bacteria (74, 75); the observed negative
warming effect size on TAS in calcisols and mollisols may have
been more driven by reductions in fungal-derived rather than
bacterial-derived necromass. These findings may suggest
calcium is not a suitable indicator of stability for fungal-
derived SOM, as measured by amino sugars.

We also show warming effects on TAS were more
pronounced in mollisols and gelisols, as the unpooled InRR
significantly differed from the InRR base mean across all
reference soil groups. This may suggest microbial-derived
SOM in mollisols and gelisols is more susceptible to climate
warming effects relative to other soil groups. Mollisols
(kastanozems or chernozems) are mid-latitude temperate
grassland soils with thick organic horizons, used extensively
for agriculture, and cover about 7% of ice-free land area (76).
Because warming effects on necromass were negative in
mollisols, and SOM is an indicator of soil health, climate
warming may have severe consequences on mollisol health by
reducing microbial-derived SOM sequestration. In contrast,
gelisols (cryosols) are permafrost soils found in high latitude
and elevation ecosystems and cover about 9-13% of ice-free land
area (76). We show warming effect sizes were positive in gelisols,
which suggest warming increased necromass stocks in these
permafrost soils. However, long-term warming effects on
microbial-derived SOM in gelisols is not clear. Gelisols are
extremely carbon rich, except in desert ecosystems such as
Antarctic tundra (76), and thus microbial-derived SOM
feedback to climate warming is of great interest. Indeed, future
research efforts should aim to explore necromass dynamics
across all 32 reference soil groups, but these soils should be
targeted as they are intrinsically linked to human food
production (mollisols) and carbon cycling in northern
latitudes (gelisols).

We modeled the variation of microbial necromass across
soils with inverse Gaussian and gamma GLMs. The best GLM
that predicted TAS and mur used soil type as the sole predictor
variable. We did validate a soil only GLM for glu, but this was
not the best model, so we did not compute EMM or conduct
post-hoc analysis. We could not validate a soil-only GLM that
predicted gal, which may be due to the unclear origins of
galactosamine (72, 73). While mur and glu are generally
considered to be exclusive to bacteria and fungi, respectively,
gal can originate from both fungi and bacteria (72, 73). In any
case, our GLMs show that the reference soil group explains most
of the variation in three widely used necromass biomarkers and
improved model performance.

Model summary tables revealed several reference soil groups
are significant predictors of TAS and mur. Pairwise comparison
analysis on EMM extracted from GLMs indicated TAS and mur
significantly differed between soil groups; this supports our
second hypothesis, although not every pairwise comparison
was significant. Post hoc analysis (Wilcoxon Rank-Sum) on
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average necromass extracted directly from publications also
pointed to the same conclusion; necromass differed between
many soil groups. These findings may suggest 1) necromass
varies across certain reference soil groups, 2) our sample sizes
were too small to detect significant differences across all
reference soil groups, or 3) other factors that are not
completely unique to a soil group, such as soil texture or pH,
influence necromass. In cases where significant pairwise
differences were detected, this may be due to variation in soil
physicochemical attributes across soil warming experiments,
which differentially influence necromass dynamics. In sum, we
show that reference soil group may be a useful framework for
predicting microbial necromass stocks. However, more research
studying in situ soil warming effects on microbial necromass is
needed, especially in underrepresented soils (30) and
ecosystems (16).

Our GLM that predicted mur with sampling depth detected
soil depths of 0-10 cm are significant predictors of mur, although
subsoil depths were not significant. This could be due to greater
SOM content and microbial abundance in some topsoils versus
subsoils. Although our GLM did not detect subsoil depths as
significant predictors of mur, a recent analysis showed muramic
acid significantly increases with soil depth (49). Our findings
may be an artifact of our small sample size when compared to
the large dataset analyzed by Ni et al, 2020. Furthermore, our
model performed poorly when compared to the GLM that
predicted mur with reference soil group.

Soil texture, or more specifically clay percentage, is often
incorporated into soil C models. However, pairwise comparison
analysis detected significant differences in necromass between
soil groups that had similar textures and clay percentages. For
instance, TAS significantly differed between haplic calcisols,
calcic kastanozems, and argic rustic ustic cambisols, which all
have a sandy loam texture (see Supplementary Table SI).
Furthermore, GLMs that used soil texture as the sole predictor
variable were either not validated or performed poorly relative to
other predictors, including reference soil groups. Our findings
may suggest the utility of moving beyond soil texture and
incorporating soil classification systems into soil C models.

We show soil warming methodology also influences variation
in necromass across soil warming experiments. Our best GLMs
that predicted glu and gal used the interaction between reference
soil group and warming method. We did validate a GLM that
predicted TAS with the warming method although this was not
the best model. Whereas IR warming was a significant predictor of
TAS and gal, OTC warming was a significant predictor of glu.
This may suggest that necromass biomarkers are differentially
influenced by active warming (IR) versus passive warming (OTC).

Active warming methods such as IR or buried heated cables
apply external heat to the system and are considered to more
closely resemble climate warming scenarios (77). Unfortunately,
these methods are more costly, energy intensive, and cause more
soil disturbance when compared to passive warming methods
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(76). In contrast, temperature fluxes in passive warming
methods are more variable and OTC are not applicable in
forested ecosystems (77). Because sandy soils have lower
specific heat capacity relative to clayey soils, less energy is
required to heat coarse textured soil (78). Likewise, soil
thermal conductivity, or the soil’s ability to conduct heat, is
generally higher in coarse texture soils relative to fine texture
soils (78). This means heat can move more freely in sand versus
clay (78). Thus, active warming may be more appropriate in fine
textured soils whereas passive warming may be just as effective in
coarse textured soils. However, it is important to note soil
specific heat capacity and thermal conductivity are positively
correlated with soil moisture and this should be taken into
account in soil warming experiments (78). How the reference
soil group interacts with active versus passive warming methods
is unknown because 1) there were not enough observations to
estimate if interactions among predictor variables were
significant and 2) a reference soil group can vary in texture.
These findings indicate passive versus active warming
methodology can yield different necromass response patterns.
More research is needed to understand the mechanistic reason for
these methodological driven responses in necromass dynamics
across reference soil groups. Although passive warming methods
can be more variable, they may be advantageous when compared to
active warming, especially in developing nations, as they are more
economic, energy efficient, and cause less soil disturbance (77). OTC
are ideal for ecosystems with low plant stature such as grasslands
(77), whereas greenhouse warming has been shown to be efficient in
(79). Thus, we
recommend future research efforts measuring necromass to employ

higher stature ecosystems such as boreal forest

more passive soil warming methods when active warming is not
feasible. Still, researchers must consider soil specific heat capacity
and thermal conductivity in soil warming experiments; these
properties influence the energy required to efficiently heat soil and
the transfer of heat throughout the soil profile.

A major limitation of this study is the small sample size and
unequal observations of necromass across soils, which hampers our
confidence in the models and statistical analysis. Soil groups are not
well represented in our analysis, and it was common that a specific
soil group was only reported by one study. Differences in necromass
content across publications could be attributed to a variety of
climatic factors rather than soil-specific trends. However, soils are
reflective of the climate and biome they formed in and thus, using
reference soil groups to make predictions captures ecosystem data
such as but not limited to precipitation, temperature, elevation,
plant communities, and aspect.

Cross-comparison between studies is also difficult because of
differences in warming methods, magnitude, and duration.
Microbial necromass content and soil properties can vary with
depth (48, 49) but soil sampling depth in our analysis ranged
from 5-50cm. Furthermore, our data are based upon short and
medium length warming experiments since long-term (>10
year) studies are not yet available. Consequently, long-term

Frontiers in Soil Science

11

10.3389/fs0il.2022.987178

warming effects on microbial necromass are not yet clear.
Finally, grasslands are overrepresented in this meta-analysis
and account for > 70% of all experimental locations.

5 Conclusion

Our study highlights a lack of research available examining
warming effects on microbial-derived SOM. We also show the
warming method can be a significant predictor of necromass.
Although passive warming methods can be more variable, they
may be advantageous when compared to active warming, especially
in developing countries, as they are more economic, energy efficient,
and cause less soil disturbance (77). Thus, we recommend future
research efforts measuring necromass to employ more passive soil
warming methods when active warming is not feasible. Our analysis
should serve as a call to action to encourage more research studying
1) warming effects, especially long-term warming effects, on
microbial necromass across all 32 reference soil groups (with
emphasis on gelisols and mollisols), 2) how experimental soil
warming methods influence necromass dynamics across reference
soil groups, and 3) what predictors of necromass are captured in soil
classification systems (reference soil groups) but not in soil texture
or clay percentage. Further study of climate change effects on
necromass deposition, turnover, and stocks will advance our
understanding of SOM dynamics, strengthen carbon models, and
inform climate change mitigation strategies.
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