VAIF: Variance-driven Automated Instrumentation Framework

Mert Toslali*, Emre Ates*, Darby HuyeT, Alex Ellis”,
Zhaogi Zhang", Lan Liu', Samantha Puterman*, Ayse K. Coskun*, Raja R. Sambasivan’
*Boston University, " Tufts University

Abstract

Developers use logs to diagnose performance problems in
distributed applications. But, it is difficult to know a pri-
ori where logs are needed and what information in them is
needed to help diagnose problems that may occur in the future.
‘We summarize our work on the Variance-driven Automated
Instrumentation Framework (VAIF), which runs alongside
distributed applications. In response to newly-observed per-
formance problems, VAIF automatically searches the space of
possible instrumentation choices to enable the logs needed to
help diagnose them. To work, VAIF combines distributed trac-
ing (an enhanced form of logging) with insights about how
response-time variance can be decomposed on the critical-
path portions of requests’ traces.

1 Introduction

Logs are the de-facto data source engineers use to diag-
nose performance problems in deployed distributed applica-
tions. However, it is difficult to know a priori where logs
are needed to help diagnose problems that may occur in
the future [16, 32-34]. Exhaustively recording all possible
distributed-application behaviors is infeasible due to the re-
sulting overheads. As a result of these issues, distributed
applications can contain lots of log statements, but rarely
the right ones in the locations needed to diagnose a specific
problem [16,33]. New performance problems cannot be diag-
nosed quickly because the detailed logs needed to locate their
sources are not present.

Diagnosing problems observed in deployment requires cus-
tomizing logging choices during runtime. Two sets of comple-
mentary techniques allow for such customization: dynamic
logging and automated control of logging choices. The former
allows developers to insert new logs in pre-defined [4,9, 16]
or almost arbitrary locations [11] of an application. But, it
can result in high diagnosis times because engineers must
manually explore the vast space of possible logging choices
to locate the source of the problem. Only after doing so can
they identify the root cause and fix it.

To reduce diagnosis times, researchers have developed au-
tomated techniques to choose the needed logs [3,7,13,34,35].
However, they focus on correctness problems, not perfor-
mance, or are designed for individual processes, not dis-
tributed applications. For example, Log20 [34] helps diag-
nose non-fail-stop correctness problems by enabling logs to
differentiate unique code paths. However, fast code paths
need not be differentiated for performance problems, and
slow ones need additional logs to further pinpoint the prob-
lem source. Log? [7] identifies which logs provide insight into
performance problems in individual processes. Its value is
diminished for distributed applications because it is unaware
of slow requests’ workflows—i.e., the application processes
involved in servicing them.

In Toslali et al. [27], we presented the Variance-driven
Automated Instrumentation Framework (VAIF). It is a log-
ging framework that automatically enables the logs needed to
diagnose performance problems in request-based distributed
applications. We found that the combination of three insights
about the critical-path sections of requests workflows, dis-
tributed tracing (an enhanced form of logging), and requests’
performance variance made VAIF possible.

The insights are as follows. First, in many distributed appli-
cations, requests whose workflows are expected to have simi-
lar critical paths should perform similarly [21]. If they do not—
i.e., they exhibit high response-time variance—the expecta-
tion is incorrect, and there is something unknown about their
critical paths. This unknown behavior may be performance
problems, such as slow functions, resource contention, or
load imbalances. Second, distributed tracing captures graphs
(traces) of requests’ workflows with resolution equal to the
number of logging points in the application. (Distributed trac-
ing calls log points tracepoints.) Third, high response-time
variance can be localized to sources of high variance within
critical-path portions of requests’ workflow traces, giving
insight into where more tracepoints must be enabled to ex-
plain the unknown behavior. For problems that manifest as
consistently-slow requests instead of high variance ones, a
similar process that focuses on high-latency areas of critical



paths can be used.

VAIF is comprised of a distributed-tracing infrastructure
that allows tracepoints to be enabled or disabled and control
logic that decides where to enable tracepoints based on the
performance-variation insights. It uses various search strate-
gies (e.g., binary search) to decide which tracepoints to enable.
During normal operation, VAIF operates identically to dis-
tributed tracing today and generates traces with a default level
of tracepoints enabled. When developers must diagnose why
requests are slow, they “push a button” and VAIF automati-
cally explores which additional tracepoints must be enabled to
locate the problem source(s). Similar to dynamic instrumenta-
tion, VAIF’s approach reduces the burden of deciding which
logs to enable a priori. It also eliminates the manual effort
required to search the space of possible tracepoint choices.

We implemented two prototype VAIFs for OpenStack [18]
and HDFS [26] by modifying their existing tracing implemen-
tations. In both applications, we found that our prototypes
can enable tracepoints to locate the sources of real and syn-
thetically injected sources of variance and latency. We found
that many real sources of variance and latency correspond to
bug reports in developer mailing lists. Our prototypes only
enabled 3-37% of the tracepoints they could enable to localize
these issues.

The rest of this paper summarizes Toslali et al. [27]. We
focus on motivating the need for automated instrumentation
frameworks (Section 2), VAIF’s design (Section 3), and a
short overview of our evaluation (Section 4).

2 Toward automated logging choices

This section introduces challenges in logging to help diagnose
performance problems. It derives requirements that any instru-
mentation framework should satisfy to address the challenges.
It describes how these requirements can be met by combining
distributed tracing with control logic that focuses on requests’
response-time variance.

2.1 Challenges

Past research has identified three challenges with logging that
curtail its value for localizing problems. Such localization
identifies the areas first or most affected by problems, giving
developers strong starting points for their diagnosis efforts [8].
The challenges are: 1) No perfect one-size-fits-all logs leading
to a tussle between informativeness and cost (e.g., overhead),
2) Extremely large log search spaces, and 3) Data overload
leading to a needle-in-the-haystack problem.

These challenges must be addressed separately for cor-
rectness and performance problems as logging for these two
classes have different goals. Logging for correctness must
identify the first divergence from normal execution that leads
to problematic regions in the code [3,31,33,35]. In compar-

ison, logging for performance must identify regions of the
code or resource conditions that lead requests to be slow.

No perfect one-size-fits-all instrumentation. Past research
argues that the logs needed to localize the source of one prob-
lem may not be useful for others [16, 28, 33, 34]. The lack
of one-size-fits-all logs leads to a tussle to identify which
log statements are most helpful and should be enabled by de-
fault. For example, Zhao et al. [34] state that Hadoop, HBase,
and Zookeeper have been patched over 28,821 times over
their lifetimes to add, remove, or modify static log statements
embedded in their code. They also point out that the 2,105
revisions that modify logs’ verbosity levels reflect the tussle
between a desire to balance overhead and informativeness
of log statements. This challenge results in the following
requirement:

R1 Logging frameworks must allow logs to be enabled se-
lectively by developers during runtime or must auto-
matically enable logs in response to problems observed
during runtime.

Extremely large logging search spaces. Assume a dis-
tributed application that allows log points to be enabled at
every function’s entry, exit, and exceptional return. (This is
similar to the distributed applications used by Mace et al. [16]
and Erlingsson et al. [9].) Here, the possible locations where
log statements can be enabled is a function of the number of
procedures in the applications’ code base and the number of
machines on which the application executes. Even modestly-
sized distributed applications can have search spaces with
100s or 1000s of possible log points.

To address this scalability challenge, we refine R to require
logging frameworks to automatically enable tracepoints. We
add a requirement stating that frameworks must automatically
narrow down the search space when exploring new problems.

R2 Automated Logging frameworks must be capable of nar-
rowing down the search space when exploring which
logs are needed to localize a newly-observed problem.

The needle-in-a-haystack problem. Existing logging infras-
tructures capture voluminous amounts of data. For example,
Facebook’s Canopy, a distributed-tracing infrastructure cap-
tures 1.16 GB/s of trace data and individual traces contain
1000s of tracepoints [12]. Problem diagnosis, even when the
needed instrumentation is present, is as difficult as finding a
needle in a haystack [20].

This challenge is partially addressed by R/ and R2. To
avoid the needle-in-haystack problem for cases where there
may be multiple problems in the application simultaneously,
we add the following requirement.

R3 Automated logging frameworks must be capable of ex-
plaining their logging decisions.



2.2 Key insights

We discuss insights that let us address the requirements and
discuss how the requirements are addressed next.

The first insight is that in many distributed applications,
requests with similar critical paths—i.e., requests that are
processed similarly by the distributed application—will have
similar response times. A request’s critical path is the highest
latency concurrent path of its workflow that must complete
before a response is sent to the client. An existing use of
this insight involves using separate performance counters for
different request types or API calls, such as READs and GET
ATTRIBUTES in a distributed-storage application. Separate
counters are used because there is an expectation that requests
of different types will have different critical paths and thus
have different response times.

The second insight is that distributed tracing [19,22, 24],
which is an enhanced form of logging, can identify requests’
critical paths with resolution equal to the amount of tracing
instrumentation present. This is because it records graphs
(called traces) of requests workflows. Today, distributed trac-
ing is becoming increasingly popular and an ever growing
number of distributed applications are being instrumented
with it [6, 12,14, 18,25,26,30].

This insight combined with the previous one means that
that if requests’ whose workflow traces have identical criti-
cal paths do not perform similarly—i.e, their response time
variance is high—there is some unknown behavior that is not
captured in their traces. This behavior may represent perfor-
mance problems, such as slow code paths or functions exe-
cuting, differences in resources available to requests, poorly-
written algorithms that unintentionally increase variance, or
third-party code with unpredictable performance.
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Figure 1: Distributed tracing architecture. Traces are being
collected for a simplified version of OpenStack [18]. The blue
line shows the workflow of a VM_LIST request.

Figure | shows how most distributed-tracing infrastruc-

tures work. (1) Tracing infrastructures propagate per-request
context (e.g., request IDs) along with requests’ execution (‘@
in the figure). @) They tag records of logging points exe-
cuted by requests with requests’ context. (Logging points
that record context are called tracepoints and shown by (] in
the figure.) @) To avoid impacting performance, tracepoint
records are cached in fixed-size memory buffers within local
tracing agents. They are flushed to a centralized collector
periodically. @) Asynchronously, a big-data job collects tra-
cepoint records from the collector and orders ones with the
same request ID to create traces of requests’ workflows. Tra-
cepoints contain a name describing the behavior they record
(e.g., VM_LIST_START) in OpenStack or CACHE_MISS
in a storage system. They also contain an arbitrary num-
ber of key/value pairs, which developers use to record re-
quest/function parameters or information about resources
used/available at the time of requests’ execution.

The third insight is that the law of total variation [29] can
be applied to traces of requests’ critical paths. For a set of
requests whose trace critical paths appear identical as per the
enabled tracepoints, this equation can be interpreted as fol-
lows. The variance of requests’ response times is the variance
of the latencies of their critical-path trace edges plus their
covariances.

This insight means that we can identify areas in the code-
base in which unknown behavior resides by identifying the
edges of requests’ critical-path traces that contribute most to
the variance. The unknown, potentially problematic behav-
ior resides within the code regions that execute between the
tracepoints that form these edges.

2.3 Addressing the requirements

Based on the insights, the requirements can be satisfied for
many classes of performance problems by combining two
technologies. The first is a distributed-tracing infrastructure
that allows tracepoints to be selectively enabled or disabled
during runtime. The second is a control mechanism for dis-
tributed tracing that automatically enables tracepoints and
considers key/value pairs exposed in them to explain variance
as per the insights above. The control logic also includes addi-
tional principles to diagnose problems that result in identical
critical paths having low variance but are very slow and to
explain its decisions. We use the term critical-path traces to
refer to the critical path portions of requests workflows. We
define identical critical path traces as those which execute
the same tracepoints in the same order and whose nodes have
identical names.
Principle #1. Identify requests whose traces exhibit identi-
cal critical paths with high response-time variance. Identify
edges of their traces’ critical paths that contribute most to the
variance. Enable additional tracepoints in the code regions
corresponding to these areas.

Principle one differentiates slow code paths from fast ones



and/or isolates code with unpredictable performance. It ad-
dresses R1: enable tracepoints (logs) automatically in re-
sponse to problems and R2: narrow down the search space.

This principle is a direct application of the law of total
variation to critical-path traces. Applying this law narrows
down the search space to tracepoints that can execute between
the critical-path trace edges that contribute most to response-
time variance (R2). Enabling some tracepoints in this area
adds them to future traces, either differentiating critical-path
traces further to separate fast ones from slow ones or further
isolating areas from which high variance arises.

Iteratively applying this principle until requests with identi-
cal critical-path traces exhibit low response-time variation or
until no additional tracepoints can be enabled accomplishes
the following. /) It sufficiently differentiates fast critical paths
from slow ones or 2) isolates high variance coming from
black-box third-party code, problematic algorithms, or differ-
ences in resource usage/availability (R7).
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Figure 2: Applying Principle #1 to differentiate fast critical
paths from slow ones

As an example of differentiating fast critical paths from
slow ones, Figure 2 shows three groups of identical critical-
path traces from a distributed-storage system, similar to
Ceph [30] or HDFS [26]. In Figure 2a, the response-time
variance of READ requests with identical critical-path traces
is high. The figure shows that the trace edge spanning storage
node accesses is the dominant contributor to response-time
variance. Figure 2b and 2c shows that enabling tracepoints
to differentiate cache hits from misses distinguishes fast criti-
cal paths (cache hits) from consistently slow ones. We refer

readers to Toslali et al. [27] for more examples on applying
principles.

Principle #2. Identify requests whose traces have identical
critical paths, have low variance, but have high response times
(i.e., are consistently slow). Identify critical-path trace edges
that are dominant contributors to response times and enable
tracepoints in the code regions corresponding to these areas.

Principle two localizes problems due to slow functions. It

addresses R1: automatically enable instrumentation and R2:
narrow down the search space. It is needed because princi-
ple one identifies slow critical paths, but does not localize
slow performance to specific code areas. It is similar to the
first principle except it focuses on response times and edge
latencies directly instead of variance.
Principle #3. Identify requests whose traces exhibit identical
critical paths with high variance in their response times. Iden-
tify which key/value pairs exposed by already-enabled trace-
points correlate highly with requests’ response time. Augment
tracepoint names with these keys and ranges of their values
or directly surface them to developers.

Principle three localizes problems related to resource us-

age/availability. It also differentiates slow critical paths from
fast ones when keys’ values record how much work requests
must perform (e.g., read/write sizes in a storage system). It is
an enhancement to Principle one in that it explores reasons
for variation that are not due to differences in critical paths
themselves, but rather due to external factors at the time of
requests’ execution (e.g., resource contentions).
Principle #4. Maintain a history of the tracepoints enabled
on behalf of high variance or consistently-slow performance
along with the statistics that motivated these decisions. This
principle allows the framework to explain why it made the
decisions it did to localize problems (R3).

3 VAIF

VAIF is an automated instrumentation framework that com-
bines distributed tracing and control logic based on the princi-
ples. It is deployed alongside running distributed applications.
In normal operation, VAIF operates identically to existing
distributed tracing, generating traces using tracepoints that
developers wish to have always on. These tracepoints may be
ones developers have found useful in the past or ones used for
use cases other than performance diagnosis, such as correct-
ness. When new performance problems occur, developers can
use VAIF to automatically enrich traces with the additional
tracepoints needed to localize them.

VAIF localizes problems due to slow code or those with un-
predictable performance (high variance). Such unpredictabil-
ity may emanate from areas of the application itself, third-
party code the application uses, or from areas of the applica-
tion that could benefit from additional tracing instrumentation.
VAIF also explores whether key/value pairs exposed in trace-
points explain high variance. It allows developers to specify



important keys that they suspect will explain variance and bin
ranges for them. VAIF will augment tracepoint names with
these keys if they explain variance. It will surface other keys
whose values explain variance in its output.

Like manual dynamic-instrumentation approaches [9, 16],
VAIF frees developers from the tussle between generality and
overhead. Unlike manual approaches, it also frees them from
having to search the space of tracepoint choices to enable
additional ones. When enabling instrumentation, VAIF works
in a continuous cycle. At each iteration, it uses the principles
to hypothesize (guess) which tracepoints should be enabled
next within a high variance or slow area of the application. It
uses the results of previous hypotheses to guide future ones.
It uses a novel data structure, called the hypothesis forest, to
explain the results of its hypotheses to developers. VAIF’s
analyses are most useful for on-path problems. It also provides
value for off-path problems by identifying the critical-path
areas most affected by them.

3.1 Design

Figure 3 shows VAIF’s design, which builds upon existing
distributed tracing. It consists of a control plane and an instru-
mentation plane. Components in the control plane implement
the control logic whereas those in the instrumentation plane
implement the control logic’s hypotheses or provide custom
information about the application.

VAIF works in a continuous loop, which is shown in red
in the figure. At each iteration, VAIF’s instrumentation-plane
components gather new critical-path traces (® in the figure).
The control-plane components examine them to identify hy-
potheses of which tracepoints should be enabled next and
which key/value pairs additionally explain high variance ((®)).
Hypotheses are sent to the instrumentation plane components
(©), which enable the relevant tracepoints and the cycle re-
peats. VAIF pauses its explorations if any of the tracing agents’
queues are congested. This prevents cases in which VAIF does
not observe the effects of new hypotheses because tracepoints
records were dropped.

3.1.1 Components

Control plane. The control plane consists of the control logic,
two search strategies for deciding which tracepoints to enable
in high-variance or slow areas, and a congestion tracker that
periodically receives queue occupancies from tracing agents.
The search strategies are designed to be generically applica-
ble to many distributed applications. The congestion tracker
informs the control logic when any tracing agents’ queues are
in danger of being congested, which we define as over 50%
occupancy. We use this conservative definition because VAIF
does not know how many times tracepoints will execute once
enabled. The control plane also maintains important state: a
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Figure 3: VAIF design. The thick red line shows VAIF’s
continuous loop. Solid lines are traces/tracepoints and dashed
lines are control signals. A generic distributed application
instrumented with tracing is shown in the instrumentation
plane.

global list of tracepoints that have been enabled by VAIF and
the hypothesis forest.

VAIF’s control-plane components are modular and in-
tended to be used with different distributed applications and/or
tracing infrastructures without modifications.

Instrumentation plane. The instrumentation plane consists
of an application instrumented with tracing, a critical-path
extractor that extracts critical-path portions from traces and
sends them to VAIF’s control-plane components, and a search
space that describes the application’s tracepoints. The critical-
path extractor works by identifying the highest-latency trace
path from the tracepoint indicating request reply to that indi-
cating request start. Concurrency and synchronization may
result in multiple paths for a single trace, each with different
latencies. The search space names all of the tracepoints in the
distributed application, including the keys that will be used in
grouping. It also lists concurrency/synchronization tracepoint
names as these must be enabled for critical-path extraction.
Legacy instrumentation-plane components require modifi-
cations to be used with VAIF. First, the tracing infrastructure’s
libraries must allow tracepoints to be selectively enabled or
disabled during runtime. They must also let developers spec-
ify which tracepoints should be considered always on. Second,



tracing agents co-located with processes must report queue
lengths and receive updates about which tracepoints to en-
able or disable. Third, tracing infrastructures must preserve
happens-before relationships between tracepoint records to
allow critical paths to be extracted. This can be done by expos-
ing APIs to capture them directly (as done by X-Trace [10,15],
Canopy [12], and Stardust [23]) or by learning them over a
large number of traces (as done for traces that preserve only
hierarchical caller/callee relationships, such as Dapper [17]
and Artillery [5]).

3.1.2 Usage

Starting VAIF’s exploration. VAIF takes two inputs to start
its explorations. The first is the application search space. The
second is a list of tracepoints corresponding to start of exe-
cution of request types (or endpoints) that are experiencing
problems. (We assume tracepoints that name the correspond-
ing replies can be programmatically derived otherwise, they
would need to be provided as well.)

VAIF also takes as input two optional parameters. The first
is a threshold for identifying groups of critical-path traces that
exhibit high variance, specified as a coefficient of variation
(CV or 6/u). We use CV for this unpredictability condition
because it is a unitless measure that reflects the intuition
that groups with high response-time spread compared to their
mean are more unpredictable than those with low spread. The
second is a threshold for identifying groups as consistently
slow (CS). It is specified as a percentile of the relevant request
type’s response-time distribution. VAIF considers any group
of traces that show either CV or mean latency greater than
these thresholds as potential problems. Default values of :
CV threshold = 10%, CS threshold = 95% are used if these
optional parameters are not specified.

VAIF’s output and how to use it. VAIF outputs new traces
whose critical paths are enriched with the additional trace-
points needed to localize problems. Developers can query the
hypothesis forest to identify why tracepoints observed in a
given trace were enabled. For example, for a given trace, the
forest might show that enabling a tracepoint around a cache
differentiated critical paths and generated two new groups,
increasing predictability (lower CV) for one group and iso-
lating unpredictability (increasing CV) for the other group.
Developers can also examine the hypothesis forest directly to
identify groups of requests with high response-time variation
or groups that are consistently slow.

Shutting down VAIF. Developers can shut down VAIF after
they have diagnosed the problem at hand. Before terminating,
VAIF will disable all of the additional tracepoints it enabled.
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3.2 Control logic & hypothesis forest

At each cycle, VAIF’s control logic explores hypotheses of
which tracepoints should be enabled to localize problems.
Hypotheses themselves are of the form “differentiating traces
by whether they include or a lack a newly-enabled trace-
point helps localize the problem.” Localization amounts to
1) differentiating groups of identical critical-path traces with
high variance, 2) isolating high-variance application areas
within groups, or 3) isolating application areas that lead to
consistently-slow performance. To explain its decisions, it
maintains a history of its hypotheses and their outcomes in
the hypothesis forest.

3.2.1 Hypothesis forest

Figure 4 shows an example tree from the hypothesis forest.
Each tree in the forest encodes hypotheses made on behalf
of a different request type or endpoint that VAIF is initial-
ized with (e.g., OpenStack’s VM_LIST in the figure). This
reflects the intuition that request type is a basic predictor of
performance and that different request types may experience
different problems that benefit from different tracepoints.

Nodes of hypothesis trees (hypothesis nodes) contain point-
ers to the results of applying hypotheses. Hypotheses result in
two nodes, one for traces that include the enabled tracepoint
and the other for ones in which it is absent. Each node includes
a field that names the hypothesis tracepoint and whether it
should be present or absent from traces (e.g., +(_) or ~
in the figure). The root node of each tree shows results for
traces that include the request-type start tracepoint.

Results are: 1) groups of identical critical-path traces that
either include or exclude the tracepoint and 2) any keys in in-
cluded tracepoints that explain variance. Groups store impor-
tant performance information needed for VAIF’s analyses—a
representative trace, response-time distributions of requests



Algorithm VAIF control logic

1: procedure HYPOTHESIZE(search, mdtry, req_types)

2:  init hyp(req_types) > Hypothesis tree
3:  inittps_enabled > Enabled tracepoint list
4: init prev > (+) Hypothesis nodes created in last cycle
5:  inittps > Trace points enabled in this cycle
6: initct > Congestion Tracker
7. cv<+0.1 > CV threshold
8: s+ 95 > Consistently-slow threshold
9: enable(mdtry)
10: for ;; do

> Start Cycle
11: while ct.congested_danger() do
12: sleep(cycle_time)
13: end while
14: traces < collector.get_new_traces()
15: hyp.add_traces(traces)
16: search.key_value(prev)

17: prev.make_empty() > Only this cycle’s results
18: cv_gs, cv_nodes < hyp.id_high_cv(cv)

19: cs_gs, cs_nodes < hyp.id_high_cs(cs)

20: tps.add(helper(cv_gs, cv_nodes, prev, VAR))

21: tps.add(helper(cs_gs, cs_nodes, prev, LAT))

22: enable(zps, t ps_enabled)

23: sleep(cycle_time)

24:  end for

25: end procedure

26: procedure HELPER(groups, hyp_nodes, prev, type)
27:  inittps > Chosen tracepoints
28: fori=1...length(groups) do

29: tp < search.find((groupsli], type)

30: prev.add(hyp_nodesli].add_child(+ ¢ p))

31 hyp_nodes]i].add_child( ~ ¢p)

32: tps.add(tp)

33:  end for

34:  returnips

35: end procedure

assigned to them, trace edge-latency distributions, and the
number of requests assigned to each group. Tracepoints en-
abled by VAIF on behalf of other paths or trees are removed
from traces before grouping. Such processing allows VAIF
to measure the effects of each hypothesis independently w/o
interference from other hypotheses. Always-on tracepoints
are not removed as VAIF does not make hypotheses about
them.

3.2.2 Control logic

Algorithm VAIF control logic shows the pseudocode. We
describe important aspects below. See Toslali et al. [27] for
details about supported search strategies (search. find()) and
how the search space is constructed.

Initialization (lines 2-9). HYPOTHESIZE() is initialized with

a search strategy (search), statistical thresholds for identify-
ing high variance and consistently slow groups (cs and c¢v), a
set of mandatory tracepoints that must be enabled for VAIF to
work (mdtry), and tracepoints that indicate the start and end
of monitored request types’ execution (reqg_types). Manda-
tory tracepoints include the concurrency and synchronization
points listed in the search space and those in req_types. VAIF
initializes the hypothesis forest with root nodes correspond-
ing to the start tracepoints in (req_types) and enables the
mandatory tracepoints if they are not always-on ones.
Checking for congestion (lines 11- 13). The congestion
tracker is consulted to check if any tracing agents’ queue
occupancies over 50%. HYPOTHESIZE() sleeps until this con-
dition ceases to hold.

Consuming new traces (lines 14- 15). New critical-path
traces observed in the interval between the previous cycle and
the current one are added to the hypothesis forest’s leaf nodes.
The leaf to which to add a trace is identified by matching its
tracepoints to hypothesis-tree paths. Once the leaf node is
identified, the trace is processed to remove extraneous trace-
points and connect surrounding edges. Finally, the trace is
added to the group that matches its (processed) critical path.
Key/value pairs (line 16). Groups are analyzed to determine
if key/value pairs in tracepoints that were enabled in the pre-
vious cycle are correlated with groups’ response times. The
search space is consulted to identify the subset of the cor-
related keys that have also been specified by developers in
the search space. Tracepoint names are augmented with these
keys and the developer-specified bin ranges for them. (Names
of tracepoints specified in the hypothesis nodes are not mod-
ified.) Remaining correlated keys are surfaced in affected
groups’ hypothesis nodes.

Identifying potential problems (lines 18-19). Leaves of the
hypothesis tree are analyzed to identify which ones contain
problematic groups. These are ones with the most number of
groups that exceed the CV or CS threshold (cv_gs and cs_gs)
respectively. Groups must contain enough samples for statis-
tical confidence to be considered (30 in our implementation).
Generating new hypotheses (lines 20-21). The search strat-
egy is called to suggest tracepoints to enable for problem-
atic groups (search.find()). The strategy uses group’s edge-
latency distributions to decide where a new tracepoint should
be enabled. For a high CV group, it chooses the edge that con-
tributes most to the overall variance. For a consistently-slow
group, it chooses the edge with the largest mean latency. New
nodes are created in the hypothesis forest to test inclusion or
absence of the selected tracepoints in future traces.
Enabling tracepoints and sleeping (lines 22-23). The en-
abled tracepoint list is updated with the tracepoints selected
by the search strategy and is replicated to the tracing agents.
The control loop sleeps for a pre-determined duration to allow
new traces to be gathered.

Stopping condition for problematic groups. The most gran-
ular tracepoints are already enabled within edges that account



for the majority (>50%) of overall variance or latency.

4 Diagnosing problems with VAIF

This section presents a case study of how we used VAIF to
identify various performance problems in OpenStack. Open-
stack is a widely-used distributed application for managing
clouds. We use the OpenStack Stein release. Our cluster con-
sists of 9 Compute and 1 Controller node. VAIF enables one
tracepoint per cycle per hypothesis node. For a more compre-
hensive set of experimental evaluation, we refer readers to
Toslali et al. [27].

Unpredictable performance of VM LIST requests. All
instances on OpenStack can be listed using the command
VM LI1ST. Matching the slowest trace to the hypothesis for-
est shows that the request’s latency emanates from three
edges. This trace’s group shows high CV (0.2), and the en-
abled tracepoints constitute 63% of all variance and 60%
of the latency. We further examine the code corresponding
to those three edges and find the following; 1) two edges
(keystone_post&get) correspond to where identity service
(keystone) is utilized for authentication token, 2) the third
edge corresponds to a function (ger_all) that constitutes 2000
LoC and performs numerous DB lookups to get every in-
stance, including deleted ones. We corroborate these findings
in the bug reports ( [1,2]), which state that VM List experi-
ences latency variations due to a) the token table getting large
in identity service, and b) the function not being able to scale
well with the number of VMs and users. In this case, VAIF
helps diagnose performance problems by isolating latency
to (1) a specific service and operation and (2) an inefficient
function. The latter case also provides an insight to developers
as inefficient tracing (i.e., more tracepoints can be added to
the 2000 LoC).

S Summary

It is difficult to know where logs must already be enabled
to help debug performance problems that may occur in the
future. This paper presents the design of VAIF, which com-
bines distributed tracing and variance-based control logic to
automatically explore which tracepoints to enable.
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