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Abstract: Autonomous vehicle trajectory tracking control is challenged by situations of varying road
surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high
road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to
lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane
unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services,
vehicles may have access to upcoming roadway information, particularly the friction and curvature in the
road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using
the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle
stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed
planning and tracking control are integrated to ensure the vehicle can slow down appropriately before
encountering hazardous road conditions. This approach has two major advantages. First, the prior
knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the
combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid
violation of tire force limits while keeping performance and stability guarantees. The efficacy of the
algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road
with varying friction conditions, with results showing that the controller can drive a vehicle up to the

handling limits and track the desired trajectory accurately.
Keywords: Autonomous vehicles, friction preview, model predictive control, path tracking control,

vehicle control, vehicle dynamics.

1. INTRODUCTION

Path tracking control is one of the most challenging tasks of
autonomous vehicles, especially when maneuvering in
hazardous road conditions such as snow, ice, rain, etc. (Bithar,
2020; Litman, 2022). Vehicles with high speeds are more
likely to run off the road or lose control unexpectedly when
encountering a road segment with an unforeseen sudden
decrease in friction while in an area with high road curvature.

Much research has been conducted to address the challenging
tracking problem in hazardous conditions based on model
predictive control (MPC). MPC can predict and optimize
vehicle dynamics states in the future based on a planned
control command sequence. This has the advantage of dealing
with multiple control objectives respecting state and input
constraints, while explicitly incorporating vehicle stabilization
into path tracking. For example, Falcone ef a/ and Katriniok
et al presented MPC controllers to track the lane change
trajectory on a slippery road while limiting the tire force in the
desired force regime (Falcone et al., 2007; Katriniok et al.,
2013).

While these approaches directly incorporate vehicle
stabilization into path tracking, they still suffer from the
underlying challenge that tracking a curvy path with extremely

high speed or sudden decrease of road friction could result in
a large tracking error and/or loss of stability. In this situation,
tire forces are limited and thus a controller must prioritize
some combination of path tracking or stability goals, but not
both completely. This limitation suggests frameworks that
combine MPC trajectory tracking algorithms with a speed
planning algorithm to offer a complete guidance controller.
Funke et al (Funke et al., 2017) proposed such a decoupled
framework where a simple controller computes the vehicle
longitudinal force to track an off-line planned speed profile;
then, an MPC determines the lateral inputs for path tracking
and stabilization. Similarly, Ni ef al (Ni et al., 2017) used three
sub-controllers to conduct the speed tracking, vehicle
stabilization, and path following respectively. In these
controllers, the decoupled speed planning and longitudinal
controller enable the vehicle to slow down prior to tight
curvature change. This mitigates the need for the vehicle to
react as aggressively during the onset of instability or path
departure because, when operating with lower velocities,
vehicles generally have a larger stable operating region and
can reserve tire forces to follow the desired path (Beal &
Gerdes, 2013; Cao et al., 2017).

However, the aforementioned approaches assume a known
and/or constant friction, or an instantaneous measurement of
friction. If this assumption is violated, then controller



performance or stability guarantees are also violated. However,
with connectivity either to other vehicles, infrastructure, or
cloud services, vehicles may have access to upcoming
roadway information, particularly the friction and curvature in
the road path ahead (Gao et al., 2021; Panahandeh et al., 2017).
This type of foreknowledge could allow a vehicle path tracking
control system to work more reliably and proactively.

This paper introduces a trajectory tracking controller structure
that integrates speed planning and tracking, path following,
and vehicle stabilization using previewed knowledge of path
curvature and road friction. In the structure, an explicit speed
profile is planned first according to the vehicle dynamic limits
using a long-range preview of path curvature and friction
obtained from a cloud database. Next, a longitudinal controller
calculates the desired total traction or braking force to track the
speed profile, allowing for some user-defined maneuvering
margin. A short-range path prediction of curvature, friction,
and longitudinal commands from the longitudinal controller is
then used by an MPC controller to determine the immediate
lateral inputs for path following and stabilization.

There are two major advantages of this approach. First, the
preview of the desired path is explicitly incorporated into the
computation of control inputs. Second, the combination of
longitudinal and lateral tire forces is considered in the control
approach to avoid violation of tire force limits while keeping
performance and stability guarantees. Consecutively, Section
II introduces path description and the vehicle dynamics model
used in the speed planning and stability envelopes outlined in
Section III. Section I'V details the proposed controller structure
which is verified through numerical simulation experiments
discussed in Section V. Finally, the conclusion and future work
are given in Section VI.

2. PATH AND VEHICLE MODEL DESCRIPTION
2.1 Path description
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The term “path” in this work denotes the desired route the
vehicle aims to follow. It is assumed to be known and is
parameterized by curvature k and friction coefficient p as a
function of station s which is the distance measured along the
path. Friction is assumed to be uniform in the lateral direction
of the path but can change suddenly in the station direction,
e.g., the direction of travel. The path example used in this work
is shown in Fig. 1 and is designed as a challenging driving
scenario in which a low friction region suddenly occurs in the
path segment with high curvature.

2.2 Vehicle model

The single-track planar “bicycle model”, shown in Fig. 2, is
used to represent the vehicle with the small-angle assumption.
For a given longitudinal velocity U,, the vehicle lateral
velocity U, and yaw rate r states are governed by:
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where Frand F), are the lateral forces acting on the front and
rear tires, respectively. The vehicle parameters include the
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Figure 1. Sample path: (a) path shape; (b) path curvature and
friction coefficient.

Figure 2. Planar single-track vehicle chassis model with front
steering.

vehicle mass m, yaw moment of inertia /.., the distances from
the vehicle’s center of gravity to the front and rear axle a and
b, respectively.

Tire force Fyrand F) in (1) are defined by the nonlinear “brush”
tire model (Pacejka, 2012):
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where u is the road-tire friction coefficient, C, is the tire
cornering stiffness, and F is the tire normal load. « is the tire
sideslip angle, and apeqr = tan'(3upF./C,) is the peak sideslip
angle. In this paper, the forces F. at tires are assumed to be
constant. Note: p is a factor to capture the reduced lateral force
due to tire longitudinal force F. The factor is defined based on
friction circle constraints but could also be used, as extensions



of this work, to account for load transfer (Brach & Brach,

2011):
p=\JuF.? ~F2 [uF. - (3)

To obtain a linear model useful for MPC controller design, the
tire sideslip angles in the front (o) and rear (a,) are described
linearly in terms of the vehicle states and the steering angle
input with the small-angle assumption:
U, -br
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where Jy is the front steering angle.

The input to the vehicle model (1) is front lateral force Fy,
which can be mapped into steering angle drusing (4):
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where oy, is the desired tire sideslip angle, which can be
calculated through the inverse model of (2) £ . /! has a
closed-form solution:
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when asq does not exceed the angle corresponding to tire peak
force, i.e. |asal < @rapear. This tire sideslip angle operation
condition is assumed for the use of this equation. Using Fras
the model input, rather than steering angle, still results in a
linear vehicle model and allows for the controller to explicitly
account for the force capability of the front steering tire.

However, this approach is not applicable for the rear tire due
to the lack of rear steering actuation. Alternatively, the brush
model of rear tire lateral force F), is linearized at a nominal

operation point (z.a,.F,) as an affine function of ,:
Fjw‘ = Fjw + C(ar _a/) > (7)

where F,, and C are lateral tire force and equivalent cornering
stiffness at the nominal point. This linearization preserves the
model convexity and represents the nonlinear tire behavior
near the nominal point (Beal & Gerdes, 2013). When used in
the model predictive controller, the linearization equation (7)
is conducted for successive nominal points in the prediction
horizon. The successive sequence of ji is obtained through the
prior knowledge of the desired path and F, is provided by the
longitudinal controller which is detailed in section 4.1. The
sequence of @, is approximated based on the last step vehicle
states predicted by the controller because its exact values are
not known a priori. This successive linearization is necessary,
as the friction and F, may change significantly in the
prediction horizon in this work. Thereby, linearizing the tire
force in the whole prediction horizon with the nominal point
in the initial time step of the prediction horizon (Beal & Gerdes,
2013) may not be reasonable.

The path following states, including heading error between the
vehicle and path e, and lateral deviation from path ey, are
modeled as:

e, =r—Ux(s)
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Combining (1), (7) and (8), a time-varying affine force input
(AFI) model can be obtained governing vehicle lateral
dynamics and path tracking kinematics, namely the so-called
“bicycle model” which is now linear if constant longitudinal
velocity is assumed. This is expressed as:
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Note that A(?), B«(f), and d(¢) depend on Fi, Uy, and &, . The

nonlinearity of tire forces is incorporated in the affine model
(9) in a convex way. The model can be discretized for linear
MPC implementation.
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Figure 3. Generated speed profile with previewed path

curvature and friction.

3. SPEED PROFILE AND STABILITY ENVELOPE
3.1 Speed profile planning

The speed profile defines the desired vehicle longitudinal
velocity Us.q(s) at each station point s along the path. With the
previous work (Gao et al.,, 2021), the longitudinal speed
governing equation based on the road-tire force limit is:
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Figure 4. Control structure: the high-level controller calculates the longitudinal and then lateral inputs for the vehicle.

de,d (S) 1
ds  U(s)

where L = a+b and g is the gravitational acceleration. This
equation yields closed-form solutions under common road
conditions or can be solved numerically. Applying (10) to the
previewed path curvature x(s) and friction coefficient u(s)
shown in Fig. 1 and setting the design friction term to give a
small margin relative to the friction limit, pa.s(s) = 0.95u(s),
the speed profile near the vehicle handling limits can be
calculated. The result is shown in Fig. 3.

( J(ﬂm(s)g (kU2 5)) j (10)

3.2 Stability Envelope

The controller in this work uses the stability envelope
formulation suggested by Beal and Gerdes (Beal & Gerdes,
2013), which bounds the vehicle lateral states U, and r by the
maximum available tire force. The envelope constraints can be
expressed as a time-varying linear inequality:
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Vehicle stability is guaranteed for all states residing in the
envelope. Leaving this boundary does not necessarily lead to
instability, but the control action which can move the vehicle
states monotonically back to the envelope boundaries in the
next time step may not exist. Equation (11) reveals that a
vehicle has a larger stable operating region with a smaller
speed U,, which implies the necessity of speed planning and
control for path following in hazardous road conditions.

4. CONTROL STRUCTURE

The overall trajectory tracking control structure proposed in
this paper is illustrated in Fig. 4. In the structure, the first step

is to obtain the long-range preview of path curvature and
friction from a cloud friction database. With the preview, an
explicit speed profile can be calculated using the method in
section 3.1. Next, a longitudinal controller calculates the
desired total traction force to track the speed profile. A short-
range preview of path curvature, path friction, and longitudinal
commands from the longitudinal controller is then used by an
MPC controller to determine the immediate steering angle for
path following and stabilization. Thereby, the trajectory
tracking problem is decomposed into a longitudinal speed
planning and tracking, and a lateral path following problem.

4.1 Longitudinal controller

As the first step, a feedforward-feedback longitudinal
controller calculates desired longitudinal forces at each point &
in the prediction horizon to track the speed profile:

Fyi=ma_,(s)+K, , d(sk) U, (14)

where U, 4(sx) and ayq(sx) are the desired speed and
acceleration from the planned speed profile at station s, and
K, is a speed tracking error gain. The longitudinal states in the
optimization horizon are provided to the lateral controller to
solve for the lateral inputs.

4.3 Lateral controller

The MPC lateral controller solves for optimal front tire
steering forces as the input with stability and model constraints
to ensure path following and stability. The optimization
problem is described as:
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Equation (15.1) represents the objective function, where the
desired tracking states yq is generally set as zero. Equations



(15.2) - (15.4) describe the hard dynamic constraints that the
solution must obey: Equation (15.2) is the discretized vehicle
model of (9) using the Tustin method which has a closed-form
solution, (15.3) restricts the maximum available lateral tire
force which is estimated through previewed friction
coefficient and the normal load on the front steering tire, and
(15.4) restricts force slew rate which is limited by the
capabilities of the steering actuator. The inequality (15.5) is
used to restain the vehicle states within the stability envelope
defined by (11). The positive slack variables defined by the
final term (15.6) are added to soften the stability envelope
boundaries to guarantee a feasible solution for the optimization
problem. O, R, and § are penalty weights that mediate the
prioritization of each term in the objective function. Quadratic
costs on output states error and input F,rallow small deviations
of these qualities but cause strong penalization for large
deviations. The linear cost on the slack variable 7 penalizes
small violations immediately. As is common with MPC, only
the first step optimal input solution Fyzg, is applied to the
vehicle, then the entire optimization is recalculated at the next
time step. Note that the desired front lateral tire force can be
converted into a steering angle using (5) and (6).

5. NUMERICAL SIMULATION

The performance of the proposed MPC-based trajectory
controller was evaluated by a MATLAB/Simulink simulation
where a dual-track nonlinear vehicle body and coupled brush
tire models are employed as the simulation control plant. The
given formulation causes the optimization problem (15) to be
a convex quadratic program that can be exploited to produce
an efficient solver for real-time implementation through
CVXGEN (Mattingley & Boyd, 2012). The MPC parameters
are shown in Table 1.

Table 1. Controller parameters and weights

Parameter Symbol Value Units
MPC Prediction Horizon Np 20 steps
MPC time step Ts 0.05 second
Lateral error weight Qed 300 1/m"2
Heading error weight Qy 500 1/rad™2
Input force weight Rryf 1*107 1/N72
Yaw rate slack weight Sr 1*10? s/rad
Sideslip angle slack weight | Se 1*10? 1/rad
Input slew rate limit dFyfmax 1000 N/s

Simulation results test the controller in tracking the
challenging path shown in Fig. 1 at speeds that maximize
friction utilization up to 95%. Fig. 6 and Fig. 9 present the
vehicle speed and tire forces to demonstrate the performance
of the longitudinal controller. One can see that before
encountering the region with low friction and high curvature,
the vehicle starts to slow down by demanding maximum
available tire forces. Then the vehicle keeps a constant speed
in the low friction region. The proactive speed adjustment
allows the vehicle to have a larger stable operating region and

reserve tire forces to follow the desired path.

Fig. 5 presents the tracking errors. The maximum absolute
lateral deviation error is less than 0.08 m which occurs when
entering the low friction region. Fig. 7 indicates vehicle states
are safely inside the varying stability boundaries. The variation
reflects the changing of path friction and available tire forces.
Fig. 9 depicts the actual tire forces are almost within the
estimated limits. It can be observed that all the tire forces are
commanded to provide the lateral cornering when the vehicle
is tracking the low friction circular path at a constant speed.
Examining Fig. 8, the steering is operating quickly to stabilize
the vehicle and thereafter follow the path when the vehicle
passes the transition edge between high and low friction
regions. All the results show that the controller could drive the
vehicle near the handling limits and track the desired trajectory
accurately without loss of stability.
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6. CONCLUSIONS AND FUTURE WORK

In this work, a longitudinal-lateral trajectory tracking control
structure is presented, where path following and stabilization
are incorporated through MPC. Meanwhile, long-range speed
planning and tracking control are used to ensure the vehicle

can slow down before encountering hazardous road conditions.

In the future, the control framework can be readily extended to
include not only the curvature and friction variations but also
grade and bank, both of which are common features in real
road scenarios. Additionally, the vehicle load transfer due to
acceleration, which results in a non-constant normal force at

each tire in a real vehicle, can be included in the vehicle model
for speed planning and control. Finally, the convex
formulation of MPC allows its real-time deployment in the
future.
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