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ABSTRACT

Behavioral biometric-based continuous user authentication is promising for securing mobile phones while
complementing traditional security mechanisms. However, the existing state of art perform continuous
authentication to evaluate deep learning models, but lacks examining different feature sets over the data.
Therefore, we evaluate the performance of user authentication based on acceleration, gyroscope (angu-
lar velocity), and swipe data from two public mobile datasets, HMOG (Hand-Movement, Orientation, and
Grasp) (Sitova et al., (2015) dataset et al. (2015)) and BB-MAS (Behavioral Biometrics Multi-device and
multi-Activity data from Same users) (Belman et al,, (2019) dataset et al. (2019)) extracted with differ-
ent feature sets to observe the variation in authentication performance. We evaluate the performances
of both individual modalities and their fusion. Since the swipe data is intermittent but the motion event
data continuous, we evaluate fusion of swipes with motion events that occur within the swipes versus
fusion of motion events outside of swipes. Moreover, we extract Frank et al's (2012) Touchalytics fea-
tures Frank et al. (2012) on the swipe data but three different feature sets (median, HMOG (Sitova et al.
(2015)), and Shen’s (Shen et al. (2017))) on the motion event data, among which the Shen’s features were
shown to perform the best. More specifically, we perform score-level fusion for a single modality utilizing
binary SVMs (Support Vector Machine). Furthermore, we evaluate the fusion of multiple modalities using
Nandakumar’s likelihood ratio-based score fusion (Nandakumar et al. (2007)) by utilizing both one-class
and binary SVMs. The best EERs (Equal Error Rates) of fusing all three modalities when using the one-
class SVMs are 8.8% and 0.9% for HMOG and BB-MAS respectively. On the other hand, the best EERs in the
case of binary SVMs are 1.5% and 0.2% respectively. Observing the better performances of BB-MAS com-
pared to HMOG in swipe-based experiments, we examine the difference of swipe trajectory between the
two datasets and find that BB-MAS has longer swipes than HMOG which would explain the performance
difference in the experiments.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

tion, such as by requiring additional effort from the user to obtain
and enter a security token (one time password).
On the other hand, behavioral biometrics authenticate users

Mobile phones serve manifold purposes in our everyday life.
In addition to making calls, people use them to socialize with
each other, store and process multimedia, shop online, make pay-
ments, and transfer funds. Such sensitive information and transac-
tion require protection from non-legitimate users (impostors). Cur-
rently mobile phones are typically protected with one-time entry
point authentication mechanisms like PINs, passwords, or biomet-
rics that can be compromised easily. In addition, MFA (multi-factor
authentication) is often used to further strengthen the entry-point
authentication. Unfortunately the use of MFA often introduces fric-
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based on an analysis of data passively logged from the phone’s em-
bedded sensors. In contrast to conventional MFA, one advantage of
behavioral biometrics is that they can be frictionless as the user is
not required to perform any additional activities for securing the
mobile phone. Motion events such as acceleration and angular ve-
locity logged from phone's accelerometer and gyroscope sensors
respectively can be used for securing the device against unautho-
rized users. The logged motion events capture a user’s hand mi-
cromovements and are believed to capture an individual's unique
behavioral traits. According to Sitova et al. (2015), when interact-
ing with mobile phones in hand, users strive to achieve stability
and precision. As a result, each user develops their own postural
preference. Furthermore, factors such as hand size, grip strength,
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age, and gender constitute a user’s physiological traits. Both postu-
ral preference and physiological traits are believed to contribute to
the uniqueness of user behaviors (Sitova et al., 2015). Due to their
high availability, behavioral biometrics can also be used to contin-
uously authenticate a user beyond the initial log-in.

The state of the art on behavioral biometrics-based authen-
tication have been evaluated on private datasets with generally
a small number of users (Amini et al, 2018; Deb et al., 2019;
Ehatisham-ul Haq et al., 2018; Incel et al., 2021; Kumar et al., 2015;
2016a; Roy et al., 2015). However, there are inadequate evaluations
of algorithms on public datasets (Centeno et al., 2017; Karakaya
et al., 2019; Neverova et al., 2016; Volaka et al.,, 2019). To es-
tablish the generalizability of the performance of behavioral bio-
metrics, more benchmarking of existing algorithms on large pub-
lic datasets is necessary. Therefore, we have authenticated users
by fusion of multi-modalities (acceleration, gyroscope, and swipe)
from two large public datasets, namely, Sitova et al.’s (2015) HMOG
(Hand Movement, Orientation, and Grasp) (dataset et al., 2015)
and Belman et al.'s (2019) BB-MAS (Behavioral Biometrics Multi-
device and multi-Activity data from Same users) (dataset et al.,
2019), both of which have at least 100 users. We choose the
HMOG dataset as it logs the users hand micro-movements through
sensor events. On the other hand, the BB-MAS dataset is a new
dataset with modalities and user behavior of interest similar to
HMOG. Given that BB-MAS is relatively new, evaluations of the
motion event modalities and its fusion with touch event data
from this dataset have not been done so far. Moreover, we ex-
tract three different kinds of feature sets from each of the mo-
tion event modalities, which are, low-level median feature, Sitova
et al.s (2015) (Sitova et al., 2015), Shen et al.s (2017) (Shen et al.,
2017) statistical features. No prior work has evaluated two public
datasets over the three different feature sets. On the other hand,
there are existing state of art (Abuhamad et al., 2020; Buriro et al.,
2021; Centeno et al, 2017; Neverova et al, 2016; Volaka et al.,
2019) that utilize deep learning architecture to authenticate users
but without explicitly computing features on the data.

In our feature-based evaluation of multiple modalities from
the two datasets we choose HMOGs grasp and stability based
features (Sitova et al, 2015) because it captures the hand-
micromovements of users while they are sitting and typing. In the
case of stationary user behavior, the micro-movements of hand
gestures are believed to be unique across users. We select Shen
et als (2017) statistical features (Shen et al, 2017) because it
will capture the unique distribution characteristics of motion event
data across users. Lastly, we also extract low-level median feature
to observe how far behind it falls from the two high-level feature
sets. From the swipe data we extract Frank et al.s (2012) Touchalyt-
ics features (Frank et al., 2012) which capture the unique trajectory
and speed of swipes across all users. Table 3 lists all the features
under each feature set which we extract from motion event and
swipe data. The data extracted with the above features is classified
using both one-class classifier (OCC) and binary classifier (BC).

Our work is the first to apply Nandakumar et al's (2007)
likelihood ratio-based score fusion (LR) to multi-modal behav-
ioral biometrics, whereas Nandakumar et al. (2007) applies LR
to only physiological biometrics (iris, fingerprint, and speech)
datasets (Nandakumar et al, 2007). In their work, they cate-
gorize score level fusion techniques into transformation-based,
classification-based, and density-based. The authentication perfor-
mance of likelihood ratio-based score fusion is better than any
other score fusion techniques. The Gaussian Mixture Model (GMM)
used proves to be effective in modeling the genuine and impos-
tor score densities. The combined match scores vector constitutes
scores of all three physiological biometrics. Using the match scores
the likelihood ratio is calculated as ratio of the genuine to impos-
tor distribution (Nandakumar et al., 2007). In this work we utilize
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the generated match scores of two (acceleration and gyroscope)
and three (acceleration, gyroscope, and swipe) behavioral biomet-
ric modalities to perform likelihood ratio-based score fusion.

We evaluate the performance of user authentication through
both single modality and the fusion of two/three modalities. Fur-
thermore, we estimate the overall authentication performance
based on the availability of modalities by a weighted sum of
the swipe-driven authentication and continuous motion events
through a hybrid (combined) experiment. Between the two
datasets, BB-MAS (dataset et al., 2019) consistently performs well
than HMOG (dataset et al, 2015) in both one-class and binary
classification experiments. Therefore, we investigate the cause of
the difference in performances between the two datasets across
most experiments. We notice the effect of concept drift due to
HMOG's data collection method which adds the effect of behav-
ioral adaptation in users visiting for days. Whereas, this factor
is absent in the case of BB-MAS. Additionally, we observe the
nature of swipes between the two datasets. Examining the na-
ture of swipes, we find significant difference in the statistics of
swipe trajectories throughout the swipe lengths between the two
datasets. HMOGs (dataset et al.,, 2015) swipes being shorter than
BB-MAS (dataset et al., 2019) produce less significant feature mag-
nitudes throughout its trajectories which impact authentication
performance in the swipe-based experiments.

Therefore, the contributions of this work can be summarized as
follows:

1. Evaluating the authentication performance of fusing three
modalities (acceleration, gyroscope, and swipe) using two
public datasets (HMOG (dataset et al., 2015) and BB-
MAS (dataset et al, 2019)). No prior work has done this with
both datasets.

2. Evaluating three  different  feature  sets (median,
HMOG (dataset et al., 2015), and Shen (Shen et al., 2017))
on acceleration and gyroscope where each set highlights
different characteristics of the two motion modalities.

3. Evaluating both binary and one-class classifiers using both
datasets. Although it is common to use binary classifiers in au-
thentication, a one-class classifier becomes necessary when im-
postor data is not available.

4. Applying Nandakumar et als (2007) likelihood ratio-based
score level fusion (Nandakumar et al., 2007) to multi-modal be-
havioral biometric data.

5. Exploring possible causes for BB-MAS outperforming HMOG
(Section 5.3): a) the average swipe trajectory of BB-MAS is
longer than HMOG, b) the presence of concept drift in HMOGs
acceleration and gyroscope.

The rest of the paper is organized as follows: Section 2 presents
related work. Section 3 describes the two public datasets. In
Section 4 we discuss the experimental procedures. Section 5 re-
ports all the experimental results. Lastly, Section 6 concludes our
study.

2. Related work

The criteria of selecting existing state of art closely related to
our study is to choose works that have motion events (acceleration
and/or gyroscope) as modalities logged during different user be-
haviors (typing, swiping, picking up phone, sitting, standing, walk-
ing, and others) for authentication. Table 1 describes selected state
of art on behavioral biometric-based authentication that has both
acceleration and gyroscope as modalities or both in combination
with other modalities. To put this work in the context of the re-
lated work, the table highlights, for each related work, the datasets,
number of data providers, user behavior, duration of device usage,
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modalities, sampling rate of motion events, algorithms evaluated,
fusion type, and performance measurement.

Non-gait-based studies involving only acceleration and gyro-
scope are discussed as follows. Li et al. (2020) evaluate SCANet
continuous authentication platform over 100 recruited volunteers
for their own dataset and 82 selected user data from the Brain-
Run (Papamichail et al., 2019) dataset. For their own data the user
behavior includes reading, writing, and map navigation activities
over 24 sessions. Investigating the combination of acceleration and
gyroscope over one-class SVM, they achieve an EER of 2.35% as the
best performance on their own dataset. Kumar et al. (2018) com-
pare the performances of several one-class classifiers (OCC) with
binary classifiers (BC) utilizing four datasets. Among experiments
performed on individual OCC, BC and fusion of multiple OCCs, the
kNN (k-Nearest Neighbor) BC produces the best result of 94.22%
accuracy. However, the user activity of the four datasets include
both non-gait and gait-based behaviors.

The following state of art involve both acceleration and gyro-
scope in combination with other modalities to enhance the au-
thentication performance. Abuhamad et al. (2020) evaluate their
authentication platform AUToSen on their own dataset of 84 vol-
unteers. Combining several motion events and a touch event at
sensor (data) level, they achieve a best performance of 0.09%
EER. Roy et al. (2015) implement an HMM (Hidden Markov
Model)-based multi-sensor system, which is evaluated on their
own dataset of 42 volunteers. The user activity includes reading
Wikipedia articles and filling out a questionnaire through which
they log modalities like swipe, tap, acceleration, and gyroscope.
Utilizing a single swipe observation they achieve an EER of 13.29%
which improves to 0% when 19 consecutive swipes are combined.
A similar pattern is observed in the case of taps where the EER
improves from 16.55% to 1% when 17 consecutive taps are con-
solidated. Shen et al. (2017), combine multiple sensor events like
acceleration, gyroscope, magnetometer, and orientation and a sub-
set of the four sensor events. However, the combination of all
the four motion sensor modalities produce the best EER of 4.74%.
Incel et al. (2021) investigate authentication performance over 15
sessions when users are interacting with smartphones in hand
while sitting and standing and in sitting when the device is on
the table. Applying binary classifier on the entire collected dataset
they achieve a best performance of 3.5% EER. Other similar studies
are by Gascon et al. (2014) and Cai and Chen (2012) where motion
events are combined with keypress.

A single motion event modality (one of acceleration or gyro-
scope) combined with other modalities is utilized to perform au-
thentication in the following studies. Kumar et al. (2016b) inves-
tigate the fusion of phone movement patterns (acceleration) with
typing and swiping when a user uses a web browser in sitting,
achieving an accuracy of 93.33% for a feature fusion of movement
and swipes, and 89.31% for a score fusion of movement and typing.
Kim and Kang (2020) authenticate users based on typing in English
and Korean languages where keypress is fused with acceleration
and touch events logged during typing. They authenticate 50 users
achieving EERs as low as 0%. On a dataset of 39 users Crawford and
Ahmadzadeh (2017) perform authentication based on keypress and
gyroscope achieving 97.7% Area Under the Curve (AUC).

Motion events are also captured while users perform special ac-
tivities like picking up a phone call. In Carlson et al. (2015), accel-
eration and gyroscope are utilized to capture the user behavior of
taking out phone from pocket to ear, holding phone to ear, and
putting back phone from ear to pocket. In total 10 users are classi-
fied for each of the three gestures using Multi-Layer Perceptron.
Out of the three gestures, the best accuracy of 88% is achieved
when users are holding phone to an ear. In a similar study by
Buriro et al. (2015) users perform a special behavior of slide swip-
ing while unlocking phone, then putting phone to an ear, and
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speak over phone while sitting and walking. Both acceleration and
gyroscope are logged when users put phone to their ears after un-
locking. They achieve a Half Total Error Rate (HTER) of 7.33% as the
best using Bayesian Network among other classifiers.

Frank et al. (2012) authenticate 41 users over 3 sessions through
only swipe modality. On combining up to 12 consecutive swipes
they achieve 0%, 2-3%, and 4% EERs in the intra, inter, and inter-
week sessions respectively. The work by Xu et al. (2014) also au-
thenticate users through touch events (keypress, swipe, and pinch).
They perform both discrimination and authentication experiments
achieving a best EER of 2% on combining 11 consecutive swipes.

The state of art in using acceleration and/or gyroscope for au-
thentication through gait-based user activity are discussed as fol-
lows. Thang et al. (2012) perform user authentication while users
are walking a distance while the sensor devices (logging accelera-
tion) are attached to their hips. Ehatisham-ul Haq et al. (2018) per-
form six user behaviors, namely walking, sitting, standing, running,
walking upstairs, and walking downstairs when the sensor device
is kept in 5 locations of a user’s body (left, right jeans pocket,
waist, upper arm, and wrist). They authenticate users through ac-
celeration, gyroscope, and magnetometer achieving 100% accura-
cies from walking and running behaviors.

In our previous work (Ray et al. (2021)) utilizing acceleration
and gyroscope we perform continuous authentication on mobile
devices collecting our own dataset of 49 seated users. Fusing the
two modalities at weighted score level and likelihood ratio-based
score level, we observe best EERs of 2.4% and 6.9% for intra- and
inter-session experiments respectively. Between the two score fu-
sion techniques, the likelihood ratio-based score fusion performs
the best in both intra-session and inter-session (with effect of con-
cept drift) experiments. Therefore, in the present work we utilize
two larger public datasets, HMOG (dataset et al., 2015) and BB-
MAS (dataset et al., 2019), with 100 and 115 users respectively
and perform fusion-based experiments using likelihood ratio-based
score fusion. We extract the motion event data over three dif-
ferent feature sets and the swipe data over Touchalytics feature
set (Frank et al., 2012). We perform multi-modalities fusion exper-
iments taking both one-class and binary SVMs.

3. The public datasets

In this work, we wuse two public datasets, namely,
HMOG (dataset et al., 2015) and BB-MAS dataset et al. (2019).
These are large-scale datasets having multiple modalities collected
from at least 100 users. The objective of HMOG is to capture data
through three different activities (reading, writing, and map nav-
igation) which are used to evaluate the new modality, HMOG, as
described in Sitova et al. (2015). The HMOG dataset involves two
user behaviors, namely, sitting and walking, while performing each
of the above activities whereas BB-MAS captures routine usage
traits of the same user across different devices (desktop, tablet,
and Android mobile phones). It involves several user behaviors
while logging the data like sitting, walking on the corridor, and
walking up and down a staircase. We are interested in authenti-
cating users utilizing three modalities (from each dataset) namely
acceleration, gyroscope, and swipe which are logged from mobile
devices while each user is sitting and typing/writing.

3.1. HMOG dataset

The HMOG (dataset et al., 2015) data has 100 recruited partici-
pants. The data is collected on Android mobile phones only. There
are 8*3 = 24 sessions in total involving several activities like read-
ing, writing, and map navigation. Out of the 8 typing/writing ses-
sions, we extract data from the 4 sessions (3, 9, 15, 21) that re-
quire users to sit and type. This activity takes approximately 20 to
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Fig. 1. t-SNE plot of BB-MAS motion data with HMOG features (poor performing genuine user) (a) acceleration, (b) gyroscope..

60 minutes to complete. Each user is asked to perform three free
text typing tasks where each answer is of approximately 250 char-
acters. Users visit for multiple days to finish the entire task.

3.2. BB-MAS dataset

The public data, BB-MAS (dataset et al., 2019), has 117 recruited
volunteers who provide data on multiple interfaces, while per-
forming several activities. We are interested in the mobile phone
data which is logged when users are typing while sitting. Out of
the 117 users, there are two users whose data cannot be used. The
sequence of activities that the users need to perform on mobile
phones are typing two pieces of static texts of approximately 112
characters each, followed by ten questions whose answers must be
of at least 50 characters each. The layout of the questions makes
users swipe vertically and horizontally in between. Within one
visit users need to finish the entire task of logging data on multi-
ple devices which takes around 2 hours (110 minutes) in total. The
duration spent on mobile phone while users are seated is around
25 minutes.

3.3. Data statistics, feature extraction, and visualization

Each motion event data is logged along X, y, and z axes and we
further compute the resultant of the motion event as the square
root of the sum of the squares of the motion event along x, y, and
Z axes:

resultant = /x2 + y% + z2

The motion events are originally logged at 100 Hz sampling rate
per sensor. There are two cases of feature extraction from such
motion events. In the first case we extract features from a time
window of 500 ms. However, in our pilot studies, we try 50 ms,
100 ms, 200 ms, and 500 ms time windows where 500 ms pro-
duces the best results. The second case is driven by the availability
of swipes where features are extracted from all the motion events

that fall within each swipe. In both cases, we extract three kinds
of features from the motion event, namely, the medians of the mo-
tion events, Shen et al. (2017) features and HMOG features (Sitova
et al., 2015). Shen's features include both descriptive statistics and
intensive features (i.e., energy and entropy). HMOG's features mea-
sure stability and precision of hand micromovements of users. In
case of swipes, we have extracted Frank et al.s (2012) Touchalytics
features (Frank et al., 2012), which measure the distance, move-
ment, and temporal attributes of swipes. Table 3 shows the com-
puted features per feature set. We do not perform any feature se-
lection method because we want to evaluate the public data on
the entire feature set as proposed and experimented in the origi-
nal state of art (Frank et al., 2012; Shen et al., 2017; Sitova et al.,
2015). Table 2 shows the statistics of the modalities of interest, per
dataset, after they are processed for our experiments.

As shown in Figs. 1, 2, 3, and 4, we apply the t-SNE (t-
distributed stochastic neighbor embedding) (Van der Maaten and
Hinton, 2008) dimensionality reduction algorithm to visualize the
high-dimensional motion event data, where blue and red dots rep-
resent genuine and impostor samples respectively. This process
reveals that in the BB-MAS motion event data, extracted with
HMOG (Sitova et al., 2015) features, there is a considerable over-
lap between genuine and impostor user samples in case of both
motion modalities (acceleration and gyroscope), when the genuine
user is a bad performing user or does not perform well in the au-
thentication (Fig. 1). On the other hand, as shown in Fig. 2, in case
of a good performing genuine user, the acceleration modality is the
primary reason for the user to perform well, whereas the gyro-
scope alone is not enough to successfully authenticate a good per-
forming user. Similar patterns are observed in case of the HMOG
data when extracted with Shen et al.’s (2017) features (Shen et al.,
2017), as shown in Figs. 3 and 4. Hence, from the visualizations
we understand that fusion of the modalities would enhance the
authentication performance.

Fig. 5 shows the t-SNE plots of BB-MAS (dataset et al., 2019)
and HMOG (dataset et al., 2015) swipe data extracted with Touch-
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Fig. 2. t-SNE plot of BB-MAS motion data with HMOG features (good performing genuine user) (a) acceleration, (b) gyroscope.

Fig. 3. t-SNE plot of HMOG motion data with Shen features (poor performing genuine user) (a) acceleration, (b) gyroscope..
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Statistics of the number of rows of data of the two public data sets: HMOG (dataset et al, 2015) and BB-MAS (dataset et al., 2019) after processing for experiments.
AVG-Average, MED-Median, MIN-Minmum, MAX-Maximum, STDV-Standard Deviation.

HMOG data statistics

BB-MAS data statistics

Input Data

Only swipes

Motion within swipes
Motion outside swipes

Total AVG MED MIN
46,235 462.35 376.5 25
2,716,415 27,164 25,046 353
17,720,578 177,205 164,248 50,265

MAX
2521
75,174
445,780

STDV

395.14
15,326
73,765

Total
22,265
1,483,225
23,825,826

AVG
193
12,897
207,181

MED
185
11,519
202,793

MIN

85
4319
113,541

MAX
385
44,645
296,010

STDV
51
6,180
38,483
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Fig. 4. t-SNE plot of HMOG motion data with Shen features (good performing genuine user) (a) acceleration, (b) gyroscope..

alytics features (Frank et al.,, 2012). In case of BB-MAS swipe data,
Figs. 5(a) and 5(b) show less and more overlap respectively of gen-
uine (blue) samples with impostor (red) samples. More overlap be-
tween genuine and impostor samples results in poor authentica-
tion performance for a genuine bad performing user. On the other
hand less overlap shows better authentication performance for a
good performing genuine user. Similar trend is observed in case of
HMOG swipe data as shown in Figs. 5(c) and 5(d). In addition to
this, the t-SNE plots for both HMOG and BB-MAS swipe data show
a cluster formation in the genuine (blue) samples in case of the
good performing user. However, the bad performing user does not
show such pattern. Therefore, fusion of swipes with other modali-
ties may enhance the authentication performance of bad perform-
ing genuine users.

Therefore, to enhance the authentication performance of the
bad performing genuine users, our hypothesis is to fuse maxi-
mum number of modalities available at an instant such that the
strongest modality among multiple can overcome the misclassifi-
cation caused by the weaker performing modality/modalities.

4. Experimental procedures

This section describes the training and testing split for both
binary classifier (BC) and one-class classifier (OCC), grid search
ranges for tuning classifier hyperparameters and fusion parameters,
and fusion methodologies (score fusion of k readings, likelihood ra-
tio).

4.1. Design overview

In this work we have utilized both one-class and binary SVMs.
Although it has been common to evaluate multiple classifiers on
same datasets, our focus is not to evaluate performance of multi-
ple classifiers but rather to compare the performance of the fusion
methods over two datasets extracted with three different feature
sets. Since SVM is considered a state of the art machine learning

classifier that has the capability to classify data with large input
feature dimensions, we select it as the classifier in our classifica-
tion pipeline (as a controlled variable).

We train an SVM classifier for each of acceleration, gyroscope,
and swipe modalities for both HMOG (dataset et al., 2015) and BB-
MAS (dataset et al., 2019) datasets. Using SVM as our classifier, we
perform score-level fusion for single modality-based authentication
(Section 4.2) and likelihood ratio-based score fusion (Section 4.3)
to combine multiple modalities.

We experiment with both binary and one-class SVMs with the
Radial Basis Function (RBF) as kernel. We split each users data into
training and testing sets. A 10-fold shuffling is performed where
the data per user is divided into ten equal portions and from each
of the ten shuffles, 9/10 of the portions is used for training and
the remaining 1/10 portion is used for testing. This method will
mitigate the effect of overfitting. We stop at 10-fold shuffle to
have substantial data points per shuffle. The binary classifier, gets
trained with both genuine and impostor data. We train the SVM
using one genuine user and 50% random users from the impostor
set (half from the total impostor set) following the 10-fold shuf-
fling. The 1/10 portion of the data from the genuine users and
each of the other random 50% impostors (other non-overlapping
half from the impostor set) are used as the test data. Therefore, we
train and test the classifier with non-overlapping sets of impostors
which ensures robustness of the system.

In case of the one-class classifier, we train using the 9/10 por-
tions of data of the genuine user. We then test the classifier with
the other 1/10 portion of the genuine users data and 1/10th por-
tion from each of the 50% random impostors data (random half
from the impostor-set).

We perform grid searches to tune several parameters, namely,
k (sliding window: these are the number of the consecutive scores
generated by an SVM per modality which are fused by averaging
the distance scores to reach a final decision); n (step size of k);
binary SVM parameters C and gamma; one-class SVM parameters
gamma and nu; the Kg (genuine Gaussian components) and K; (im-
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Fig. 5. t-SNE plot of swipe data extracted with Touchalytics features (a) BB-MAS swipe data good performing genuine user, (b) BB-MAS swipe data poor performing genuine
user, (¢) HMOG swipe data good performing genuine user, (d) HMOG swipe data poor performing genuine user..

postor Gaussian components) in the likelihood ratio-based score-
level fusion.

We measure the authentication performance with Equal Error
Rate (EER). EER is a performance metric utilized in measuring the
biometric performance of a user authentication system. It prede-
termines the threshold value at which the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR) are equal. We calculate
EER per user in all experiments and estimate the overall perfor-
mance of the system by computing average, median, minimum,
maximum and standard deviation of EERs across all users.

4.2. Score-level fusion for single modality

In the single modality experiment, we utilize swipe data and
train one binary SVM per user to measure the authentication per-
formance of that genuine user against all impostors. To improve
the performance, we apply a score-level fusion by averaging the

distance scores of k consecutive swipe readings (scores) from the
binary classifier and calculate an EER for each user.

4.3. Likelihood Ratio (LR)-based Fusion (Nandakumar et al., 2007) for
multiple modalities

We apply Nandakumar et al’s (2007) likelihood ratio-based
score fusion (Nandakumar et al., 2007). First we train an SVM clas-
sifier for each of acceleration, gyroscope, and swipes. In case of
the two modalities fusion, we take the two dimensional vectors
of match scores of acceleration and gyroscope from their respec-
tive SVM classifiers and create genuine and impostor distributions.
Similar genuine and impostor distributions are created during the
fusion of all three modalities (acceleration, gyroscope, and swipes).
LR, which is defined as the ratio of the genuine to the impostor
distribution, is then used as a new match score for a test sample:
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LR = fgen(X)/ fimp(x) where feen(x) and fiyp(x) are the esti-
mated genuine and impostor density functions, respectively, and
X is a 2 or 3 dimensional vector of match scores of [acceleration,
gyroscope] or [acceleration, gyroscope, swipe]. By taking the mean
of k LRs as a final match score, we calculate an EER for each user
authenticated against other impostors.

The genuine and impostor distributions are modeled as a mix-
ture of Gaussian components. The genuine distribution is defined
as:

Feen(x) = Z?igi" Pyen jX (X: [ gen, j. Egen ;) and the impostor dis-
tribution is defined as:

r Mim

fimp®) = 221" Panp j* (%: imp,j. Zimp.j)

Note that ¢X is a K-variate Gaussian density function with
mean 4, and covariance matrix X:

¢k (x: 1. T) =
QT8 2exp(—12(x — )T (x — )

Mgen (Mjp,,) is the number of mixture components used to model
the density of the genuine (impostor) scores. Py j(Pipp ;) 1S the

weight assigned to the j™ mixture component in fgen (x) (fimp(x)).

The weights assigned to the j-components must sum up to one:

M, M;
252 Pgenj =1 and 35,07 Finp j = 1

Mgen j (Mimp,j) and Xgen j (Zjmp j) are the mean and covariance
matrix of the jth Gaussian, respectively.

In the OCC scenario, we do not have the impostor distribution.
To calculate LR, we express fimp(x) as follows:

J?imp(x) =1- fgen(x)
4.4. Binary Classifier (BC) experiments

We apply binary SVMs on both datasets and conduct experi-
ments with 1, 2, and 3 modalities. Grid search is used to tune the
best SVM hyperparameters, C and gamma, which are 100 and auto
respectively.

In case of the 1 modality experiment (Section 4.2) we grid
search to tune the sliding window (k) with values of 12, 13, 14,
15, 20, 40, and 50 and find that k =50 produces the best result.
For fusing 2 and 3 modalities we use the LR-based score level fu-
sion (Section 4.3), where we tune the genuine (Kg) and impostor
(K;) Gaussian components using grid search. We search for (K;, Kg)
with the following tuples (1, 2); (2, 3); (2, 4); (2, 5); (2, 10); (2,
15); (3, 3); (3, 9); (6, 9); and (12, 18), where (K;, Kg) = (2, 5) pro-
duces the best results. Here, we take the mean of k LRs as a final
match score and we calculate an EER per user. We grid search for
k with values of 5, 10, 15, 20, 40, 50, 60 and observe that k =50
produces the best result. The step size (n) of the sliding window
is always set to 2.

before and after a swipe/time-window, net change in readings caused by a swipe/time-window, maximum change in readings caused

by a swipe/time-window; Grasp stability features-time duration to achieve movement and orientation stability after a
inter-stroke time, stroke duration, start x, start y, stop x, stop y, direct end-to-end distance, mean resultant length, up/down/left/right

flag, direction of end-to-end line, 20% 50% 80% percentiles of pair-wise velocity, 20% 50% 80% percentiles of pair-wise acceleration,

median velocity at last 3 points, largest deviation from end-to-end line, 20% 50% 80% percentiles deviation from end-to-end line,
average direction, length of trajectory, ratio of end-to-end distance and length of trajectory, average velocity, median acceleration of

Grasp resistance features-Mean during swipes/time-window, standard deviation during swipes/time-window, difference in reading
first 5-point, mid-stroke pressure, mid-stroke area covered, mid-stroke finger orientation

swipeftime-window, normalized time duration for mean sensor to change before and after a swipe/time-window, normalized time
duration for mean sensor value to change from maximum swipe/time-window to average 100ms after swipe/time-window. Each

absolute deviation); Intensive features-energy, entropy. Each feature extracted over all columns (x, y, z, resultant) per motion-event,
feature extracted over all columns (X, vy, 2z, resultant) per motion-event,

Descriptive features-Mean, minimum, maximum, range, variance, kurtosis, 30 to 80 quantiles, skewness, cross mean rate (median

Median during swipes/time-window. Each feature extracted over all columns (X, y, z, resultant) per motion-event.

Features extracted

4.5. One-Class Classifier (OCC) experiments

We train one-class SVMs only on genuine samples, to per-
form multi-modalities fusion experiments. We perform factorial
and best guess methods of grid search Alpaydin (2010) to tune
the OCC hyperparameters, nu and gamma over all values within
(0.0,0.9] and 10th multiples of scale and auto respectively for 2
modalities experiments. For the 3 modalities experiments, between
auto and scale the gamma hyperparameter is tuned to scale keep-
ing nu as default. We use the same values of the fusion parameters
(k and n) as pre-tuned during the grid search of BC (Section 4.4).

Modalities on which features

are extracted

Acceleration and Gyroscope
Swipe

Acceleration and Gyroscope
Acceleration and Gyroscope

5. Experimental results

Touchalytics (Frank et al.,

HMOG (Sitovi et al.,, 2015)
2012)

Shen (Shen et al., 2017)

Study
Median

Features extracted on motion event and swipe data.

Table 3

This section reports the results obtained from both BC and OCC
experiments. We have both tabular and graphical representations
of the reported results. The classifier hyperparameter and fusion
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Fig. 6. Performance distribution of all users (HMOG (dataset et al., 2015) and BB-MAS (dataset et al., 2019) datasets) over binary classifier experiments. The tick

correspond to the experiment numbers in Table 4.

parameter tuning (Section 4) through grid search sets the best pos-
sible combination of all the controlled variables (hyperparameters
and parameters). However, through factorial and best guess meth-
ods of grid search (Alpaydin, 2010) we aim at obtaining the best
configuration of OCC hyperparameters for the two modality fusion
experiments using BB-MAS (dataset et al., 2019) data. The BC per-
form better than OCC in all experiments across the two datasets.
Between HMOG (dataset et al., 2015) and BB-MAS (dataset et al.,
2019) datasets the latter performs consistently better because of
the absence of the concept drift factor and shorter swipes un-
like in HMOG. Among the three feature sets, Shens statistical fea-
tures (Shen et al., 2017) performs the best.

5.1. Binary classifier results

Table 4 shows results of the experiments we perform on
HMOG (dataset et al.,, 2015) and BB-MAS (dataset et al., 2019)
data. The table contains numerical values of overall performance
for each experiment in terms of average, median, minimum, maxi-
mum, and standard deviation statistics across all users in a dataset.
For each experiment we take the individual performance of all
users in a dataset and visualize the spread and skewness trend of
a distribution (formed by the average performances of each user
across all the 10-fold shuffle) using box plots in Fig. 6. The design
overview, score level fusion methodology, LR-based fusion method,
and classifier set up are discussed in the Sections 4.1, 4.2, 4.3,
and 4.4 respectively. The effect of different combinations of modal-
ities gets evaluated through these experiments. First we evaluate
the capacities of individual modalities followed by fusion of the
entire motion event modalities. As swipes are sporadic, we need
to investigate the authentication performance of the two motion
events when they are independent of swipes. While swipes are

10

labels

present we evaluate fusion of all the three modalities. In the end,
we need to evaluate the overall system performance in presence
of continuous motion events and sporadic swipe events utilizing
the hybrid experiment. Motion events produce best results when
extracted with Shen's (Shen et al., 2017) statistical features.

Experiment 1: 1 modality - In our prior work (Ray et al. (2021)),
we evaluate score-level fusion on a small mobile dataset where
the performance of individual motion event modality was poor,
with EERs of 20.5% and 18.3% for acceleration and gyroscope, re-
spectively. The t-SNE plots (Figs. 1, 2, 3, and 4) using the public
datasets in this study also show that the individual motion event
modality cannot successfully authenticate users since there are a
lot of overlap between the motion event samples of both genuine
and impostors. We did not have swipe as a modality in our previ-
ous study. Therefore, in this study we evaluate only swipe as the
single touch event-based modality to authenticate users. The ex-
perimental procedure is discussed in the Section 4.2. The swipe
data statistics for both datasets are shown in Table 2. Between
the two datasets, BB-MAS performs the best with an average EER
of 1.3%. The standard deviation in case of the best result is 3.8%
(Table 4), which shows less variation in the performance across all
users. See the box plots labeled 1 in Fig. 6 where there are no out-
liers for the HMOG data but the spread is large. The data is skewed
to the right. Whereas, for BB-MAS data under the same label 1 in
Fig. 6, the spread is low, although there are outliers. Comparing
the overall average EERs across all users in each dataset, BB-MAS
swipes perform better than HMOG.

Experiment 2: 2 modalities in full- The entire motion event data,
both outside and within swipes (Table 2) are fused. Between both
datasets, the BB-MAS motion data extracted with Shen et als
(2017) Shen et al. (2017) features performs the best, with an av-
erage EER of 6%. The standard deviation of the EERs which cor-
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Table 4

Results on HMOG (dataset et al., 2015) and BB-MAS (dataset et al., 2019) datasets, using binary classifiers. Reported statistics (average, median, minimum, maximum, and standard

deviation) across all users. Statistics augmentation: AVG-Average; MED-Median; MIN-Minimum; MAX-Maximum; STDV-Standard Deviation. .

(2019)

EER (%), BB-MAS dataset et al.,

EER (%), HMOG dataset et al,(2015)

AVG (MED, MIN, MAX, STDV)

1.3 (0.0, 0.0, 23.4, 3.8)
9.2 (8.2, 1.0, 24.5, 5.3)
6.4 (5.6, 0.0, 19.8, 3.8)
6.0 (5.1, 0.0, 22.1, 3.8)

AVG (MED, MIN, MAX, STDV)

7.2 (7.1, 0.0, 24.9, 6.7)

Features

Modalities
Swipe

Exp.

Touchalytics (Frank et al., 2012)

6.1, 0.7, 19.6, 4.0)
5.6, 0.4, 25.8, 3.9)
0.0, 0.0, 23.4, 4.4)
0.0, 0.0, 5.3, 1.0)

0.0, 0.0, 5.8, 1.0)

8.8, 1.0, 28.8, 5.0)
558, 1.0, 18.6, 3.5)
53, 0.3, 245, 3.7)

10.1 (9.2, 1.0, 30.2, 5.2)

6.5
6.3
1.5
0.2
0.3
9.8
6.2
6.0

8.6, 1.3, 21.5, 4.5)
2.3,00, 6.3, 1.4)

0.0, 0.0, 12.4, 2.6)
0.0, 0.0, 14.7, 2.6)
0.0, 0.0, 12.0, 2.3)
8.6, 1.9, 23.8, 4.9)
8.6, 1.2, 20.0, 4.3)
2.2,00, 6.1, 1.4)

0.7 (9.5, 2.3, 27.4, 5.6)

8.7 (7.8, 1.4, 22.1, 4.5)
1
9.1

6.7 (6.2, 1.0, 23.9, 3.8)

10.4 (9.5, 1.9, 28.5, 5.8)

2.4
1.9
1.7
1.5
9.4
8.7
23

(2012)

(Shen et al,, 2017), Touchalytics (Frank et al,, 2012)

Median,Touchalytics (Frank et al., 2012)
(Shen et al., 2017), Touchalytics (Frank et al., 2012)

(Shen et al., 2017)
Median, Touchalytics Frank et al.

(Shen et al.,, 2017)
HMOG (Sitova et al,, 2015), Touchalytics (Frank et al., 2012)

HMOG (Sitova et al,, 2015), Touchalytics (Frank et al., 2012)

HMOG (Sitov4 et al., 2015)
HMOG (Sitovi et al., 2015)

Median

a
b
C
a
b
C
a
b
C
a
b
C

Accel, Gyro,
Accel, Gyro,
outside of swipe
Accel, Gyro,
Swipe, within
swipe

Accel, Gyro,
Swipe, hybrid

full

n
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responds to the best performance is 3.8% which shows less per-
formance variation across all the users. See Table 4. The BB-MAS
full motion-data performs better than HMOG by only 0.7%. This is
supported by the box plots labeled as 2c in Fig. 6. There is no sig-
nificant difference between the two box plots where both have few
outliers. However, the BB-MAS box plot (labeled 2c) in Fig. 6 shows
that the data is skewed to the left which is not seen in the cor-
responding HMOG box plot. Therefore, this difference justifies the
slightly better performance of BB-MAS full motion-data.

Experiment 3: 2 modalities outside of swipes- These experiments
aim at authenticating users based on the 2 motion events outside
swipes (Table 2). Between the two datasets, HMOG extracted with
Shens (Shen et al., 2017) statistical features performs the best with
an average EER of 2.4%. The standard deviation corresponding to
the best performance as shown in Table 4 is as low as 1.4%. The
HMOG box plot in Fig. 6 labeled as 3¢ shows the low spread of the
data without outliers. On the other hand the corresponding BB-
MAS box plot in Fig. 6 shows more spread of the data compared
to HMOG with outliers which explains the worse performance of
BB-MAS compared to HMOG.

Experiment 4: 3 modalities swipe-based- In this experiment, user
authentication is performed when all the three modalities are si-
multaneously present. The data statistics of swipes and motion
event within swipes are shown in Table 2. Between the two
datasets, BB-MAS extracted with Sitova et al. (2015) HMOG fea-
tures performs the best, producing an average and a standard de-
viation EERs of 0.2% and 1% respectively. This is the overall best
performance between the two datasets when classification is per-
formed using BC. The corresponding average EER of the HMOG
data (when extracted with HMOG features) is 1.7%. The HMOG box
plot in Fig. 6 labeled as 4b shows more spread than the corre-
sponding BB-MAS. However the HMOG box plot is skewed towards
left which means most users exhibit low EERs.

Experiment 5: Weighted EER - The hybrid experiment estimates
the system performance on sporadic swipe events and continu-
ous motion events, Therefore, we consider individual user's per-
formances in experiments 3 and 4. We assign weights of 0.95 and
(1—-0.95) =0.05 to individual user’s EER achieved in experiments
3 and 4 respectively. Then a weighted sum is calculated per user
using the formula 0.95 %« EER1 + 0.05 « EER2. Therefore, it gener-
ates a new weighted EER per user and then the five statistics are
computed across all the users to estimate the final system perfor-
mance (See Table 4). As the occurrence of the 2 modalities outside
swipes is more compared to the simultaneous occurrence of all the
3 modalities, a larger weight is assigned to the former. In this case,
the HMOG dataset with Shens (Shen et al., 2017) features performs
the best with an average EER of 2.3%. The box plots labeled as 5c
in Fig. 6 show the difference in the performances between the two
datasets. Given the hybrid experiment is a combination of motion
events outside swipe (experiment-3) and fusion of three modali-
ties experiments (experiment-4), the performance of HMOG data
in experiment-3 enhances the performance of HMOG data in the
hybrid experiments.

The above experiments are performed to authenticate users
based on the availability of the modalities. We evaluate the au-
thentication capacity of modalities from the two datasets in dif-
ferent combinations. Given continuous motion events and sporadic
swipes the hybrid experiment represents the overall system per-
formance where user authentication is based on the switching of
available two or three modalities.

5.2. One-Class Classifier results
In this section, we discuss the experimental results of the one-

class classifier. When performing the 2 modality experiments tak-
ing the two motion event data of BB-MAS dataset et al. (2019) we
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observe that the performance is not comparable to BC. However,
as shown in Table 5, we observe comparable results with the BC in
case of three modalities.

2 modalities fusion on BB-MAS dataset et al. (2019) motion data:

For these experiments we perform LR-based fusion of the mo-
tion events occurring outside the swipe data. We fine tune the
one-class SVM hyperparameters (nu and gamma) utilizing both
factorial and best guess (based on t-SNE visualization) grid search
methods where we alter one factor at a time and proceed fur-
ther depending on the previous result. We stop at a config-
uration when no further improvements in the result are ob-
served (Alpaydin, 2010).

We perform the following grid searches on the 2 modali-
ties (outside swipes) extracted with median feature. Keeping nu
as default (0.5), we grid search gamma with scale/10, scale*10,
scale/100, and scale*100 values. The nu value of 0.5 implies at
most 50% of the training samples are allowed to be misclassi-
fied or are considered as outliers by the decision boundary. At
nu=0.5 and at gamma = scale*100, for both the SVMs of accel-
eration and gyroscope we obtain an EER of 10.3%, which is the
lowest so far. As gamma=scale*100, produces the lowest EER, we
tune gamma with values of scale times multiples of 100. Keeping
nu as default in both SVMs, we grid search with gamma values
of scale*200, scale*300, scale*400, and scale*500. None of these
combinations exceed the performance of 10.3%. Thereafter, keep-
ing gamma=scale*100 in both SVMs, we vary the nu values to 0.25
as a lower nu than default in one experiment and 0.75 as a higher
nu than default in another experiment. No further improvement in
the EER is observed. Considering the bad performing user in the
t-SNE plots of Fig. 1, we increase the value of nu to 0.75 in one
experiment and 0.9 in another as there are substantial overlap be-
tween genuine and impostor samples. Each of these nu values is
combined with each of gamma = scale/100, scale/10, and scale*10.
These runs also do not produce EER lower than 10.3%. Now in the
next set of searches we change gamma to auto, auto/10, auto/100,
auto*10, and auto*100 and combine each gamma with default nu.
At gamma=auto*10 and default nu of 0.5, the lowest EER value of
10.3% returns. Therefore, nu values greater than 0.5 will not lead to
the best possible configuration. Keeping both gammas at auto*10,
we set nu of acceleration SVM to 0.5 and that of gyroscope SVM to
0.2 because the gyroscope t-SNE in Figs. 1 a and 1 b show higher
concentration of data points towards the center than the accel-
eration data points. We obtain an EER of 10.4% which is close to
the best performance of 10.3%. Keeping the nu values same as the
last search we alter both gamma values of acceleration and gyro-
scope SVMs to scale*10 where we again obtain the lowest EER of
10.3%. Therefore, we stop at this configuration when gamma is set
to scale*10 with nu of acceleration and gyroscope SVMs being 0.5
and 0.2 respectively producing the lowest EER of 10.3%.

Another  extensive grid search based on factorial
method (Alpaydin, 2010) is performed where the BB-
MAS (dataset et al, 2019) motion event modalities occurring
outside the swipe is extracted using HMOGs motion event fea-
ture set. We first grid search with each gamma values of scale,
scale*10, scale/10, scale*100, and scale/100 in both SVMs where
each of the nu of acceleration and gyroscope are tuned with
all the values from the set, {0.2, 0.4, 0.6, 0.8}. From all pos-
sible combinations as above the lowest EER is obtained with
gamma=scale*10 when nu of acceleration and gyroscope SVMs
are 0.2 and 0.8 respectively. So we proceed to search with gamma
values of scale*20, scale*30, scale*40. This time also we combine
the nu of acceleration SVM with values from the set, {0.2, 0.4,
0.6, 0.8} with the nu of gyroscope SVM from the same set. See
Fig. 7. The gamma=scale*40 configuration produces a better result
compared to gamma=scale*10 so we perform a fine-grained search
combining the nu of acceleration from the set {0.1, 0.2, 0.3, 0.4,
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0.5, 0.6, 0.7, 0.8, 0.9} with the nu of gyroscope SVM from {0.5,
0.6, 0.7,0.8, 0.9} keeping gamma=scale*40. See Fig. 8. We find
further improvement than the previous configuration. There-
fore, to our understanding, when motion event data is extracted
with HMOG features, the lowest EER of 18.2% is obtained with
gamma=scale*40, nu of acceleration SVM=0.5, and nu of gyroscope
SVM=0.8.

We extract Shens feature set on BB-MAS motion event
data occurring outside of swipe and perform two random
runs keeping gamma as scale*100 and auto*10 with the nu
values set to default where we obtain EERs of 22.8% and
17.2% respectively. As in the above best guess based grid
search Alpaydin (2010) gamma=auto*10 produces better result, we
further search keeping gamma=auto*10 combining the nu of accel-
eration SVM with values from the set {0.2, 0.4, 0.6, 0.8} with the
nu of gyroscope SVM with values from the same set. At nu of ac-
celeration 0.2 and nu of gyroscope 0.4 we obtain an EER of 12.9%
which shows further improvement. As a next step we perform a
fine grain search of the nu set where we combine nu of accelera-
tion SVM from the set {0.1, 0.2, 0.3} with all the nu of gyroscope
SVM values of {0.1, 0.2, 0.3, 0.4, 0.5}. We do not find better EER
than 12.9%. We perform further runs with gamma=auto*40 and nu
of acceleration SVM with values {0.1, 0.3, 0.5, 0.7} in combination
with nu of gyroscope SVM of values {0.1, 0.3, 0.5, 0.7} which show
no improvement. Thereafter, we try with gamma as scale and its
multiples. We tune gamma with values of scale, scale*10, scale*20,
scale*30, scale*40 and try each gamma values with set of nu of ac-
celeration SVM of {0.1, 0.3, 0.5, 0.7, 0.9} in combination with set
if nu if gyroscope SVM with values of {0.1, 0.3, 0.5, 0.7, 0.9}. See
Fig. 9. None of these runs produce a better error rate than 12.9%.
We stop at this configuration. Therefore, the best EER we obtain
by extensive grid search over BB-MAS motion data extracted with
Shen feature set is 12.9% when gamma=auto*10, and nu of acceler-
ation and gyroscope SVMs are 0.2 and 0.4 respectively. See Fig. 10.

3 modalities fusion on both datasets (dataset et al., 2019; 2015):

We perform LR-based fusion of a swipe with acceleration and
gyroscope events that fall within the swipe utilizing OCC. In
case of the HMOG dataset (dataset et al.,, 2015), the best re-
sults are obtained in two experiments with the same EERs of
8.8% when the motion event data is extracted with median fea-
ture and Shen (Shen et al., 2017) feature. The standard devia-
tion obtained are EERs of 9.7% and 9% respectively. This shows
that, there has been few poor performers whose individual per-
formances increased the overall average error rate to 8.8%. See
Table 5. In case of the BB-MAS dataset (dataset et al., 2019),
we obtain the best performance of 0.9% EER when the swipe
is extracted with Touchalytics features and motion event is ex-
tracted with HMOG (dataset et al., 2015) features. In the best
performance scenario, the standard deviation of EERs across the
users is as low as 3.3% which shows that among 115 BB-
MAS dataset et al. (2019) users, most of them perform well. See
Table 5 for numerical values of overall performance for each ex-
periment in terms of average, median, minimum, maximum, and
standard deviation statistics across all users in a dataset. For
each experiment we take the individual performance of all users
in a dataset and visualize the spread and skewness trend of a
distribution (formed by the average performances of each user
across all the 10-fold shuffle) using box plots in Fig. 11 for both
HMOG (dataset et al., 2015) and BB-MAS (dataset et al., 2019)
datasets. The box plots labeled as 1a, 1b, and 1c show motion
events extracted with median, HMOG Sitova et al. (2015), and
Shen (Shen et al., 2017) features respectively. The larger spread
in EERs per HMOG (dataset et al., 2015) experiment and mini-
mum spread in EERs per BB-MAS (dataset et al., 2019) experi-
ments justify BB-MAS (dataset et al., 2019) performing better than
HMOG (dataset et al., 2015).
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Fig. 8. Grid search on BB-MAS motion data (dataset et al., 2019), with HMOG features (Sitova et al., 2015); gamma=scale*40; nu of acceleration={0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}; nu of gyroscope={0.5, 0.6, 0.7, 0.8, 0.9}.
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Fig. 9. Grid search on BB-MAS motion data (dataset et al, 2019), with Shen features (Shen et al., 2017); gamma = scale*10, scale*20, scale*30, scale*40; nu of
acceleration={0.1, 0.3, 0.5, 0.7, 0.9}; nu of gyroscope={0.1, 0.3, 0.5, 0.7, 0.9}..
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Fig. 10. Grid search on BB-MAS motion data (dataset et al., 2019), with Shen features (Shen et al., 2017); gamma = auto*10; nu of acceleration={0.1, 0.2, 0.3}; nu of
gyroscope={0.1, 0.2, 0.3, 0.4, 0.5} and nu of acceleration={0.2, 0.4, 0.6, 0.8}; nu of gyroscope={0.2, 0.4, 0.6, 0.8}.
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Table 5

Results on HMOG (dataset et al., 2015) and BB-MAS (dataset et al., 2019) dataset, using one-class classifiers. Reported statistics (average, median, minimum, maximum, and

standard deviation) across all users, Statistics augmentation: AVG-Average; MED-Median; MIN-Minimum; MAX-Maximum; STDV-Standard Deviation, .

EER (%), BB-MAS (dataset et al., 2019)

EER (%), HMOG (dataset et al., 2015)

STDV)

AVG (MED, MIN, MAX,

STDV)

AVG (MED, MIN, MAX,

Features

Modalities

Exp.

1.4 (0.0, 0.0, 22. 3, 4.0)
0.9 (0.0, 0.0, 20.9, 3.3)
1.0 (0.0, 0.0, 18.7, 3.0)

8.8 (6.6, 0.0, 37. 6, 9.7)

a) Median, Touchalytics (Frank et al., 2012)

Accel, Gyro,

13.6 (13.5, 0.0, 37.6, 12.3)
8.8 (6.1, 0.0, 32.6, 9.0)

b) HMOG (Sitové et al., 2015), Touchalytics Frank et al. (2012)
¢) Shen (Shen et al,, 2017), Touchalytics Frank et al. (2012)

Swipe (within

swipe)
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Fig. 11. Performance distribution of all users (HMOG (dataset et al., 2015) and BB-
MAS (dataset et al.,, 2019) datasets) over OCC experiments. The tick labels corre-
spond to the experiment numbers in Table 5.

5.3. Overall trend and justification

In most BC and OCC experiments BB-MAS (dataset et al., 2019)
data performs consistently better than HMOG (dataset et al., 2015)
data. The BC experiments are performed uniformly taking both
datasets. However, while performing 2 modalities OCC experiments
with BB-MAS dataset (dataset et al., 2019), we run extensive grid
searches to fine-tune the OCC hyperparameters (nu and gamma).
Given this and the t-SNE plots in Figs. 3 and 4 that show over-
lap between genuine and impostor samples, we did not perform 2
modalities OCC experiments with HMOG data (dataset et al., 2015).
The box plots of BB-MAS in Fig. 6 (labeled 1, 4a, 4b, and 4c) and
Fig. 11 (labeled 1a, 1b, and 1c) show minimal spread compared
to HMOG since several BB-MAS users have achieved 0% or close
EERs. Therefore, we examine the difference in the data collection
methods of HMOG (dataset et al., 2015) and BB-MAS (dataset et al.,
2019). In case of BB-MAS (dataset et al., 2019), the researchers
made sure that users swipe in between answering questions so
that swipes of considerable lengths and trajectories can be logged.
Whereas in HMOG (dataset et al.,, 2015), when users are sitting
and writing, no swipe-specific actions are performed. Users have
the liberty to swipe if needed while typing. Therefore, we notice
that the length of the swipes in HMOG [1] is shorter than BB-
MAS (dataset et al.,, 2019) for which the unique swipe trajectory
required to identify users is more prominent in case of BB-MAS
[2] compared to HMOG (dataset et al., 2015).

Figs. 13 and 14 show 20 sample swipes of a random user from
each of HMOG (dataset et al., 2015) and BB-MAS (dataset et al.,
2019) datasets respectively. From the general visualizations one can
see that the HMOG (dataset et al., 2015) sample swipes (Fig. 13)
are shorter compared to the BB-MAS (dataset et al., 2019) sam-
ple swipes (Fig. 14). The x and y axes in both figures have the
same ranges for fair comparison. To further study the nature of
swipe length in both datasets we calculate all the swipe lengths
per user (from the raw swipe data before processing) and plot the
distributions of swipe lengths. The total swipe length is calculated
by summing the Euclidean distances between every pair of coor-
dinates of intermediate touch events which constitute the swipe.
See Fig. 12 where the box plots show the skewness and spread
of swipe lengths across all users in both datasets. The numeri-
cal values of the swipe length statistics (average, median, 25 per-
centile, minimum, maximum, and standard deviation) are shown
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Boxplots of distribution of swipe lengths across all users
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Fig. 12. Swipe length distribution of all users (HMOG (dataset et al,, 2015) and BB-
MAS (dataset et al., 2019) datasets).
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in Table 6. The statistics in support of the box plots show that the
maximum length of BB-MAS (dataset et al.,, 2019) swipe is larger
than HMOG (dataset et al., 2015) swipe. There are short length
swipes in HMOG data (dataset et al., 2015) for which the trajec-
tories do not add sufficient uniqueness to authenticate users as it
does in case of BB-MAS (dataset et al., 2019). Same trend is shown
in case of other statistics like the average, median, and the 25 per-
centile. Therefore, such difference in the swipe length trend is a
reason why in all swipe-based experiments, BB-MAS (dataset et al.,
2019) outperforms HMOG (dataset et al., 2015).

In the case of HMOG, the data collection for the task of sitting
and typing on mobile devices has been done across four sessions
(3,9, 15, and 21). As shown in Table 7, there appear to be variable
time gaps between the sessions.

Since we have combined all four sessions in HMOG to make
a user profile, the presence of concept drift would impact per-
formance. Furthermore based on the observed time gaps between
sessions, we speculate there is concept drift in HMOG. To quan-
tify this, we perform statistical hypothesis tests between two ses-
sions (session-3 and session-21). We first perform the Kolmogorov-
Smirnov tests on acceleration along X, y, and z axes respec-
tively, and gyroscope along X, y, and z axes respectively. Since we
find that none of the data is normally distributed, we perform
Mann-Whitney tests to see if a users individual axis data (x/y/z)
from session-3 and their corresponding individual axis data from
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Fig. 13. 20 sample swipes of one user from HMOG dataset (dataset et al., 2015), Range of x-axis:[0,1400]. Range of y-axis:[200,1000].

16



A. Ray-Dowling, D. Hou, S. Schuckers et al.

Computers & Security 121 (2022) 102868

BBMAS sample user-swipes
1800 -
4
C sl °
2]
o s2 o &
O s3 8 P
1600 s4 o
O s5 g
o sb :
C s7
s8
14001 © s9
O s10
sl1
O s12
s13
120011 o s14
s15
s16 >
0 O s17 .
S 1o00f| O 8 Y00 © 0006 o e
g ! 0 sl19 g aoe -
> O s20
800 : S
&
:.“J )
S e & 8
£ g
600 & ('GQ °
& % Q
. .'1‘09 ° t
§ Ao "
o 0 3
O E o
400 ¥ ¢ 4:1 8 4
/ »
200 I 1 ] | 1 1 |
0 200 400 600 800 1000 1200 1400
x values
Fig. 14. 20 sample swipes of one user from BB-MAS dataset (dataset et al,, 2019), Range of x-axis:[0,1400]. Range of y-axis:[200,1000].
Table 6
Statistics of swipe lengths across users in the two public data sets: HMOG dataset et al. (2015)
and BB-MAS dataset et al. (2019) before processing for experiments. Statistics augmentation: AVG-
Average, MED-Median, 25 PERC-25th Percentile, MIN-Minimum, MAX-Maximum, STDV-Standard
Deviation. .
Swipe-length statistics (pixel)
Dataset AVG MED 25 PERC  MIN MAX STDV
HMOG (dataset et al., 2015) 264.53 22643 105.56 44.11 899.71 183.19
BB-MAS (dataset et al., 2019) 43692  388.01 276.93 4449 39503  238.61
Table 7 The acceleration and gyroscope data visualizations for a ran-
Time-gap  between sessions for three randomly picked

HMOG (dataset et al., 2015) users.

Between sessions User-100669 User-171538 user-186676

3and 9 ~ 1 day ~ 2 days ~ 1 day
9 and 15 ~ 1 day = 2 days ~ 1 day
15 and 21 ~ 2 days same day ~2 days

session-21 belong to the same distribution. The p value is always
less than 0.05 value. Therefore we conclude that no pairs belong to
the same distribution, and thus these statistical tests confirm that
there is the presence of concept drift in the data across sessions in
HMOG. In contrast, data from BB-MAS does not have this issue as
all users provide data in one attempt in a single day.
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domly selected user 100,669 of HMOG are shown in Figs. 15
and 16, which provide further evidence of the existence of concept
drift.

We have pointed out several similarities between the two pub-
lic datasets, such as the user behavior of sitting and typing is the
same, the choice of the same modalities, the number of users be-
ing very close to each other, and the feature sets we applied on the
datasets are the same. Above all, the user authentication algorithm
that we apply has been held to be the same on both datasets.
Therefore, we compare the performances of the two datasets un-
der similar scenarios and observe BB-MAS to be consistently bet-
ter than HMOG. We further explore the two possible causes for the
performance difference between the two datasets. We hope others
will find this useful to know.
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Acceleration Data along X, y, z axes across sessions: User 100669
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Fig. 15. Acceleration along x, y, and z axes for user 100,669 across all four sessions demonstrates the existence of concept drift in HMOG.

5.4. Time per decision during classification

We fuse 50 scores to make a decision in every experi-
ment. In case of the swipe-based experiments with the HMOG
dataset (dataset et al, 2015), it takes 2.5 minutes to gather
50 swipes to make a decision. On the other hand, the two
motion modalities-based experiments take 25 seconds per de-
cision. For any experiment with the BB-MAS (dataset et al.,
2019) dataset that involve swipes, the time taken to gather
50 swipes is about 8 minutes. On the other hand, classifica-
tion based on the two motion modalities take 25 seconds per
decision.

18

5.5. Computational cost

The computer used to run all experiments is a HP 2620 work-
station with 94 GB RAM and Intel Xeon E5-2670 processor with
hyperthreading enabled. It runs the Kubuntu 18.04.6 LTS operating
system.

The computation time of pre-processing (cleaning and feature
extraction) and training (for both SVM and GMM) for binary clas-
sifiers ranges from 1.9 to 38.5 second and 0.004 to 28.13 second
respectively in case of HMOG, and from 0.9 to 61 second and 0.004
to 21.39 second respectively in case of BB-MAS. For one-class clas-
sifiers, the computation time of pre-processing and training ranges
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Gyroscope Data along x, y, z axes across sessions: User 100669
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Fig. 16. Gyroscope along X, y, and z axes for user 100,669 across all four sessions demonstrates the existence of concept drift in HMOG.

from 10.7 to 38.5 second and 0.004 to 0.005 second respectively
for HMOG, and from 58.8 to 61 second and 0.005 to 0.009 sec-
ond respectively for BB-MAS. The three modality OCC experiment
has the same processing time as that of three modality BC experi-
ments (under group 4) since the data used are the same. However,
given only genuine samples are trained on the models (SVM and
GMM) and the data samples for three modality swipe-based ex-
periments are fewer than those of the other group of experiments,
the training time of OCC is shorter than BC training time.
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6. Conclusions and future works

Our previous work (Ray et al. (2021)) involve acceleration and
gyroscope to perform continuous authentication on our own col-
lected dataset of 49 seated users. The likelihood ratio-based score
fusion performs better than weighted score fusion in both intra-
session and inter-session experiments. Therefore, the present work
evaluates the performance of our authentication system on two
large public datasets to establish the generalizability of behavioral
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biometric-based authentication. We extract the motion event data
over three different feature sets and observe the difference in per-
formances across feature sets. We evaluate performances of multi-
modalities fusion experiments using likelihood ratio taking both
one-class and binary SVMs.

We evaluate our authentication platform by utilizing ac-
celeration, gyroscope, and swipe modalities from the two
large public datasets HMOG (dataset et al, 2015) and BB-
MAS (dataset et al., 2019). We extract three different feature
sets (median, HMOG (Sitova et al, 2015), and Shen (Shen et al.,
2017)) from the motion event data as well as Touchalytics fea-
tures (Frank et al, 2012) from the swipe data. In the case of
the swipe-based single modality experiment we have used score
level fusion that shows the authentication capacity of the indi-
vidual sporadic touch event. Depending on the availability of the
swipes, when there are swipes present we perform three modality
fusion and when there is no swipe we fuse two motion modal-
ities. The results of the experiments match with our hypothesis
of enhanced performance when swipe is fused with the motion
events. We train both binary and one-class SVM classifiers per
modality. For fusing two or more modalities, we apply Nandaku-
mars (Nandakumar et al., 2007) LR-based score fusion.

Binary SVMs achieve the best EERs of 1.5% (HMOG) and 0.2%
(BB-MAS) when all three modalities are fused, whereas the one-
class SVMs produce EERs of 8.8% and 0.9% respectively for the
same experiment. Across most experiments, BB-MAS performs bet-
ter than HMOG due to the absence of concept drift factor in the
data collection process and for longer swipe lengths compared to
HMOG. The binary SVMs achieve the best EERs of 2.4% (HMOG)
and 6.3% (BB-MAS) when two motion modalities outside the swipe
are fused, whereas in the same experiment with BB-MAS data the
one-class SVMs show poor performance. Although we have shown
that binary is better than one-class SVM, our goal is not to only
demonstrate that. Rather, we want to evaluate both binary and
one-class classifiers using both datasets. Although it is common to
use binary classifiers in authentication, a one-class classifier be-
comes necessary when impostor data is not available.

In this work, we have evaluated multi-modal behavioral bio-
metrics using two datasets. In the future, we plan to evaluate our
user authentication model on other public datasets on mobile be-
havioral biometrics.

We also plan to further evaluate the authentication perfor-
mance by fusing additional modalities. In HMOG (dataset et al.,
2015) and BB-MAS (dataset et al., 2019) public datasets there are
additional modalities, namely, tap, double-tap, pinch, long press
(which are similar touch events like swipe), rotation, and magne-
tometer (which are similar sensor events like acceleration and gy-
roscope). In the future, we will extend our authentication model to
fuse these modalities.

In this work, we did not evaluate the performance of
deep learning algorithms. Conventional machine learning al-
gorithms, like SVM, can be more cost-effective in terms
of computation and space compared to deep learning algo-
rithms. On the other hand, the existing state of the art
(Volaka et al. (2019), Amini et al. (2018), Buriro et al. (2021),
Centeno et al. (2017), Neverova et al. (2016), Deb et al. (2019),
and Abuhamad et al. (2020)) evaluate deep learning-based
authentication models. In fact most of these studies im-
plement recurrent neural networks (LSTM-Long Short Term
Memory) as their deep learning models. However, most of
the studies utilize a private dataset. Among these studies,
Volaka et al. (2019) and Centeno et al. (2017) are exceptions as
they utilize HMOG (dataset et al,, 2015), but their best perfor-
mances using deep learning models did not outperform the results
obtained in our study. In the future, we plan to extend our work
to evaluate deep learning models under a common set of datasets.
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