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Symbiont-mediated immune priming in animals through an
evolutionary lens

Kim L. Hoang* and Kayla C. King

Abstract

Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating
host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming
(SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are
less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP
occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution.
We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe
dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what
it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-
term persistence of the symbiosis.

INTRODUCTION

Parasites are ubiquitous and can cause substantial harm to host fitness. Animals have thus evolved multiple mechanisms to defend
themselves against parasites, such as avoidance, self-medication, and immunity [1-3]. The innate and adaptive immune systems
employ a series of cellular and humoral processes to prevent or mitigate damage from infection [3, 4]. The adaptive immune system
can provide protection through recognition of previously exposed parasites; such exposure can also prime the innate immune system
[5, 6]. Association with microbes is also critical in animal defence against parasites. By providing additional protection, microbial
symbionts can buffer hosts against environmental perturbations and allow them to thrive in harsh environments [7, 8]. They can replace
functions that the immune system lacks or work together with host immunity to modulate responses to parasites and other stressors.

Protective symbionts are widespread in host species across the tree of life [9]. We define protective symbionts as conditionally
beneficial microbes associated with hosts, including bacteria, archaea, fungi, viruses, and members of the microbiome (Box 1).
During their colonization, protective symbionts defend hosts through several general mechanisms [9-12]. Symbionts can directly
interfere with parasites by producing toxins that reduce parasite fitness [13] or compete with parasites for resources and space
within the host [14]. Symbionts can also indirectly interact with parasites by stimulating the immune system to prime hosts for
subsequent infection. Such symbionts protect hosts by increasing host fitness upon infection, improving host health, and/or
reducing parasite burden.

The molecular underpinnings of symbiont-mediated immune priming (SMIP) vary widely across animal taxa, involving both the
innate and adaptive immune systems (Table 1). For example, many invertebrates harbour symbionts that upregulate antimicrobial
peptides in hosts, facilitating in elimination of the parasite [5, 15]. Alternatively, members of the vertebrate microbiome modify
different arms of innate and adaptive immunity to alter parasite load or reduce harm to hosts [16]. The immune response can be
viewed from the perspective of symbionts taking part in indirect competition (i.e. apparent competition) with the parasite [11]
or the host immune system recognizing the symbiont as a non-self entity [17]. Furthermore, immune priming is not exclusive
to symbionts—parasites, their components, and other abiotic factors also elicit immune protection (Box 2). Similar phenomena
involving cross-talk between stress signalling pathways have been detected in plants and insects, where exposure to one stress
can provide tolerance to another due to shared stress response pathways [18-20].
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Box 1. Symbiont persistence from ecological and evolutionary perspectives

Symbionts are microbes that are beneficial to hosts under certain contexts [86]. However, definitions of symbionts can diverge
when examining symbiosis on ecological versus evolutionary timescales. From an ecological perspective, a symbiont has posi-
tive effects on host fitness and reside in close proximity or inside the host, with the latter requiring the symbiont to stably colo-
nize the host [87]. While symbionts can proliferate and evolve within hosts, stable colonization is not sufficient for successful
passage to the next host generation or transmission between hosts. Conversely, symbionts that can escape hosts and thrive in
the external environment gain more exposure to other host individuals, which can facilitate symbiont dispersal and increase
symbiont fitness [88, 89]. Colonization within an individual host in the absence of a transmission mechanism does not neces-
sarily guarantee symbiont persistence in the host population. Evolutionary persistence of the symbiosis can thus be impacted.
Hosts can also benefit when symbiont fitness is decreased, such as when lysed symbionts provide metabolites necessary for
host survival [90]. In this case the symbiont population declines within the lifespan of the host, but is still transmitted across
host generations. Finally, while transmission mechanisms in symbionts involved in SMIP are not well-studied, many of these
symbionts can proliferate in the environment. This life-history trait may allow for increased exposure to hosts on an evolu-
tionary timescale despite their ephemeral interactions with hosts on an ecological timescale.

Ambiguities also arise because mutualistic symbionts are not always beneficial in all contexts. Costs have been identified in
symbionts that have established long-term symbioses (ecologically and evolutionarily) with hosts, from facultative [91, 92] to
obligate [93, 94] associations. Symbionts can also shift across the parasite-mutualist continuum, altering host fitness across
space and time [86]. As a result, symbionts can vary widely and are more dynamic in terms of how they affect hosts than what
may be considered traditional symbionts.

While research on SMIP has focused on foundational processes in symbiosis as well as on applications in agriculture and animal
health [12, 21], less is known about the evolutionary drivers and consequences of SMIP. Here, we review recent advances made
in elucidating the ecological and molecular mechanisms by which symbiont-mediated immune priming occurs and discuss the
potential for this phenomenon to drive host, symbiont, and infectious disease evolution (summarized in Fig. 1). Addressing this
gap is critical to expanding our understanding of the evolution of host defenses and parasite virulence, as well as the establishment
of symbioses in a microbial world.

Evolution of host-encoded defense in light of symbiont-mediated immune priming

Associating with symbionts can affect the evolution of host immunity. The adaptive immune system has been hypothesized to
have arisen partly due to the diet expansion allowed by the jaw, which increased exposure of jawed vertebrates to parasites [22].
Concurrently, adaptive immunity may have allowed hosts to harbour a more diverse microbiome, conferring host adaptations to
changing environments and fine-tuning immune responses [22]. By influencing components of the host immune system, SMIP
can confer hosts with additional layers of plasticity to respond to parasite infection compared to host-encoded defence alone,
and thus can affect host evolution and adaptation [23].

Symbionts that protect hosts through modulating immunity might impact host evolution differently compared to symbionts that
directly interact with parasites. Because there are costs associated with immune activation and maintenance [24], symbionts that
protect hosts through toxins or competition with parasites may relax selection on host-based defence [24, 25]. Hosts may then
divest of their immunity. For example, genomic analysis of pea aphids colonized by defensive symbionts suggests they lack many
immune genes found in other insects [26]. One hypothesis is that having reduced immune function may be a consequence of
association with a suite of symbionts that protect hosts from biotic and abiotic stresses [27-29], but more evidence is needed to
demonstrate that protective symbionts were the cause of immune gene loss. Evolution of reduced immune vigilance may also
occur if it is difficult for the immune system to distinguish between beneficial symbionts and parasites (e.g. due to phylogenetic-
relatedness or production of similar molecular signatures) [30]. Alternatively, immune functions may be maintained if symbiont
costs are too great (e.g. in the absence of the parasite [31]), and the symbiont may decrease in prevalence or be lost altogether.

For SMIP, maintenance of a robust immune system—developed and not lacking immune genes or functions—is necessary
because of the direct impact of the immune system on parasites, but we are unaware of any empirical studies on the role of SMIP
on the evolution of host immunity [25]. One critical study in Drosophila has illuminated the significance of symbiont presence
on evolution of host immunity [32]. After only nine generations of host passaging, the authors found that presence of protective
Wolbachia bacteria reduced the frequency of a host-encoded gene responsible for defence against a viral parasite. This experiment
demonstrated that host immune function can be relaxed due to harbouring protective symbionts. Evolution of immunity due to
SMIP may also be contingent upon costs associated with host-encoded defence [24]. For example, prolonged overactivity of the
immune system due to symbiont exposure may cause a decline in host health, or if immune priming does not impact infection
success. The level of costs associated with SMIP may depend on how strongly the response is mounted versus the amount of
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Box 2. What else can prime host immunity?

Beneficial microbes

In addition to symbionts that have established associations with hosts, novel microbes introduced into hosts can prime host
immunity. These microbes can have a positive impact on host fitness or be beneficial under specific conditions. For example,
when Wolbachia native to Drosophila flies were introduced into nonnative mosquito hosts, mosquito immune responses were
upregulated and reduced dengue viral load, but the introduction also came at a cost to host fitness [38, 39]. Furthermore, some
native symbionts do not evoke an immune response [17, 39, 95-97] which may ensure successful colonization by the symbiont,
but the lack of immune induction may increase host susceptibility to infection. It is also possible to engineer symbionts able to
upregulate host immunity. For example, a native symbiont of honey bees engineered to express double-stranded RNA was able
to trigger RNA interference in bees and reduce viral litres [98].

Similarly, probiotics are live microbes aimed at improving host health, usually administered orally. Some probiotics prime
host immunity and are derived from the natural microbiome of the host itself [44, 99], while others are isolated from external
sources such as diet or different host types [100, 101]. Finally, physical components of symbionts can also evoke an immune
response, such that live microbes are not necessary. For example, bacterial components like peptidoglycan or even DNA from
microbiome members are enough to upregulate immunity [46, 102].

Parasites

Prior exposure to parasites, including those with attenuated virulence or sub-lethal doses, can prime the host immune system
for subsequent infection [33-35]. This priming is sometimes specific, where exposure to a particular parasite species only
protects against lethal doses of the same parasite [34], though the evolution of specificity can depend on the parasite species
[33]. In some cases, this protection is transgenerational, such that offspring of exposed mothers exhibit increased immune
activities and/or survival from infection [21, 103, 104]. Similarly, vaccines, which are composed of specific parasite compo-
nents, help the immune system recognize and remember a particular parasite so that it can prevent future infections.

Abiotic stressors

In addition to biotic stresses such as parasites, hosts also encounter abiotic stresses in their environment. Consequently,
animals have evolved a dynamic suite of defenses that can interweave and overlap. Mechanisms involved in abiotic stress
response can share genetic pathways with those involved in parasite response [105-107], a phenomenon well-studied in
plants [18, 20]. Consequently, exposure to an abiotic stress can increase host survival to infection by parasites, and vice versa
[19,108-111]. This phenomenon is similar to hormesis, where exposure to low doses of stressors can have beneficial stimula-
tory effects, a concept which has been explored in biomedical and toxicological fields [112, 113].

protection hosts receive. Similar to symbionts that directly interact with hosts, the influence of SMIP on immune evolution may
depend on the degree to which symbionts associate with hosts across generations.

Symbionts involved in SMIP with shared ancestry or molecular signatures to parasites can evoke similar immune responses
(Box 2). As such, parallels might be drawn between SMIP and parasites with regards to evolution of immune specificity. A previous
study on multiple parasite exposures indicates that red flour beetle hosts (Tribolium castaneum) can evolve priming specificity
(greater immune response when exposed to the same bacterial parasite, Bacillus thuringiensis, during priming and challenge
compared to exposure to different parasites) within a short number of generations [33]. Additionally, attenuated parasites have
been found to induce immune responses while causing less harm to the host [33-35]. These findings would suggest that a
symbiont with similar signatures to a parasite may lead to more specific responses by the host. Moreover, studies of Spiroplasma
and Wolbachia bacteria have found that these symbionts cause a dampened or no immune response in their native Drosophila
hosts [10, 36-38]. By contrast, Wolbachia induces a strong response in novel mosquito hosts, resulting in increased mosquito
resistance to dengue viral infection [17, 39]. A possibility for upregulation of immune expression is that Drosophila hosts are
treating the novel symbiont as a foreign stimulus, akin to parasite infection, which also inadvertently reduces viral litres [38].
These results also suggest that SMIP may be a more recently evolved mechanism of protection compared to direct symbiont-
parasite interactions—longer evolutionary history with the host may result in adaptation in host and/or symbiont that dampens
the immune response toward the symbiont.

SMIP, like parasite infection, can select for different host defence strategies, namely resistance and tolerance. Whilst the former
reduces parasite burden within hosts, the latter response alleviates damages caused by infection without affecting parasite
fitness [40, 41]. Because SMIP can affect various aspects of the immune system, tolerance to parasites may more likely evolve
if pathways involved in tissue damage repair are activated in the process [42]. However, SMIP-conferred tolerance, and the
degree to which this mechanism may underpin natural patterns of host tolerance given constant microbe colonization, remain
understudied.
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What is the prevalence of SMIP in
robust immune system specificity nature (or in non-model hosts)?

immune response . . %
arasite .
° o% | Parasite . %f % Does SMIP select for fast-colonizing
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within host lifespan across host generations conferred by protective symbionts?

Fig. 1. How might SMIP affect symbiosis? Hosts: maintenance or evolution of a robust immune system may occur because a functioning immune
system is required for SMIP to work, unlike other mechanisms of symbiont-conferred defence. Similarities between symbiont and parasite may
also lead to evolution of more specific responses toward the parasite. Parasites: heterogeneity in host populations, whether through symbionts and/
or immunity, may select for increased parasite diversity. Increased virulence may also occur due to parasites no longer paying the cost of being too
virulent. Symbionts: if a short duration of exposure to the symbiont is sufficient to evoke an immune response, persistent interaction with the host may
not be necessary, especially if the immune response is still mounted after the symbiont is gone. From an evolutionary perspective, symbionts involved
in SMIP may be less likely to be host-dependent or inherited because many are acquired from the environment (Table 1) or are costly to harbour in the
absence of threat. Arrow above host represents immune upregulation.

Research on SMIP has largely been focused on a few model or well-studied host systems (Table 1), making them ideal for
testing hypotheses on the evolution of host immunity. For example, interactions between bees and their microbiomes make up a
significant proportion of SMIP studies in invertebrates. Bees are an attractive model for studying host-microbe interactions due to
their relatively complex microbiome compared to other insects, in addition to their agricultural importance [43]. Consequently,
much research on the protective effects of symbionts and other host defence mechanisms has been focused on bees (Table 1)
[21]. For vertebrates, research using mice has shed light on the effects of gut microbiome and probiotics on expression of the
innate and adaptive immune systems [44-46]. The amenability of these hosts to experiments may have contributed to their better
characterized immune responses compared to other organisms. Accordingly, these hosts can be used to address questions such
as weighing the cost of harbouring defensive symbionts versus the maintenance of a robust immune system [25, 47]. However,
model organisms reared in the laboratory are often absent of input from the environment, thus they may be missing members
of the microbiome they would encounter in the wild [48, 49]. A better understanding of the prevalence of SMIP in nature might
involve a thorough survey of animal hosts in the wild, particularly those with adaptive immunity and those harbouring complex
microbiomes. Future research may also help determine whether certain types of microbes are more likely to participate in SMIP
than others since previous studies have focused primarily on bacteria (Table 1). SMIP may nevertheless be difficult to detect in
the wild. Brief exposure to the symbiont may be adequate to evoke an immune response, which would diminish the chance of
documenting the symbiosis in real-time.

Parasite population structure and virulence evolution

Host resistance and tolerance have been predicted to drive parasite evolution [50, 51]. SMIP might similarly impose selection
on parasites to respond to the protection conferred by symbionts through immunity. High host genetic variation is important
to combat parasites that are constantly evolving [52]. Host populations can vary in the prevalence of protective symbionts—not
all hosts in a population will harbour protective symbionts [53-55]. Similarly, both vertebrate and invertebrate hosts can also
exhibit variation in defence at the genetic level [54, 56]. Such heterogeneity in host populations, whether through symbionts and/
or immunity, may select for increased parasite diversity [57], which in turn may reciprocally maintain variation in host defence
strategies. For example, diverse populations of the parasitoid, Lysiphlebus fabarum, have been shown to shape the diversity of
protective Hamiltonella defensa bacteria of black bean aphids [58]. Since SMIP can modulate host immunity, this additional level
of plasticity in host defence may facilitate parasite evolution further. Experimental evolution of microbes passaged through hosts
have yielded foundational insight into how the host environment can shape patterns and processes of microbial evolution [59-61].
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Fig. 2. SMIP may select for increased parasite virulence over time because A) hosts survive when infected by parasite due to SMIP, so virulent parasites
are no longer removed from the population through host death; and B) SMIP may elicit a stronger immune response than in the absence of SMIP, which
effectively eliminates less virulent parasites and allow more virulent ones to dominate. Symbionts are shown in magenta; parasites in light and dark
green. Arrow above host represents immune upregulation.

This approach could be used to passage parasites through hosts with varying levels or sources of defence (e.g. immunocompetent
and immunocompromised hosts, with or without symbionts), directly testing the role of host heterogeneity in shaping parasite
diversity.

Symbionts involved in SMIP and host-encoded defenses may have different impacts on parasite evolutionary rates. Given their
large populations and short-generation times, microbes are likely to evolve more rapidly than hosts and therefore respond to
parasite evolution within a short timespan [9]. Faster-evolving symbionts may become better at modulating host immunity (either
within the lifespan of the host or across host generations), which in turn may impose greater selection on parasites. Moreover,
obtaining symbionts from the environment is also faster than acquisition of new genes (i.e. within one host generation versus
multiple host generations). However, it may not be simple for hosts to acquire suitable symbionts from the environment and may
require specific mechanisms for selecting and cultivating these symbionts [62, 63]. Finally, early exposure to symbionts may also
launch immune responses in advance of parasite colonization, therefore promoting suppression of parasite and be more effective
at reducing infection load [35, 64, 65]. Altogether, SMIP may more likely select for fast-colonizing parasites or those better able
to evade the immune system.

Despite the protection that symbionts provide hosts at the individual and population level [e.g. 35, 62], SMIP have the potential
to be harmful for future host generations. Theories on immune priming by parasites can lend insight into the impact of SMIP
on the evolution of parasite virulence. Virulence is predicted to trade-off with transmission, such that high virulence resulting in
early host death can prevent transmission [66]. However, when prior parasite exposure prevents host death, reinfecting parasites
do not pay the cost of being highly virulent [67]. Additionally, the level of virulence can be positively correlated with the level of
protection: a more virulent parasite can elicit stronger immune protection. Thus, hosts previously infected with a more virulent
parasite can exhibit the largest reduction in mortality following a subsequent infection. A stronger immune response also prevents
less virulent parasites from infecting hosts, thus selecting for higher virulent parasites [67]. Similar predictions have also been
made for imperfect vaccines that do not prevent parasite transmission [68, 69]. Protection provided by SMIP may similarly
select for increased virulence (Fig. 2). Hosts that survive infection due to SMIP may allow virulent parasites to persist in the
population. Furthermore, the stronger immune response mounted by hosts harbouring symbionts would prevent less virulent
parasites from successful infection. However, evolution of virulence may be contingent upon increased levels of specificity of the
launched response or costs to the parasite [10].

Implications for persistence of the symbiosis

Research in symbiosis has frequently focused on the role of the symbiont on host fitness [70, 71], but the degree to which hosts
impact symbiont fitness is not as well-studied [71, 72]. Many symbionts, such as those that are heritable, are solely host-associated
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and cannot survive outside the host. Hosts that acquire symbionts from the environment spend some part of their lifespan
without their symbionts. Additionally, such associations need not be throughout the entirety of the host’s lifespan for the host to
obtain benefits. SMIP can occur prior to parasite infection (exposure to the symbiont during infection may not be necessary),
and the immune response can be mounted and maintained after only a brief exposure to the symbiont [35, 73, 74]. Therefore,
immune-priming symbionts may be different from those that engage in direct competition with parasites, though not necessarily
mutually exclusive. Stable establishment within hosts may not be necessary for the symbiosis to exist. Furthermore, since immune
activation can be costly to the host [10, 24], SMIP is likely beneficial only when there is a high risk of parasite infection, suggesting
that the symbiont prevalence may be low otherwise.

Host-symbiont evolution might be shaped by the duration of symbiont exposure necessary to mount an immune response.
While SMIP studies have not directly tested the exposure period necessary to evoke an immune response, most detail how the
symbiont was administered (Table 1). The same duration of time for one host species can represent a different proportion of its
lifespan compared to another species, making comparisons across host taxa difficult. An immune response can be induced from
relatively short symbiont exposures, which are often acquired from the environment (e.g. orally [75]). Thus, there may not be
many inherited or obligate SMIP associations, though more studies are needed for SMIP in nature. Furthermore, some hosts may
need a continual influx of symbionts to maintain immune upregulation [65, 76]. This requirement suggests that a certain threshold
of symbiont density is needed for a response, where the rate of symbiont growth within hosts is not meeting host demands and
increased exposure time is necessary for symbiont accumulation.

Because the immune system also functions to regulate symbiont populations [25], it is likely SMIP also targets the symbionts
themselves, similar to parasite-induced priming that protects hosts from reinfection. For example, the gut microbiome of Dros-
ophila induces a basal level of immune responses in the flies, which helps to prevent over-proliferation of the microbiome [77].
When host-microbe interactions are ephemeral, the definition of a symbiont can become ambiguous (Box 1). We suggest that
some microbes involved in SMIP be seen as ‘opportunistic symbionts’—transient but have a positive effect on host fitness—which
can impact the long-term evolutionary trajectories of hosts despite shorter ecological interactions.

Symbionts involved in SMIP may be vulnerable to host exploitation, particularly hosts that only require short exposures to
the symbiont. There is increasing evidence for hosts exploiting symbiont populations for their benefit [78-80]. For example,
the cereal weevil ‘recycles’” their symbiont once they have obtained the necessary nutrients from their bacterial symbiont,
Sodalis pierantonius, required for development [79]. While we are unaware of any studies that specifically examines exploita-
tion in SMIP, the shorter duration of interaction with hosts may be a cause or consequence of potential asymmetry between
partners. The impact of such asymmetry may be that selection for host-associated SMIP microbes is reduced, favouring a
less host-dependent lifestyle.

Comparative genomics and phylogenetics of symbionts have yielded insight into evolutionary consequences for host-
association. Reduction in genome size and altered evolutionary trajectories are driven by host association [81, 82]. Such
approaches may be useful in determining the degree of host dependence and shared evolutionary history with hosts for
immune-priming symbionts. For example, comparing the genomic aspects and lifestyle of defensive symbionts differing in
protective mechanisms, in addition to the age of these symbioses, will help address whether novel symbionts are more likely
to upregulate immunity. Pairing these approaches with empirical studies will shed light on the impact of the immune system
and indirect impact of parasites on symbionts.

CONCLUSION

Microbial symbioses have shaped the evolution of animal hosts [83] and of the symbionts themselves [81, 84]. Protective
symbionts in particular have had a profound influence on host resistance to infection at the scale of the host individual,
populations, and communities [8, 10, 85]. Compared to symbionts that directly compete with parasites [14, 27], symbionts
that prime host immunity may be more prevalent amongst new or ephemeral interactions. In these associations, the host
has not yet evolved to accommodate the symbiont, or the symbiont has not evolved to evade host defenses. Consequently,
the host immune system might recognize the symbiont as an invader and elicit a response accordingly. SMIP may therefore
be a first step of a free-living microbe transitioning into a protective, more permanent symbiont. Nonetheless, long-term
residents can also modulate immune responses and even be necessary for proper development of the immune system [25].
Immune-priming symbionts thus play important roles in host-microbe evolution across the parasite-mutualist continuum,
acting both as an extension and modulator of host defenses.
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