

Symbiont-mediated immune priming in animals through an evolutionary lens

Kim L. Hoang* and Kayla C. King

Abstract

Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.

INTRODUCTION

Parasites are ubiquitous and can cause substantial harm to host fitness. Animals have thus evolved multiple mechanisms to defend themselves against parasites, such as avoidance, self-medication, and immunity [1–3]. The innate and adaptive immune systems employ a series of cellular and humoral processes to prevent or mitigate damage from infection [3, 4]. The adaptive immune system can provide protection through recognition of previously exposed parasites; such exposure can also prime the innate immune system [5, 6]. Association with microbes is also critical in animal defence against parasites. By providing additional protection, microbial symbionts can buffer hosts against environmental perturbations and allow them to thrive in harsh environments [7, 8]. They can replace functions that the immune system lacks or work together with host immunity to modulate responses to parasites and other stressors.

Protective symbionts are widespread in host species across the tree of life [9]. We define protective symbionts as conditionally beneficial microbes associated with hosts, including bacteria, archaea, fungi, viruses, and members of the microbiome (Box 1). During their colonization, protective symbionts defend hosts through several general mechanisms [9–12]. Symbionts can directly interfere with parasites by producing toxins that reduce parasite fitness [13] or compete with parasites for resources and space within the host [14]. Symbionts can also indirectly interact with parasites by stimulating the immune system to prime hosts for subsequent infection. Such symbionts protect hosts by increasing host fitness upon infection, improving host health, and/or reducing parasite burden.

The molecular underpinnings of symbiont-mediated immune priming (SMIP) vary widely across animal taxa, involving both the innate and adaptive immune systems (Table 1). For example, many invertebrates harbour symbionts that upregulate antimicrobial peptides in hosts, facilitating in elimination of the parasite [5, 15]. Alternatively, members of the vertebrate microbiome modify different arms of innate and adaptive immunity to alter parasite load or reduce harm to hosts [16]. The immune response can be viewed from the perspective of symbionts taking part in indirect competition (i.e. apparent competition) with the parasite [11] or the host immune system recognizing the symbiont as a non-self entity [17]. Furthermore, immune priming is not exclusive to symbionts—parasites, their components, and other abiotic factors also elicit immune protection (Box 2). Similar phenomena involving cross-talk between stress signalling pathways have been detected in plants and insects, where exposure to one stress can provide tolerance to another due to shared stress response pathways [18–20].

Received 17 December 2021; Accepted 01 April 2022; Published 20 April 2022

Author affiliations: ¹Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.

*Correspondence: Kim L. Hoang, kim.hoang@zoo.ox.ac.uk

Keywords: Symbiosis; immune priming; parasites; host-microbe evolution.

Abbreviations: AMP, antimicrobial peptide; p38 MAPK, p38 mitogen-activated protein kinase; PSA, polysaccharide A; SFB, segmented filamentous bacterium; SMIP, symbiont-mediated immune priming.

001181 © 2022 The Authors

Box 1. Symbiont persistence from ecological and evolutionary perspectives

Symbionts are microbes that are beneficial to hosts under certain contexts [86]. However, definitions of symbionts can diverge when examining symbiosis on ecological versus evolutionary timescales. From an ecological perspective, a symbiont has positive effects on host fitness and reside in close proximity or inside the host, with the latter requiring the symbiont to stably colonize the host [87]. While symbionts can proliferate and evolve within hosts, stable colonization is not sufficient for successful passage to the next host generation or transmission between hosts. Conversely, symbionts that can escape hosts and thrive in the external environment gain more exposure to other host individuals, which can facilitate symbiont dispersal and increase symbiont fitness [88, 89]. Colonization within an individual host in the absence of a transmission mechanism does not necessarily guarantee symbiont persistence in the host population. Evolutionary persistence of the symbiosis can thus be impacted. Hosts can also benefit when symbiont fitness is decreased, such as when lysed symbionts provide metabolites necessary for host survival [90]. In this case the symbiont population declines within the lifespan of the host, but is still transmitted across host generations. Finally, while transmission mechanisms in symbionts involved in SMIP are not well-studied, many of these symbionts can proliferate in the environment. This life-history trait may allow for increased exposure to hosts on an evolutionary timescale despite their ephemeral interactions with hosts on an ecological timescale.

Ambiguities also arise because mutualistic symbionts are not always beneficial in all contexts. Costs have been identified in symbionts that have established long-term symbioses (ecologically and evolutionarily) with hosts, from facultative [91, 92] to obligate [93, 94] associations. Symbionts can also shift across the parasite-mutualist continuum, altering host fitness across space and time [86]. As a result, symbionts can vary widely and are more dynamic in terms of how they affect hosts than what may be considered traditional symbionts.

While research on SMIP has focused on foundational processes in symbiosis as well as on applications in agriculture and animal health [12, 21], less is known about the evolutionary drivers and consequences of SMIP. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which symbiont-mediated immune priming occurs and discuss the potential for this phenomenon to drive host, symbiont, and infectious disease evolution (summarized in Fig. 1). Addressing this gap is critical to expanding our understanding of the evolution of host defenses and parasite virulence, as well as the establishment of symbioses in a microbial world.

Evolution of host-encoded defense in light of symbiont-mediated immune priming

Associating with symbionts can affect the evolution of host immunity. The adaptive immune system has been hypothesized to have arisen partly due to the diet expansion allowed by the jaw, which increased exposure of jawed vertebrates to parasites [22]. Concurrently, adaptive immunity may have allowed hosts to harbour a more diverse microbiome, conferring host adaptations to changing environments and fine-tuning immune responses [22]. By influencing components of the host immune system, SMIP can confer hosts with additional layers of plasticity to respond to parasite infection compared to host-encoded defence alone, and thus can affect host evolution and adaptation [23].

Symbionts that protect hosts through modulating immunity might impact host evolution differently compared to symbionts that directly interact with parasites. Because there are costs associated with immune activation and maintenance [24], symbionts that protect hosts through toxins or competition with parasites may relax selection on host-based defence [24, 25]. Hosts may then divest of their immunity. For example, genomic analysis of pea aphids colonized by defensive symbionts suggests they lack many immune genes found in other insects [26]. One hypothesis is that having reduced immune function may be a consequence of association with a suite of symbionts that protect hosts from biotic and abiotic stresses [27–29], but more evidence is needed to demonstrate that protective symbionts were the cause of immune gene loss. Evolution of reduced immune vigilance may also occur if it is difficult for the immune system to distinguish between beneficial symbionts and parasites (e.g. due to phylogenetic-relatedness or production of similar molecular signatures) [30]. Alternatively, immune functions may be maintained if symbiont costs are too great (e.g. in the absence of the parasite [31]), and the symbiont may decrease in prevalence or be lost altogether.

For SMIP, maintenance of a robust immune system—developed and not lacking immune genes or functions—is necessary because of the direct impact of the immune system on parasites, but we are unaware of any empirical studies on the role of SMIP on the evolution of host immunity [25]. One critical study in *Drosophila* has illuminated the significance of symbiont presence on evolution of host immunity [32]. After only nine generations of host passaging, the authors found that presence of protective *Wolbachia* bacteria reduced the frequency of a host-encoded gene responsible for defence against a viral parasite. This experiment demonstrated that host immune function can be relaxed due to harbouring protective symbionts. Evolution of immunity due to SMIP may also be contingent upon costs associated with host-encoded defence [24]. For example, prolonged overactivity of the immune system due to symbiont exposure may cause a decline in host health, or if immune priming does not impact infection success. The level of costs associated with SMIP may depend on how strongly the response is mounted versus the amount of

Table 1. Examples of symbiont-mediated immune priming in animal hosts

Host	Symbiont	Parasite	Mechanism of immune response	Type of response (and duration if known)	Method of symbiont exposure	Effect on host health or fitness	Effect on parasite fitness	Ref
Honey bee	Gut microbiome	<i>Escherichia coli</i> bacteria	Expression of antimicrobial peptides (AMPs)	Response in gut and hemolymph	Adults fed microbe right after emergence; sampled after 5 days	Increased host survival	Reduced load	[114]
Honey bee	<i>Sinodessusella alibi</i> bacteria (gut symbiont)	<i>Serratia marcescens</i> bacteria	Upregulation of Toll pathway leading to increased AMP expression	Non-specific response (similar response to heat-killed <i>E. coli</i>)	Adults fed symbiont in drinking water; sampled after 5 days	Increased host survival	Reduced load	[115]
Bean bug	<i>Burkholderia</i> bacteria	<i>E. coli</i> bacteria <i>Staphylococcus aureus</i>	Increased antimicrobial activities and AMP expression	Expression in hemolymph	Second instar nymphs fed bacteria. Infected 3 days after moulting to adult	Increased host survival to both parasites	Reduced load for <i>E. coli</i> Fitness not measured for <i>S. aureus</i>	[64]
Weevil	Gut microbiome	<i>Serratia marcescens</i> bacteria	Increased phenoxidase activity; expression of pathogen recognition receptors, AMPs	Gut and systemic immune response	Conventionally-reared vs. germ-free hosts. Fourth instar larvae challenged with parasite	Increased host survival to <i>S. marcescens</i>	Reduced load for <i>E. coli</i> Fitness not measured for <i>S. marcescens</i>	[116]
<i>Drosophila</i>	<i>Wolbachia</i> <i>pi</i> bacteria	<i>Pseudomonas aeruginosa</i> bacteria	Increased expression of reactive oxygen species and AMPs	Protection from enteric infection, but not from systemic infection	Resident (intracellular) symbiont. Adults were fed parasite	Increased survival during enteric infection	Reduced load in male hosts but not females	[117]
<i>C. elegans</i>	<i>Pseudomonas aeruginosa</i> bacteria	<i>Pseudomonas aeruginosa</i> bacteria	Increased expression of p38 MAPK immune pathway	Attenuated parasite also induced response, but not another related <i>Pseudomonas</i>	Reared on symbiont throughout larva development, but effects can be seen after 4 h of symbiont exposure	Increased host survival	Reduced load	[35]
<i>C. elegans</i>	<i>Lactobacillus acidophilus</i> bacteria (probiotic)	<i>Enterococcus faecalis</i> <i>S. aureus</i>	Increased expression of p38 MAPK immune pathway and beta catenin signalling pathway	Little effects on other parasites	Young adults on probiotic for 1 day then exposed to parasite. Probiotic cannot colonize host	Increased host survival to both parasites	Reduced load for <i>E. faecalis</i> Fitness not measured for <i>S. aureus</i>	[73]
Rabbit	<i>Lactobacillus casei</i> bacteria (probiotic)	Shiga toxin-producing <i>E. coli</i>	Secretion of specific IgA antibodies against parasite	Response in GI tract (adaptive immunity)	Feeding of probiotic occurred twice a day daily until hosts were ten days old. Hosts infected at 3 days old	Reduced damage to intestine	Reduced load	[76]
Mouse	<i>Bacteroides fragilis</i> bacteria (human symbiont)	<i>Helicobacter hepaticus</i> bacteria	Induces production of anti-inflammatory protein	Requires only a single microbial molecule, polysaccharide A (PSA), to induce response	Symbiont co-colonized with parasite. Hosts remained colonized by both bacteria throughout course of disease	Reduced disease severity	Load unchanged	[118]
Mouse	Gut microbiome	<i>Streptococcus pneumoniae</i> <i>Staphylococcus aureus</i>	Enhances neutrophil functions through pattern recognition receptor NOD1	Peptidoglycan from microbiome induces response. Systemic response (innate immunity)	Feeding of probiotic occurred twice a day daily until hosts were ten days old. Hosts infected at 3 days old	Reduced damage to intestine	Reduced load for both parasites	[46]
Mouse	Gut microbiome	Mouse cytomegalovirus	Poses interferon (signalling proteins) expression, activating natural killer cells for antiviral response	Systemic response (innate immunity)	Conventionally-reared hosts vs. germ-free hosts	Host fitness not measured (between conventionally-reared and germ-free mice)	Reduced load	[119]
Mouse	Segmented filamentous bacterium (SFB)	<i>Citrobacter rodentium</i> bacteria	Induces T helper 17 cells, upregulation of AMPs and inflammation-related genes	(adaptive immunity)	Germ-free hosts fed SFB	Host fitness not measured	Reduced load	[45]
Rat	<i>Lactobacillus casei</i> bacteria (probiotic)	<i>Listeria monocytogenes</i>	Cell-mediated immunity (e.g., macrophage)	(innate immunity)	Oral administration of viable probiotic daily 3 days before parasite infection	Host fitness not measured	Reduced load	[65]
Mouse	<i>Lactobacilli</i> bacteria	<i>Heligmosomoides polygyrus</i> helminth	Increased regulatory T cell and Th17 responses	Response in the gut	Conventionally-reared hosts fed bacteria in drinking water	Host fitness not measured	Increased load	[120]

Continued

Table 1. Continued

Host	Symbiont	Parasite	Mechanism of immune response	Type of response (and duration if known)	Method of symbiont exposure	Effect on host health or fitness	Effect on parasite fitness	Ref
Bumble bee	Gut microbiome community	<i>Critidium bombi</i> trypanosome gut parasite	Differential expression of immune genes	Variation in response dependent on host genotype	Faecal transplant of resistant vs. susceptible hosts; administered 1–3 days after emergence; sampled 18 h post-transplant	Fitness measured before transplant	Fitness measured before transplant	[121]
Honey bee	<i>Bifidobacterium</i> spp. and <i>Lactobacillus</i> spp. bacteria (probiotics)	<i>Paenibacillus larvae</i> larvae bacteria	Upregulation of antibacterial peptide (abaecin) expression	Non-specific response; may be primarily in hemolymph. Sustained response during development	Added bacteria as needed in diet of larvae	Fitness not measured	Fitness not measured	[122]
Mosquito	Gut microbiome	Vectored <i>Plasmodium falciparum</i> protozoa	Hemocyte differentiation	Systemic activation. Persisted throughout lifespan of mosquito	Resident microbiome eliminated via antibiotics	Fitness not measured	Fitness not measured	[123]
Honey bee	<i>Frischella perrara</i> bacteria (found in bee gut microbiome worldwide)	No parasite examined	Upregulation of immune genes, AMPs, pattern recognition receptors	Response in region of gut	Adults fed 24 h after emergence (symbiont colonizes host right after emergence in nature); sampled after ten days	Fitness not measured	No parasite examined	[74]

Box 2. What else can prime host immunity?

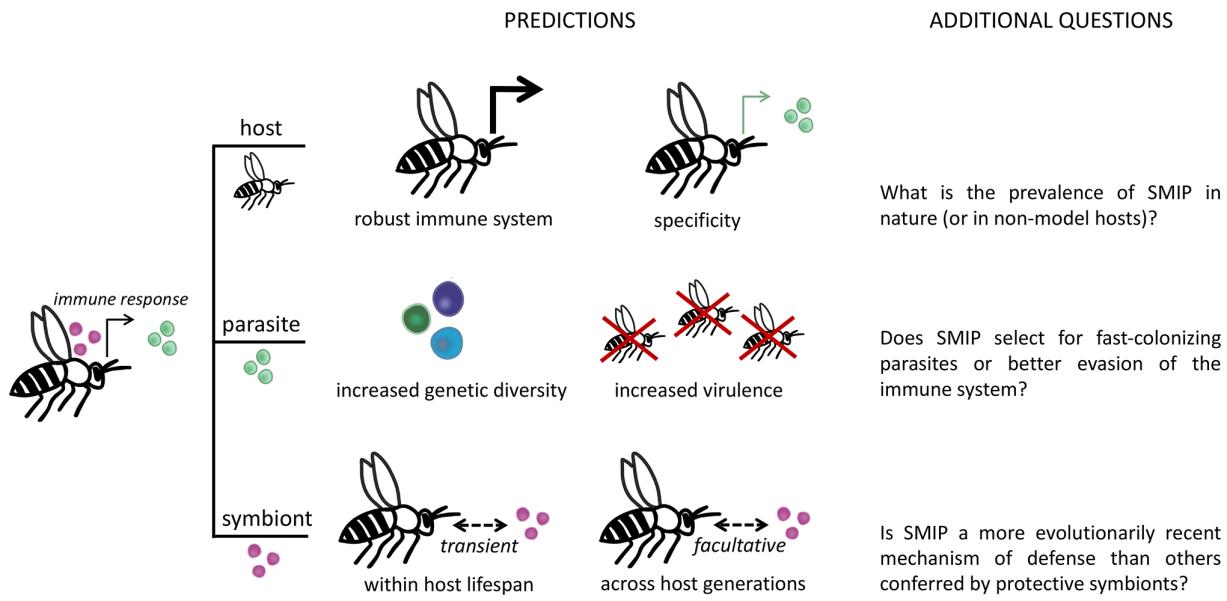
Beneficial microbes

In addition to symbionts that have established associations with hosts, novel microbes introduced into hosts can prime host immunity. These microbes can have a positive impact on host fitness or be beneficial under specific conditions. For example, when *Wolbachia* native to *Drosophila* flies were introduced into nonnative mosquito hosts, mosquito immune responses were upregulated and reduced dengue viral load, but the introduction also came at a cost to host fitness [38, 39]. Furthermore, some native symbionts do not evoke an immune response [17, 39, 95–97] which may ensure successful colonization by the symbiont, but the lack of immune induction may increase host susceptibility to infection. It is also possible to engineer symbionts able to upregulate host immunity. For example, a native symbiont of honey bees engineered to express double-stranded RNA was able to trigger RNA interference in bees and reduce viral litres [98].

Similarly, probiotics are live microbes aimed at improving host health, usually administered orally. Some probiotics prime host immunity and are derived from the natural microbiome of the host itself [44, 99], while others are isolated from external sources such as diet or different host types [100, 101]. Finally, physical components of symbionts can also evoke an immune response, such that live microbes are not necessary. For example, bacterial components like peptidoglycan or even DNA from microbiome members are enough to upregulate immunity [46, 102].

Parasites

Prior exposure to parasites, including those with attenuated virulence or sub-lethal doses, can prime the host immune system for subsequent infection [33–35]. This priming is sometimes specific, where exposure to a particular parasite species only protects against lethal doses of the same parasite [34], though the evolution of specificity can depend on the parasite species [33]. In some cases, this protection is transgenerational, such that offspring of exposed mothers exhibit increased immune activities and/or survival from infection [21, 103, 104]. Similarly, vaccines, which are composed of specific parasite components, help the immune system recognize and remember a particular parasite so that it can prevent future infections.


Abiotic stressors

In addition to biotic stresses such as parasites, hosts also encounter abiotic stresses in their environment. Consequently, animals have evolved a dynamic suite of defenses that can interweave and overlap. Mechanisms involved in abiotic stress response can share genetic pathways with those involved in parasite response [105–107], a phenomenon well-studied in plants [18, 20]. Consequently, exposure to an abiotic stress can increase host survival to infection by parasites, and vice versa [19, 108–111]. This phenomenon is similar to hormesis, where exposure to low doses of stressors can have beneficial stimulatory effects, a concept which has been explored in biomedical and toxicological fields [112, 113].

protection hosts receive. Similar to symbionts that directly interact with hosts, the influence of SMIP on immune evolution may depend on the degree to which symbionts associate with hosts across generations.

Symbionts involved in SMIP with shared ancestry or molecular signatures to parasites can evoke similar immune responses (Box 2). As such, parallels might be drawn between SMIP and parasites with regards to evolution of immune specificity. A previous study on multiple parasite exposures indicates that red flour beetle hosts (*Tribolium castaneum*) can evolve priming specificity (greater immune response when exposed to the same bacterial parasite, *Bacillus thuringiensis*, during priming and challenge compared to exposure to different parasites) within a short number of generations [33]. Additionally, attenuated parasites have been found to induce immune responses while causing less harm to the host [33–35]. These findings would suggest that a symbiont with similar signatures to a parasite may lead to more specific responses by the host. Moreover, studies of *Spiroplasma* and *Wolbachia* bacteria have found that these symbionts cause a damped or no immune response in their native *Drosophila* hosts [10, 36–38]. By contrast, *Wolbachia* induces a strong response in novel mosquito hosts, resulting in increased mosquito resistance to dengue viral infection [17, 39]. A possibility for upregulation of immune expression is that *Drosophila* hosts are treating the novel symbiont as a foreign stimulus, akin to parasite infection, which also inadvertently reduces viral litres [38]. These results also suggest that SMIP may be a more recently evolved mechanism of protection compared to direct symbiont-parasite interactions—longer evolutionary history with the host may result in adaptation in host and/or symbiont that dampens the immune response toward the symbiont.

SMIP, like parasite infection, can select for different host defence strategies, namely resistance and tolerance. Whilst the former reduces parasite burden within hosts, the latter response alleviates damages caused by infection without affecting parasite fitness [40, 41]. Because SMIP can affect various aspects of the immune system, tolerance to parasites may more likely evolve if pathways involved in tissue damage repair are activated in the process [42]. However, SMIP-conferred tolerance, and the degree to which this mechanism may underpin natural patterns of host tolerance given constant microbe colonization, remain understudied.

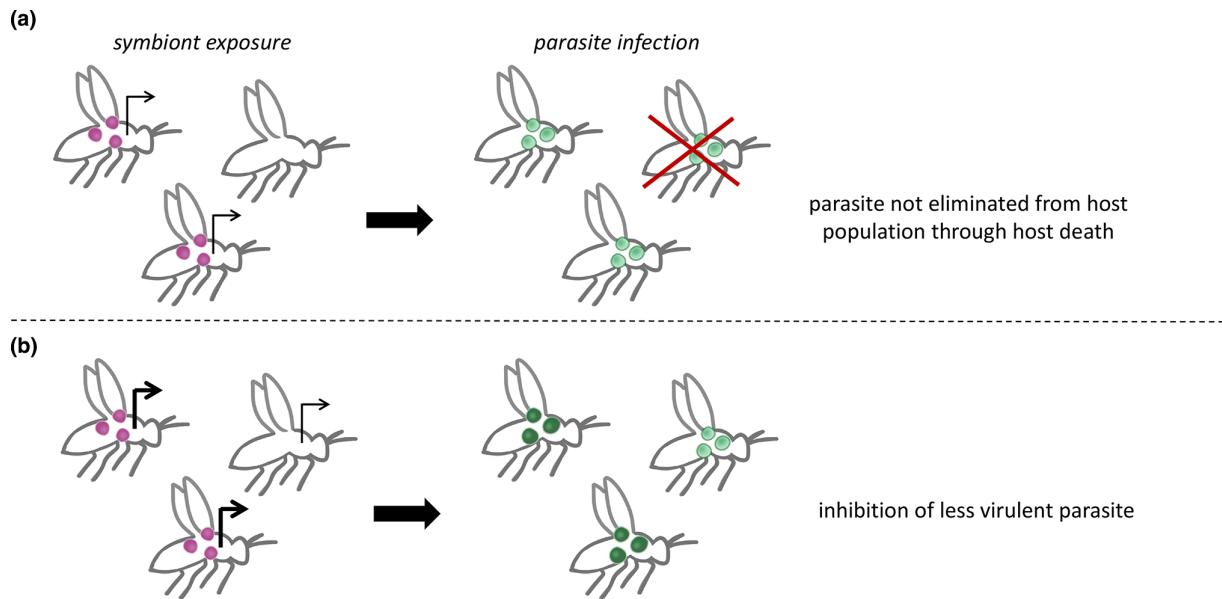


Fig. 1. How might SMIP affect symbiosis? *Hosts*: maintenance or evolution of a robust immune system may occur because a functioning immune system is required for SMIP to work, unlike other mechanisms of symbiont-conferred defence. Similarities between symbiont and parasite may also lead to evolution of more specific responses toward the parasite. *Parasites*: heterogeneity in host populations, whether through symbionts and/or immunity, may select for increased parasite diversity. Increased virulence may also occur due to parasites no longer paying the cost of being too virulent. *Symbionts*: if a short duration of exposure to the symbiont is sufficient to evoke an immune response, persistent interaction with the host may not be necessary, especially if the immune response is still mounted after the symbiont is gone. From an evolutionary perspective, symbionts involved in SMIP may be less likely to be host-dependent or inherited because many are acquired from the environment (Table 1) or are costly to harbour in the absence of threat. Arrow above host represents immune upregulation.

Research on SMIP has largely been focused on a few model or well-studied host systems (Table 1), making them ideal for testing hypotheses on the evolution of host immunity. For example, interactions between bees and their microbiomes make up a significant proportion of SMIP studies in invertebrates. Bees are an attractive model for studying host-microbe interactions due to their relatively complex microbiome compared to other insects, in addition to their agricultural importance [43]. Consequently, much research on the protective effects of symbionts and other host defence mechanisms has been focused on bees (Table 1) [21]. For vertebrates, research using mice has shed light on the effects of gut microbiome and probiotics on expression of the innate and adaptive immune systems [44–46]. The amenability of these hosts to experiments may have contributed to their better characterized immune responses compared to other organisms. Accordingly, these hosts can be used to address questions such as weighing the cost of harbouring defensive symbionts versus the maintenance of a robust immune system [25, 47]. However, model organisms reared in the laboratory are often absent of input from the environment, thus they may be missing members of the microbiome they would encounter in the wild [48, 49]. A better understanding of the prevalence of SMIP in nature might involve a thorough survey of animal hosts in the wild, particularly those with adaptive immunity and those harbouring complex microbiomes. Future research may also help determine whether certain types of microbes are more likely to participate in SMIP than others since previous studies have focused primarily on bacteria (Table 1). SMIP may nevertheless be difficult to detect in the wild. Brief exposure to the symbiont may be adequate to evoke an immune response, which would diminish the chance of documenting the symbiosis in real-time.

Parasite population structure and virulence evolution

Host resistance and tolerance have been predicted to drive parasite evolution [50, 51]. SMIP might similarly impose selection on parasites to respond to the protection conferred by symbionts through immunity. High host genetic variation is important to combat parasites that are constantly evolving [52]. Host populations can vary in the prevalence of protective symbionts—not all hosts in a population will harbour protective symbionts [53–55]. Similarly, both vertebrate and invertebrate hosts can also exhibit variation in defence at the genetic level [54, 56]. Such heterogeneity in host populations, whether through symbionts and/or immunity, may select for increased parasite diversity [57], which in turn may reciprocally maintain variation in host defence strategies. For example, diverse populations of the parasitoid, *Lysiphlebus fabarum*, have been shown to shape the diversity of protective *Hamiltonella defensa* bacteria of black bean aphids [58]. Since SMIP can modulate host immunity, this additional level of plasticity in host defence may facilitate parasite evolution further. Experimental evolution of microbes passed through hosts have yielded foundational insight into how the host environment can shape patterns and processes of microbial evolution [59–61].

Fig. 2. SMIP may select for increased parasite virulence over time because A) hosts survive when infected by parasite due to SMIP, so virulent parasites are no longer removed from the population through host death; and B) SMIP may elicit a stronger immune response than in the absence of SMIP, which effectively eliminates less virulent parasites and allow more virulent ones to dominate. Symbionts are shown in magenta; parasites in light and dark green. Arrow above host represents immune upregulation.

This approach could be used to passage parasites through hosts with varying levels or sources of defence (e.g. immunocompetent and immunocompromised hosts, with or without symbionts), directly testing the role of host heterogeneity in shaping parasite diversity.

Symbionts involved in SMIP and host-encoded defenses may have different impacts on parasite evolutionary rates. Given their large populations and short-generation times, microbes are likely to evolve more rapidly than hosts and therefore respond to parasite evolution within a short timespan [9]. Faster-evolving symbionts may become better at modulating host immunity (either within the lifespan of the host or across host generations), which in turn may impose greater selection on parasites. Moreover, obtaining symbionts from the environment is also faster than acquisition of new genes (i.e. within one host generation versus multiple host generations). However, it may not be simple for hosts to acquire suitable symbionts from the environment and may require specific mechanisms for selecting and cultivating these symbionts [62, 63]. Finally, early exposure to symbionts may also launch immune responses in advance of parasite colonization, therefore promoting suppression of parasite and be more effective at reducing infection load [35, 64, 65]. Altogether, SMIP may more likely select for fast-colonizing parasites or those better able to evade the immune system.

Despite the protection that symbionts provide hosts at the individual and population level [e.g. 35, 62], SMIP have the potential to be harmful for future host generations. Theories on immune priming by parasites can lend insight into the impact of SMIP on the evolution of parasite virulence. Virulence is predicted to trade-off with transmission, such that high virulence resulting in early host death can prevent transmission [66]. However, when prior parasite exposure prevents host death, reinfecting parasites do not pay the cost of being highly virulent [67]. Additionally, the level of virulence can be positively correlated with the level of protection: a more virulent parasite can elicit stronger immune protection. Thus, hosts previously infected with a more virulent parasite can exhibit the largest reduction in mortality following a subsequent infection. A stronger immune response also prevents less virulent parasites from infecting hosts, thus selecting for higher virulent parasites [67]. Similar predictions have also been made for imperfect vaccines that do not prevent parasite transmission [68, 69]. Protection provided by SMIP may similarly select for increased virulence (Fig. 2). Hosts that survive infection due to SMIP may allow virulent parasites to persist in the population. Furthermore, the stronger immune response mounted by hosts harbouring symbionts would prevent less virulent parasites from successful infection. However, evolution of virulence may be contingent upon increased levels of specificity of the launched response or costs to the parasite [10].

Implications for persistence of the symbiosis

Research in symbiosis has frequently focused on the role of the symbiont on host fitness [70, 71], but the degree to which hosts impact symbiont fitness is not as well-studied [71, 72]. Many symbionts, such as those that are heritable, are solely host-associated

and cannot survive outside the host. Hosts that acquire symbionts from the environment spend some part of their lifespan without their symbionts. Additionally, such associations need not be throughout the entirety of the host's lifespan for the host to obtain benefits. SMIP can occur prior to parasite infection (exposure to the symbiont during infection may not be necessary), and the immune response can be mounted and maintained after only a brief exposure to the symbiont [35, 73, 74]. Therefore, immune-priming symbionts may be different from those that engage in direct competition with parasites, though not necessarily mutually exclusive. Stable establishment within hosts may not be necessary for the symbiosis to exist. Furthermore, since immune activation can be costly to the host [10, 24], SMIP is likely beneficial only when there is a high risk of parasite infection, suggesting that the symbiont prevalence may be low otherwise.

Host-symbiont evolution might be shaped by the duration of symbiont exposure necessary to mount an immune response. While SMIP studies have not directly tested the exposure period necessary to evoke an immune response, most detail how the symbiont was administered (Table 1). The same duration of time for one host species can represent a different proportion of its lifespan compared to another species, making comparisons across host taxa difficult. An immune response can be induced from relatively short symbiont exposures, which are often acquired from the environment (e.g. orally [75]). Thus, there may not be many inherited or obligate SMIP associations, though more studies are needed for SMIP in nature. Furthermore, some hosts may need a continual influx of symbionts to maintain immune upregulation [65, 76]. This requirement suggests that a certain threshold of symbiont density is needed for a response, where the rate of symbiont growth within hosts is not meeting host demands and increased exposure time is necessary for symbiont accumulation.

Because the immune system also functions to regulate symbiont populations [25], it is likely SMIP also targets the symbionts themselves, similar to parasite-induced priming that protects hosts from reinfection. For example, the gut microbiome of *Drosophila* induces a basal level of immune responses in the flies, which helps to prevent over-proliferation of the microbiome [77]. When host-microbe interactions are ephemeral, the definition of a symbiont can become ambiguous (Box 1). We suggest that some microbes involved in SMIP be seen as 'opportunistic symbionts'—transient but have a positive effect on host fitness—which can impact the long-term evolutionary trajectories of hosts despite shorter ecological interactions.

Symbionts involved in SMIP may be vulnerable to host exploitation, particularly hosts that only require short exposures to the symbiont. There is increasing evidence for hosts exploiting symbiont populations for their benefit [78–80]. For example, the cereal weevil 'recycles' their symbiont once they have obtained the necessary nutrients from their bacterial symbiont, *Sodalis pierantonius*, required for development [79]. While we are unaware of any studies that specifically examines exploitation in SMIP, the shorter duration of interaction with hosts may be a cause or consequence of potential asymmetry between partners. The impact of such asymmetry may be that selection for host-associated SMIP microbes is reduced, favouring a less host-dependent lifestyle.

Comparative genomics and phylogenetics of symbionts have yielded insight into evolutionary consequences for host-association. Reduction in genome size and altered evolutionary trajectories are driven by host association [81, 82]. Such approaches may be useful in determining the degree of host dependence and shared evolutionary history with hosts for immune-priming symbionts. For example, comparing the genomic aspects and lifestyle of defensive symbionts differing in protective mechanisms, in addition to the age of these symbioses, will help address whether novel symbionts are more likely to upregulate immunity. Pairing these approaches with empirical studies will shed light on the impact of the immune system and indirect impact of parasites on symbionts.

CONCLUSION

Microbial symbioses have shaped the evolution of animal hosts [83] and of the symbionts themselves [81, 84]. Protective symbionts in particular have had a profound influence on host resistance to infection at the scale of the host individual, populations, and communities [8, 10, 85]. Compared to symbionts that directly compete with parasites [14, 27], symbionts that prime host immunity may be more prevalent amongst new or ephemeral interactions. In these associations, the host has not yet evolved to accommodate the symbiont, or the symbiont has not evolved to evade host defenses. Consequently, the host immune system might recognize the symbiont as an invader and elicit a response accordingly. SMIP may therefore be a first step of a free-living microbe transitioning into a protective, more permanent symbiont. Nonetheless, long-term residents can also modulate immune responses and even be necessary for proper development of the immune system [25]. Immune-priming symbionts thus play important roles in host-microbe evolution across the parasite-mutualist continuum, acting both as an extension and modulator of host defenses.

Funding information

KLH is funded by an NSF Postdoctoral Research Fellowship in Biology (1907076). KCK is funded by an ERC Starting Grant (COEVOPRO 802242).

Author contributions

K.L.H. and K.C.K., conceptualized the topic. K.L.H., wrote the original draft. K.L.H. and K.C.K. revised, edited, and approved the final version.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

- de Roode JC, Lefèvre T, Hunter MD. Ecology. Self-medication in animals. *Science* 2013;340:150–151.
- Hart BL, Hart LA. How mammals stay healthy in nature: the evolution of behaviours to avoid parasites and pathogens. *Philos Trans R Soc Lond B Biol Sci* 2018;373:20170205.
- Boehm T. Evolution of vertebrate immunity. *Curr Biol* 2012;22:R722–32.
- Robertson M. Innate immunity. *Curr Biol* 1998;8:R595–7.
- Milutinović B, Kurtz J. Immune memory in invertebrates. *Semin Immunol* 2016;28:328–342.
- Pradeu T, Du Pasquier L. Immunological memory: What's in a name? *Immunol Rev* 2018;283:7–20.
- Kitano H, Oda K. Robustness trade-offs and host-microbial symbiosis in the immune system. *Mol Syst Biol* 2006;2:1–10.
- King KC. Defensive symbionts. *Curr Biol* 2019;29:R78–R80.
- Ford SA, King KC. Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. *PLoS Pathog* 2016;12:e1005465.
- Vorburger C, Perlman SJ. The role of defensive symbionts in host-parasite coevolution. *Biol Rev Camb Philos Soc* 2018;93:1747–1764.
- Gerardo NM, Parker BJ. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. *Curr Opin Insect Sci* 2014;4:8–14.
- Selosse MA, Bessis A, Pozo MJ. Microbial priming of plant and animal immunity: symbionts as developmental signals. *Trends Microbiol* 2014;22:607–613.
- King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. *ISME J* 2016;10:1915–1924.
- Caragata EP, Rancès E, Hedges LM, Gofton AW, Johnson KN, et al. Dietary cholesterol modulates pathogen blocking by *Wolbachia*. *PLoS Pathog* 2013;9:e1003459.
- Melillo D, Marino R, Italiani P, Boraschi D. Innate immune memory in invertebrate metazoans: a critical appraisal. *Front Immunol* 2018;9:1915.
- Chiu L, Bazin T, Truchetet M-E, Schaeverbeke T, Delhaes L, et al. Protective microbiota: from localized to long-reaching co-immunity. *Front Immunol* 2017;8:1–19.
- Wong ZS, Hedges LM, Brownlie JC, Johnson KN. *Wolbachia*-mediated antibacterial protection and immune gene regulation in *Drosophila*. *PLoS One* 2011;6:e25430.
- Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. *Plants (Basel)* 2014;3:458–475.
- Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. *Integr Comp Biol* 2013;53:545–556.
- Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. *Curr Opin Plant Biol* 2006;9:436–442.
- Fowler AE, Irwin RE, Adler LS. Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. *Emerg Top Life Sci* 2020;4:59–76.
- Kitano H, Oda K. Self-extending symbiosis: a mechanism for increasing robustness through evolution. *Biol Theory* 2015;1:61–66.
- Wund MA. Assessing the impacts of phenotypic plasticity on evolution. *Integr Comp Biol* 2012;52:5–15.
- Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? *Oikos* 2000;88:87–98.
- Gerardo NM, Hoang KL, Stoy KS. Evolution of animal immunity in the light of beneficial symbioses. *Philos Trans R Soc Lond B Biol Sci* 2020;375:20190601.
- Gerardo NM, Altincicek B, Anselme C, Atamian H, Baribeau SM, et al. Immunity and other defenses in pea aphids, *Acyrtosiphon pisum*. *Genome Biol* 2010;11:R21.
- Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. *Science* 2009;325:992–994.
- Russell JA, Moran NA. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. *Proc Biol Sci* 2006;273:603–610.
- Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. *Science* 2005;310:1781.
- Metcalf CJE, Koskella B. Protective microbiomes can limit the evolution of host pathogen defense. *Evol Lett* 2019;3:534–543.
- Ford SA, King KC. In vivo microbial coevolution favors host protection and plastic downregulation of immunity. *Mol Biol Evol* 2021;38:1330–1338.
- Martinez J, Cogni R, Cao C, Smith S, Illingworth CJR, et al. Addicted? Reduced host resistance in populations with defensive symbionts. *Proc Biol Sci* 2016;283:20160778.
- Ferro K, Peuß R, Yang W, Rosenstiel P, Schulenburg H, et al. Experimental evolution of immunological specificity. *Proc Natl Acad Sci U S A* 2019;116:20598–20604.
- Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in *Drosophila* is dependent on phagocytes. *PLoS Pathog* 2007;3:e26.
- Montalvo-Katz S, Huang H, Appel MD, Berg M, Shapira M. Association with soil bacteria enhances p38-dependent infection resistance in *Caenorhabditis elegans*. *Infect Immun* 2013;81:514–520.
- Herren JK, Lemaitre B. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in *Drosophila melanogaster*. *Cell Microbiol* 2011;13:1385–1396.
- Hurst GDD, Anbutsu H, Kutsukake M, Fukatsu T. Hidden from the host: *Spiroplasma* bacteria infecting *Drosophila* do not cause an immune response, but are suppressed by ectopic immune activation. *Insect Mol Biol* 2003;12:93–97.
- Hamilton PT, Perlman SJ, Knoll LJ. Host defense via symbiosis in *Drosophila*. *PLoS Pathog* 2013;9:e1003808.
- Rancès E, Ye YH, Woolfit M, McGraw EA, O'Neill SL. The relative importance of innate immune priming in *Wolbachia*-mediated dengue interference. *PLoS Pathog* 2012;8:e1002548.
- Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. *Science* 2012;335:936–941.
- Armitage SA, Genersch E, McMahon DP, Rafałuk-Mohr C, Rolff J. Tripartite interactions: how immunity, microbiota and pathogens interact and affect pathogen virulence evolution. *Curr Opin Insect Sci* 2022;50:100871.
- Rafałuk-Mohr C, Gerth M, Sealey JE, Ekroth AKE, Aboobaker AA, et al. Microbial protection favors parasite tolerance and alters host-parasite coevolutionary dynamics. *Curr Biol* 2022.
- Engel P, Kwong WK, McFrederick Q, Anderson KE, Baribeau SM, et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. *mBio* 2016;7:e02164–15.
- Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. *FEMS Immunol Med Microbiol* 2002;34:245–253.

45. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. *Cell* 2009;139:485–498.

46. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. *Nat Med* 2010;16:228–231.

47. Hoang KL, Morran LT, Gerardo NM. Experimental evolution as an underutilized tool for studying beneficial animal–microbe interactions. *Front Microbiol* 2016;7:1–16.

48. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse *Drosophila* species: ecological context of a host–microbe model system. *PLoS Genet* 2011;7:e1002272.

49. Frézal L, Félix MA. *C. elegans* outside the Petri dish. *elife* 2015;4:1–14.

50. Little TJ, Shuker DM, Colegrave N, Day T, Graham AL. The coevolution of virulence: tolerance in perspective. *PLoS Pathog* 2010;6:e1001006.

51. Gandon S, Michalakis Y. Evolution of parasite virulence against qualitative or quantitative host resistance. *Proc Biol Sci* 2000;267:985–990.

52. Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM. Running with the Red Queen: host–parasite coevolution selects for biparental sex. *Science* 2011;333:216–218.

53. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. Adaptation via symbiosis: recent spread of a *Drosophila* defensive symbiont. *Science* 2010;329:212–215.

54. Parker BJ, Garcia JR, Gerardo NM. Genetic variation in resistance and fecundity tolerance in a natural host–pathogen interaction. *Evolution* 2014;68:2421–2429.

55. Vorburger C, Sandrock C, Gouskov A, Castañeda LE, Ferrari J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. *Evolution* 2009;63:1439–1450.

56. Kubinak JL, Potts WK. Host resistance influences patterns of experimental viral adaptation and virulence evolution. *Virulence* 2013;4:410–418.

57. Fleming-Davies AE, Dukic V, Andreasen V, Dwyer G. Effects of host heterogeneity on pathogen diversity and evolution. *Ecol Lett* 2015;18:1252–1261.

58. Hafer-Hahmann N, Vorburger C. Parasitoids as drivers of symbiont diversity in an insect host. *Ecol Lett* 2020;23:1232–1241.

59. Burghardt LT, Epstein B, Guhlin J, Nelson MS, Taylor MR, et al. Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. *Proc Natl Acad Sci USA* 2018;115:2425–2430.

60. Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid–Vibrio symbiosis. *Front Microbiol* 2014;5:593.

61. Barroso-Batista J, Sousa A, Lourenço M, Bergman M-L, Sobral D, et al. The first steps of adaptation of *Escherichia coli* to the gut are dominated by soft sweeps. *PLoS Genet* 2014;10:e1004182.

62. Nyholm SV, McFall-Ngai MJ. The winnowing: establishing the squid–vibrio symbiosis. *Nat Rev Microbiol* 2004;2:632–642.

63. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. *Nature* 2017;548:43–51.

64. Kim JK, Lee JB, Huh YR, Jang HA, Kim C-H, et al. Burkholderia gut symbionts enhance the innate immunity of host *Riptortus pedestris*. *Dev Comp Immunol* 2015;53:265–269.

65. de Waard R, Garsen J, Bokken GCAM, Vos JG. Antagonistic activity of *Lactobacillus casei* strain shirota against gastrointestinal *Listeria monocytogenes* infection in rats. *Int J Food Microbiol* 2002;73:93–100.

66. Anderson RM, May RM. Coevolution of hosts and parasites. *Parasitology* 1982;85 (Pt 2):411–426.

67. Fleming-Davies AE, Williams PD, Dhondt AA, Dobson AP, Hochachka WM, et al. Incomplete host immunity favors the evolution of virulence in an emergent pathogen. *Science* 2018;359:1030–1033.

68. Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, et al. Imperfect vaccination can enhance the transmission of highly virulent pathogens. *PLoS Biol* 2015;13:1–18.

69. Gandon S, Mackinnon MJ, Nee S, Read AF. Imperfect vaccines and the evolution of pathogen virulence. *Nature* 2001;414:751–756.

70. Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host–symbiont dependence. *Nat Commun* 2017;8:1–8.

71. Garcia JR, Gerardo NM. The symbiont side of symbiosis: do microbes really benefit? *Front Microbiol* 2014;5:1–6.

72. Douglas AE, Smith DC. Are endosymbioses mutualistic? *Trends Ecol Evol* 1989;4:350–352.

73. Kim Y, Mylonakis E. *Caenorhabditis elegans* immune conditioning with the probiotic bacterium *Lactobacillus acidophilus* strain NCFM enhances gram-positive immune responses. *Infect Immun* 2012;80:2500–2508.

74. Emery O, Schmidt K, Engel P. Immune system stimulation by the gut symbiont *Frischella perrara* in the honey bee (*Apis mellifera*). *Mol Ecol* 2017;26:2576–2590.

75. Futo M, Armitage SA, Kurtz J. Microbiota plays a role in oral immune priming in *Tribolium castaneum*. *Front Microbiol* 2015;6:1–10.

76. Ogawa M, Shimizu K, Nomoto K, Takahashi M, Watanuki M, et al. Protective effect of *Lactobacillus casei* strain Shirota on Shiga toxin-producing *Escherichia coli* O157:H7 infection in infant rabbits. *Infect Immun* 2001;69:1101–1108.

77. Broderick NA. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and *Drosophila*–microbe interactions. *Philos Trans R Soc Lond B Biol Sci* 2016;371:20150295.

78. Lowe CD, Minter EJ, Cameron DD, Brockhurst MA. Shining a light on exploitative host control in a photosynthetic endosymbiosis. *Curr Biol* 2016;26:207–211.

79. Vigneron A, Masson F, Vallier A, Balmand S, Rey M, et al. Insects recycle endosymbionts when the benefit is over. *Curr Biol* 2014;24:2267–2273.

80. Kiers ET, West SA. Evolution: welcome to symbiont prison. *Curr Biol* 2016;26:R66–R68.

81. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. *Annu Rev Genet* 2008;42:165–190.

82. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. *Nat Rev Microbiol* 2011;10:13–26.

83. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, et al. Animals in a bacterial world, a new imperative for the life sciences. *Proc Natl Acad Sci U S A* 2013;110:3229–3236.

84. McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. *Curr Biol* 2019;29:R485–R495.

85. McLean AH. Cascading effects of defensive endosymbionts. *Curr Opin Insect Sci* 2019;32:42–46.

86. Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite–mutualist continuum. *Nat Rev Microbiol* 2021;19:623–638.

87. Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. *FEMS Microbiol Lett* 2019;366:fnz117.

88. Lee KH, Ruby EG. Effect of the squid host on the abundance and distribution of symbiotic *Vibrio fischeri* in nature. *Appl Environ Microbiol* 1994;60:1565–1571.

89. Brock DA, Douglas TE, Queller DC, Strassmann JE. Primitive agriculture in a social amoeba. *Nature* 2011;469:393–396.

90. Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. *ISME J* 2010;4:242–252.

91. Weldon SR, Strand MR, Oliver KM. Phage loss and the breakdown of a defensive symbiosis in aphids. *Proc Biol Sci* 2013;280:20122103.

92. Polin S, Simon JC, Outreman Y. An ecological cost associated with protective symbionts of aphids. *Ecol Evol* 2014;4:826–830.

93. Chong RA, Moran NA. Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. *Proc Natl Acad Sci U S A* 2016;113:13114–13119.

94. Banaszak AT, García Ramos M, Goulet TL. The symbiosis between the gastropod *Strombus gigas* and the dinoflagellate *Symbiodinium*: An ontogenetic journey from mutualism to parasitism. *J Exp Mar Biol Ecol* 2013;449:358–365.

95. Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ. NO means “yes” in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. *Cell Microbiol* 2004;6:1139–1151.

96. Lange A, Schäfer A, Bender A, Steimle A, Beier S, et al. *Galleria mellonella*: A novel invertebrate model to distinguish intestinal symbionts from pathobionts. *Front Immunol* 2018;9:1–12.

97. Voolstra CR, Schwarz JA, Schnetzer J, Sunagawa S, Desalvo MK, et al. The host transcriptome remains unaltered during the establishment of coral-algal symbioses. *Mol Ecol* 2009;18:1823–1833.

98. Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC, et al. Engineered symbionts activate honey bee immunity and limit pathogens. *Science* 2020;367:573–576.

99. Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. *Trends Microbiol* 2020;28:1010–1021.

100. Cheng J, Laitila A, Ouwehand AC. *Bifidobacterium animalis* subsp. *lactis* HN019 effects on gut health: A review. *Front Nutr* 2021;8.

101. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, et al. Lifestyles in transition: evolution and natural history of the genus *Lactobacillus*. *FEMS Microbiol Rev* 2017;41:S27–S48.

102. Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. *Immunity* 2008;29:637–649.

103. Dubuffet A, Zanchi C, Boutet G, Moreau J, Teixeira M, et al. Transgenerational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. *PLoS Pathog* 2015;11:e1005178.

104. Willis AR, Sukhdeo R, Reinke AW. Remembering your enemies: mechanisms of within-generation and multigenerational immune priming in *Caenorhabditis elegans*. *FEBS J* 2020;288:1759–1770.

105. Mertenskötter A, Keshet A, Gerke P, Paul RJ. The p38 MAPK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of *Caenorhabditis elegans*. *Cell Stress and Chaperones* 2012;18:293–306.

106. Keshet A, Mertenskötter A, Winter SA, Brinkmann V, Dölling R, et al. PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in *Caenorhabditis elegans*. *Mol Genet Genomics* 2017;292:1341–1361.

107. Matozzo V, Marin MG. Bivalve immune responses and climate changes: is there a relationship? abstract global climate changes (gccs) are predicted to occur in the next hundred years through increases in temperature, water acidification and changes in seawater salinity. 2011.

108. Singh V, Aballay A. Heat shock and genetic activation of HSF-1 enhance immunity to bacteria. *Cell Cycle* 2006;5:2443–2446.

109. Kim Y, Choudhry QN, Chatterjee N, Choi J. Immune and xenobiotic response crosstalk to chemical exposure by PA01 infection in the nematode *Caenorhabditis elegans*. *Chemosphere* 2018;210:1082–1090.

110. Leroy M, Mosser T, Manière X, Alvarez DF, Matic I. Pathogen-induced *Caenorhabditis elegans* developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses. *BMC Evol Biol* 2012;12:187.

111. Sung YY, Pineda C, MacRae TH, Sorgerloos P, Bossier P. Exposure of gnotobiotic *Artemia franciscana* larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic *Vibrio campbellii*. *Cell Stress Chaperones* 2008;13:59–66.

112. Mattson MP. Hormesis defined. *Ageing Res Rev* 2008;7:1–7.

113. Calabrese EJ. Hormesis: A fundamental concept in biology. *Microb Cell* 2014;1:145–149.

114. Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees. *R Soc Open Sci* 2017;4:170003.

115. Horak RD, Leonard SP, Moran NA. Symbionts shape host innate immunity in honeybees. *Proc Biol Sci* 2020;287:20201184.

116. Muhammad A, Habineza P, Ji T, Hou Y, Shi Z. Intestinal microbiota confer protection by priming the immune system of red palm weevil *Rhynchophorus ferrugineus* olivier (Coleoptera: Dryophthoridae). *Front Physiol* 2019;10:1–13.

117. Gupta V, Vasanthakrishnan RB, Siva-Jothy J, Monteith KM, Brown SP, et al. The route of infection determines *Wolbachia* antibacterial protection in *Drosophila*. *Proc R Soc B Biol Sci* 2017;287.

118. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. *Nature* 2008;453:620–625.

119. Ganal SC, Sanos SL, Kalfass C, Oberle K, Johner C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. *Immunity* 2012;37:171–186.

120. Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP, et al. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. *Gut Microbes* 2014;5:522–532.

121. Näpflin K, Schmid-Hempel P. Immune response and gut microbial community structure in bumblebees after microbiota transplants. *Proc R Soc B* 2016;283:20160312.

122. Evans JD, Lopez DL. Bacterial probiotics induce an immune response in the honey bee (*Hymenoptera: Apidae*). *J Econ Entomol* 2004;97:752–756.

123. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in *Anopheles gambiae* mosquitoes. *Science* 2010;329:1353–1355.