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Abstract
Account recovery has become a prevalent feature across mobile and web applications that circumvents the regular username/
password-based user authentication process, and thus is known to be less secure and fraught with attacks. For example, to 
trigger the account recovery process, an email or one-time password (OTP) is sent to the user’s registration email and/or 
phone. This assumes that only the genuine user has access to the email/phone which is not always the case. To further improve 
the security of the account recovery mechanism, beyond validating the information and other credentials typed by the user, 
we propose a recovery method with the use of keystrokes dynamics. We evaluated performances using two new keystroke 
datasets—the first contains over 500,000 keystrokes collected on a desktop computer from 44 participants, while the second 
327,000 keystrokes on a touchscreen mobile phone from 39 participants. Both datasets require the participants to fill out 
an account recovery form of multiple fields. For each dataset, we evaluated the performance of five scoring algorithms on 
individual fields, feature-level fusion and weighted-score fusion. We also applied one-class classification, a machine learning 
approach and compared results. For the desktop dataset, we achieved the best equal error rate (EER) of 5.47% for individual 
fields, 0% for feature-level fusion of five fields, and 0% for weighted-score fusion of seven fields. For the touch-mobile 
dataset, we achieved the best EER of 10.25% for individual fields, 4.97% for feature-level fusion of four fields and 2.26% 
for weighted-score fusion of seven fields. Our results show that the application of keystroke dynamics is highly promising 
to further secure the account recovery mechanism on both desktop and mobile platforms.

Keywords  Account Recovery · Forgot Password/Username · Keystroke Dynamics · Free-text · Fixed-text · Behavioral 
Biometrics

Introduction

The username and password not only have been the domi-
nant means of verifying a user’s digital identity over the 
years [1], but also fraught with many security problems. 
For example, in the first half of 2018 alone, it was estimated 
that about 4.5 billion online user accounts were exposed, 
a majority of which as a result of password breaches [2]. 
In 2019, a collection of 2.7 billion identity records, con-
sisting of 774 million unique email addresses and 21 mil-
lion unique passwords, was posted on the web for sale [3]. 
Because of the difficulty in remembering passwords, many 
users have been known to use a single password across mul-
tiple websites and apps, making it even easier for impostors 
to take over their accounts. To increase security, a common 
practice has been adopted by many sites and apps, which 
require users to regularly change their passwords and to 
use long unique passwords, for example, a combination of 
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uppercase and lowercase alphabets, numbers, and symbols. 
Consequently, many users find it even harder to remember 
passwords. These challenges with username and password 
necessarily popularize the account recovery mechanism on 
the web and on mobile applications. Figure 1 shows a com-
mon recovery method that simply sends a recovery link to a 
user’s verified email. While this is appropriate for sites and 
apps with low security requirements, to increase the level of 
security, many sites and apps also require the user to perform 
additional verification, such as answering security questions 
or providing personal credentials (Fig. 2). However, it is also 
well known that security questions and personal informa-
tion can be stolen through social engineering or brute-force 
attacks.

Perhaps, the most dangerous vulnerability that the 
account recovery mechanism can lead to is the possibility 
that any impostor with access to a user’s recovery email 
(which can be taken over by attacks such as credential stuff-
ing [5]) can easily trigger an account recovery session and 
take over the user’s account. Given that account recovery 
is ubiquitous across the web and mobile applications, and 
widely used by enterprise information systems, it deserves 
the same level of security as the user authentication process. 
To that end, we propose to verify a user’s identity through 
behavioral biometrics using the keystroke dynamics col-
lected during the password/username recovery session.

Research has demonstrated that keystroke dynamics can 
be a useful behavioral biometrics for authentication [6–8] 
but does not require additional hardware. Our research goal 

is to further strengthen the security of the account recovery 
mechanism using keystroke dynamics. Moreover, we envi-
sion that this modality can be fused with other modalities 
to form a more robust risk-based scoring system to ensure 
that the person requesting account recovery is indeed the 
claimed user.

In this paper, we focus on sites and apps that have imple-
mented additional verification during account recovery by 
requesting more information, including the email address, 
from the user. Using an account recovery form with multi-
ple fields, we have created two new datasets—the first is a 
dataset with over 500,000 keystrokes collected on a desktop 
computer from 44 students and university staff, while the 
second 327,000 keystrokes on a touchscreen mobile phone 
from 39 students and university staff.

We investigate the authentication performance of key-
stroke dynamics from both individual fields and their various 
combinations.

We implement five state-of-the-art scoring algorithms for 
both fixed-text and free-text keystroke dynamics to measure 
the similarity between the test samples and the established 
user profile. These algorithms return low scores when sam-
ples come from the same user and high scores when samples 
come from different users. We also applied one-class clas-
sification (OCC), a machine learning approach, on the touch-
mobile dataset. The OCC is an outlier or anomaly detection 
algorithm that tries to identify examples of a specific class 
amongst all examples, by primarily learning from a train-
ing set containing only the examples of that class. Lastly, 

Fig. 1   Stackoverflow password 
recovery requires a user’s veri-
fied email address to which the 
password reset link will be sent
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we experimented on the minimum number of enrollment 
samples required to build a user’s profile using the desktop 
dataset.

Using the desktop dataset, we achieve the best EER of 
5.47% when using individual fields, and 0% for both feature-
level fusion and weighted-score fusion. For the touch-mobile 
dataset, we achieved the best EER of 10.25% for individual 
fields, 4.97% for feature-level fusion of four fields and 2.26% 
for weighted-score fusion of seven fields.

As shown in Fig. 3, work on keystroke dynamics can 
be characterized by length (short or long), typing behav-
ior (restricted or unrestricted contexts) and typed content 
(fixed or free/varied across sessions). When unrestricted, 
users type anything on their own regular device at any time 
and anywhere of their choice. Fixed text (also known as 
static text) refers to cases when the text needed to perform 
keystroke analysis is constant during enrollment and test-
ing. An example of a short length fixed-text in keystroke 
dynamics is password, where users are required to type a 

password with fixed and unchanging characters. Free text 
(also known as dynamic text) refers to cases when users are 
allowed to type freely with no constraint on when/where/
what to type. An example of a long length free-text is when 
a user writes an article on a topic of their own interest. When 
keystrokes from each field in our datasets is used individu-
ally for authentication, this work can be considered as short 
length, fixed-text keystroke dynamics; but when fields in the 
datasets are combined into a long text, then our work can be 
consider as free-text. Therefore, this study sits somewhere in 
the middle of fixed-text and free-text, and we would like to 
call it ‘medium length, fixed-text’. Note also that the medium 
fixed-text keystroke dynamics has put little to none restric-
tions on our users’ typing behavior other than the fact that 
they type in our laboratory.

This article significantly improves a preliminary version 
presented in [4] in the following ways: 

Fig. 2   As additional protection, 
United State Postal Service 
(USPS) account recovery also 
requires a user to answer secu-
rity questions [4]
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1.	 We create a new dataset with 39 participants who con-
tributed data by filling an account recovery form on a 
touchscreen mobile device. This touch-mobile dataset is 
similar, with the same type and number of fields, as the 
desktop data presented in [4].

2.	 We analyse the touch-mobile data to investigate if key-
strokes collected from touchscreen mobile devices is suf-
ficient to strengthen the account recovery mechanism, 
or a fusion with additional behavioural modality, such 
as touch dynamics, is required.

3.	 We evaluate performances using the touch-mobile 
dataset on individual fields and combination of fields 
through two major fusion techniques—feature level 
fusion and weighted-score fusion.

4.	 We further evaluate performances on the touch-mobile 
data through a machine learning approach known as 
OCC, an outlier detection algorithm.

5.	 We compare the results obtained from the touch-mobile 
data analysis with those in the preliminary work.

The remaining of this paper is organized as follows. Sec-
tion “Related Work” presents related work in both fixed-
text and free-text keystroke dynamics. Section “Methods” 
describes our methodology: the two datasets, feature extrac-
tion, algorithms and implementation procedure. Results and 
findings are presented in Sect. “Results”. Lastly, Sect. “Con-
clusions” concludes the paper.

Related Work

Keystroke dynamics is the analysis of typing rhythm which 
can be used for authentication. It involves inspecting timing 
features of an individual’s typing and latency between keys 

to identify patterns in the keystroke data. In the eighties, 
Gaines et al. [15] investigated whether individuals could be 
distinguished in the ways they type, by examining the prob-
ability distributions of the times each typist typed pairs of 
successive letters (digraphs), while typing a paragraph of 
prose. Since then, researchers have come up with many more 
applications and techniques for keystroke dynamics [16–18].

Gunetti and Picardi  [12] is among the first exploring 
free text keystroke dynamics using digraphs, the latencies 
between two successive keystrokes, which have been com-
monly used in short (fixed) text research. Their work on free-
text shows that relatively long text samples with about 800 
characters are required to accurately differentiate between a 
genuine user and impostors. Huang et al. [13] finds that in 
free-text, larger reference profiles with more digraphs will 
drive down both impostor pass rate (IPR) and false alarm 
rate (FAR), provided that the test samples have sufficient 
digraphs, but more digraphs in test samples beyond 1000 
seem to have no obvious effect on IPR, regardless of the 
size of the reference profile. Generally, test samples of 
500–1000 digraph instances have been used in free-text lit-
erature (Fig. 3). In this regard, our work is unique because it 
is not completely free-text or fixed-text, but somewhere in 
between. Our work has achieved better accuracy with fewer 
digraph instances than Gunetti and Picardi [12] and Huang 
et al. [13].

Keystroke dynamic features are extracted using the timing 
information of keys pressed, which includes latency between 
consecutive keys and dwell/hold time of a single key. As 
shown in Fig. 4, the latency between keys may include the 
time interval between the press of a key and the press of 
the next key (down-down), the interval between the release 
of a key and the press of the next key (up-down) or inter-
val between the release of a key and the release of the next 

Fig. 3   Characterizing keystroke 
dynamics based on three traits: 
Length of text (long or short), 
typing behaviour (restricted or 
unrestricted) and typed content 
(fixed or free). Our study is 
between fixed-text and free-text 
in a laboratory setting (some-
what restricted). 1 [9], 2 [10], 3 
[11], 4 [12], 5 [13] and 6 [14]
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key (up-up). The dwell/hold time is the interval between 
the press and the release of a single key (down-up). Many 
studies have been done on fixed-text keystroke dynamics 
for password [8, 19–22] and free-text [12, 23], but ours is 
the first study on the use of keystroke dynamics to further 
protect account recovery mechanism.

Many keystroke dynamics datasets for password impose 
the same fixed password string for all users such as Killou-
rhy and Maxion [9], Loy, Lai and Lim [10], and Michael and 
Missah [11]. Killourhy and Maxion have a dataset of 20,400 
samples, collected from 51 subjects on a desktop computer 
and each subject contributed 400 typing samples of the same 
string “.tie5Roanl”. Out of the 14 recognition algorithms 
used in their work, they report Scaled Manhattan, Nearest 
Neighbor (Mahalanobis) and Outlier Count as the best three 
performing recognition algorithms with EER of 9.6%, 10% 
and 10.2% respectively. However, such an imposed pass-
word is unrealistic, because when users use their actual 
passwords, performance may vary. To investigate this pos-
sible difference in performance, Giot, El-Abed and Rosen-
berger [24] create a dataset with samples collected from 83 
users (Table 1), a total of 5185 genuine samples (pair of 
chosen username and password typed by its owner), 5754 
impostor samples (pair of username and password typed by 
a user different of its owner), and 5439 imposed samples 
(pair of imposed username and password). Although their 
work seems to be realistic to real user scenario of differ-
ent password selection, they find a surprising result that 
there is no significant difference in performance between 
the chosen and the imposed datasets. They had claimed that 
a possible explanation is, even though users were asked to 

choose a password of their own, they did not choose their 
real password and would have chosen a password they are 
less familiar with. They have also reported an issue with 
quality measure during data collection which could have 
been the cause for their underlined surprising observation. In 
contrast, our work in account recovery is based on a practical 
and realistic scenario.

Nader, Zarina and AbedElkarim in [25] proposed the 
use of interface preferences authentication (UIPA) for 
strengthening the security of account recovery mechanism. 
The method was proposed for online systems that offer 
user interface (UI) design option where users can choose 
a preferred design based on personal characteristics. The 
authors reported a false positive rate and false negative rate 
of 0.416% and 0%, respectively, from 83 participants. This 
approach is knowledge-based, which requires additional 

Fig. 4   Keystroke dynamics 
features (dwell/hold time and 
digraph latency defined in terms 
of key press/release events)

Table 1   Password datasets for keystroke dynamics [4]

Dataset #Users #Samples User 
Specific 
Password?

Killourhy and
Maxion [9] 51 20,400 No
Giot, El-Abed and 5,185+
Rosenberger [24] 83 5,754/5,439 Yes
BioChaves [26] 47  1,400 No
Allen [27] 104 2,736 No
Keystroke100 [10] 100 1,000 No
GREYC-NISLAB [28] 110 2,201 No
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actions from the users to re-specify their chosen design 
preferences by filling out a form. If this approach is used 
in practice, the user may find it difficult to remember their 
design preferences for multiple websites. As a result, the 
method is not expected to be widely adopted.

Methods

The account recovery mechanisms implemented on many 
public and business websites and apps collect either a sin-
gle field (a registration email address) or multiple fields of 
information (e.g., email, phone number, address, and full 
name) from users. The required number of fields to trigger 
an account recovery session is related to the level of security 
of the platform and the value placed on the account. For 
example, while the Stackoverflow website requires just a sin-
gle email address (Fig. 1), an online banking platform, which 
is more security-sensitive, would request multiple fields of 
information for added security (Fig. 5). This leaves us with 
the following research questions: 

1.	 How many is enough? That is, how many fields of infor-
mation is needed to be collected from users to achieve 
the desired security for account recovery using keystroke 
dynamics?

2.	 What level of information is sufficient to improve secu-
rity for account recovery?

3.	 Are all fields of information the same? That is, do infor-
mation like email, phone number or address contribute 

equally to having low intra-class but high inter-class 
variations?

For improved security and for the purpose of finding answers 
to the above questions, we have collected multiple fields 
of information from users during our data collection. In 
biometric authentication, the conflict between security and 
convenience must be resolved. In other words, the strength 
of one should not weaken the other. However, the public 
acceptance of our approach (implementation on a live web-
site or mobile app) and how it affects convenience is out of 
scope of this paper and will be considered in future study.

Account‑Recovery Keystroke Dataset

Data were collected on a desktop computer and a touch-
screen mobile device from 44 and 39 participants respec-
tively who are university students and staff.

Desktop Dataset

This dataset was created with a total of over 500,000 key-
strokes. The data was collected from 44 university students 
and staff using a data collection web app with a physical 
QWERTY keyboard (Fig. 6). Each user visits us twice and 
data were collected in a laboratory setting. In the first visit, 
each user fills an enrollment form on the web app ten times. 
The keystrokes collected from the enrollment form are used 
to build the user’s profile. In the second visit one or two 
weeks later, each user fills the form again five times, which 

Fig. 5   Capital One forget 
password session requires a 
user to enter multiple fields of 
information
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is used as the user’s genuine keystrokes. The same user 
is given five other users’ information to attack with, each 
twice, which serves as impostor keystrokes. The impostor 
is considered an informed attacker because he/she has the 
information and credentials of the true user. As a result, our 
new dataset contains data for when users attack each other. 
Fig. 7 depicts such an example where user (ID: W0037-
81456) attacks another user W0092-17843. All participants 
were given some information on the required activities for 
each visit and were compensated.

Overall, 42 users complete the enrollment process ten 
times as requested (the other two complete less than ten 
times). 28 users return in a second visit to fill the enrollment 
form for 5 more times, but only 16 of the 28 users have been 
attacked (Table  2).

Touch‑Mobile Dataset

In present day, touchscreen mobile phones make up a larger 
share in the mobile market and almost all activities (such 
as banking, online transactions and purchases etc) that are 
carried out on the web can also be done using touchscreen 
mobile phones. Therefore, similar to the desktop dataset, 
we created another Account-Recovery dataset with a total 

of 327,000 keystrokes, collected from 39 university stu-
dents and staff on a touchscreen mobile device running on 
android OS. We developed an application for the purpose of 
the data collection using the Android Studio IDE (Fig. 8). 
Participants are required to maintain a sitting position but 
not restricted to sitting upright for the study. They are also 
not restricted on how to position the device (on the desk or 
in their hands) while typing. Each user visited twice and 
data were collected in a laboratory setting. In the first visit, 
each user completes an enrollment form using the android 
app ten times, which is used to build the user’s profile. In the 
second visit, each user completes the same form five times, 
which is used as the user’s genuine samples. Thereafter, the 
user is given the information and credentials of two other 
users to attack with, each twice, which is used as impostor 
samples. The impostor is considered an informed attacker 
because he/she is given the information and credentials of 
the true user. The visits are 1 or 2 weeks apart, although 
few users had both visits 2 or 3 days apart. Towards better 
data quality and learning from the desktop dataset, we pre-
vented participants from using the copy and paste features, 
and ensured that user’s subsequent session data matches the 
previous. For example, the user information typed while fill-
ing the enrollment form for the second time matches the 

Fig. 6   Account Recovery Desktop dataset: User interfaces of the data collection web app [4]



	 SN Computer Science (2022) 3: 360360  Page 8 of 19

SN Computer Science

information provided in the first. All participants were given 
some information on the required activities for each visit 
and were compensated. Overall, 31 of 39 participants con-
tributed data on both visits and 36 users were attacked as 
shown in Table 2.

The enrollment form consists of the following fields: Full 
name, Address, City, Zip, Phone, Email, Declaration, and 
Password. Users are asked to type the following text as dec-
laration: “I declare that I am (Full name) and everything 
I type here is true” (also see Figs. 6 and 8). The desktop 
and touch-mobile datasets hold the record of key-down and 

Fig. 7   Account Recovery Desktop dataset: User W0037-81456 attacks the profile of user W0092-17843 [4]

Fig. 8   Account Recovery Touch-Mobile dataset: User interfaces of the data collection mobile app
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key-up timing information of every key pressed and released, 
and all participants are allowed to make and correct typing 
errors while contributing data.

Data Preprocessing and Cleaning

Since our dataset allows for typing errors, we preprocess the 
raw data to remove backspaces and the keystrokes deleted 
by the backspaces, which may have been used for correct-
ing misspellings. Tables 2 and 3 show a summary of keys 
contributed per user and per field, respectively, after data 
cleaning and pre-processing.

We observe some inaccuracies and inconsistencies in the 
password field as many users did not use their true passwords 
or used them inconsistently across sessions. Such password 
data would not give meaningful information about the user’s 
typing patterns. As a result, we do not use the password 
field. Similar user behavior has been noted elsewhere [24].

Feature Extraction

We extracted features from the keystroke timestamp 
recorded in the raw Account-Recovery data. Of the many 
types of feature extraction, below are the commonly used 
feature extraction.

•	 Dwell Time (DT)
•	 Flight Time: Up-Down (UD)
•	 Digraph: Down-Down (DD)
•	 Digraph: Up-Up (UU)

In this paper, we have used the Down-Down (DD) digraph 
feature for all the statistical scoring algorithms, which can be 
easily obtained from the time difference between successive 
characters in the dataset. Take for instance the word “pass-
word”, the DD feature for digraph ‘pa’ is the time difference 
between the timestamp recorded when ‘p’ and ‘a’ is pressed. 
Therefore also, the DD feature for digraph ‘as’ is the time 
difference between the timestamp recorded when ‘a’ and 
‘s’ are pressed. The same goes for digraph ‘ss’, ‘sw’, ‘wo’, 
‘or’ and ‘rd’. In general, for every N character word, there 
should be N-1 digraphs in that word (without considering 
digraph repetitions). The word ‘password’ has 8 characters 
and 7 digraphs.

Scoring Algorithms

We have implemented five state-of-the-art scoring algo-
rithms from both fixed text and free text keystroke dynam-
ics [9, 12, 23, 29]: Euclidean Distance, Manhattan Distance, 
Scaled Manhattan Distance, Mahalanobis Distance, and the 
‘A and R’ Measures of Gunetti and Picardi [12].

Figure 9 illustrates how the scoring algorithms work. 
Note that in the sample text ‘mississippi’, the digraph ‘is’, 
‘ss’ and ‘si’ are repeated twice, but digraph ‘mi’, ‘ip’, ‘pp’ 
and ‘pi’ occur only once, making a total of seven unique 
digraphs. We calculate the average timing of the digraphs 
that have two instances (repeated twice) in the profile sam-
ple as shown in Fig. 9. For each digraph instance in the 
test sample, our scoring algorithms compute the difference 
( d1, d2, ..., dN ) between its timing and the timing of the same 
digraph in the profile. The overall distance score is the aver-
age of all individual differences, which measure how dis-
similar the test sample is to the user profile. The higher the 
distance score, the less likely the test sample keystrokes 
belong to the user and vice-versa. In our implementation, we 
discard all digraphs that are longer than 1

2
 of a second. Such 

digraphs are typically the results of a user taking a break 
after making a typing error or pausing to attend to other 
tasks, and are less likely to be informative; the resulting 
time information would be an outlier and would negatively 
affect performance.

Euclidean Distance

Euclidean distance is the straight-line distance between two 
points in Euclidean space, which is calculated as follows:

Table 2   Number of keys contributed per user after data pre-process-
ing

Dataset Avg / Min / Max keys 
per User

#User

Desktop Profile 2048 / 1282 / 3510 42
Genuine 1210 / 614 / 3219 28
Impostor 2351 / 88 / 7615 16
Profile 1996 / 1136 / 2761 39

Touch-Mobile Genuine 973 / 537 / 1311 31
Impostor 1422 / 421 / 2197 36

Table 3   Number of keys contributed per field after data pre-process-
ing

Desktop Touch-Mobile
Fields Avg / Min / Max keys per 

Field
Avg / Min / 
Max keys per 
Field

Full name 13 / 4 / 20 17 / 12 / 30
Address 17 / 8 / 38 27 / 17 / 54
City 9 / 5 / 17 10 / 7 /21
Zip 6 / 5 / 10 6 / 5 / 9
Phone 12 / 10 / 26 10 / 7 / 17
Email 21 / 15 / 37 23 / 18/ 45
Declare Text 68 / 53 / 135 72 / 68 / 97
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where N is the number of digraphs shared between the test 
sample and the profile, xi is the individual test graph duration 
for the ith shared graph in the test sample, and �gi

 is the mean 
of the ith graph in the profile.

Manhattan Distance

The scaled Manhattan and Manhattan distance metrics were 
used by Kilhourhy and Maxion for fixed-text keystroke 
dynamics [9]. The scaled Manhattan distance is calculated 
as follows:

where N is the number of digraphs shared between the test 
sample and the profile, xi is the individual test graph dura-
tion for the ith shared graph in the test sample, and �gi

 and 
�gi

 are the mean and standard deviation of the ith graph in the 
profile [9]. The Manhattan and scaled Manhattan distances 
are identical, except the Manhattan distance is not divided 
by the standard deviation [30].

Mahalanobis Distance

The Mahalanobis distance is similar to the scaled Manhattan 
distance and is given by:

where N is the number of digraphs shared between the test 
sample and the profile, xi is the individual test graph duration 

D =

√√√√
N∑

i=1

(�gi
− xi)

2

D =

N�

i=1

‖�gi
− xi‖
�gi

(1)D =

√√√√
N∑

i=1

(�gi
− xi)

2

�2
gi

for the ith shared graph in the test sample, and �gi
 and �gi are 

the mean and standard deviation of the ith graph in the profile 
[9] and [31].

Gunetti and Picardi’s Metric

Gunetti and Picardi’s free-text algorithm [12] combines typ-
ing speed (A-measure) and the degree of disorder (R-meas-
ure) to measure similarity [23]. The ‘A’ measure represents 
the distance between typing samples S1 and S2 in terms 
of n-graphs (that is, n consecutive keystrokes; n=2 in our 
case), as follows:

where t is a constant for determining n-graph similarity. For 
example, let GS1,L1 and GS2,L2 be the same n-graph occur-
ring in typing samples S1 and S2, with latencies L1 and L2, 
respectively. We say that GS1,L1 and GS2,L2 are similar if and 
only if 1 ≤ max(L1,L2)/min(L1,L2) ≤ t. The ‘R’ measure on 
the other hand quantifies the degree of disorder between two 
sequences M and M ′ , as the sum of the differences between 
the respective ranks of each element in M and M ′.

Experiments

To identify fields and their combinations that produce the 
best authentication performance, we have performed sev-
eral experiments to evaluate both individual fields and their 
fusions at both the feature and weighted-score levels. The 
result of each experiment is presented and discussed in 
Sect. “Results”.

The desktop dataset allowed for some flexibility in the 
degree of content matching between data in the user profile 
and the test samples. This gives us the freedom to deploy 
a quality control mechanism K, which is the percentage of 

At,n(S1, S2) = 1 −
#similar

#shared

Fig. 9   Scoring procedure for 
sample text ‘mississippi’ where 
d
i
 represents the timing differ-

ence between the ith digraph in 
the test sample and the profile 
[4]



SN Computer Science (2022) 3: 360	 Page 11 of 19  360

SN Computer Science

exact content matching between the profile and the test sam-
ple. We use K as a threshold to determine if a test sample 
will be included in our experiments or not. We have used 
three values for K (70%, 80% and 90%) in each experiment 
with the desktop dataset and recorded the K that produces 
the lowest EER.

On the other hand, for the touch-mobile dataset, we 
enforced the quality control mechanism for each field when 
the data was collected. This ensures that the Fullname has 
100% match; while Email, Address, Zip, City and Phone 
have at least a 95% content match between data contributed 
in subsequent sessions and the first. Finally, the Declare field 
requires 85% content matching, which means participants 
have an allowable uncorrected typo of 15%. Otherwise, the 
participant is required to repeat the session.

Individual Fields

Do all fields of information contribute equally in telling 
users apart? Results from the individual fields experiment 
answer this question. Here, we treat each field individually 
and compare only the profile and test samples of the same 
field. The EER for each field is then recorded.

Feature‑Level Fusion

This experiment evaluates the fusion of fields at the feature 
level. Our goal is to find the combination of fields that gives 
the best performance (the lowest EER). Specifically, we 
merge all the keystrokes from multiple fields and apply the 
scoring algorithms. We have carried out six major combina-
tions which we named Duet (combination of two fields), Trio 
(combination of three fields), Quartet (combination of four 
fields), Quintet (combination of five fields), Sextet (combina-
tion of six fields) and Septet (combination of seven fields).

Weighted‑Score Fusion

This experiment evaluates the weighted-score fusion, where 
the final score D is defined as a weighted sum of individual 
field scores di ( D = w1 × d1 + w2 × d2 + ... + wN × dN) , 
and all weights sum up to one ( w1 + w2 + ... + wN = 1 ). We 
use the grid-search approach to find the optimum weights 
for each combination. The minimum weight is 0.05 with 
an increment of 0.05 after every search iteration. The grid-
search approach is known to perform well for finding opti-
mum weights in behavioral biometrics [32].

One‑Class Classification (OCC)

The one-class classifier is a machine learning approach 
used for outlier detection. Unlike multi-class classifiers, the 
OCC tries to identify objects of a specific class amongst all 

examples, by primarily learning from a training set contain-
ing only the examples of that class. In the training phase, 
OCC is fit on data that only has examples from the normal 
(inlier) class. The trained model is then used to classify new 
examples as either normal (inliers) or anomalies (outliers). 
The One-class SVM algorithm is used for the one-class clas-
sification. One-class SVM is a variation of the SVM that 
can be used in an unsupervised setting for anomaly detec-
tion. There are three (3) major parameter tuning in One-class 
SVM which are kernel, gamma and nu. The kernel specifies 
the type of kernel to be used in the algorithm; gamma is 
the coefficient of the kernel; and nu, which is in the inter-
val 0 and 1, is the upper bound on the fraction of training 
errors and a lower bound of the fraction of support vectors. 
We used the Radial Basis Function (RBF) kernel, and set 
the value of gamma to 1∕(no_of_features ∗ X.var()) , where 
X.var() is the variance of the training data. We used the grid-
search approach, ranging from 1 to 50% with an increment 
of 0.5%, to find the best value for nu that produces the best 
performance.

The touch-mobile dataset was preprocessed and we 
converted the key in each keystroke to its respective key-
code. The keycodes are in accordance to the ASCII codes 
with integers in the range of 0 and 255. The keycodes are 
then normalized by dividing each keycode by 255, which 
forces the keycodes to be between 0 and 1. Normalization 
is a common approach in machine learning which allows 
the model to more quickly learn the optimal parameters for 
each input. Thereafter, five features were extracted from the 
data which are: the Up-Down (UD) digraph which is the 
latency between two consecutive keys; the monographs (m1 
and m2) of the two keys, which are the elapsed time between 
the press and release of each single key; and the normalized 
keycodes (keycode1 and keycode2) of the two keys.

Minimum Number of Enrollment Samples

In keystroke dynamics, enough enrollment samples are 
required to build the user’s profile. The more the enroll-
ment samples included in a user’s profile, the more accurate 
the algorithm will perform. Although there is not a defi-
nite number of enrollment samples required to build a good 
profile, we have monitored performance as we reduce the 
number of enrollment samples. During our data collection, 
users have completed the enrollment process ten times and 
we have used all ten enrollment samples to build their pro-
file. However, to further investigate the minimum number of 
enrollment samples, we experiment with varying the number 
of enrollment samples from 10 to 5 using both feature-level 
and weighted-score fusion techniques.
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Results

This section presents the result for each experiment, includ-
ing individual fields, feature-level fusion and the weighted-
score fusion.

Consistent with the state-of-the-art in fixed-text keystroke 
dynamics [9], as shown in Figure 10, Scaled Manhattan Dis-
tance outperforms the other four algorithms on the Declare 
field. Table 4 shows further evidence that this is also true 
for most of the remaining six fields. Therefore, further sta-
tistical approach experiments in this paper uses the Scaled 
Manhattan Distance.

Out of the 7 fields in our account recovery form, there 
are 21 combinations for Duet (2 fields), 35 combinations 
for Trio (3 fields), 35 combinations for Quartet (4 fields), 
21 combinations for Quintet (5 fields), 7 combinations 
of Sextet (6 fields) and 1 for Septet (7 fields). We have 

recorded only the best performance for each of the above 
field combinations.

Results for Desktop Dataset

Individual Fields

Table 5 shows the performance of the Scaled Manhattan 
Distance over the seven fields on our account recovery web 
form. ‘Declare’, ‘Email’, and ‘Address’ are the three best 
performing fields with EER of 5.47%, 8.1%, and 10.81%, 
and average shared digraphs of 51, 20, and 16, respectively. 
The ‘Zip’ field has the lowest accuracy with EER of 22.8%, 
with only an average of 4 shared digraphs. As shown, field 
lengths seem to greatly influence performance and likely 
to be the main reason why the ‘Declare’ field has the best 
performance. On the other hand, familiarity with text may 
also have a relatively strong influence on performance. This 
is because more familiar content, such as email and address, 
are more likely to reveal a user’s typing pattern.

Feature‑Level Fusion

Consistent with the observed impact of the length of text 
on accuracy, an overall trend in Table 6 is that performance 

Fig. 10   Receiver Operating Characteristics (ROC) curve for all five 
algorithms based on the Declare field, with Scaled Manhattan Dis-
tance being the best (EER of 5.47%) [4]

Table 4   Performance of scoring 
algorithms on individual fields 
(EER). Scaled Manhattan 
Distance is the overall best

The best performances are shown in Bold

Euclidean Manha Scaled Manhattan Mahalanobis Gunetti &
Field Distance Distance Distance Distance Picardi

(%) (%) (%) (%) (%)

Zip 25.33 25.20 22.80 21.84 28.69
City 19.51 19.52 20.36 20.85 26.88
Phone 22.41 18.25 18.02 22.50 39.59
Fullname 17.29 16.31 14.16 16.04 20.67
Address 15.41 13.63 10.81 10.96 18.17
Email 12.59 9.62 8.10 12.45 15.75
Declare 15.73 15.74 5.47 9.88 17.07

Table 5   Authentication based on individual fields for the desktop 
dataset using the Scaled Manhattan distance algorithm

Field #Avg shared digraph K EER (%)

Zip 4 90% 22.80
City 7 70% 20.36
Phone 8 70% 18.02
Fullname 12 70% 14.16
Address 16 70% 10.81
Email 20 70% 8.10
Declare 51 70% 5.47
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improves as the number of shared digraph increases. We 
achieve 0% EER at the combination of five fields (Quin-
tet) with an average of 90 shared digraphs and a K of 90%. 
Therefore, we do not need to fuse all seven fields to achieve 
perfect accuracy. Furthermore, we observe that the best 
field combinations in Table 6, from Trio down to Sextet, are 
mostly made of the set of best individual fields from Table 5. 
For example, the best combination of fields in Quartet is 
Declare+Email+Address+Fullname, which are the four best 
individual fields. However, we notice a performance drop at 
Septet (a combination of seven fields) despite an increase in 
the average shared digraph. Future work needs investigate 
the cause of this.

Weighted‑Score Fusion

As recorded in Table 7, the global best result for weighted-
score fusion is achieved at the combination of seven fields 
with an EER of 0%. Consistent with the observed positive 
impact of the length of text on accuracy, an overall trend 
is that as the number of shared digraph increases, EER 
decreases. Furthermore, compared with the feature-level 
fusion, the weighted-score fusion performs better for Duet, 
Trio and Quartet, with lower EERs. Overall, we believe the 
weighted-score fusion is a better choice for our application 

because it uses more data and produces better performances 
when a more strict content matching is applied (K is 80% for 
the combination of seven fields - Septet).

In general, these results (feature-level fusion and 
weighted-score fusion) outperform the state-of-the-art 
in both fixed-text and free-text keystroke dynamics. Spe-
cifically, the best-performance EERs recorded in fixed-text 
papers like Killourhy and Maxion [9], and Giot, EL-Abed 
and Rosenberger [24] are 9.6% and 8.87%, respectively, but 
we have achieved the lowest EER of 5.47% for individual 
fields. Likewise, we have achieved a global best EER of 0% 
for both feature-level and weighted-score fusion, which out-
perform the results recorded in free-text papers like Gunetti 
and Picardi [12] and Huang et al. [13, 23].

Results for Touch‑Mobile Dataset

Individual Fields

The results of the individual fields for touch-mobile dataset 
using the Scaled Manhattan Distance are shown in Table 8. 
‘Declare’, ‘Address’ and ‘Fullname’ are the three best per-
forming fields with an EER of 12.36%, 13.1%, and 15.29%, 
and an average of shared digraphs of 43, 16, and 12, respec-
tively. Similar to the desktop dataset, the field ‘Zip’ has the 

Table 6   Feature level fusion of multiple fields for the desktop dataset 
using the Scaled Manhattan distance algorithm

The best performance is shown in Bold

Field #Avg shared 
digraph

K EER (%)

DUET
 Email+Fullname 29 90% 4.88

TRIO
 Declare+Email 78 70% 3.13
 +Address

QUARTET
 Declare+Email+ 82 70% 2.36
 Address+Fullname

QUINTET
 Declare+Email
 +Address+ 90 90% 0.00
 Fullname+City

SEXTET
 Declare+Email
 +Address+Fullname+ 95 90% 0.00
 City+Zip

SEPTET
 Declare+Email
 +Address+Fullname+ 102 70% 2.18
 City+Zip+Phone

Table 7   Weighted-score fusion of multiple fields for the desktop 
dataset using the Scaled Manhattan distance algorithm, where w is 
the weight

The best performance is shown in Bold

Field K EER (%)

PAIR
 Email(w=0.75)+Declare(w=0.25) 70% 4.3

TRIO
 Email(w=0.55)+Declare(w=0.25) 70% 2.7
 +Fullname(w=0.2)

QUARTET
 Email(w=0.45)+Declare(w=0.25)+ 70% 2.27
 Fullname(w=0.15)+Address(w=0.15)

QUINTET
 Email(w=0.45)+Declare(w=0.25)
 +Fullname(w=0.1)+ 70% 2.21
 Address(w=0.15)+Zip(w=0.05)

SEXTET
 Email(w=0.4)+Declare(w=0.25)
 +Fullname(w=0.1)+Address(w=0.1)+ 70% 1.4
 Zip(w=0.1)+Phone(w=0.05)

SEPTET
 Email(w=0.35)+Declare(w=0.25)
 +Fullname(w=0.15)+Address(w=0.05)+ 80% 0.00
 Zip(w=0.05)+Phone(w=0.05)+City(w=0.1)
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lowest EER of 32.17%, and only an average of 3 shared 
digraphs. This confirms our hypothesis that short texts with 
a small number of shared digraphs produce worse perfor-
mance. In other words, the longer the text, the better the 
performance.

As shown, field lengths seem to greatly influence perfor-
mance and likely to be the main reason why the ‘Declare’ 
field has the best performance. On the other hand, familiar-
ity with text may also have a relatively strong influence on 
performance. Familiar contents such as address, email and 
fullname, are more likely to reveal a user’s unique typing 
pattern.

Feature‑Level Fusion

Similar to the feature-level fusion results for the desktop data 
on the impact of the length of text on accuracy, the trend 
in Table  9 is that performance improves (EER decreases) 
as the average number of shared digraphs increases, except 
for the combinations of five to seven fields. The feature-
level fusion performance becomes worse as more data is 
added. Although further investigation is required to know 
the exact cause of this observation, we hypothesize that, 
for the feature-level fusion, performance increases when 
fields with good individual performances are combined, but 
worsens when fields with poor individual performances are 
added, despite the increase in the average number of shared 
digraphs.

One would have expected that the best Trio com-
bination will be Fullname+Declare+Address since 
these are the best performing individual fields, and not 
Email+Declare+Address as seen in the table. However, it 
is important to point out that participants’ full names are 
also included in the Declare field. Therefore, combining 
Fullname and Declare using Feature-level fusion gives no 
new information, although Fullname had a better individual 
performance than Email. The best performance recorded 
is 4.97% EER at the combination of four fields (Quartet) 
with an average shared digraph of 60. These results provide 

insights on the most important information to be requested 
from mobile users during account recovery.

Weighted‑Score Fusion

Table 10 shows the results for the weighted-score fusion 
experiments. As the field combination increases from Duet 
(two fields) to Septet (seven fields), performance improves 
accordingly. The weighted-score fusion follows the hypoth-
esis, with no exception, that more data (longer text) results in 
better performance. The overall best performance of 2.64% 
EER is recorded when seven fields are combined (Septet). 
Overall, the weighted-score fusion is to be preferred because 
the results are consistent in that including additional data 
gives better performance. The downside to the weighted-
score fusion in this experiment is that the fields combination 
with the best performance from Duet to Septet do not follow 
the pattern of being inclusive. For instance, the best Trio 
(Email+Declare+Fullname) does not include all the fields 
from the best Duet (Declare+Address).

In general, as seen from our results, keystroke dynamics 
performances for desktop data are better than those from 
touch-mobile data [14]. This can be explained by the few 
discrepancies between the two platforms. First is the key-
board type: one uses physical keyboards while the other vir-
tual keyboards; second is the keyboard size; third is typing 
position: most people type on the desktop while seated and 

Table 8   Authentication based on individual fields for the touch-
mobile dataset using the Scaled Manhattan distance algorithm

The best performances are shown in Bold

Field #Avg shared digraph EER (%)

Zip 3 32.17
City 6 20.86
Phone 6 25.13
Fullname 12 15.29
Address 16 13.1
Email 14 19.42
Declare 43 12.26

Table 9   Feature level fusion of multiple fields for the touch-mobile 
dataset using the Scaled Manhattan distance algorithm

The best performance is shown in Bold

Field #Avg shared digraph EER (%)

DUET
 Declare+Address 56 7.47

TRIO
 Email+Declare+Address 63 5.74

QUARTET
 Email+Declare+ 66 4.97
 Address+Zip

QUINTET
 Declare+Fullname+ 68 4.99
 Address+City+Phone

SEXTET
 Email+Declare
 +Fullname+Address+ 72 5.07
 City+Zip

SEPTET
 Email+Declare
 +Fullname+Address+ 77 5.15
 City+Zip+Phone
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the keyboard on a flat surface (desk) but typing on mobile 
devices can be done in any position (standing, sitting, rest-
ing, etc); fourth is typing hands and fingers: two hands are 
majorly used on desktop computers but one hand or even one 
finger can be used effectively for typing on mobile devices. 
However, keystroke dynamics performance for touch-mobile 
may be improved when fused with other data collected from 
the mobile device through its available sensors such as gyro-
scope and accelerometer.

One‑Class Classification for Touch‑Mobile Dataset

Individual Fields

The one-class classification results for individual fields are 
shown in Table 11. Unlike the results from the statistical 
model, the Phone field had the best performance with an 
EER of 10.25% , followed by the Email and Declare fields 
with EER of 14.83% and 20.40%, respectively.

Feature‑Level Fusion

Table 12 shows the one-class classification results with 
feature-level fusion. The best performance recorded is in 
the combination of two fields, namely Phone+City, with an 

EER of 8.7%. Note that this is achieved with short length 
texts like Phone and City, having a combined average key-
strokes of 20. This result also outperforms related work in 
[24] which fused users own username and password and 
produced an EER of 11.45%. Similar to our previous obser-
vation with feature-level fusion for the Scaled Manhattan 
algorithm, the feature-level fusion performs worse as more 
data is added.

Weighted‑Score Fusion

Recall that for weighted-score fusion, each field scores are 
weighted before they are combined with other fields; there-
fore, it is appropriate that the fields maintain their respective 

Table 10   Weighted-score fusion of multiple fields for the touch-
mobile dataset using the Scaled Manhattan distance algorithm, where 
w is the weight

The best performance is shown in Bold

Field EER (%)

DUET
 Declare(w=0.75)+Address(w=0.25) 5.28

TRIO
 Email(w=0.45)+Declare(w=0.25) 5.14
 +Fullname(w=0.3)

QUARTET
 Fullname(w=0.4)+Address(w=0.35)+ 3.65
 City(w=0.15)+Phone(w=0.1)

QUINTET
 Email(w=0.1)+Declare(w=0.2)
 +Fullname(w=0.4)+ 3.44
 Address(w=0.15)+City(w=0.15)

SEXTET
 Email(w=0.2)+Declare(w=0.3)
 +Fullname(w=0.2)+Address(w=0.15)+ 2.81
 City(w=0.05)+Zip(w=0.1)

SEPTET
 Email(w=0.2)+Declare(w=0.25)
 +Fullname(w=0.2)+Address(w=0.2)+ 2.64
 City(w=0.05)+Zip(w=0.05)+Phone(w=0.05)

Table 11   One-class 
classification authentication 
results based on individual 
fields for the touch-mobile 
dataset

The best performances are 
shown in Bold

Field Param-
eter nu 
(%)

EER (%)

Zip 25.5 22.27
City 16 27.76
Phone 13.5 10.25
Fullname 12 21.76
Address 6 25.92
Email 6 14.83
Declare 1 20.40

Table 12   Feature-level fusion of multiple fields for the touch-mobile 
dataset using one-class classification

The best performance is shown in Bold

Field Parameter nu (%) EER (%)

DUET
 Phone+City 12.5 8.7

TRIO
 Email+Phone+City 8.5 9.59

QUARTET
 Declare+Fullname+ 23.5 9.33
 Phone+Zip

QUINTET
 Declare+Fullname+ 13.5 10.03
 Phone+Zip+Address

SEXTET
 Email+Declare
 +Fullname+Phone+ 8 10.6
 City+Zip

SEPTET
 Email+Declare
 +Fullname+Phone+ 7.5 10.94
 City+Zip+Address
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nu parameter reported in Table 11. That is, 6% for email, 
13.5% for phone and so on. Table 13 shows the result of 
the weighted-score fusion. The best performance of 7.47% 

EER is reported at the combination of five fields (Quin-
tet), namely Email+Declare+Phone+City+Zip. Unlike the 
Scaled Manhattan algorithm, the weighted-score fusion for 
the One-class classification approach does not completely 
follow the hypothesis that more data (longer text) results in 
better performance. Exceptions were seen at Quartet, Sextet 
and Septet.

In general, the Scaled Manhattan algorithm which is a 
statistical approach performed better than the one-class clas-
sification approach. The exact causes of this difference will 
remain as future work.

Results for Number of Enrollment Samples

Tables 14 and 15 show the results of our experiment on the 
minimum number of enrollment samples using the feature-
level fusion and weighted-score fusion, respectively, for the 
desktop dataset. The desktop dataset is used for this experi-
ment. This is because our best performances from previous 
experiments were recorded using the desktop dataset. In gen-
eral, performance drops (i.e., EER increases) as we reduce 
the number of enrollment samples. Furthermore, as the 
combination of fields increases, the reduction in the number 
of enrollment samples has a lesser effect on performance. 
For example, in Table 14, for the combination of five fields 
(Quintet), when the enrollment sample is reduced from 10 to 
9, the performance stays the same (0%) but degrades when 
the enrollment sample is further reduced to 8. Meanwhile, 
for the combination of six fields (Sextet), performance stays 

Table 13   Weighted-score fusion of multiple fields for the touch-
mobile dataset using one-class classification, where w is the weight

The best performance is shown in Bold

Field EER (%)

DUET
 Email(w=0.8)+Phone(w=0.2) 9.04

TRIO
 Email(w=0.4)+Declare(w=0.5) 8.1
 +Phone(w=0.1)

QUARTET
 Email(w=0.5)+Phone(w=0.3)+ 8.54
 City(w=0.1)+Zip(w=0.1)

QUINTET
 Email(w=0.4)+Declare(w=0.1)
 +Phone(w=0.3)+ 7.47
 City(w=0.1)+Zip(w=0.1)

SEXTET
 Email(w=0.3)+Fullname(w=0.1)
 +Declare(w=0.1)+Phone(w=0.2)+ 8.36
 City(w=0.1)+Address(w=0.2)

SEPTET
 Email(w=0.2)+Fullname(w=0.1)
 +Declare(w=0.1)+Phone(w=0.3)+ 10.22
 City(w=0.1)+Zip(w=0.1)+Address(w=0.1)

Table 14   Number of enrollment 
samples and their corresponding 
EER values using feature-level 
fusion

Field Number of enrollment samples

10 9 8 7 6 5

DUET
 Email+Fullname 4.88 8.86 9.19 9.47 11.89 10.64

TRIO
 Declare+Email 3.13 3.96 5.55 7.72 6.46 7.09
 +Address

QUARTET
 Declare+Email+ 2.36 3.17 4.74 5.37 8.39 10.44
 Address+Fullname

QUINTET
 Declare+Email
 +Address+ 0.00 0.00 2.00 1.85 5.38 8.31
 Fullname+City

SEXTET
 Declare+Email
 +Address+Fullname+ 0.00 0.00 0.00 0.00 5.65 7.98
 City+Zip

SEPTET
 Declare+Email
 +Address+Fullname+ 2.18 3.58 3.22 3.36 4.04 6.91
 City+Zip+Phone
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the same as 0% when enrollment samples reduce gradu-
ally from 10 till 7. A possible explanation is, as fields are 
combined, the total number of digraphs increases, which 
counters the negative effect from the reduction in enroll-
ment samples. Hence, short test samples would require more 
enrollment samples to build a user profile than long text to 
accomplish the same level of accuracy.

Conclusions

We propose to secure account recovery on both desktop and 
mobile platforms with keystroke dynamics. To that end, 
we evaluated five scoring algorithms on our desktop and 
touch-mobile account recovery datasets and found Scaled 
Manhattan Distance to be the best. We also applied one-
class classification, a machine learning approach for out-
lier detection, on the touch-mobile dataset and compared 
results. For the desktop dataset, we achieve the best EER of 
5.47% for individual fields, a global best EER of 0% when 
five fields are combined using feature-level fusion, and 0% 
for weighted-score fusion with all seven fields combined. 
For the touch-mobile dataset, we achieved 10.25% EER 
for the best individual field from the one-class classifica-
tion algorithm, a global best EER of 4.97% when four fields 
are combined with feature-level fusion using the Scaled 
Manhattan algorithm, and 2.26% for weighted-score fusion 
with all seven fields combined using the Scaled Manhattan 

algorithm. Overall, the statistical approach (Scaled Manhat-
tan algorithm) performs the best with the lowest global EER.

In deciding the number of enrollment samples needed 
to build a user’s profile, we found that a short test sample 
would require more enrollment samples than a long test sam-
ple. Overall, our results outperform the state-of-the-art in 
both fixed-text and free-text keystroke dynamics on desk-
top and mobile platforms. Hence, it is highly promising to 
apply keystroke dynamics to secure the ubiquitous account 
recovery mechanism on both desktop and mobile platforms.

In keystroke dynamics, there are possibilities of incon-
sistent keystrokes which may be caused by cramped mus-
cles, sweaty hands, or change of keyboards [33, 34]. In such 
cases, keystroke dynamics would reject the users and request 
them to present another authentication factor. It is important 
to stress that other MFA (Multi-factor Authentication) fac-
tors such as one-time password (OTP) inconveniences users 
and increases authentication friction. Keystroke dynamics 
can be used to significantly reduce such friction by request-
ing other MFA factors only when the user is rejected, such 
as in the case of cramped muscles, sweaty hands, or change 
in keyboards.

Future work includes testing with larger datasets with 
more samples per user and more users to further validate 
our techniques, implementing our techniques on a live web-
site and/or mobile app to perform usability testing with real 
users and survey its public acceptance. Also, monograph and 
digraph features other than ‘DD’ can be used for possible 

Table 15   Number of enrollment 
samples and their corresponding 
EER values using weighted-
score fusion

Field Number of enrollment samples

10 9 8 7 6 5

DUET
 Email+Declare 4.3 4.37 4.46 5.8 5.83 6.04

TRIO
 Email+Declare 2.7 3.87 3.47 4.26 5.29 5.3
 +Fullname

QUARTET
 Email+Declare+ 2.27 3.09 2.61 3.88 4.97 4.92
 Fullname+Address

QUINTET
 Email+Declare
 +Fullname+ 2.21 3.49 3.04 3.97 4.85 4.81
 Address+Zip

SEXTET
 Email+Declare
 +Fullname+Address+ 1.4 0.90 1.78 3.52 3.83 4.55
 Zip+City

SEPTET
 Email+Declare
 +Fullname+Address+ 0.00 0.00 1.88 3.54 3.85 3.58
 Zip+City+Phone
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further improvement of performance. Lastly, we will inves-
tigate the fusion keystroke dynamics with other modalities 
to form a more robust risk-based scoring system to ensure 
that the person requesting account recovery is indeed the 
claimed user.
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