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Abstract—Minimizing risk with fairness constraints is one

of the popular approaches to learning a fair classifier. Recent

works showed that this approach yields an unfair classifier if the

training set is corrupted. In this work, we study the minimum

amount of data corruption required for a successful flipping

attack. First, we find lower/upper bounds on this quantity and

show that these bounds are tight when the target model is

the unique unconstrained risk minimizer. Second, we propose a

computationally efficient data poisoning attack algorithm that

can compromise the performance of fair learning algorithms.

A full version is at https://arxiv.org/pdf/2204.05472.pdf

I. INTRODUCTION

Fairness and robustness are two main requirements for
trustworthy artificial intelligence (AI). According to the fairness
principle in [1], AI systems should ensure that individuals
and groups are free from unfair bias and discrimination. In
recent years, researchers have proposed various definitions
for fair classification [2], [3] and algorithms for learning
fair models [3]–[13]. One popular approach is to solve risk
minimization with constraints that capture the desired fairness
definition.

While several works theoretically analyzed the risk minimiza-
tion with fairness constraints [14], [15], our understanding of its
performance on noisy or corrupted data is scarce. Given that the
use of web-scale training data, crawled from the Internet and/or
crowdsourced, has become an essential part of machine learning
pipeline [16]–[18], it is of utmost importance to understand how
one can learn fair models on data that is potentially corrupted
by random or adversarial noise. To understand the robustness
of risk minimization with fairness constraints, [19] studied the
worst-case scenario – called data poisoning attacks – where
adversaries can modify training data to make the model learned
on it becomes unusable (either due to low accuracy or bias).
They designed an online gradient descent algorithm, specifically
tailored for attacking constrained risk minimization. Their
experimental results showed that constrained risk minimization
is so unstable under their attack that the models learned by this
approach might be even more unfair than the models learned
by unconstrained risk minimization. However, the optimality
of the proposed attack algorithm was unknown.

In this work, we study the problem of developing the optimal
flipping attack algorithm against risk minimization with fairness
constraints. In particular, we consider a general problem setup
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Fig. 1: A toy example that shows how our attack algorithm makes
the fair learning algorithm output the unconstrained risk minimizer.
We consider a dataset with 10 samples, where X denotes the feature
that takes its value in R, + and � denote Y labels to be predicted
by the learning algorithm, and Z denotes a sensitive attribute (e.g.,
gender). We consider linear classifiers that predict samples greater
than their thresholds as positive, where the thresholds are shown as
vertical lines in the figure. Acc denotes the accuracy, and � denotes
the fairness gap that measures the unfairness of the classifier (see
Def. 1 for details). When � = 0, the classifier is perfectly fair and
satisfies equal opportunity [3], one of the popular fairness metrics. On
the clean dataset, the fair learning algorithm outputs the fair classifier,
the blue solid line, with Acc = 0.5 and � = 0. In this example, the
attacker’s goal is to make the fair learning algorithm to output the
unconstrained risk minimizer, the red dashed line, which is unfair
because � = 0.17. By flipping the Z value of the rightmost sample,
the attacker can achieve the goal with the minimum number of label
flipping, thereby degrading the fairness of the fair learning algorithm.

where an attacker manipulates the data distribution such that
the model learned on the poisoned data becomes a given
target model. By formulating this attack problem as a bilevel
optimization problem, we provide lower and upper bounds
on the minimum amount of data perturbation required for a
successful flipping attack. Furthermore, if the target model
is the unique unconstrained risk minimizer (which generally
is unfair), then our bounds are tight, and our upper bound
provides an explicit construction of the optimal flipping attack
algorithm. Fig. 1 illustrates how our attack algorithm makes a
fair learning algorithm output the unconstrained risk minimizer,
thereby compromising the fairness of it. In other words, when
the attacker’s goal is to counteract the fairness constraints,
our attack algorithm can achieve the goal by perturbing the
minimum amount of data. As a byproduct of our analysis, we
also show that, under mild assumptions, there exist infinitely
many non-trivial fair models that do not suffer from disparate
treatment [20], which can be of independent theoretical interest.
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II. RELATED WORK

A. Learning Fair Classifiers

Various metrics have been proposed to measure the fairness
of a classification model such as demographic parity [2],
equalized odds [3], and equal opportunity [3]. Many methods
have been proposed to learn fair classifiers, and they can be
grouped in four categories: (1) pre-processing methods [4]–[8]
that preprocess or reweight training data, (2) in-processing meth-
ods [9]–[11], [14], [21]–[24] that enforce fairness constraints
or regularizers during the training period, (3) post-processing
methods [3], [25]–[27] that manipulate trained models, and
(4) adaptive batch selection methods [12], [28]. Several works
have also studied fair classification with missing/noisy sensitive
attributes [29]–[34].

One prominent approach to learning fair classifiers is
Fair Empirical Risk Minimization (FERM), an in-processing
method, that solves empirical risk minimization with constraints
that capture the desired fairness notion. As fairness constraints
are generally non-convex, various relaxations and approximate
algorithms have been proposed [10], [15]. While these al-
gorithms are shown to successfully learn fair classifiers, the
robustness to adversarial attack is not fully understood yet.

B. Data Poisoning Attacks and Defenses

Data poisoning attacks poison the training set to achieve
the adversary’s goal [35], [36], and there are two popular
approaches; objective-driven attacks and model-targeted attacks.
The goal of objective-driven attacks [19], [37]–[41] is to make
the learner output a model satisfying a target property, e.g.,
low accuracy. The goal of model-targeted attacks [39], [40],
[42] is to make the learner output a predefined target model.

A few works suggested data poisoning attacks for degrading
fairness of learned models. In [41], Solans et al. proposed a
gradient-based poisoning attack against ERM to degrade model
fairness without significantly degrading accuracy, but theoretical
guarantees are missing. Recent works proposed online gradient
descent algorithms for poisoning attacks against FERM, with
respect to various fairness notions [19], [43], [44]. These
existing attack methods are objective-driven attacks aiming
at degrading fairness and/or accuracy, while we study a model-
targeted attack. We consider the setting where attackers are
able to flip the labels and sensitive attributes of data, inspired
by recent works on label-flipping attacks [45]–[47].

Several works have theoretically analyzed the behavior of the
fairness-aware learner under data poisoning attacks. The authors
of [48] proposed a fair learning algorithm with guaranteed
accuracy and fairness, under adversarial perturbation on labels
and sensitive attributes. The authors of [49], [50] analyzed
how the risk and unfairness of the fair learner change as
a function of the fraction of the corrupted data, against the
attacker who can perturb features, labels, and sensitive attributes
of a random subset of the training set. Specifically, [49]
provided order-optimal upper/lower bounds on the achievable
risk and unfairness performances in a PAC learning sense.
Compared with these existing works, the present paper has two

key differences in attacker’s goal and the attack model. First,
while [48]–[50] focused on objective-driven attacks where the
attacker’s goal is to degrade the accuracy/fairness performance,
we consider model-targeted attacks and analyze the minimum
amount of perturbation required for a fair learner outputting a
predefined target model. Second, given a fixed budget (number
of samples) for data poisoning, the attacker considered in [49],
[50] poisons a random subset of the samples, while the attacker
in our work can choose which subset to poison.

III. PROBLEM FORMULATION

Let X denote the set of feature vectors, Y denote the set of
labels, and Z denote the set of sensitive attributes, e.g., gender
and race. We restrict our attention to the case where X is the
n-dimensional real space for any natural number n, and Y and
Z are binary, i.e., X = Rn and Y = Z = {0, 1}. Let X, Y, and
Z be the jointly distributed random variables that take values
in X , Y, and Z , respectively. Let D be the joint distribution of
X, Y, and Z. Then PrD(·) and ED[·] denote the probability1

and expectation over D, respectively. In this work, we consider
a model h : X ! Y that does not suffer from disparate
treatment, i.e., h does not take the sensitive attribute z 2 Z as
input. Let H be the hypothesis class. Let ` : Y ⇥ Y ! Y be
the 0/1 loss function, i.e., `(ŷ, y) = 1(y 6= ŷ) where 1(·) is
the indicator function. Let R`(h; D) be the true risk of h on
D, i.e., R`(h; D) = ED[`(h(X), Y )].

We build our theory upon equal opportunity [3], but our
analysis can be generalized to demographic parity [2] (see
the full version for details). A model h : X ! Y satisfies
equal opportunity on the distribution D if PrD(h(X) = 1|Y =
1, Z = 0) = PrD(h(X) = 1|Y = 1, Z = 1). We measure the
unfairness of a model by capturing the dissimilarity between
true positive rates across the sensitive attributes, which is
similar to methods used in [12], [19], [28].
Definition 1. The fairness gap of a model h : X ! Y on the
distribution D, denoted �(h, D), is
max
z2Z

���Pr
D

(h(X) = 1|Y = 1, Z = z) � Pr
D

(h(X) = 1|Y = 1)
���.

For � 2 [0, 1], h is �-fair on D if �(h, D)  �. The model h is
perfectly fair on D if it is 0-fair. We similarly define the fairness
gap, �-fairness, and perfect fairness of h on the training set
D by using the empirical probability PrD(·) over D.

We use DX|Y =y,Z=z to denote the distribution of X

conditioned on Y = y, Z = z for each (y, z) 2 Y ⇥ Z , and
DX to denote the marginal distribution of X . For analytical
purposes, we assume that, for each (y, z) 2 {0, 1} ⇥ {0, 1},
DX|Y =y,Z=z has the density function2

fX|Y =y,Z=z(x|y, z)

1For ease of presentation, we did not mention the �-algebra over which
PrD(·) is defined. When the ambient space is Rn, we consider the Lebesgue
�-algebra, the collection of all Lebesgue measurable sets. When the ambient
space is a finite set, we use its power set, the collection of all subsets of it.

2Having a density function is closely related to absolute continuity. In this
work, we consider a probability distribution over Rn whose probability space
is a triple (Rn,L(Rn), ⌫), where L(Rn) is the collection of all Lebesgue
measurable sets, and the measure ⌫ assigns the probability for E 2 L(Rn).
Then, by the Radon–Nikodym theorem [51], the measure ⌫ has the density
function with respect to the Lebesgue measure µ if and only if ⌫ is absolutely
continuous with respect to µ.
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with respect to the Lebesgue measure µ satisfying Pr(X 2

E|Y = y, Z = z) =
R
E fX|Y =y,Z=z dµ for any Lebesgue

measurable set E 2 Rn. Then the joint density function
f(x, y, z) of D is fX|Y =y,Z=z(x|y, z) PrD(Y = y, Z = z),
and the marginal density function of X , denoted fX(x), isP

(y,z)2{0,1}⇥{0,1} f(x, y, z).
Learner: We assume that the learner can solve any opti-

mization problem with infinite computing power. Moreover,
the learner’s hypothesis class H consists of some Lebesgue
measurable functions from X to Y , so any h 2 H is
deterministic. The learner’s goal is to find the model in H that
achieves the minimum true risk among perfectly fair models,
which we call Fair True Risk Minimization (FTRM), by solving
the following constrained optimization problem:

minh{R`(h; D) : h 2 H, h is perfectly fair on D}. (1)

We denote the set of solutions of (1) by A0(D). Moreover, we
define A�(D) as the set of solutions of minh{R`(h; D) : h 2

H, h is �-fair on D}. Note that A1(D) is the set of uncon-
strained true risk minimizers since any model is 1-fair.

Attacker: The attacker knows the entire learning procedure
(white-box attack) and can make the learner train the model on
another distribution D

0 with the following constraints. (1) The
conditional distribution D

0

X|Y =y,Z=z has a density function
with respect to the Lebesgue measure µ for each (y, z) 2 Y⇥Z;
if this does not hold, the attack may be easily detected by the
learner. (2) The marginal distribution of X remains the same,
i.e., D

0

X = DX ; when D is a discrete set, e.g., the training
set, this assumption limits the attacker to label-flipping attacks.
Thus, the attacker’s search space S is

S = {D
0 : D

0 is a prob. dist. over X ⇥ Y ⇥ Z, D
0

X = DX ,

D
0

X|Y =y,Z=z has a density w.r.t. µ 8(y, z) 2 Y ⇥ Z} (2)

The attacker’s goal is to make the learner output the target
model htarget with the minimum amount of data perturbation,
measured in the total variation distance. For two distributions
D1 and D2 over X ⇥Y⇥Z , the total variation distance between
D1 and D2, denoted dTV(D1, D2), is

1
2

P
(y,z)2Y⇥Z

R
Rn |f1(x, y, z) � f2(x, y, z)| dµ, (3)

where f1(x, y, z) and f2(x, y, z) are (mixed) joint density
functions of D1 and D2, respectively. Hence the attacker solves
the following bilevel optimization problem:

minD0{dTV(D, D
0) : D

0
2 S, A0(D

0) = {htarget}}. (4)

Define the infimum of the objective function of (4) as
d
?
TV(h) = infD02⇤0(h)dTV(D, D

0), (5)

where ⇤�(h) = {D
0 : D

0
2 S, A�(D0) = {h}}.

IV. MAIN RESULTS

In this section, we analyze the lower and upper bounds on
d
?
TV(h), the minimum amount of data perturbation for FTRM

to output the target model h 2 H. Full proofs of all results are
deferred to the full version. The following lemma provides the
key inequality to derive the lower bound on d

?
TV(h).

Lemma 1. Let X = Rn, Y = {0, 1}, Z = {0, 1}, and D
0
2 S .

If h 2 H is perfectly fair on D
0, then

dTV(D, D
0) � C(h, D) :=

|phsh � qhrh|

max{ph + rh, qh + sh}
(6)

where ph = PrD(h(X) = 0, Y = 1, Z = 0),

qh = PrD(h(X) = 1, Y = 1, Z = 0),

rh = PrD(h(X) = 0, Y = 1, Z = 1),

sh = PrD(h(X) = 1, Y = 1, Z = 1).

For any D
0
2 ⇤0(h), h is perfectly fair on D

0, so we have
dTV(D, D

0) � C(h, D) by Lem. 1. Then we get
d
?
TV(h) = infD02⇤0(h) dTV(D, D

0) � C(h, D). (7)

In the lemma below, we show how to construct the distribution
D

0 = Fairh(D) that matches the lower bound in (6). Note
that this lemma holds only under a certain assumption on
(ph, rh, qh, sh), and a general version of this lemma that does
not require such assumptions is given in the full version.
Lemma 2. Assume ph + rh � qh + sh and qh

ph
�

sh
rh

. Consider
a distribution Fairh(D) with the density function f(x, y, z) +
1(h(x) = 1, y = 1)(2z�1) qhrh�phsh

(ph+rh)qh
f(x, 1, 0), where f is the

density function of D. Then, (i) Fairh(D) 2 S , (ii) h is perfectly
fair on Fairh(D), and (iii) dTV(D, Fairh(D)) = C(h, D).

Let us illustrate the density function fh of Fairh(D) given
in the lemma. If h(x) 6= 1 or y 6= 1, then the density function
remains the same, i.e., fh = f . If h(x) = 1 and y = 1, then
fh(x, 1, 0) = (1 � ↵)f(x, 1, 0) and fh(x, 1, 1) = f(x, 1, 1) +
↵f(x, 1, 0), where ↵ = qhrh�phsh

(ph+rh)qh
. This can be interpreted as

↵ fraction of the density at (x, 1, 0) is transported to (x, 1, 1). In
other words, this data distribution can be realized by flipping
the Z value with probability ↵ when X = x, Y = 1 and
h(x) = 1. This implies that Z-flipping attack is the optimal
way of perturbing data distribution to make a target classifier
look perfectly fair, and we will see a similar attack algorithm
for the empirical risk case in Sec. V.
Remark 1 (Connection with Theorem 1 in [31]). Theorem 1
in [31] provides the lower bound on dTV(DZ=z, D

0

Z=z) for
each z 2 Z when h is perfectly fair on D

0. However, they did
not provide an explicit construction of D

0 that matches the
bound. Our construction scheme can be used to match their
bound for certain cases, which we detail in the full version.

By definition, d
?
TV(h) is upper bounded by dTV(D, D

0) for
any D

0
2 ⇤0(h). Hence we provide an upper bound on d

?
TV(h)

by constructing a specific distribution D
0 that belongs to ⇤0(h).

The distribution Fairh(D) defined in Lem. 2 makes h look
perfectly fair with the minimum amount of data perturbation.
Assume a hypothetical scenario where h is the only perfectly
fair model in the hypothesis class H on Fairh(D). Then,
A0(Fairh(D)) = {h} holds true. So we get Fairh(D) 2 ⇤0(h),
and d

?
TV(h) could be upper bounded by dTV(D, Fairh(D)),

which is equal to C(h, D) by Lem. 2. Unfortunately, this
assumption does not hold true by the following lemma; there
are infinitely many perfectly fair classifiers.
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<latexit sha1_base64="A4zd+yWvMQVrXJaZIbB4+2v8eT8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBhPBi8tu8HUMePEYwTwgWcLsZDYZMzuzzMwKYck/ePGgiFf/x5t/4yTZg0YLGoqqbrq7woQzbTzvyymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vpn57UeqNJPi3kwSGsR4KFjECDZWalXPPPei2i9XPNebA/0lfk4qkKPRL3/2BpKkMRWGcKx11/cSE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0YpUBiqSyJQyaqz8nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C+//Je0aq5/6Z7f1Sp1L4+jCEdwDKfgwxXU4RYa0AQCD/AEL/DqSOfZeXPeF60FJ585hF9wPr4BeIyNsw==</latexit>

�0.5

<latexit sha1_base64="tF6fQNXHHfl5cyRriS9ZI2Guvjo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AUv44FLx4rmFpoQ9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRWyeZIjQgCU9UJ8KaciZpYJjhtJMqikXE6WM0vp35j09UaZbIBzNJaSjwULKYEWysFNQ997Ler9Y815sDrRK/IDUo0OpXv3qDhGSCSkM41rrre6kJc6wMI5xOK71M0xSTMR7SrqUSC6rDfH7sFJ1ZZYDiRNmSBs3V3xM5FlpPRGQ7BTYjvezNxP+8bmbimzBnMs0MlWSxKM44MgmafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSbvh+lfuxX2j1vSKOMpwAqdwDj5cQxPuoAUBEGDwDK/w5kjnxXl3PhatJaeYOYY/cD5/AA6UjXw=</latexit>

0.5

<latexit sha1_base64="tF6fQNXHHfl5cyRriS9ZI2Guvjo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AUv44FLx4rmFpoQ9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRWyeZIjQgCU9UJ8KaciZpYJjhtJMqikXE6WM0vp35j09UaZbIBzNJaSjwULKYEWysFNQ997Ler9Y815sDrRK/IDUo0OpXv3qDhGSCSkM41rrre6kJc6wMI5xOK71M0xSTMR7SrqUSC6rDfH7sFJ1ZZYDiRNmSBs3V3xM5FlpPRGQ7BTYjvezNxP+8bmbimzBnMs0MlWSxKM44MgmafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSbvh+lfuxX2j1vSKOMpwAqdwDj5cQxPuoAUBEGDwDK/w5kjnxXl3PhatJaeYOYY/cD5/AA6UjXw=</latexit>

0.5

<latexit sha1_base64="A4zd+yWvMQVrXJaZIbB4+2v8eT8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBhPBi8tu8HUMePEYwTwgWcLsZDYZMzuzzMwKYck/ePGgiFf/x5t/4yTZg0YLGoqqbrq7woQzbTzvyymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vpn57UeqNJPi3kwSGsR4KFjECDZWalXPPPei2i9XPNebA/0lfk4qkKPRL3/2BpKkMRWGcKx11/cSE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0YpUBiqSyJQyaqz8nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C+//Je0aq5/6Z7f1Sp1L4+jCEdwDKfgwxXU4RYa0AQCD/AEL/DqSOfZeXPeF60FJ585hF9wPr4BeIyNsw==</latexit>

�0.5

<latexit sha1_base64="B8c1mu7VsvPzmn1qo3eF+SRODy8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33qedVeueLW3DnIKvFyUoEczV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gOsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadVr3mXt4q5eabh5HEU4gVM4Bw+uoAG30AQfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/wR6N8Q==</latexit>

x1

<latexit sha1_base64="kvKrEp6w4SjqQGaOzjGm+vSu1Yg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33q1au9csWtuXOQVeLlpAI5mr3yV7cfszRCaZigWnc8NzFBRpXhTOC01E01JpSN6RA7lkoaoQ6y+bFTcmaVPhnEypY0ZK7+nshopPUkCm1nRM1IL3sz8T+vk5rBdZBxmaQGJVssGqSCmJjMPid9rpAZMbGEMsXtrYSNqKLM2HxKNgRv+eVV0qrXvMvaxV290nDzOIpwAqdwDh5cQQNuoQk+MODwDK/w5kjnxXl3PhatBSefOYY/cD5/AMKjjfI=</latexit>

x2

<latexit sha1_base64="htWU1bYF8JiHx/4vgzJveG7yPAk=">AAACAHicdVBNS8MwGE7n16xfVQ8evAQ3wVNpx3DuIAy8eJzgPnQtI02zLSxNS5IKY+ziX/HiQRGv/gxv/huzroKKPhDy8Dzvm7zvEySMSuU4H0ZhaXllda24bm5sbm3vWLt7bRmnApMWjlksugGShFFOWooqRrqJICgKGOkE44u537kjQtKYX6tJQvwIDTkdUIyUlvrWgcdjykPCFSzfnLtlzzPLt/ruWyXHrmeAC1Kr5qTuQtd2MpRAjmbfevfCGKeRfgkzJGXPdRLlT5FQFDMyM71UkgThMRqSnqYcRUT602yBGTzWSggHsdBHT5Kp3zumKJJyEgW6MkJqJH97c/Evr5eqwZk/pTxJFeF48dEgZVDFcJ4GDKkgWLGJJggLqmeFeIQEwkpnZuoQvjaF/5N2xXZP7epVpdRw8jiK4BAcgRPgghpogEvQBC2AwQw8gCfwbNwbj8aL8booLRh5zz74AePtEzSwlNU=</latexit>

Y = 1
Z = 1

<latexit sha1_base64="XMvM3YO6zkHRXvK+HCyV/dvnP5c=">AAACAHicdVDLSsNAFJ34rPEVdeHCzWAjuCpJKdYuCgU3LivYhzalTCbTduhkEmYmQgnd+CtuXCji1s9w5984TSOo6IGBwzn33rn3+DGjUjnOh7G0vLK6tl7YMDe3tnd2rb39towSgUkLRywSXR9JwignLUUVI91YEBT6jHT8ycXc79wRIWnEr9U0Jv0QjTgdUoyUlgbWoccjygPCFbRv6q7teaZ9W3fsgVV0SrUMcEGqlZzUXOiWnAxFkKM5sN69IMJJqCdhhqTsuU6s+ikSimJGZqaXSBIjPEEj0tOUo5DIfpodMIMnWgngMBL66U0y9XtHikIpp6GvK0OkxvK3Nxf/8nqJGp73U8rjRBGOFx8NEwZVBOdpwIAKghWbaoKwoHpXiMdIIKx0ZqYO4etS+D9pl0vuWalyVS42nDyOAjgCx+AUuKAKGuASNEELYDADD+AJPBv3xqPxYrwuSpeMvOcA/IDx9gkzK5TU</latexit>

Y = 1
Z = 0

<latexit sha1_base64="O9YjXNbuylJFaqlXXTumffbZ1hU=">AAACAHicbVC7TsMwFHXKq4RXgIGBxaJFYqqSCgELUiUWxiLRBzRR5ThOa9WxI9tBqqIu/AoLAwix8hls/A1umwEKR7J8dM699r0nTBlV2nW/rNLS8srqWnnd3tjc2t5xdvfaSmQSkxYWTMhuiBRhlJOWppqRbioJSkJGOuHoaup3HohUVPBbPU5JkKABpzHFSBup7xz4XFAeEa5h9e7Srfq+Xb03d9+puDV3BviXeAWpgALNvvPpRwJniXkJM6RUz3NTHeRIaooZmdh+pkiK8AgNSM9QjhKigny2wAQeGyWCsZDmmElm6s+OHCVKjZPQVCZID9WiNxX/83qZji+CnPI004Tj+UdxxqAWcJoGjKgkWLOxIQhLamaFeIgkwtpkZpsQvMWV/5J2vead1U5v6pWGW8RRBofgCJwAD5yDBrgGTdACGEzAE3gBr9aj9Wy9We/z0pJV9OyDX7A+vgFcZJRA</latexit>

Y = 0
Z = 0

<latexit sha1_base64="QYIWY6Zf+HLeQ9uIozbCuDrWBJQ=">AAACAHicbVC7TsMwFHXKq4RXgIGBJaJBYqqSCgFLpUosjEWiD2iiynGc1qpjR7aDVEVd+BUWBhBi5TPY+BvcNgO0HMnS0Tn3Xt97wpQSqVz32yitrK6tb5Q3za3tnd09a/+gLXkmEG4hTrnohlBiShhuKaIo7qYCwySkuBOOrqd+5xELSTi7U+MUBwkcMBITBJWW+taRzzhhEWbKdu7rruP7pvNQ95y+VXGr7gz2MvEKUgEFmn3ry484yhI9CVEoZc9zUxXkUCiCKJ6YfiZxCtEIDnBPUwYTLIN8dsDEPtVKZMdc6Kc3mam/O3KYSDlOQl2ZQDWUi95U/M/rZSq+CnLC0kxhhuYfxRm1FbenadgRERgpOtYEIkH0rjYaQgGR0pmZOgRv8eRl0q5VvYvq+W2t0nCLOMrgGJyAM+CBS9AAN6AJWgCBCXgGr+DNeDJejHfjY15aMoqeQ/AHxucPXemUQQ==</latexit>

Y = 0
Z = 1

<latexit sha1_base64="04MpN/ePvdiLxgaN+l3GOUehe6g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl++qo2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weCho09</latexit>

h

(a) Uncorrupted data D

<latexit sha1_base64="A4zd+yWvMQVrXJaZIbB4+2v8eT8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBhPBi8tu8HUMePEYwTwgWcLsZDYZMzuzzMwKYck/ePGgiFf/x5t/4yTZg0YLGoqqbrq7woQzbTzvyymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vpn57UeqNJPi3kwSGsR4KFjECDZWalXPPPei2i9XPNebA/0lfk4qkKPRL3/2BpKkMRWGcKx11/cSE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0YpUBiqSyJQyaqz8nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C+//Je0aq5/6Z7f1Sp1L4+jCEdwDKfgwxXU4RYa0AQCD/AEL/DqSOfZeXPeF60FJ585hF9wPr4BeIyNsw==</latexit>

�0.5

<latexit sha1_base64="tF6fQNXHHfl5cyRriS9ZI2Guvjo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AUv44FLx4rmFpoQ9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRWyeZIjQgCU9UJ8KaciZpYJjhtJMqikXE6WM0vp35j09UaZbIBzNJaSjwULKYEWysFNQ997Ler9Y815sDrRK/IDUo0OpXv3qDhGSCSkM41rrre6kJc6wMI5xOK71M0xSTMR7SrqUSC6rDfH7sFJ1ZZYDiRNmSBs3V3xM5FlpPRGQ7BTYjvezNxP+8bmbimzBnMs0MlWSxKM44MgmafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSbvh+lfuxX2j1vSKOMpwAqdwDj5cQxPuoAUBEGDwDK/w5kjnxXl3PhatJaeYOYY/cD5/AA6UjXw=</latexit>

0.5

<latexit sha1_base64="A4zd+yWvMQVrXJaZIbB4+2v8eT8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBhPBi8tu8HUMePEYwTwgWcLsZDYZMzuzzMwKYck/ePGgiFf/x5t/4yTZg0YLGoqqbrq7woQzbTzvyymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vpn57UeqNJPi3kwSGsR4KFjECDZWalXPPPei2i9XPNebA/0lfk4qkKPRL3/2BpKkMRWGcKx11/cSE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0YpUBiqSyJQyaqz8nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C+//Je0aq5/6Z7f1Sp1L4+jCEdwDKfgwxXU4RYa0AQCD/AEL/DqSOfZeXPeF60FJ585hF9wPr4BeIyNsw==</latexit>

�0.5
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<latexit sha1_base64="tF6fQNXHHfl5cyRriS9ZI2Guvjo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AUv44FLx4rmFpoQ9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRWyeZIjQgCU9UJ8KaciZpYJjhtJMqikXE6WM0vp35j09UaZbIBzNJaSjwULKYEWysFNQ997Ler9Y815sDrRK/IDUo0OpXv3qDhGSCSkM41rrre6kJc6wMI5xOK71M0xSTMR7SrqUSC6rDfH7sFJ1ZZYDiRNmSBs3V3xM5FlpPRGQ7BTYjvezNxP+8bmbimzBnMs0MlWSxKM44MgmafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSbvh+lfuxX2j1vSKOMpwAqdwDj5cQxPuoAUBEGDwDK/w5kjnxXl3PhatJaeYOYY/cD5/AA6UjXw=</latexit>
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<latexit sha1_base64="B8c1mu7VsvPzmn1qo3eF+SRODy8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33qedVeueLW3DnIKvFyUoEczV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gOsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadVr3mXt4q5eabh5HEU4gVM4Bw+uoAG30AQfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/wR6N8Q==</latexit>
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<latexit sha1_base64="04MpN/ePvdiLxgaN+l3GOUehe6g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl++qo2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weCho09</latexit>
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<latexit sha1_base64="A4zd+yWvMQVrXJaZIbB4+2v8eT8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBhPBi8tu8HUMePEYwTwgWcLsZDYZMzuzzMwKYck/ePGgiFf/x5t/4yTZg0YLGoqqbrq7woQzbTzvyymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vpn57UeqNJPi3kwSGsR4KFjECDZWalXPPPei2i9XPNebA/0lfk4qkKPRL3/2BpKkMRWGcKx11/cSE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0YpUBiqSyJQyaqz8nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C+//Je0aq5/6Z7f1Sp1L4+jCEdwDKfgwxXU4RYa0AQCD/AEL/DqSOfZeXPeF60FJ585hF9wPr4BeIyNsw==</latexit>
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<latexit sha1_base64="kvKrEp6w4SjqQGaOzjGm+vSu1Yg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGSX33q1au9csWtuXOQVeLlpAI5mr3yV7cfszRCaZigWnc8NzFBRpXhTOC01E01JpSN6RA7lkoaoQ6y+bFTcmaVPhnEypY0ZK7+nshopPUkCm1nRM1IL3sz8T+vk5rBdZBxmaQGJVssGqSCmJjMPid9rpAZMbGEMsXtrYSNqKLM2HxKNgRv+eVV0qrXvMvaxV290nDzOIpwAqdwDh5cQQNuoQk+MODwDK/w5kjnxXl3PhatBSefOYY/cD5/AMKjjfI=</latexit>
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h

(c) Fairh( eD)

Fig. 2: A visualization of our two-stage attack algorithm with 2-
dimensional feature space X , where x1 and x2 denote the first and
second coordinates, respectively. (a) Let D be a probability distribution
over X ⇥Y⇥Z where samples with Y = y and Z = z are uniformly
distributed with density of 1 on the square region in the k-th quadrant,
where k = 3�y+z�2yz. The target model h predicts samples above
its decision boundary (the black dotted line) as positive (Y = 1). (b)
In the first stage, the attacker constructs eD from D by flipping the Y
label with probability 0.6 (this can be any number in (0.5, 1)) when
h(X) = 0 and Y = 1. As a result, the triangular region with the
dashed boundary is perturbed in the first stage. Let f̃(x, y, z) be the
density function of eD. For x = (x1, x2) in the blue dotted trapezoidal
region, f̃(x, y, z) is 0.4 if y = 1, z = 0, 0.6 if y = 0, z = 0, and
0 otherwise. For x = (x1, x2) in the red dotted triangular region,
f̃(x, y, z) is 0.4 if y = 1, z = 1, 0.6 if y = 0, z = 1, and 0
otherwise. Then h is the risk minimizer on eD, and p̃h, q̃h, r̃h, s̃h are
0.075, 0.0625, 0.025, 0.1875, respectively. (c) In the second stage,
the attacker constructs Fairh( eD) from eD by flipping the Z value with
probability 2/3, computed as per the formula in the second stage, when
h(X) = 0, Y = 1, and Z = 0. As a result, the trapezoidal region with
the dashed boundary is perturbed in the second stage. Let f̃h(x, y, z)
be the density function of Fairh( eD). For x = (x1, x2) in the purple
dotted trapezoidal region, f̃h(x, y, z) is 0.133 if y = 1, z = 0, 0.267
if y = 1, z = 1, 0.6 if y = 0, z = 0, and 0 if y = 0, z = 1.

Lemma 3. Let X = Rn, Y = {0, 1}, Z = {0, 1, . . . , d � 1}.
Let D be a probability distribution over X ⇥ Y ⇥ Z whose
conditional distribution DX|Y =y,Z=z has a density function
with respect to the Lebesgue measure µ for all (y, z) 2 Y ⇥Z .
If n � d + 1(d � 3), then there exist infinitely many linear
classifiers that are perfectly fair on D. Moreover, for all x 2 X ,
there exist at least one perfectly fair linear classifier whose
decision boundary passes through x.
Remark 2. While Lem. 3 is stated based on equal opportunity,
similar results hold for other fairness metrics; demographic
parity and equalized odds. See the full version for details.
Remark 3. In [3], Hardt et al. proposed a post-processing
method that can find a perfectly fair model on any data
distribution. We note that their method outputs a randomized
model, hence it is not applicable to our setting where the
hypothesis class consists of deterministic models.

Since Fairh(D) 2 S by Lem. 2-(i), Lem. 3 can be applied to
Fairh(D), and there exist infinitely many linear classifiers that
are perfectly fair on Fairh(D) (if n � 2). If H contains all linear
classifiers (which is usually true), then it includes infinitely
many models that are perfectly fair on Fairh(D). Therefore, in
general cases, we cannot guarantee that A0(Fairh(D)) = {h}.

This shows the need of sophisticated attack strategies that
guarantee both the minimum risk and the perfect fairness of h

on the resulting poisoned distribution. We now illustrate our
two-stage attack strategy that satisfies the desired properties.

First stage The attacker picks any distribution eD in ⇤1(h),

Algorithm 1 Z-flipping algorithm
Input: The training set D, the target model htarget.
Output: The poisoned training set D0.
for (a, b, c) 2 {0, 1}⇥ {0, 1}⇥ {0, 1} do

Da,b,c  {(x, y, z) 2 D : htarget(x) = a, y = b, z = c}
end for

P  |D0,1,0|, Q |D1,1,0|, R |D0,1,1|, S  |D1,1,1|
↵ b|PS � QR|/max{P + R,Q + S}c
if P +R � Q+ S and Q

P �
S
R then

Randomly choose a subset T of D1,1,0 s.t. |T | = ↵.
else if P +R � Q+ S and Q

P < S
R then

Randomly choose a subset T of D1,1,1 s.t. |T | = ↵.
else if P +R < Q+ S and Q

P �
S
R then

Randomly choose a subset T of D0,1,1 s.t. |T | = ↵.
else

Randomly choose a subset T of D0,1,0 s.t. |T | = ↵.
end if

Tp  {(x, y, 1� z) : (x, y, z) 2 T }
D0  (D \ T ) [ Tp

where f̃(x, y, z) is the density function of eD. Recall that
⇤1(h) = {D

0 : D
0
2 S, A1(D0) = {h}}, and A1(D0) is the

set of unconstrained risk minimizers D
0. We note that it is

easy to find distributions in ⇤1(h). For example, when H is
the set of all measurable functions from X to Y , h achieves
the minimum risk if and only if h is the Bayes classifier on eD.

Second stage Construct the distribution Fairh( eD) in a similar
way that we get Fairh(D) in Lem. 2. Specifically, calculating
probabilities over eD in the definition of ph, qh, rh, sh given
by Lem. 1, we get p̃h, q̃h, r̃h, s̃h, e.g., p̃h = Pr eD(h(X) =
0, Y = 1, Z = 0). Assuming that p̃h + r̃h � q̃h + s̃h and
q̃h
p̃h

�
s̃h
r̃h

, Fairh( eD) is a distribution with the density function
f̃(x, y, z)+1(h(x) = 1, y = 1) ·(2z�1) · q̃hr̃h�p̃hs̃h

(p̃h+r̃h)q̃h
f̃(x, 1, 0).

A general version of the construction is given in the full version.
Fig. 2 shows how our two-stage attack algorithm works on a

toy example. The following proposition provides key properties
to derive the upper bound on d

?
TV(h).

Proposition 1. Let eD 2 ⇤1(h). Then, (i) Fairh( eD) 2 ⇤0(h),
and (ii) dTV( eD, Fairh( eD)) = C(h, eD) := |p̃hs̃h�q̃hr̃h|

max{p̃h+r̃h,q̃h+s̃h}
.

We are now ready to derive our main theorem providing the
lower and upper bounds on d

?
TV(h).

Theorem 1. Let h be any model in the hypothesis class H.
Then, C(h, D)  d

?
TV(h)  inf eD2⇤1(h)(dTV(D, eD)+C(h, eD)).

We note that our bounds on d
?
TV(h) in Thm. 1 can possibly

be loose. However, when the target model h is the unique
unconstrained risk minimizer, our bounds are tight by the
following corollary.
Corollary 1. Let h

⇤ be the unique unconstrained risk minimizer
arg ming2H R`(g; D). Then, d

?
TV(h⇤) = C(h⇤

, D).

V. SENSITIVE ATTRIBUTE FLIPPING ALGORITHM

We show how the results made in Sec. IV can be applied
to the design of a computationally efficient flipping attack
algorithm against FERM. When the target model is the unique
unconstrained risk minimizer, as shown in Cor. 1, the attack
algorithm proposed in Sec. IV is optimal. Indeed, the first stage
of the algorithm is not needed at all in this case, and Z-flipping
in the second stage is sufficient for successful attacks.
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Inspired by this, we consider the empirical counterpart of
the second stage of the attack proposed in Sec. IV. Shown in
Alg. 1 is the pseudocode of our attack algorithm. In specific, it
computes the number of Z-flipping, denoted ↵ in Alg. 1, using
the formula for C(h, D) given in Lem. 1 where (p, q, r, s) are
replaced with the empirical counterparts of them. Depending
on which of the four conditions hold, it chooses a random
subset of size ↵ from the corresponding subset of the training
set D. It then simply flips the Z values of them to output the
poisoned training set D

0. The following proposition ensures
that Alg. 1 makes the target model look almost fair on the
poisoned training set D

0 under mild conditions.
Proposition 2. Let D = {(xi, yi, zi)}mi=1 be the training set.
Let Da,b,c = {(x, y, z) 2 D : htarget(x) = a, y = b, z = c},
P = |D0,1,0|, Q = |D1,1,0|, R = |D0,1,1|, S = |D1,1,1|. If
P
m ,

Q
m ,

R
m ,

S
m are ⌦(1), then Alg. 1 makes the target model

htarget be O( 1
m )-fair on the poisoned training set D

0.

We focus on the case where the target model htarget is the
empirical risk minimizer on D. Alg. 1 outputs D

0 on which
htarget looks almost fair. Moreover, htarget still achieves the
minimum empirical risk on D

0 because Z-flipping does not
affect the risk. Therefore, our attack algorithm increases the
chance of htarget being found by the learner’s FERM algorithm,
thereby degrading the fairness of FERM.

VI. EXPERIMENTAL RESULTS

We evaluate our data poisoning algorithm on the synthetic
dataset generated as per the method used in [10], deferring
details to the full version. Let Dtrain and Dtest denote the training
set and the test set, respectively. All experiments are repeated
5 times, and the accuracy and unfairness are measured on
Dtest; we use �(htarget, Dtest) to quantify the unfairness of
htarget. We compare our attack algorithm with data poisoning
attack algorithms: (1) random Y -flip chooses random samples
from Dtrain and flips Y values; (2) random Z-flip chooses
random samples and flips Z values; (3) random Y &Z-flip
chooses random samples and flips both Y and Z values;
(4) adversarial sampling (AS) chooses adversarial samples
from the feasible attack set using the online gradient descent
algorithm proposed in [19] and adds them to Dtrain. We evaluate
these attacks against fair learning algorithms: (1) in-processing
method using fairness constrains (FC) [10]; (2) fair training
against adversarial perturbations (Err-Tol) [48]; (3) fair and
robust training (FR-Train) [11] given the clean validation set.

We find htarget via empirical risk minimization with logistic
loss and get the poisoned training set D

0 using Alg. 1.
Shown in Table I is the performance of attack algorithms
against fair learning algorithms. When the learner runs fair
learning algorithms on the uncorrupted dataset, the fairness
gap significantly decreases at the cost of degraded accuracy,
exhibiting a well-known tradeoff between accuracy and fairness.
However, with only 3.2% of poisoning rate, our Z-flip attack
makes the output be significantly unfair, outperforming (or
achieving comparable attack performances to) other attack
baselines. Interestingly, our attack successfully degrades the

TABLE I: Comparison with other baseline attack algorithms. The
fairness gap � measures the unfairness of the model. The target
model htarget is the output of logistic regression; the accuracy and
fairness gap are 0.88 and 0.19, respectively. Our Z-flip attack makes
the output be significantly unfair, with only 3.2% of poisoning rate.

FC [10] Err-Tol [48] FR-Train [11]

Attack method Acc. � Acc. � Acc. �

Uncorrupted 0.79 0.05 0.81 0.06 0.79 0.03
Random Y-flip 0.77 0.01 0.75 0.03 0.76 0.02
Random Z-flip 0.79 0.06 0.87 0.18 0.81 0.04
Random Y&Z-flip 0.80 0.07 0.88 0.19 0.78 0.03
AS [19] 0.78 0.02 0.78 0.03 0.77 0.02
Our Z-flip 0.85 0.14 0.88 0.19 0.82 0.08

fairness of robust fair training algorithms; Err-Tol and FR-
Train. Err-Tol essentially achieves its robustness by relaxing
the fairness threshold of its constraints, where the relaxed
threshold is carefully calculated using the known poisoning
rate. By Prop. 2, our attack makes htarget look almost fair on D

0,
so htarget satisfies the fairness constraint of Err-Tol. As htarget
still minimizes the empirical risk on D

0, Err-Tol will output
the model close to htarget. FR-Train makes use of the clean
validation set to achieve the robustness, but its performance on
adversarial Z-flip attacks is not studied in the previous work.
We empirically show that our Z-flip attack makes FR-Train
output an unfair model with the fairness gap of 0.08.

VII. CONCLUSION

We studied poisoning attacks against risk minimization with
fairness constraints. We found the lower and upper bounds
on the minimum amount of data perturbation required for
successful flipping attack for the case of true risk minimization
with fairness constraints. Inspired by the fact that sensitive
attribute flipping attack is optimal for certain cases, we designed
an efficient Z-flipping attack algorithm that can compromise
the performance of FERM. We empirically showed that our
attack algorithm can degrade the fairness of FERM on synthetic
data against existing fair learning algorithms.

We conclude our paper by enumerating important open
problems. Our attack algorithm is optimal and our bounds are
tight when the target model is the unique unconstrained risk
minimizer. Tightening the lower and upper bounds in Thm. 1
for a general target model is an important future work. Our
theoretical analysis is limited to the case where both Y and
Z are binary. We conjecture the theoretical analysis can be
extended to the case where Y and Z are non-binary. Moreover,
it would be interesting to extend our attack algorithm into the
federated learning setting.
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