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Abstract—Thelackofhighfidelityandpubliclyavailable
longitudinalchildrenfacedatasetsisoneofthe mainlimiting
factorsinthedevelopmentoffacerecognitionsystemsfor
children.Inthiswork,weintroducetheYoungFaceAging(YFA)
datasetforanalyzingtheperformanceoffacerecognitionsystems
overshortage-gapsinchildren. Weexpandpreviousworkby
comparingYFAwithseveralpubliclyavailablecross-ageadult
datasetstoquantifytheeffectsofshortage-gapinadultsand
children. Ouranalysisconfirmsastatisticallysignificantand
matcherindependentdecayingrelationshipbetweenthematch
scoresofArcFace-Focal,MagFace,andFacenetmatchersandthe
age-gapbetweenthegalleryandprobeimagesinchildren,even
attheshortage-gapof6months.However,ourresultindicates
thatthelowverificationperformancereportedinpreviouswork
mightbeduetotheintra-classstructureofthematcherandthe
lowerqualityofthesamples.OurexperimentusingYFAanda
state-of-the-art,quality-awarefacematcher(MagFace)indicates
98.3%and94.9%TARat0.1%FARover6and36 Months
age-gaps,respectively,suggestingthatfacerecognitionmaybe
feasibleforchildrenforage-gapsofuptothreeyears.
IndexTerms—DeepFaceRecognition,ChildrenFaceRecogni-

tion,AgeProgression,EffectsofAging.

I.INTRODUCTION

Agingisanaturalpartofeveryhuman’slife.However,
thisnaturalandunavoidableprocessisanobstacleinper-
formingautomaticfacerecognitionacrossages.Formostface
recognitionapplications,itisexpectedthatthetimebetween
enrollmentandmatchingmaybemanymonthsoryears.In
FaceRecognition(FR)systems,thewithin-identityvariation
canbeduetosubjects’pose,illumination,expressionsand
aging[2].PreviousworkonFRsystemssuggestthatagingis
oneofthemostsignificantsourcesofwithin-identityvariation
[2]–[4].Additionally,unlikeothersourcesofwithin-identity
variationsuchaslightingorpose,agingisinevitableand
cannotbecontrolledduringtheimageacquisitionphase.The
currentstateoftheartFRsystemsrelyondeepconvolutional
neuralnetwork(CNNs)-basedFRsystemsperformverywell
acrossdifferentposes,illumination,andexpressionsi.e.,in
thewildenvironment[5],[6].However,suchsystemsarestill
susceptibletoissuesrelatedtoagingandsuffermorethan
10%dropinaccuracywhenevaluatedatlargeagegaps[7].
TherecentNISTFaceRecognitionVendorTest(FRVT)also
identifiedage-relateddegradationintheperformanceofall
theevaluatedalgorithmsoverlargeagegapsinadults[6].

ThismaterialisbaseduponworksupportedbytheCenterforIdentification
TechnologyResearchandtheNationalScienceFoundation(NSF)underGrant
No.650503.AuthorswouldalsoliketothanktheChameleoncloudfor
providingthecomputationalinfrastructurerequiredforthiswork[1].
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Fig.1. AgeprogressionofasubjectinYFA:a)templateb)12months,c)
24months,d)36months.Bestviewedincolor

(a) (b) (c) (d)

Fig.2. AgeprogressionintheaverageofYFAsamples:a)Avg.ofsamples
youngerthan6yearsoldb)Avg.of6to8yearsoldsamples,c)Avg.of9
to11yearsoldsamplesd)Avg.of12to14yearsoldsamples.Bestviewed
incolor

Currently,severalpubliclyavailableandlongitudinaldatasets
areavailabletoresearcherstofacilitatethedevelopmentof
cross-agefacerecognitionsystemsinadults[4],[7]–[10].
However,aginginchildrenisphysiologicallydifferent.The
preponderanceofaginginadultsisduetosofttissuechanges
i.e.skintexture,wrinkles[11].Ontheotherhand,agingin
childreninvolvesanon-linearcranialgrowth,i.echangesin
thebonestructureoftheskullthatchangestheappearanceof
theface[12],[13].Asaresult,facerecognitioninchildren
requiresspecialconsiderations,and modelsdevelopedon
adultsmaynotalwaysbeapplicabletochildren.

Severalpreviousworkaimedtoquantifytheeffectsofaging
instate-of-the-artchildrenfacerecognitionsystems.Ricanek
etal.developedIn-The-WildChildCelebrity(IWCC)-a
datasetof1705imagesfrom304subjectsfrom5to32years
old.Authorsinvestigatedtheperformanceofseveralhand-
craftedFRalgorithmsandreportedalowperformanceof
37%TrueAcceptRate(TAR)at1%FalseAcceptRate(FAR)
[13].Ramanathanetal.showedthattransformingtheimages
usinganon-linearcraniofacialgrowth modelcanimprove
theperformanceofeigenfacemodelintheFGNETdataset
[12].Srinivasetalidentifiedthedifferentialperformance
inseveralCOTSandopen-sourcefacerecognition models
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Datasets #Subjects #Samples #Images/Subject Age(Years) AgeGap Environment

CACD-VS[8] 4,000Pairs 8,000 N.A. 10-60+ 0–10 IntheWild
AgeDB[9] 568 16,488 29.0 1-101 0-90 IntheWild
MORPH-II[4] 13,000 55,133 4.1 16-77 0-5 Controlled
LAG[10] 1,010 3,828 3.8 N.A. ChildtoAdult IntheWild
YFA(Ours) 231 2293 9.9 3-14 0-3 Controlled

TABLEI
SUMMARYOFTHECROSS-AGEFACERECOGNITIONDATASETSUSEDINTHIS WORK.

betweenadultsandchildrenusinginthewilddatasets,where
thebestperformingmodelachieved0.782TARat0.01%FAR
[14].However,duetotheuseofCOTSmatchers,thiswork
doesnotprovideanydetailsontheunderlyingalgorithmsor
factorsbehindthelowperformanceinchildren.Debetal.
introducedChildrenLongitudinalFace(CLF)dataset.CLF
contains3682imagesfrom919WestAsianchildrenbetween
2to18yearsold,withminimumage-gapof2yearsand
maximumagegapof7Years.Thedatasetiscapturedat
354×472pixelsandhaschallengingvariationsintermsof
pose,illumination,expression,andobstructions[15].Authors
evaluatedtheverificationperformanceofanopensource
versionoftheFacenet matcher[16]trainedon MS-Celeb
[17]andreporteda43.87%TARat0.01%FAR.Afterfine
tuningtheFacenet matcher withanotherprivatechildren
dataset,theverificationperformanceimprovedto57.7%TAR
at0.01%FAR.Additionally,authorsdevelopedastatistical
modelforthechangesinthegenuinecomparisonscoresbased
oncovariatessuchasage-gap,enrolmentage,andgender
ofthesubjects.Tothebestofourknowledge,[18]isthe
onlypreviousworkthatiscarriedoutusinganoperational
highquality,andcontrolleddataset.Authorsevaluatedthe
performanceoftheNeoFace3.1commercialfacerecognition
algorithmoveralargeandcontrolleddatasetwithmorethan
3Msamplesfromchildrenunder17yearsold.However,their
experimentusingafixedthresholdbasedon0.1%FalseMatch
Rate(FMR)operationalpointinadults,respectivelyleadto
FARof1.3%,1%,and0.7%at91.8%,93.1%and95.2%
TARforfour,fiveandsixyearsoldchildrenatage-gapof
threeyears.Giventherelativelyhigherperformanceobserved
inasingleCOTSmatcherusinghighqualitydata[18]and
lowerperformancereportedusinguncontrolledin-the-wild
data(lowerquality)[12]–[15],itisdifficulttodisentanglethe
effectsofagingfromotherwithin-identityfactorsaffecting
theperformanceoffacematchers.Additionally,itisnotclear
howrecentadvancedfacematchersdesignedtocurtailthe
within-identityfactors[19]–[21]wouldperformusinghigh
qualitydataandwhatfactorsaffecttheirperformance.This
isimportantasmanyapplications,e.g.,benefitdistribution,
bordersecurity,etc.,relyonhighqualityphotossuchas
passports.

Inthiswork,wepresenttheYoungFaceAging(YFA)
dataset.YFAsamplesarecapturedunderconsistentindoor
lighting,expression,andpose.Figures1and2respectively
depicttheageprogressionofanindividualandtheaverageof
subjectsoverYFA.Thecontrolledimageacquisitionenviron-

mentoftheYFAallowsustobetterdisentangletheeffectsof
agingfromotherwithin-identityvariations.Additionally,YFA
extendsthepreviousworkbycapturingthesubjectsatahigher
frequency(every6months). WeutilizedYFAinconjunction
withCACD-VS[8],AgeDB[9],LAG[10],andMorph-II[4]
cross-ageadultdatasetstoprovideacomprehensiveanalysisof
thebiometricperformanceofFacenet,VGGFace,VGGFace2,
ArcFace,ArcFace-Focal,andMagFacefacerecognitionmod-
elsinbothadultsandchildren.

WeevaluatedtheverificationperformanceofFacenet[16],
VGGFace[22],VGGFace2[23],ArcFace[19],ArcFace-Focal
[20],andMagFace[21]modelsusingtheYFAdataset.Our
resultconfirmsthatdegradationofperformanceobservedin
previousworkusingtheoldermodelseveninashortage-
gapof6month.However,contrarytopreviousworkusing
in-the-wilddatasets,ourresultindicatesthatacombinationof
aquality-awarefacerecognitionmodelsuchasMagfaceand
high-qualitysamples(YFA)canresultinahighTARof98.3%
(afteroneyear)and94.9%(after3years)atFARof0.1%.

Additionally,weevaluatedtheimpactofage-gap,enrolment
age,andgenderusingLinearMixedEffect(LME)modeling.
Ouranalysisrespectivelyindicatesanestimateddecrease
inthe MS,duetoage-gapof−0.033±0.003(approx),
−0.042±0.003(approx),and−0.028±0.002(approx)peryear
forMagface,Arcface-Focal,andFacenet-V1facerecognition
models.Ouranalysisdidnotfindconsistentand matcher
independentrelationshipsbetweenmatchscoreandenrolment
ageorgenderinYFA.

Finally,weutilizetheBEATplatform[24]tomaketheYFA
thefirstpubliclyavailablelongitudinal,highresolutionand
controlledchildrenfaceagingdataset.TheBEATplatform
allowstheresearchcommunitytoutilizethe YFA while
preservingtheprivacyofthesubjects.

II. METHODOLOGY

Webelieveexplainingtheeffectsofshortage-gapin
childrenismoremeaningfulincomparisontootherdatasets
thatincludejustadultsoradults/children.Consequently,we
utilizedfivecross-ageadultdatasetswithdifferentagegaps
andthesamepre-processingasYFAtoadequatelypresentthe
performanceoftheevaluatedfacematchers.Thisallowsus
tocomparetheimpactofaginginchildrenfacerecognition
withrespecttoshort/longaginginadults.Subsequently,we
useLinearMixed-Effect(LME)models[25]toinvestigatethe
influenceofenrolmentage,age-gap,andgenderonthematch
scoreofchildrenFRsystems.Therestofthissectionprovides



FaceMatchers Datasets
Matcher TrainingDataset Inputsize #Features CACD-VS MORPH-II AgeDB LAG* YFA

Facenet-V1[16] MS-Celeb[17] 160×160 128 0.944 0.970 0.484 0.105 0.708
Facenet-V2[16] VGG-Face2[23] 160×160 512 0.586 0.708 — — 0.293
VGGFace[22] LFW[5] 224×224 4096 0.396 0.215 — — 0.312
VGGFace2[23] VGG-Face2[23] 224×224 512 0.549 0.526 0.195 0.081 0.331
ArcFace[19] MS1MV2[19] 112×112 512 0.770 0.968 0.379 0.231 0.772
ArcFace-Focal[20] MS1MV2[19] 112×112 512 0.964 0.989 0.681 0.297 0.854
MagFace[21] MS1MV2[19] 112×112 512 0.832 0.968 0.402 0.242 0.933

TABLEII
FACEMATCHERDESCRIPTIONINCLUDINGTRAININGDATASET,INPUTSIZE,AND#FEATURES(LEFTFOURCOLUMNS).VERIFICATIONPERFORMANCE
(TARAT0.01%FAR)(RIGHTFIVECOLUMNS).”—”INDICATESTHATTHEMATCHERDIDNOTACHIEVE0.01%FAR.”*”THEVERIFICATIONOF

PERFORMANCEFORTHELAGDATASETISCALCULATEDUSINGONLYYOUNGTOADULTGENUINECOMPARISONS.

abriefoverviewofthedatasetsandfacematchersusedinthis
work.

A.Cross-AgeDatasets

Inthissection,wepresentabriefoverviewofthecross-age
datasetsusedinthiswork.TableIsummarizestheattributes
ofthedatasets.
1)CACDVS:TheVerificationSectionoftheCross-Age
CelebrityDataset(CACD-VS)contains2000 mated,2000
non-matedpairsfor2000celebrities.CACDVSisannotated
byhumanannotatorstoconfirmthecorrectidentity[8].
2) MORPH-II:Theacademic MORPHdatasetisanon-

commerciallongitudinalandcontrolleddatasetcollectedover
5years(2003-2007).Theaveragenumberofimagesper
individualis4.1withanaverageof164daysbetweenthe
captures[4].Thisdatasetisusedtoevaluatetheperformance
ofshortage-gap(upto5years)inadults.
3)AgeDB:AgeDBisin-the-wildcross-agedatasetwith
largemaximumagegapof90years.SamplesinAgeDBare
manuallycollectedbyhumansasopposedtootherautomat-
icallygathereddatasets.Thisdatasetprovides183samples
from109childrenunder16.Asaresult,AgeDBcanprovide
uswithbothadultandchildrensamples[9].
4)LargeAgeGap(LAG):Thisdatasetdoesnotprovide

accurateagelabels.However,eachsubjecthasatleastone
sampledenotedbyauthorsas”child/young”and multiple
samplesdenotedasadults.Asaresult,LAGcanbeusedto
representtheperformanceofmatchersinaverychallenging
taskoflargeage-gapfacerecognitionbetweenchildrenand
adults.

B.YoungFaceAging(YFA)dataset

YoungFaceAging(YFA)datasetcontains2293samples
from231subjectscollectedinacontrolledenvironmentwith
atime-lapseof6monthsovertheperiodof3years.Figure3
depictsthestatisticsoftheYFA.Samplesarecapturedfrom
3-14yearsoldchildren.Theresearchteamcollaborateswith
thelocalelementaryandmiddleschooltoidentifyandenroll
subjectsforvoluntaryparticipation,inaccordancewithan
approvedIRBprotocol.ImagesarecapturedusingaDSLR
cameraattheresolutionof3648by5472pixels.Theimage
acquisitioniscarriedout withconsistentindoorlighting,
naturalexpression,andminimalvariationinthesubject’spose.

Eachsubjectiscapturedatleasttwiceduringeachsession.
TheYearofbirth(orgradeiftheyearisunavailable)foreach
subjectisrecordedduringtheenrolmentprocessandhasbeen
usedtorecordtheageatsubsequentacquisitions.YFAhasa
maximumage-gapof3yearswith135outof231subjects
(58%)reachingthemaximumagegapinthedataset.The
averagenumberofsamplespersubjectis9.92.Mostsubjects
areofCaucasianbackground;however,YFAdoesnotprovide
self-reportedethnicitylabels.YFAisbalancedintermsof
gender(117Female,114Male),2096sampleshavenoglasses
(91.4%),while197sampleshaveglasses(8.6%).

Fig.3.StatisticsoftheYFADataset.Right:ageatacquisition(years).Left:
ageattheenrolment(years)

C.FaceDetectionandRecognitionModels

Weutilizethesamefacedetectionandprocessingpipeline
onalltheevaluateddatasetstoreducetheeffectsofthepre-
processingontheperformanceoftheevaluatedmatchers.All
theimagesareprocessedusingthe MTCNNfacedetection
model[26]todetectandaligntheface.Weenforceaverytight
croparoundthefacetominimizetheeffectsofbackground
noise.Subsequentlyeachcroppedfacehasbeenresizedtothe
inputrequirementsofeachspecificmatcher.Weevaluatedthe
verificationperformanceofeachdatasetusingtwoversions
oftheopensourceimplementationoftheFacenetmatcher1

(Facenet-V1istrainedusingcenterlosswhileFacenet-V2is
trainedusingsoftmaxloss[27]),VGGFace2[22],VGGFace23

[23],Arcface4[19],Arcface-Focal5[20],andMagFace6[21]
matchers.

1https://github.com/davidsandberg/facenet
2https://www.robots.ox.ac.uk/∼vgg/software/vggface/
3https://github.com/WeidiXie/Keras−VGGFace2−ResNet50
4https://github.com/deepinsight/insightface
5https://github.com/ZhaoJ9014/face.evoLVe
6https://github.com/IrvingMeng/MagFace



Model FAR Threshold ∆T=6M ∆T=12M ∆T=18M ∆T=24M ∆T=30M ∆T=36M

Facenet-V1 0.1% 0.630 95.8 94.8 92.5 84.3 82.7 76.0
Facenet-V1 0.01% 0.826 85.6 80.1 74.5 64.8 57.0 43.4

ArcFace 0.1% 0.474 87.6 88.1 85.3 84.8 86.3 81.1
ArcFace 0.01% 0.556 81.0 78.8 78.1 74.8 75.6 69.9

ArcFace-Focal 0.1% 0.532 97.6 98.3 95.4 92.7 93.1 91.6
ArcFace-Focal 0.01% 0.630 92.8 91.5 87.9 79.5 78.5 72.8

MagFace 0.1% 0.453 98.2 98.3 98.0 97.2 97.3 94.9
MagFace 0.01% 0.549 96.9 95.2 93.2 91.6 92.9 84.7

TABLEIII
VERIFICATIONPERFORMANCE(TARAT0.01%AND0.1%FAR)OFFACENET-V1,ARCFACE,ARCFACE-FOCAL,ANDMAGFACEMODELSFOR

INCREASINGAGE-GAP(6-36MONTHS)BETWEENENROLLMENTANDQUERYSAMPLESINYFADATASET.

Morph-II

Variable Parameter MagFace(Est±SE) ArcFace-Focal(Est±SE) Facenet-V1(Est±SE)

Intercept β0 0.700±0.002∗∗∗ 0.796±0.002∗∗∗ 0.862±0.001∗∗∗

∆T β1 −0.11±0.000∗∗∗ −0.010±0.000∗∗∗ −0.008±0.000∗∗∗

EA β2 0.000±0.000∗∗∗ 0.000±0.000NS −0.000±−0.000∗
G β3 −0.010±0.002∗∗∗ −0.038±0.002∗∗∗ −0.025±0.002∗∗∗

AgeDB-Adults

Intercept β0 0.374±0.004∗∗∗ 0.512±0.006∗∗∗ 0.649±0.002∗∗∗

∆T β1 −0.004±0.000∗∗∗ −0.004±0.000∗∗∗ −0.005±0.001∗∗∗

EA β2 0.001±0.000∗∗∗ 0.001±0.000∗∗∗ 0.001±0.000∗∗∗

G β3 −0.007±0.004NS −0.005±0.003NS −0.004±0.007NS

AgeDB-Young

Intercept β0 0.439±0.045∗∗∗ 0.412±0.053∗∗∗ 0.698±0.042∗∗∗

∆T β1 −0.022±0.004∗∗∗ −0.024±0.005∗∗∗ −0.026±0.004∗∗∗

EA β2 −0.000±0.002NS 0.008±0.002∗∗ 0.001±0.002NS
G β3 −0.055±0.029NS −0.077±0.037∗ −0.075±0.031∗

YoungFaceAging(YFA)

Intercept β0 0.745±0.018∗∗∗ 0.757±0.018∗∗∗ 0.897±0.012∗∗∗

∆T β1 −0.033±0.003∗∗∗ −0.042±0.003∗∗∗ −0.028±0.002∗∗∗

EA β2 0.000±0.002NS 0.006±0.002∗∗ −0.001±0.000NS
G β3 0.003±0.010NS −0.010±0.011NS −0.002±0.007NS

TABLEIV
FIXEDEFFECTSOFTHEFACENET-V1,ARCFACE-FOCAL,ANDMAGFACEMODELSEVALUATEDONTHEMORPH-II,AGE-DB,ANDYFADATASETS.

SIGNIFICANCECODE:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1;***INDICATESP-VALUEBETWEEN0AND0.001WITHSIGNIFICANCELEVEL0.001
ANDSOON.EST.:ESTIMATE,SE:STANDARDERROR,NS:NOTSIGNIFICANT

III.RESULTSANDDISCUSSION

Inthiswork,weevaluatedallthepossiblematedpairsin
Morph-II,AgeDB,andYFAdatasetstoconstructagenuine
distribution,whilerandomlyselecting1000non-matedpairs
foreachsampletoconstructanimposterdistributionineach
dataset.InLAGdataset,weonlyevaluatedtheverychalleng-
ingmatedpairsbetweenchildrenandadultstorepresentthe
performanceofthematchersinthechildrentoadultlarge
age-gapfaceverificationtask.Theverificationperformanceof
CACD-VSdatasetisevaluatedusingthepositiveandnegative
pairspresentedinthedataset.TableIIillustratestheTARof
theFacenet-V1,Facenet-V2,VGGFace,VGGFace2,ArcFace,
ArcFace-Focal,andMagFacematchersat0.01%FAR.Wecan
observethatMagFace,ArcFace,ArcFace-Focal,andFacenet-
V1matchersareoutperformingthesoftmaxbasedFacenet-V2,
VGGFaceandVGGFace2matchers.Thispatternisduetothe
discriminativenature(within-identitycompactness)ofthese
matchersvstheseparablefeaturesobservedinthesoftmax
basedmatchers[27].Asaresult,wefocusontheperformance

ofthesediscriminativematchersfortherestofthiswork.
WefirstevaluateeachmatcheronCACD VS, Morph-II,
AgeDB,andLAGdatasetstopaintapictureofthecross-age
verificationperformanceofthestate-of-the-artFRmatchers.
OurtestsdemonstrateahighTARforallfour matchers
inthecontrolledandshortage-gapadultdataset(MORPH-
II).Thebestperformingmatcher(ArcFace-Focal)achieves
98.9%TARat0.01%FARinthisdataset.However,extending
theverificationtaskbeyondshortage-gapandcontrolled
acquisitionenvironment(CACD-VSandAgeDB),resultsin
adecreaseintheperformanceofallfour matchers. By
extendingthe maximumage-gapfrom5(Morph-II)to10
years(CACDVS),weobservethatwhileArcFace-Focaland
Facenet-V1respectivelymaintainhighTARsof96.4%and
94.4%,ArcFaceandMagFacerespectivelysufferfrom19.8%
and13.6%dropintheirTARat0.01%FAR.
Furtherincreasingtheage-gapsuptothemaximumof90
years(AgeDB),resultsin46.0%,58.9%,30.8%,and56.6%
dropintherespectiveTARsofFacenet-V1,ArcFace,ArcFace-
FocalandMagFaceat0.01%FAR.WeobservethatArcFace-



FocalshowsmoretolerancetolargeragegapsinAgedband
considerablyoutperformsthenextbestmatcher(Facenet-v1)
by19.7%TARat0.01%FAR.Finally,theLAGdatasetallows
ustoextendthelargeage-gapverificationtasktothemost
challengingcaseofchildrentoadultmatching.Interestingly,
inthiscase,weevenobserveasharpdrop(38.4%)intheTAR
ofArcFace-Focalinadditiontoallothermatchers.Ourresults
suggestthatnoneoftheevaluatedmatcherscouldperformwell
inchildrentoadultlargeage-gapverificationin-the-wild.
Ourresultindicatesalowerperformanceinthefourtop

performingmatchersinYFA(shortage-gap,children)with
respecttothatofMorph-II(shortage-gap,adults)confirming
thechallengingnatureofthechildfacerecognition.However,
whileArcFace-Focal,ArcFace,andFacenet-V1respectively
show13.5%,19.6%and26.2%dropintheTARat0.01%
FAR,Magfaceonlysuffersfrom3.5%reductioninTARand
achieves93.3%TARat0.01%FAR. Webelievethishigher
verificationperformanceisduetothequality-awarestructure
oftheMagfacewithin-identitydistributions[21].
TheFacenet-V1matcherrespectivelyachieves67.9%and

34.7%TARat0.01%FPRwith1and3yearsofage-gapon
CLFdataset[15].Thismatcherachieves80.1%and43.4%
TARat0.01%FPRat1and3yearsage-gapinYFAdataset.
Thisincreaseintheperformancemightbeduetothehigher
qualityandcontrolledimageacquisitionenvironmentofYFA
orthedifferencebetweentheethnicityofsubjectsinYFAand
CLFdatasets.Furthermore,TableIIIillustratestheTARasa
functionofage-gapforthetopfourbestperformingmatchers
inYFAdataset.Ourresultconfirmsthepreviouslyidentified
downwardtrendintheTARofFacenet-V1 matcher[15].
Additionally,TableIIIalsorevealsanoticeabledegradationin
theTARevenatage-gapof6monthsforFacenet-V1,ArcFace
andArcFace-Focal.Forinstance,thesecond-bestperforming
matcher(ArcFace-Focal)shows1.3%,3.6%,8.4%,1.0%,and
5.7%dropsinTARat0.01%FARovertheincreasingage-
gapsof6to36months.However,contrarytopreviouswork,
weobservethatthisreductionisnotsubstantialinMagFace.
Forinstance,weonlyobservea0.9%dropintheTARat
0.1%FARovera30monthage-gap,suggestingthataccurate
childrenfacerecognitionmaybepracticalusinghigh-quality
samplesandquality-awarematchersforupto3years.

A. MatchScoreModeling

Inthiswork,weutilizeLinearMixedEffect(LME)models
toinvestigatetheinfluenceoffactorsaffectingthe Match
Score(MS)ofFRsystemsinchildren.LMEmodelscanbe
effectivelyappliedtothemultilevelanalysisoflongitudinal
data[25].Suchmodelscanrepresentthevariationsobserved
inbiometricsystemsasacombinationoffixedandrandom
effects,wherethefixedeffectsrepresenttheeffectsofexplana-
toryvariablesontheinter-subjectvariationsoftheobserved
variable,whilerandomeffectsquantifytheintra-subjectvari-
ations.SuchcharacteristicsmaketheLMEmodelsaviable
candidateformodelingthechangesinthe MSofbiometric
systemsusinglongitudinaldata[15],[28]. Wepresentand
evaluateanLMEmodelusingthesameexplanatoryvariables

proposedin[15].ThismodelconsidersEnrolmentAge(EA),
age-gapbetweentheenrolmentandquery(∆T),andGender
(G)asexplanatoryvariables.Equation1presentsourmodel
topredicttheMSofthechildrenFRsystems.Where,

MS ∼β0+β1∆T+β2EA+β3G+b0i

+b1i∆T+b2iG
(1)

• βkisthefixedregressioncoefficientforcorresponding
parameter,k.

• bkiistherandomregressioncoefficientforcorresponding
parameter,k,forsubject,i.

• β0+b0iisthesumoffixedandsubjectspecificrandom
interceptcorrespondingtotheinitialstate.

• βk+bki isthesubjectspecific(i)gradientforthe
correspondingparameterk.

• ∆Tdenotestheage-gapbetweenenrollmentandquery
samplesinyears.∆Thasbeenconsideredforbothfixed
andrandomeffectstoaccountforpossiblevariabilityin
MSduetobothintra-subjectsandinter-subjecteffectsof
age-gap.

• EAdenotesEnrolmentAge(Years).EAhasbeencon-
sideredonlyforfixedeffect.

• Gdenotesthegenderofthesubject,encodedas0for
Maleand1forFemalesubjects.Gisconsideredforboth
fixedandrandomeffect.

Initially,wedefinetwomutuallyexclusivesubsets(Youngand
Adult)toindependentlyanalyzeyoungerandoldercohorts
of AgeDB. OurYoungsectionincludes matedpairs with
enrolmentageyoungerthan15yearsoldandqueryimages
upto20yearsold.WedefinetheAdultsectionasmatedpairs
withbothenrolmentandqueryimagesolderthan20yearsold.
Weconductouranalysiswiththefollowinghypothesis:

• NullHypothesis(H0):Thereisnocorrelationbetween
theindividualpredictorsandtheresponsevariable(MS).

• AlternativeHypothesis(HA):Thereisacorrelationbe-
tweentheindividualpredictorsandtheresponsevariable.

TablesIVshowsthefixedeffectsfromMorph-II,AgeDB,and
YFAdatasets.Allstatisticalanalysisinthisworkiscarried
outusingthepythonstatsmodels-0.12.0librarywithRestricted
MaximumLikelihood(REML)estimator[29].

1)EffectofAge-gapandEnrolmentAgeinAdultand
Children: Werejectthenullhypothesiswith p <0.001
acrossmatchers,confirmingasignificantdecayingrelationship
betweenage-gapand MSinbothadultsandchildren.Our
analysiswithbestperformingmatcher(MagFace),respectively
indicatesanestimateddecreaseintheMS,(β0),duetoage-
gap,(β1),of−0.011±0.000(approx)and−0.004±0.000
(approx)witheachyearforadultsin Morph-IIandadult
subsectionofAgeDBdatasets.Ontheotherhand,weobserve
amuchhigherestimateddecreaseintheMS,duetoage-gap,
(β1)inYoungsectionofAgeDB(−0.022±0.004)andYFA
dataset(−0.033±0.003).Ourresultindicatestheconsistency
ofthispatternacrossmultiplematchers.However,wecannot
observeaconsistentandmatcherindependentpatternacross



theestimatedeffectsofenrolmentage(β2)onthematchscores
ofeitheradultsorchildren.

2)EffectofGender:Werejectthenullhypothesiswith
p<0.001acrossallmatchersintheMorph-IIdataset(short
age-gap,adult),confirmingasignificantdecayingrelationship
betweengenderandMSinthisdataset.Ourmodelrespectively
indicatesanestimateddecreaseintheMS,duetogender(β3),
of−0.010±0.002(approx)−0.038±0.002(approx),−0.025±
0.002(approx)forfemalesubjectsinMagface,ArcFace-Focal,
andFacenet-V1matchers.However,ourresultconfirmsthe
findingsof[15],aswedonotobserveasignificantrelationship
betweengenderandMSeitherinAgeDBorYFA.

IV.LIMITATIONSANDFUTUREWORK

Ourresultconfirmsthelowerverificationperformance
observedinprevious work within-the-wilddatasetsand
olderdeepface matchersevenwithhigh-qualitysamples.
Additionally,ouranalysisconfirmsastatisticallysignificant
andmatcherindependentdecayingrelationshipbetweenthe
evaluatedmatchersandtheage-gapinchildren.However,con-
trarytopreviousworkusingin-the-wilddata,ourverification
performanceanalysis(Table-II)indicatesthatthecombination
ofhigh-qualitysamplesandstate-of-the-artquality-awaredeep
facematcherscouldbeaviablesolutionforchildrenface
recognitionupto3years.Ourcomparisonbetweentheverifi-
cationperformanceofArcFace,ArcFace-FocalandMagFace
suggeststhatthehigherperformanceobservedinthelattertwo
matchersmightbeduetotheadaptivehardsampleminingpro-
cessutilizedinbothFocal-lossandMagFace.Futureworkcan
furtherinvestigatethefusionofthebestperformingmatchers.
Additionally,thewithin-identitystructureofthesematchers
canbeutilizedforlinearandnon-linearfeatureprojection
methodstopossiblyevenfurtherincreasetheperformance.
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