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Abstract

Background: Single marker analysis (SMA) with linear mixed models for genome
wide association studies (GWAS) has uncovered the contribution of genetic
variants to many observed phenotypes. However, SMA has weak false discovery
control. In addition, when a few variants have large effect sizes, SMA has low
statistical power to detect small and medium effect sizes, leading to low recall of
true causal single nucleotide polymorphisms (SNPs).

Results: We present the Bayesian Iterative Conditional Stochastic Search
(BICOSS) method that controls false discovery rate and increases recall of
variants with small and medium effect sizes. BICOSS iterates between a
screening step and a Bayesian model selection step. A simulation study shows
that, when compared to SMA, BICOSS dramatically reduces false discovery rate
and allows for smaller effect sizes to be discovered. Finally, two real world
applications show the utility and flexibility of BICOSS.

Conclusions: When compared to widely used SMA, BICOSS provides higher
recall of true SNPs while dramatically reducing false discovery rate.

Keywords: Bayesian method; GWAS; Model Selection

Background
Genome wide association studies (GWAS) have been used successfully to identify

genes involved with complex traits in a wide variety of species. To identify these

genes a statistical analysis is performed to identify which single nucleotide poly-

morphisms (SNPs) are associated with a trait. The most common form of statis-

tical analysis is single marker analysis (SMA) performed under the mixed model

framework [1]. Algorithms such as EMMA [2] (which uses spectral decomposition

of the covariance matrix for fast computation), population parameters previously

determined (P3D) [3] (which speeds up computation by using the estimates of the

variance components from a null model), and EMMAX [4] (which further speeds

up computations of EMMA by using the estimate of the heritability from a null

model) have led to widespread adoption of the mixed model framework. However,

SMA has drawbacks due to not taking into account the correlation structure among

SNPs, which leads to high false discovery rate (FDR) and low recall of true causal

SNPs [5].

To increase recall and decrease FDR in GWAS, we propose the Bayesian Iterative

Conditional Stochastic Search (BICOSS) method. Under a mixed effects model, BI-

COSS combines Bayesian SMA and Bayesian model selection in an iterative proce-

dure. Each BICOSS iteration has two steps: screening and model selection. BICOSS
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is initialized with the residuals from a base model that is a linear mixed model with

no SNPs. Then the screening step fits as many models as the number of available

SNPs, where each model has only one additional SNP and is regressed against the

residuals of the base model. This screening step provides a set of candidate SNPs.

The second step of BICOSS performs a model search where the possible models

contain the base model and any number of SNPs from the set of candidate SNPs.

When the model space is too large for complete enumeration, BICOSS performs

model selection using Bayesian model selection implemented with a genetic algo-

rithm (GA). The best model found in the model selection step becomes the base

model. The next iteration of BICOSS then uses this base model to perform the

screening and selection steps. BICOSS iterates between these steps until conver-

gence of the best model. Further details as well as a graphical representation of

BICOSS are provided in the Methods section. A simulation study shows that, when

compared to SMA, BICOSS reduces false discovery rate and allows for SNPs with

smaller effects sizes to be discovered.

Each iteration of BICOSS conditions on a base model found as the best model

in the previous iteration. A key insight gained from our simulation study is that,

when compared to SMA, conditioning on SNPs of high importance reduces the

error variance thus allowing SNPs with smaller effect sizes to be detected. Other

previous works have also used conditional models to find causal SNPs with smaller

effect sizes [6, 7, 8, 9, 10]. Therefore, by conditioning on SNPs with larger effect

sizes found in previous iterations, BICOSS can identify SNPs with smaller effect

sizes.

A critical contribution of BICOSS is to combine model selection and screening

with conditional models in an iterative procedure. This is important because model

selection alone has better FDR control than single marker tests but it tends to have

smaller recall. By combining the screening and model selection steps in an iterative

procedure, BICOSS consistently increases recall and decreases FDR. To the best of

our knowledge, there are only two other GWAS iterative procedures: GWASelect [11]

and GWASinlps [12]. Both GWASinlps and GWASelect operate under the simple

linear regression framework while BICOSS uses mixed effect regression. GWASelect

applies SMA to a large number of bootstrap datasets followed by a LASSO proce-

dure to identify SNPs of interest from conditional models. GWASinlps selects SNPs

under a linear regression model using R2. From the set of SNPs, GWASinlps uses

Bayesian model selection with nonlocal priors to identify a best SNP model. The two

main differences between BICOSS and GWASinlps are that BICOSS uses Bayesian

model selection to identify candidate SNPs instead of R2 and BICOSS uses mixed

effect models instead of a linear regression models. With the publicly available code

for GWASinlps, we compare GWASinlps to BICOSS in the simulation study.

Methods
BICOSS assumes the general linear mixed model ([1, 2]),

Y = Xβ + Zu+ ϵ, with ϵ ∼ N(0, σ2I) and u ∼ N(0, σ2τK), (1)

whereY is a n-dimensional vector of observed phenotypes,X is an n×pmatrix with

columns including SNPs, intercept, and fixed effects, β is a p-dimensional vector
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of regression coefficients, Z is an n × t incidence matrix mapping each observed

phenotype to one of t inbred strains, u is a t-dimensional vector of random effects

accounting for population structure, and ϵ is an error term. In addition, σ2 is the

variance of the unstructured error and τ a kinship dependence parameter. Finally,

K is the realized relationship matrix or kinship matrix assumed to be a known

positive semi-definite matrix.

Figure 1 presents a graphical representation of BICOSS. BICOSS is an iterative

procedure where each iteration is comprised of two steps: a screening and a model

selection step. BICOSS is initialized with a base model fitted as a linear mixed

model with no SNPs in the model. Then the screening step fits as many models as

there are SNPs, each model containing one SNP and regressed against the residuals

of the base model. The screening step identifies a set of candidate SNPs using

Bayesian FDR control applied to the posterior probabilities of the SNPs. Then,

the model selection step of BICOSS performs Bayesian model selection where the

possible models contain any combination of the base model and SNPs from the

candidate set. If the model space is too large to perform complete enumeration, a

genetic algorithm is used to perform stochastic model search. The model with the

highest posterior probability is the best model. This best model becomes the base

model for the next iteration which proceeds with the screening and model selection

steps. BICOSS iterates these two steps until convergence of the best model.

Flowchart1.PNG

Figure 1 Graphical Representation of BICOSS.

We cast both the screening step and model selection step within a Bayesian model

selection framework. We briefly highlight Bayesian model selection and the priors

on the model space before providing the full derivation for the screening and model

selection steps.

Bayesian Model Selection

Bayesian model selection assumes m possible models M1, . . . ,Mm. Let P (Mi) be

the prior model probability for model Mi. In addition, assume that the unknown

parameters in model Mi are collected in parameter vector θi ∈ Θi and have prior

density π(θi). Let the dimension of θi be di. Finally, assume the likelihood function

under model Mi is L(Y | θi,Mi). Thus, an important quantity in Bayesian model

selection is the marginal likelihood under model Mi, i = 1, . . . , n, given by

mi(Y) =

∫︂
Θi

L(Y | θi,Mi)π(θi)dθi. (2)

Hence, by Bayes Theorem the posterior probability of model Mi given the data Y

is

P (Mi|Y) =
P (Mi)mi(Y)∑︁m

j=1 P (Mj)mj(Y)
. (3)
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Assuming a base model Mb, the Bayes factor of model Mi with respect to Mb is

defined as BFib = mi(Y)/mb(Y). Hence, the posterior probability of model Mi

given the data Y can be computed as

P (Mi|Y) =
P (Mi)BFib∑︁m

j=1 P (Mj)BFjb
. (4)

Now, let the BIC of model Mi be

BICi = −2 log
(︂
L(Y | θ̂i,Mi)

)︂
+ di log(n), (5)

where θ̂i is the maximum likelihood estimate of θi. The Bayes factor BFib can be

approximated by using the BIC ([13, 14]). Specifically, if the information contained

in each prior π(θi) is equivalent to one observation, then the Bayes factor BFib can

be approximated with

BFib ≈ exp {−0.5(BICi −BICb)} , (6)

with error O(n−1/2) [15]. With this approximation, we do not need to explicitly

specify the prior densities π(θi). BICOSS uses this approximation combined with

Eqn. 4 to compute the posterior probabilities of the competing models.

Prior Model Probabilities in BICOSS

Consider a model with s possible SNPs. Following standard practice in modern

Bayesian model selection, we treat the inclusion of each of the possible s SNPs as

independent Bernoulli trials with success probability (1−π0). As a result, the prior

probability of model Mi is

P (Mi) = (π0)
s−pi(1− π0)

pi , (7)

where pi is the number of SNPs in model Mi. Here, we estimate the true rate of null

hypothesis π0 using the procedure proposed in [16] which uses the p-values of each

SNP from a SMA to calculate the estimated proportion of true null SNPs. When

this procedure conservatively estimates π0 = 1, BICOSS sets π0 = 1−100L−1 where

L is the total number of SNPs. The p-values are calculated at every screening step,

therefore the estimate of π0 is updated at every iteration of the screening step of

BICOSS. The model selection step uses the same π0 estimated at the first screening,

which allows SNPs that were detected in the first screening to be competitive in

the model selection compared to SNPs found in subsequent iterations.

Screening Step

The screening step starts by fitting the base model which is obtained from Eqn. 1

with the matrixX containing the SNPs from the base model of the previous iteration

of BICOSS. From this base model fit, we obtain estimates β̂ and τ̂ . Let Ŷ = Y −Xβ̂

and let Σ(τ̂) = (I −P )(I + τ̂K)(I −P ) where P = X(X⊤(I + τ̂K)−1X)−1X⊤ is a
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projection matrix. Recall that L is the total number of SNPs. Then the screening

step fits for each SNP l, l = 1, . . . , L, the linear mixed model

Ŷ = Xlβl + ϵ∗, ϵ∗ ∼ N(0, σ2Σ(τ̂)), (8)

where Xl is an n× 1 vector for SNP l.

In the screening step, for each SNP l we compare only two models: the base model,

and the base model with the added SNP l. In that context, Eqn. 4 in the section

on Bayesian model selection is used to compute the posterior probability of SNP l

being a causal SNP conditional on the base model. The screening step then scans

through all SNPs computing these posterior probabilities.

To control the false discovery rate, BICOSS uses Bayesian FDR control ([17, 18,

19, 20]). Let rl = 1 if SNP l is a true causal SNP and rl = 0 otherwise. Let

pl = P (rl = 1|Y) which is computed as described in the above paragraph using

the Bayes factor comparing the model with SNP l versus the model without SNP

l. Then a possible decision rule is to flag SNP l as significant if pl is greater than

or equal to a threshold p0. The resulting FDR is then equal to

FDR =

∑︁L
l=1(1− rl)1pl≥p0∑︁L

l=1 1pl≥p0

, (9)

where 1 denotes the indicator function. Further, because the true value of rl is

unknown the posterior expected value of the FDR given the data can be estimated

as

ˆ︃FDR =

∑︁L
l=1(1− pl)1pl≥p0∑︁L

l=1 1pl≥p0

. (10)

A more desired decision rule would be to control for the desired nominal FDR level

denoted as q0 rather than an arbitrary predetermined threshold p0. Specifically, we

first rank the SNPs in decreasing order of pl. Denote the ordered estimates of the

posterior model probabilities as {p(1), p(2), . . . , p(L)}. Thus, denoting d ∈ {1, . . . , L},
the posterior expected FDR of selecting the first d ordered SNPs as significant is

ˆ︃FDRd =

∑︁L
l=1(1− pl)1pl>p(d)∑︁L

l=1 1pl>p(d)

=

∑︁d
l=1(1− p(l))

d
. (11)

The decision rule for detecting causal SNPs is to flag all SNPs with ˆ︃FDRd < q0.

This provides a list of candidate SNPs for the BICOSS selection step. The simulation

study and the real data analyses use q0 = 0.05.

Model Selection Step

With the list of candidate SNPs from the screening step, the model selection step

performs a model search where the possible models include any combination of

SNPs in the base model and the candidate SNPs identified in the latest screening.

Each possible model is evaluated using the Bayesian model selection procedure

described in the section on Bayesian model selection with prior model probability
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given in Eqn. 7. To accelerate computation, we take a P3D approach and estimate

the kinship dependence parameter τ only once based on the full model that includes

the SNPs from the base model as well as the candidate SNPs. This parameter τ is

kept fixed at this estimate when fitting all other models.

Depending on the number of SNPs identified in the screening step, one of two

different algorithms are used to search the model space. When the dimensionality

is low, a complete enumeration is used to compute posterior model probabilities

for every possible model. When the number of SNPs is high such that complete

enumeration would be computationally expensive (16 or more), a genetic algorithm

is used to search the model space.

BICOSS uses a genetic algorithm implemented in the R package GA [21] that

iterates mutation, crossover, and selection steps. The genetic algorithm starts with

a population of 100 models. One of these models has just the intercept. Another set

of models in this initial population has only one SNP per model, where the SNPs

are either from the base model or are candidate SNPs. If there are more than 99

of these SNPs, then the 99 SNPs with the highest posterior probabilities are used

to initialize the initial population. If there are less than 99 of these SNPs, then the

remaining models in the initial population are chosen at random. The mutation,

crossover, and selection steps then operate on the population to create subsequent

populations. The mutation step creates a new model from an existing model by

changing the status of a SNP in that model, e.g. if a SNP is present in the existing

model it will become absent in the new model. The crossover step creates two models

by combining two existing models. Finally, the selection step samples models to be

passed to the next population with probabilities proportional to exp (−0.5BICi)

for model Mi.

We consider two different convergence criteria, 400 maximum iterations or 40

consecutive iterations with the same best model, whatever happens first. We also

considered convergence criteria with 4,000 maximum iterations and 400 iterations

with the same best model, but the results were about the same. We report the

results for the latter set of convergence criteria in the supplementary material. If

the best model identified in the selection step matches the current base model,

BICOSS converges. Otherwise, the base model is updated to be the best model

found, and another iteration of BICOSS is performed.

Results
Simulation Study

We have performed a simulation study to compare BICOSS to other competing

methods. In addition, we present two smaller simulation studies to evaluate the

robustness of BICOSS, when there are no causal SNPs and when there is no kinship

dependence structure. For all three simulation studies, we compare BICOSS to SMA

methods with the Bonferroni correction and GWASinlps. We consider two SMA

methods based on the linear mixed model from Eqn. 1: a method we call SMA-Exact

that similarly to EMMA uses the spectral decomposition of the kinship dependence

structure; and a method we call SMA-Approx. that similarly to EMMAX fixes

the variance parameters at their estimates for a model without SNPs. For direct

comparison of computation time, all methods are implemented in R. Both BICOSS
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and SMA methods use a FDR nominal level of 0.05. The genotype data used for

all three simulation studies is from 328 A. Thaliana accessions from the TAIR9

sequence [22]. In this simulation study n = 328 and Z = In×n. Specifically, we

consider a set of 60,000 SNPs. To obtain these 60,000 SNPs, we obtained 10 blocks

of 6,000 SNPs each with minor allele frequency above 0.01 from A. Thaliana, where

each block was separated from the subsequent block by 15,000 SNPs. Figure S1

in the supplementary material presents a heatmap of the correlation matrix of the

first block with 6,000 SNPs for the 328 A. Thaliana accessions. For the general

simulation study and the case when there is no kinship dependence structure, we

placed the causal SNPs in positions 3,000, 9,000, 15,000, 21,000, 27,000, 33,000,

39,000, 45,000, 51,000, and 57,000 of the 60,000 SNPs. The kinship matrix used in

the case of no causal SNPs and the general simulation study was built from the

entire TAIR9 SNP array for the 328 ascensions of A. Thaliana using the function

A.mat from the R package rrBLUP [23].

We compare the competing methods with four different criteria: recall, also known

as true positive rate, FDR, False positive rate, and the F1 score. We also report

computation time. Recall is defined as the number of identified true causal SNPs

divided by the total number of causal SNPs. The FDR is defined as the number

of false positives identified as significant divided by the number of SNPs identified

as significant. The false positive rate is the number of false positives divided by

the number of false positives plus the number of true negatives. The F1 score is

the number of true positives divided by the number of true positives plus half

the sum of false positives and false negatives. We report the computation time in

seconds for each procedure using 12 cores of a 2 × 12 core Intel Xeon 2.5 GHz

12-core with 256 GB of memory running OpenBlas for optimized matrix algebra.

The results presented here are for GWASinlps version 2.0 with tuning parameters

k0 = 1, nskip = 3, rxx = 0.2, m = 500, and τ = 0.022 as recommended in both the

GWASinlps documentation and in [12]. For accurate comparison of methods, the

results for each simulation setting are based on 100 simulated datasets.

General Simulation Study

A general simulation study to compare BICOSS to other competing methods is

conducted under the linear mixed model:

Y = α1+Xβ + Zu+ ϵ, (12)

where u ∼ N(0, σ2τK), ϵ ∼ N(0, σ2I), and α is 1.

We consider 10 causal SNPs with six different settings of β vectors. Seven coef-

ficients remained fixed at 0.4 while the other three coefficients were equal to each

other and assumed values of 0.05, 0.1, 0.2, 0.4, 0.8, and 1.6. Thus, the fourth setting

had equal coefficients across the entire set of causal SNPs. For every simulated Y,

the values of τ and σ2 were equal to 0.1 and 0.2 respectively, which are similar to

the estimates of τ and σ2 obtained in the case study on salt stress in A. Thaliana.

Table 1 displays results averaged over the 100 datasets under each setting. SMA

procedures typically discover about 3 of the 10 true causal SNPs, BICOSS typically

discovers about 5 to 7 causal SNPs. Therefore, while SMA methods typically dis-

cover only the SNPs with large effect sizes, BICOSS is able to discover SNPs with



Williams et al. Page 8 of 14

Table 1 Results of simulation study with linear mixed model. Regression coefficients of causal SNPs
β = (β(1), 0.4, 0.4, 0.4, β(1), 0.4, 0.4, 0.4, β(1), 0.4)⊤. Average Performance of each method over 100
datasets for each setting. Recall indicates the True Positive Rate, FDR is the False Discovery Rate,
FPR is the False Positive Rate, and F1 is the F1 score.

Setting Measure
Method

SMA - Exact SMA - Approx. BICOSS GWASinlps
Recall 0.36 0.35 0.49 0.55

Setting 1 FDR 0.61 0.60 0.27 0.62
β(1) = 0.05 FPR ×105 12.70 12.30 3.95 17.44

F1 0.35 0.35 0.57 0.44
Time (s) 197 2 22 85
Recall 0.33 0.33 0.49 0.54

Setting 2 FDR 0.57 0.56 0.28 0.61
β(1) = 0.1 FPR ×105 11.22 10.90 4.10 16.45

F1 0.35 0.35 0.57 0.44
Time (s) 203 2 46 122
Recall 0.31 0.31 0.49 0.55

Setting 3 FDR 0.61 0.61 0.34 0.63
β(1) = 0.2 FPR ×105 11.17 10.87 5.02 19.02

F1 0.33 0.33 0.55 0.42
Time (s) 201 2 47 117
Recall 0.34 0.33 0.58 0.65

Setting 4 FDR 0.59 0.58 0.34 0.62
β(1) = 0.4 FPR ×105 10.47 10.22 5.50 20.14

F1 0.35 0.35 0.61 0.47
Time (s) 203 2 50 130
Recall 0.29 0.28 0.73 0.79

Setting 5 FDR 0.79 0.79 0.33 0.60
β(1) = 0.8 FPR ×105 21.60 21.35 6.93 22.25

F1 0.23 0.23 0.69 0.52
Time (s) 186 1 44 148
Recall 0.30 0.30 0.70 0.78

Setting 6 FDR 0.92 0.92 0.30 0.65
β(1) = 1.6 FPR ×105 61.23 60.49 5.70 25.99

F1 0.12 0.12 0.69 0.48
Time (s) 176 1 45 147
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Table 2 Results of simulation study with no causal SNPs. Average Performance of each method over
100 datasets. FP indicates the number of false positives.

Setting Measure
Method

SMA - Exact SMA - Approx. BICOSS GWASinlps

No Causal SNPs
FP 0.05 0.04 1.33 8.13

Time (s) 197 2 22 85

smaller effect sizes. In addition, BICOSS maintains a substantially lower FDR, lower

FPR, and higher F1 score in all settings compared to SMA. The massive improve-

ment in these measures is due to the model selection step. Specifically, by allowing

multiple SNPs to compete in the best model, BICOSS model selection step better

controls FDR.

Compared to GWASinlps, BICOSS provides a similar recall while yielding a much

lower FDR, lower FPR, and higher F1 score. BICOSS is more conservative overall

than GWASinlps, but the F1 score (that is, the harmonic mean of precision and

recall) highlights the improved combined performance in terms of recall and FDR

of BICOSS compared to GWASinlps. The better performance of BICOSS when

compared to GWASinlps may be explained by two main reasons. First, BICOSS

uses a Bayesian screening step while GWASinlps uses a R2-based screening. Second,

BICOSS assumes a linear mixed model whereas GWASinlps assumes a linear model

with independent errors. In particular, the linear mixed model assumed by BICOSS

is more realistic in the context of GWAS analysis.

Our simulation study also shows that when some few SNPs have very large effect

sizes as in Settings 5 and 6, SMA methods have difficulty identifying SNPs with

medium effect sizes and produce very large FDR. Specifically, Table 1 shows that,

in Settings 5 and 6, SMA methods can only find 30% of the true causal SNPs and

has FDR of 0.79 and 0.92 respectively. In contrast, in these settings BICOSS has

recall at or above 70% and much better FDR control.

Robustness to Lack of Signal

To examine the robustness of BICOSS when applied to datasets with no causal

SNPs, we simulate 100 datasets from the model:

Y = α1+ Zu+ ϵ, (13)

where u ∼ N(0, σ2τK), ϵ ∼ N(0, σ2I), and α = 1. Similarly, for every simulated Y,

the values of τ and σ2 were equal to 0.1 and 0.2 respectively, which are similar to

the estimates of τ and σ2 obtained in the case study on salt stress in A. Thaliana.

As there are no true causal SNPs in Equation 13, we only examine the number of

false positives.

Table 2 presents the results for the 100 simulated datasets under this scenario. In

this case, SMA methods have a stricter control of false positives compared to the

two iterative procedures. BICOSS performs significantly better than GWASinlps

but is not as conservative as SMA. Therefore, one limitation of BICOSS is that it

has on average a slightly larger number of false positives then SMA when applied

to datasets with no causal SNPs.
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Robustness to Lack of Kinship Dependence Structure

To check how BICOSS performs when the data are from a linear model without

kinship dependence, we simulated 100 datasets from the linear model:

Y = α1+Xβ + ϵ, (14)

where ϵ ∼ N(0, σ2I), α = 1, and σ2 = 0.2. Note that BICOSS has been built

using the mixed model framework. Meanwhile, GWASinlps was built assuming a

linear model. Thus, in principle, data simulated from Equation 14 should favor

GWASinlps. We explore one setting of β, all causal coefficients equal to 0.4. Thus,

this simulation has identicalX and β as setting 4 of the general simulation. P-values

are calculated for SMA using the classic T statistic for simple linear regression

models. Therefore as this is an exact procedure we show results labeled as SMA-

Exact.

Table 3 presents the results of the linear model simulation study. Similar to the

simulation with linear mixed models, BICOSS has the lowest FDR, lowest FPR,

and highest F1. This is not completely surprising because for datasets simulated

from Equation 14, the kinship dependence parameter τ is usually estimated as very

small. In the limit when τ is estimated to be 0, the linear mixed model in Equation 1

becomes a linear model. Therefore, even when there is no kinship structure, BICOSS

is able to automatically adapt and perform better than competing methods.

Case Studies

To demonstrate the utility and flexibility of BICOSS, we present two case studies

with real data analyses. First, BICOSS is implemented on data from a published

study of salt stress on the selfing species A. Thaliana [24]. Second, BICOSS is

applied to a study of alcohol dependency in humans.

Salt Stress in A. Thaliana

This study considers three different settings of soil salt stress to evaluate which genes

are potentially impactful [24]. The three settings considered were a control setting,

75 mM of NaCl, and 125 mM of NaCl. Different measures of the root structure

were taken to gauge how salt stress impacted the plants. In this case study, we

analyze the average length of lateral root per main root length for 328 A. Thaliana

accessions under 75 mM NaCl salt stress. Genotype data was obtained from TAIR9

[22]. Only SNPs with minor allele frequency greater than 0.01 were included, thus

the analysis presented here considers approximately 213,000 SNPs.

Table 3 Results of simulation study with linear model. Regression coefficients of causal SNPs
β = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)⊤. Average Performance of each method over 100
datasets for each setting. Recall indicates the True Positive Rate, FDR is the False Discovery Rate,
FPR is the False Positive Rate, and F1 is the F1 score.

Setting Measure
Method

SMA - Exact BICOSS GWASinlps

Linear Model

Recall 0.38 0.61 0.66
FDR 0.62 0.38 0.62

FPR ×105 12.00 6.95 20.34
F1 0.37 0.60 0.47

Time (s) 6 55 169
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Table 4 The number of SNPs identified by method for each case study. Multiple comparison
corrections use nominal level 0.05 and are based on the number of SNPs in a given genotype dataset.

Method
Salt Stress in A. Thaliana AUD in Humans

Number of SNPs Time (s) Number of SNPs Time (m)
SMA - Exact 22 555 15 82
SMA - Approx. 22 8 15 4

BICOSS 5 142 6 38
GWASinlps 37 544 499 792

Table 4 presents the number of SNPs found by SMA, BICOSS, and GWASinlps

as well as the computational time. For A. Thaliana, both SMA methods found 22

SNPs, GWASinlps found 37 SNPs, and BICOSS identified just 5 SNPs. Similar to

the simulation study, we see a large difference in the total number of SNPs found

by BICOSS when compared to SMA and GWASinlps. Surprisingly, we note a large

increase of the total number of SNPs found by GWASinlps compared to SMA.

Given the results of the simulation study, we expect the majority of SNPs found

by GWASinlps and SMA methods to be false positives. Based on the simulation

study, BICOSS has a much better control of FDR than the other methods. Thus,

for purpose of discussion we will focus on the results from BICOSS. Of the five

SNPs identified by BICOSS, one SNP is perfectly correlated to two other SNPs,

implying seven identified SNPs.

The seven SNPs are in genes AT1G62500, AT2G38970, AT3G60370, AT4G14305,

AT4G39955, AT4G39970, and AT4G40000. Previous literature relates two of these

genes to response to salt stress. Specifically, AT1G62500 is a differentially expressed

gene which has been shown to activate in the event of salt stress [25]. In addition;

AT4G39955 is an α/β-Hydrolases superfamily protein. α/β-Hydrolases superfamily

proteins have been shown to enhance salt tolerance in the sweet potato family [26].

Alcohol Use Disorder in Humans

In this case study, we use publicly available data from The Collaborative Study on

the Genetics of Alcoholism (COGA) that was performed to identify novel genetic

factors associated with alcohol use disorder (AUD) [27]. Specifically, in this case

study we analyze the response variable “age of first drink”, for 1738 people of

European ancestry with approximately 1 million sequenced SNPs. To normalize and

variance-stabilize the data, the logarithm transformation was applied to age of first

drink. Only SNPs with minor allele frequency larger than 0.01 were investigated

for this analysis. Further, any SNP that did not have an rsID or was located in

chromosome X or Y was removed from the analysis. Thus, this analysis considers

approximately 840,000 SNPs.

Table 4 presents the number of SNPs found by SMA, BICOSS and GWASinlps and

the timing of each method. Similarly to the simulation study and the A. Thaliana

case study, SMA and GWASinlps identified large numbers of SNPs. Specifically for

the AUD case study, both SMA methods found 15 SNPs, GWASinlps found 499

SNPs, and BICOSS found just 6 SNPs. Because BICOSS has a much better FDR

control than the other methods, here we investigate the genes found by BICOSS.

BICOSS identified six SNPs, which are in the following genes: KCNMA1, ZYG11A,

TPTE2, ABCF1, ANKS1B, and LINC02237. LINC02237 is a long intergenic non-

protein coding RNA and the other genes are all protein coding genes.
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Of the five protein coding genes found by BICOSS, two have published associations

with AUD and two have been linked to liver diseases. Specifically, KCNMA1 is

known as a gene associated with alcohol dependency [28]. In addition, in a study

with people of Chinese Han ethnicity, ANKS1B has been found to be associated

with alcoholism [29]. Further, TPTE2 has been shown to be related to hepatic

fibrogenesis and fibrosis [30]; alchohol abuse is one of the main causes of liver fibrosis

[31]. Furthermore, ABCF1 has been shown to be overexpressed in hepatocellular

carcinoma [32]. These results indicate possibly important genes for further potential

investigation for a better understanding of alcohol use disorder.

Discussion
We have presented BICOSS, a novel Bayesian method for the analysis of GWAS

data. To take into account the correlation structure among SNPs, BICOSS iterates

a screening step and a model selection step. Simulation studies show that, while

when there are no true SNPs BICOSS tends to identify a slightly larger number

of SNPs than SMA methods, when there are true causal SNPs, BICOSS performs

much better than SMA. In the latter case when compared to SMA, BICOSS has

greater recall of true causal SNPs while maintaining a much lower FDR. In addition,

when there are SNPs with large effect sizes, BICOSS has increased recall of true

causal SNPs with small and medium effect sizes. Further, when compared to the

Bayesian iterative method GWASinlps, BICOSS maintains comparable recall while

having a much lower FDR.

While here we have implemented BICOSS within the EMMAX [4] methodology,

we note that BICOSS can be easily adapted to work with other GWAS frameworks

such as GCTA [33]. Applying BICOSS should be relatively straightforward when

the model and the likelihood can be explicitly written.

There are many possible avenues for future research. For example, a potentially

useful avenue is to extend BICOSS to use explicit prior distributions for the param-

eters. Such extension would allow the incorporation of substantive prior information

in the GWAS analysis. Another possible area of research would be to extend BI-

COSS to BioBank scale data. Finally, another possible area of research would be

to extend BICOSS for the analysis of non-Gaussian data such as the number of

lateral roots in A. Thaliana or the indicator of alcohol dependency for families with

members suffering alcohol use disorder.

Conclusion
We propose BICOSS, a novel iterative Bayesian procedure for GWAS analysis.

Compared to SMA, BICOSS increases recall of true causal SNPs while dramatically

reducing FDR. Upon publication of this article, BICOSS will be made available in

the R package GWAS.BAYES that is available of Bioconductor.
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