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Abstract

Background: Single marker analysis (SMA) with linear mixed models for genome
wide association studies (GWAS) has uncovered the contribution of genetic
variants to many observed phenotypes. However, SMA has weak false discovery
control. In addition, when a few variants have large effect sizes, SMA has low
statistical power to detect small and medium effect sizes, leading to low recall of
true causal single nucleotide polymorphisms (SNPs).

Results: We present the Bayesian Iterative Conditional Stochastic Search
(BICOSS) method that controls false discovery rate and increases recall of
variants with small and medium effect sizes. BICOSS iterates between a
screening step and a Bayesian model selection step. A simulation study shows
that, when compared to SMA, BICOSS dramatically reduces false discovery rate
and allows for smaller effect sizes to be discovered. Finally, two real world
applications show the utility and flexibility of BICOSS.

Conclusions: When compared to widely used SMA, BICOSS provides higher
recall of true SNPs while dramatically reducing false discovery rate.

Keywords: Bayesian method; GWAS; Model Selection

Background

Genome wide association studies (GWAS) have been used successfully to identify
genes involved with complex traits in a wide variety of species. To identify these
genes a statistical analysis is performed to identify which single nucleotide poly-
morphisms (SNPs) are associated with a trait. The most common form of statis-
tical analysis is single marker analysis (SMA) performed under the mixed model
framework [1]. Algorithms such as EMMA [2] (which uses spectral decomposition
of the covariance matrix for fast computation), population parameters previously
determined (P3D) [3] (which speeds up computation by using the estimates of the
variance components from a null model), and EMMAX [4] (which further speeds
up computations of EMMA by using the estimate of the heritability from a null
model) have led to widespread adoption of the mixed model framework. However,
SMA has drawbacks due to not taking into account the correlation structure among
SNPs, which leads to high false discovery rate (FDR) and low recall of true causal
SNPs [5].

To increase recall and decrease FDR in GWAS, we propose the Bayesian Iterative
Conditional Stochastic Search (BICOSS) method. Under a mixed effects model, BI-
COSS combines Bayesian SMA and Bayesian model selection in an iterative proce-
dure. Each BICOSS iteration has two steps: screening and model selection. BICOSS
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is initialized with the residuals from a base model that is a linear mixed model with
no SNPs. Then the screening step fits as many models as the number of available
SNPs, where each model has only one additional SNP and is regressed against the
residuals of the base model. This screening step provides a set of candidate SNPs.
The second step of BICOSS performs a model search where the possible models
contain the base model and any number of SNPs from the set of candidate SNPs.
When the model space is too large for complete enumeration, BICOSS performs
model selection using Bayesian model selection implemented with a genetic algo-
rithm (GA). The best model found in the model selection step becomes the base
model. The next iteration of BICOSS then uses this base model to perform the
screening and selection steps. BICOSS iterates between these steps until conver-
gence of the best model. Further details as well as a graphical representation of
BICOSS are provided in the Methods section. A simulation study shows that, when
compared to SMA, BICOSS reduces false discovery rate and allows for SNPs with
smaller effects sizes to be discovered.

Each iteration of BICOSS conditions on a base model found as the best model
in the previous iteration. A key insight gained from our simulation study is that,
when compared to SMA, conditioning on SNPs of high importance reduces the
error variance thus allowing SNPs with smaller effect sizes to be detected. Other
previous works have also used conditional models to find causal SNPs with smaller
effect sizes [6, 7, 8, 9, 10]. Therefore, by conditioning on SNPs with larger effect
sizes found in previous iterations, BICOSS can identify SNPs with smaller effect
sizes.

A critical contribution of BICOSS is to combine model selection and screening
with conditional models in an iterative procedure. This is important because model
selection alone has better FDR control than single marker tests but it tends to have
smaller recall. By combining the screening and model selection steps in an iterative
procedure, BICOSS consistently increases recall and decreases FDR. To the best of
our knowledge, there are only two other GWAS iterative procedures: GWASelect [11]
and GWASinlps [12]. Both GWASinlps and GWASelect operate under the simple
linear regression framework while BICOSS uses mixed effect regression. GWASelect
applies SMA to a large number of bootstrap datasets followed by a LASSO proce-
dure to identify SNPs of interest from conditional models. GWASinlps selects SNPs
under a linear regression model using R2. From the set of SNPs, GWASinlps uses
Bayesian model selection with nonlocal priors to identify a best SNP model. The two
main differences between BICOSS and GWASinlps are that BICOSS uses Bayesian
model selection to identify candidate SNPs instead of R? and BICOSS uses mixed
effect models instead of a linear regression models. With the publicly available code
for GWASinlps, we compare GWASinlps to BICOSS in the simulation study.

Methods
BICOSS assumes the general linear mixed model ([1, 2]),

Y =XB+Zu+e with e~ N(0,0%I) and u~ N(0,0%°7K), (1)

where Y is a n-dimensional vector of observed phenotypes, X is an n X p matrix with
columns including SNPs,; intercept, and fixed effects, 3 is a p-dimensional vector
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of regression coefficients, Z is an n X t incidence matrix mapping each observed
phenotype to one of ¢ inbred strains, u is a t-dimensional vector of random effects
accounting for population structure, and € is an error term. In addition, o2 is the
variance of the unstructured error and 7 a kinship dependence parameter. Finally,
K is the realized relationship matrix or kinship matrix assumed to be a known
positive semi-definite matrix.

Figure 1 presents a graphical representation of BICOSS. BICOSS is an iterative
procedure where each iteration is comprised of two steps: a screening and a model
selection step. BICOSS is initialized with a base model fitted as a linear mixed
model with no SNPs in the model. Then the screening step fits as many models as
there are SNPs, each model containing one SNP and regressed against the residuals
of the base model. The screening step identifies a set of candidate SNPs using
Bayesian FDR control applied to the posterior probabilities of the SNPs. Then,
the model selection step of BICOSS performs Bayesian model selection where the
possible models contain any combination of the base model and SNPs from the
candidate set. If the model space is too large to perform complete enumeration, a
genetic algorithm is used to perform stochastic model search. The model with the
highest posterior probability is the best model. This best model becomes the base
model for the next iteration which proceeds with the screening and model selection

steps. BICOSS iterates these two steps until convergence of the best model.

Flowchart1.PNG

Figure 1 Graphical Representation of BICOSS.

We cast both the screening step and model selection step within a Bayesian model
selection framework. We briefly highlight Bayesian model selection and the priors
on the model space before providing the full derivation for the screening and model

selection steps.

Bayesian Model Selection

Bayesian model selection assumes m possible models M, ..., M,,. Let P(M;) be
the prior model probability for model M;. In addition, assume that the unknown
parameters in model M; are collected in parameter vector 0; € ©; and have prior
density 7(6;). Let the dimension of 8; be d;. Finally, assume the likelihood function
under model M; is L(Y | 6;, M;). Thus, an important quantity in Bayesian model

selection is the marginal likelihood under model M;, ¢ = 1,...,n, given by
CH
Hence, by Bayes Theorem the posterior probability of model M; given the data Y

1S

POMIY) = E;i%%%)m' ’
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Assuming a base model My, the Bayes factor of model M; with respect to M, is
defined as BF;, = m;(Y)/mu(Y). Hence, the posterior probability of model M;
given the data Y can be computed as

P(M;)BFy

P(M;|Y) = ST P(M,)BFy,’ (4)

Now, let the BIC of model M; be
BIC; = —2log (L(Y | 6, Mi)) + d; log(n), (5)

where él is the maximum likelihood estimate of 6;. The Bayes factor BF}, can be
approximated by using the BIC ([13, 14]). Specifically, if the information contained
in each prior 7(6;) is equivalent to one observation, then the Bayes factor BFjy;, can

be approximated with
BFy, = exp{—0.5(BIC; — BIC})}, (6)

with error O(n~'/2) [15]. With this approximation, we do not need to explicitly
specify the prior densities 7(6;). BICOSS uses this approximation combined with
Eqn. 4 to compute the posterior probabilities of the competing models.

Prior Model Probabilities in BICOSS

Consider a model with s possible SNPs. Following standard practice in modern
Bayesian model selection, we treat the inclusion of each of the possible s SNPs as
independent Bernoulli trials with success probability (1 —m). As a result, the prior

probability of model M; is
P(M;) = (m)* (1 — mo)P", (7)

where p; is the number of SNPs in model M;. Here, we estimate the true rate of null
hypothesis 7y using the procedure proposed in [16] which uses the p-values of each
SNP from a SMA to calculate the estimated proportion of true null SNPs. When
this procedure conservatively estimates my = 1, BICOSS sets mg = 1—100L~! where
L is the total number of SNPs. The p-values are calculated at every screening step,
therefore the estimate of m is updated at every iteration of the screening step of
BICOSS. The model selection step uses the same my estimated at the first screening,
which allows SNPs that were detected in the first screening to be competitive in

the model selection compared to SNPs found in subsequent iterations.

Screening Step

The screening step starts by fitting the base model which is obtained from Eqn. 1
with the matrix X containing the SNPs from the base model of the previous iteration
of BICOSS. From this base model fit, we obtain estimates 3 and 7. Let Y = Y-X3
and let ¥(7) = (I — P)(I +#K)(I — P) where P = X(X T (I +7K)"'X)"'1X T isa
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projection matrix. Recall that L is the total number of SNPs. Then the screening
step fits for each SNP [, [ =1,..., L, the linear mixed model

Y = X8 + €, € ~N(0,0%25(7)), (8)

where X; is an n x 1 vector for SNP .

In the screening step, for each SNP [ we compare only two models: the base model,
and the base model with the added SNP [. In that context, Eqn. 4 in the section
on Bayesian model selection is used to compute the posterior probability of SNP [
being a causal SNP conditional on the base model. The screening step then scans
through all SNPs computing these posterior probabilities.

To control the false discovery rate, BICOSS uses Bayesian FDR control ([17, 18,
19, 20]). Let r; = 1 if SNP [ is a true causal SNP and r; = 0 otherwise. Let
pr = P(r; = 1Y) which is computed as described in the above paragraph using
the Bayes factor comparing the model with SNP [ versus the model without SNP
l. Then a possible decision rule is to flag SNP [ as significant if p; is greater than
or equal to a threshold py. The resulting FDR is then equal to

L
FDR — 21:1(1 - Tl)lpzZpo
1

; 9)

P1>po

where 1 denotes the indicator function. Further, because the true value of r; is
unknown the posterior expected value of the FDR given the data can be estimated
as

L
— 1—p)1
FDR = Zl:l(L 1pl) P1L=>Po . (10)

I=1 “Pi12Po

A more desired decision rule would be to control for the desired nominal FDR level
denoted as qg rather than an arbitrary predetermined threshold pg. Specifically, we
first rank the SNPs in decreasing order of p;. Denote the ordered estimates of the
posterior model probabilities as {p(1y,p(2), - - -, P(z) }- Thus, denoting d € {1,..., L},
the posterior expected FDR of selecting the first d ordered SNPs as significant is

L d
=, Zl:l(l _pl)lpz>p(d) . 2121(1 *P(l))
FDR,; = - = ]
Zl:l 1pl>P(d)

. (11)

The decision rule for detecting causal SNPs is to flag all SNPs with F/D\Rd < qo-
This provides a list of candidate SNPs for the BICOSS selection step. The simulation
study and the real data analyses use gy = 0.05.

Model Selection Step

With the list of candidate SNPs from the screening step, the model selection step
performs a model search where the possible models include any combination of
SNPs in the base model and the candidate SNPs identified in the latest screening.
Each possible model is evaluated using the Bayesian model selection procedure
described in the section on Bayesian model selection with prior model probability
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given in Eqn. 7. To accelerate computation, we take a P3D approach and estimate
the kinship dependence parameter 7 only once based on the full model that includes
the SNPs from the base model as well as the candidate SNPs. This parameter 7 is
kept fixed at this estimate when fitting all other models.

Depending on the number of SNPs identified in the screening step, one of two
different algorithms are used to search the model space. When the dimensionality
is low, a complete enumeration is used to compute posterior model probabilities
for every possible model. When the number of SNPs is high such that complete
enumeration would be computationally expensive (16 or more), a genetic algorithm
is used to search the model space.

BICOSS uses a genetic algorithm implemented in the R package GA [21] that
iterates mutation, crossover, and selection steps. The genetic algorithm starts with
a population of 100 models. One of these models has just the intercept. Another set
of models in this initial population has only one SNP per model, where the SNPs
are either from the base model or are candidate SNPs. If there are more than 99
of these SNPs, then the 99 SNPs with the highest posterior probabilities are used
to initialize the initial population. If there are less than 99 of these SNPs, then the
remaining models in the initial population are chosen at random. The mutation,
crossover, and selection steps then operate on the population to create subsequent
populations. The mutation step creates a new model from an existing model by
changing the status of a SNP in that model, e.g. if a SNP is present in the existing
model it will become absent in the new model. The crossover step creates two models
by combining two existing models. Finally, the selection step samples models to be
passed to the next population with probabilities proportional to exp (—0.5BIC})
for model M;.

We consider two different convergence criteria, 400 maximum iterations or 40
consecutive iterations with the same best model, whatever happens first. We also
considered convergence criteria with 4,000 maximum iterations and 400 iterations
with the same best model, but the results were about the same. We report the
results for the latter set of convergence criteria in the supplementary material. If
the best model identified in the selection step matches the current base model,
BICOSS converges. Otherwise, the base model is updated to be the best model
found, and another iteration of BICOSS is performed.

Results

Simulation Study

We have performed a simulation study to compare BICOSS to other competing
methods. In addition, we present two smaller simulation studies to evaluate the
robustness of BICOSS, when there are no causal SNPs and when there is no kinship
dependence structure. For all three simulation studies, we compare BICOSS to SMA
methods with the Bonferroni correction and GWASinlps. We consider two SMA
methods based on the linear mixed model from Eqn. 1: a method we call SMA-Exact
that similarly to EMMA uses the spectral decomposition of the kinship dependence
structure; and a method we call SMA-Approx. that similarly to EMMAX fixes
the variance parameters at their estimates for a model without SNPs. For direct
comparison of computation time, all methods are implemented in R. Both BICOSS
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and SMA methods use a FDR nominal level of 0.05. The genotype data used for
all three simulation studies is from 328 A. Thaliana accessions from the TAIR9
sequence [22]. In this simulation study n = 328 and Z = I, x,. Specifically, we
consider a set of 60,000 SNPs. To obtain these 60,000 SNPs, we obtained 10 blocks
of 6,000 SNPs each with minor allele frequency above 0.01 from A. Thaliana, where
each block was separated from the subsequent block by 15,000 SNPs. Figure S1
in the supplementary material presents a heatmap of the correlation matrix of the
first block with 6,000 SNPs for the 328 A. Thaliana accessions. For the general
simulation study and the case when there is no kinship dependence structure, we
placed the causal SNPs in positions 3,000, 9,000, 15,000, 21,000, 27,000, 33,000,
39,000, 45,000, 51,000, and 57,000 of the 60,000 SNPs. The kinship matrix used in
the case of no causal SNPs and the general simulation study was built from the
entire TAIR9 SNP array for the 328 ascensions of A. Thaliana using the function
A.mat from the R package rrBLUP [23].

We compare the competing methods with four different criteria: recall, also known
as true positive rate, FDR, False positive rate, and the F1 score. We also report
computation time. Recall is defined as the number of identified true causal SNPs
divided by the total number of causal SNPs. The FDR is defined as the number
of false positives identified as significant divided by the number of SNPs identified
as significant. The false positive rate is the number of false positives divided by
the number of false positives plus the number of true negatives. The F1 score is
the number of true positives divided by the number of true positives plus half
the sum of false positives and false negatives. We report the computation time in
seconds for each procedure using 12 cores of a 2 x 12 core Intel Xeon 2.5 GHz
12-core with 256 GB of memory running OpenBlas for optimized matrix algebra.
The results presented here are for GWASinlps version 2.0 with tuning parameters
ko =1, nrip = 3, rzz = 0.2, m = 500, and 7 = 0.022 as recommended in both the
GWASinlps documentation and in [12]. For accurate comparison of methods, the
results for each simulation setting are based on 100 simulated datasets.

General Simulation Study
A general simulation study to compare BICOSS to other competing methods is
conducted under the linear mixed model:

Y=al+XB+ Zu+e, (12)

where u ~ N(0,027K), € ~ N(0,021), and « is 1.

We consider 10 causal SNPs with six different settings of £ vectors. Seven coef-
ficients remained fixed at 0.4 while the other three coefficients were equal to each
other and assumed values of 0.05, 0.1, 0.2, 0.4, 0.8, and 1.6. Thus, the fourth setting
had equal coefficients across the entire set of causal SNPs. For every simulated Y,
the values of 7 and o2 were equal to 0.1 and 0.2 respectively, which are similar to
the estimates of 7 and o2 obtained in the case study on salt stress in A. Thaliana.

Table 1 displays results averaged over the 100 datasets under each setting. SMA
procedures typically discover about 3 of the 10 true causal SNPs, BICOSS typically
discovers about 5 to 7 causal SNPs. Therefore, while SMA methods typically dis-
cover only the SNPs with large effect sizes, BICOSS is able to discover SNPs with
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Table 1 Results of simulation study with linear mixed model. Regression coefficients of causal SNPs
B = (B(l),().4,0.4,0.47 81, 0.4,0.4, 0‘4,,8(1),0.4)? Average Performance of each method over 100
datasets for each setting. Recall indicates the True Positive Rate, FDR is the False Discovery Rate,

FPR is the False Positive Rate, and F1 is the F1 score.

Setting Measure Method -
SMA - Exact | SMA - Approx. [ BICOSS | GWASinlps
Recall 0.36 0.35 0.49 0.55
Setting 1 FDR 0.61 0.60 0.27 0.62
B =0.05 | FPR x10° 12.70 12.30 3.95 17.44
F1 0.35 0.35 0.57 0.44
Time (s) 197 2 22 85
Recall 0.33 0.33 0.49 0.54
Setting 2 FDR 0.57 0.56 0.28 0.61
M =0.1 | FPR x10° 11.22 10.90 410 16.45
F1 0.35 0.35 0.57 0.44
Time (s) 203 2 76 122
Recall 0.31 0.31 0.49 0.55
Setting 3 FDR 0.61 0.61 0.34 0.63
B =02 | FPR x10° 11.17 10.87 5.02 19.02
F1 0.33 0.33 0.55 0.42
Time (s) 201 2 a7 117
Recall 0.34 0.33 0.58 0.65
Setting 4 FDR 0.59 0.58 0.34 0.62
1) =04 | FPR x10° 10.47 10.22 5.50 20.14
F1 0.35 0.35 0.61 0.47
Time (s) 203 2 50 130
Recall 0.29 0.28 0.73 0.79
Setting 5 FDR 0.79 0.79 0.33 0.60
1) =0.8 | FPR x10° 21.60 21.35 6.93 22.25
F1 0.23 0.23 0.69 0.52
Time (s) 186 T 44 148
Recall 0.30 0.30 0.70 0.78
Setting 6 FDR 0.92 0.92 0.30 0.65
B =16 | FPR x10° 61.23 60.49 5.70 25.99
F1 0.12 0.12 0.69 0.48
Time (s) 176 1 45 147
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Table 2 Results of simulation study with no causal SNPs. Average Performance of each method over
100 datasets. FP indicates the number of false positives.

Settin Measure Method
& SMA - Exact | SMA - Approx. | BICOSS | GWASinlps
FP 0.05 0.04 1.33 8.13
No Causal SNPs | 0 (5) 197 2 22 85

smaller effect sizes. In addition, BICOSS maintains a substantially lower FDR, lower
FPR, and higher F1 score in all settings compared to SMA. The massive improve-
ment in these measures is due to the model selection step. Specifically, by allowing
multiple SNPs to compete in the best model, BICOSS model selection step better
controls FDR.

Compared to GWASinlps, BICOSS provides a similar recall while yielding a much
lower FDR, lower FPR, and higher F1 score. BICOSS is more conservative overall
than GWASinlps, but the F1 score (that is, the harmonic mean of precision and
recall) highlights the improved combined performance in terms of recall and FDR
of BICOSS compared to GWASinlps. The better performance of BICOSS when
compared to GWASinlps may be explained by two main reasons. First, BICOSS
uses a Bayesian screening step while GWASinlps uses a R?-based screening. Second,
BICOSS assumes a linear mixed model whereas GWASinlps assumes a linear model
with independent errors. In particular, the linear mixed model assumed by BICOSS
is more realistic in the context of GWAS analysis.

Our simulation study also shows that when some few SNPs have very large effect
sizes as in Settings 5 and 6, SMA methods have difficulty identifying SNPs with
medium effect sizes and produce very large FDR. Specifically, Table 1 shows that,
in Settings 5 and 6, SMA methods can only find 30% of the true causal SNPs and
has FDR of 0.79 and 0.92 respectively. In contrast, in these settings BICOSS has
recall at or above 70% and much better FDR control.

Robustness to Lack of Signal
To examine the robustness of BICOSS when applied to datasets with no causal

SNPs, we simulate 100 datasets from the model:
Y=al+Zu+e, (13)

where u ~ N(0,0%7K), € ~ N(0,0%I), and o = 1. Similarly, for every simulated Y,
the values of 7 and o2 were equal to 0.1 and 0.2 respectively, which are similar to
the estimates of 7 and o2 obtained in the case study on salt stress in A. Thaliana.
As there are no true causal SNPs in Equation 13, we only examine the number of
false positives.

Table 2 presents the results for the 100 simulated datasets under this scenario. In
this case, SMA methods have a stricter control of false positives compared to the
two iterative procedures. BICOSS performs significantly better than GWASinlps
but is not as conservative as SMA. Therefore, one limitation of BICOSS is that it
has on average a slightly larger number of false positives then SMA when applied

to datasets with no causal SNPs.
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Robustness to Lack of Kinship Dependence Structure
To check how BICOSS performs when the data are from a linear model without
kinship dependence, we simulated 100 datasets from the linear model:

Y =al+ XB+e, (14)

where € ~ N(0,0%I), @ = 1, and 02 = 0.2. Note that BICOSS has been built
using the mixed model framework. Meanwhile, GWASinlps was built assuming a
linear model. Thus, in principle, data simulated from Equation 14 should favor
GWASinlps. We explore one setting of 3, all causal coefficients equal to 0.4. Thus,
this simulation has identical X and (3 as setting 4 of the general simulation. P-values
are calculated for SMA using the classic T statistic for simple linear regression
models. Therefore as this is an exact procedure we show results labeled as SMA-
Exact.

Table 3 presents the results of the linear model simulation study. Similar to the
simulation with linear mixed models, BICOSS has the lowest FDR, lowest FPR,
and highest F1. This is not completely surprising because for datasets simulated
from Equation 14, the kinship dependence parameter 7 is usually estimated as very
small. In the limit when 7 is estimated to be 0, the linear mixed model in Equation 1
becomes a linear model. Therefore, even when there is no kinship structure, BICOSS
is able to automatically adapt and perform better than competing methods.

Case Studies

To demonstrate the utility and flexibility of BICOSS, we present two case studies
with real data analyses. First, BICOSS is implemented on data from a published
study of salt stress on the selfing species A. Thaliana [24]. Second, BICOSS is
applied to a study of alcohol dependency in humans.

Salt Stress in A. Thaliana

This study considers three different settings of soil salt stress to evaluate which genes
are potentially impactful [24]. The three settings considered were a control setting,
75 mM of NaCl, and 125 mM of NaCl. Different measures of the root structure
were taken to gauge how salt stress impacted the plants. In this case study, we
analyze the average length of lateral root per main root length for 328 A. Thaliana
accessions under 75 mM NaCl salt stress. Genotype data was obtained from TAIR9
[22]. Only SNPs with minor allele frequency greater than 0.01 were included, thus
the analysis presented here considers approximately 213,000 SNPs.

Table 3 Results of simulation study with linear model. Regression coefficients of causal SNPs

B =(0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4) 7. Average Performance of each method over 100
datasets for each setting. Recall indicates the True Positive Rate, FDR is the False Discovery Rate,
FPR is the False Positive Rate, and F1 is the F1 score.

Setting Measure Method .
SMA - Exact | BICOSS | GWASinlps
Recall 0.38 0.61 0.66
FDR 0.62 0.38 0.62
Linear Model | FPR x10° 12.00 6.95 20.34
F1 0.37 0.60 0.47
Time (s) 6 55 169
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Table 4 The number of SNPs identified by method for each case study. Multiple comparison
corrections use nominal level 0.05 and are based on the number of SNPs in a given genotype dataset.

Method Salt Stress in A. Thaliana AUD in Humans
Number of SNPs | Time (s) | Number of SNPs | Time (m)
SMA - Exact 22 555 15 82
SMA - Approx. 22 8 15 4
BICOSS 5 142 6 38
GWASinlps 37 544 499 792

Table 4 presents the number of SNPs found by SMA, BICOSS, and GWASinlps
as well as the computational time. For A. Thaliana, both SMA methods found 22
SNPs, GWASinlps found 37 SNPs, and BICOSS identified just 5 SNPs. Similar to
the simulation study, we see a large difference in the total number of SNPs found
by BICOSS when compared to SMA and GWASinlps. Surprisingly, we note a large
increase of the total number of SNPs found by GWASinlps compared to SMA.
Given the results of the simulation study, we expect the majority of SNPs found
by GWASinlps and SMA methods to be false positives. Based on the simulation
study, BICOSS has a much better control of FDR than the other methods. Thus,
for purpose of discussion we will focus on the results from BICOSS. Of the five
SNPs identified by BICOSS, one SNP is perfectly correlated to two other SNPs,
implying seven identified SNPs.

The seven SNPs are in genes AT1G62500, AT2G38970, AT3G60370, AT4G14305,
AT4G39955, AT4G39970, and AT4G40000. Previous literature relates two of these
genes to response to salt stress. Specifically, AT1G62500 is a differentially expressed
gene which has been shown to activate in the event of salt stress [25]. In addition;
AT4G39955 is an a/ 5-Hydrolases superfamily protein. «/S-Hydrolases superfamily
proteins have been shown to enhance salt tolerance in the sweet potato family [26].

Alcohol Use Disorder in Humans

In this case study, we use publicly available data from The Collaborative Study on
the Genetics of Alcoholism (COGA) that was performed to identify novel genetic
factors associated with alcohol use disorder (AUD) [27]. Specifically, in this case
study we analyze the response variable “age of first drink”, for 1738 people of
European ancestry with approximately 1 million sequenced SNPs. To normalize and
variance-stabilize the data, the logarithm transformation was applied to age of first
drink. Only SNPs with minor allele frequency larger than 0.01 were investigated
for this analysis. Further, any SNP that did not have an rsID or was located in
chromosome X or Y was removed from the analysis. Thus, this analysis considers
approximately 840,000 SNPs.

Table 4 presents the number of SNPs found by SMA, BICOSS and GWASinlps and
the timing of each method. Similarly to the simulation study and the A. Thaliana
case study, SMA and GWASinlps identified large numbers of SNPs. Specifically for
the AUD case study, both SMA methods found 15 SNPs, GWASinlps found 499
SNPs, and BICOSS found just 6 SNPs. Because BICOSS has a much better FDR
control than the other methods, here we investigate the genes found by BICOSS.
BICOSS identified six SNPs, which are in the following genes: KCNMA1, ZYG11A,
TPTE2, ABCF1, ANKS1B, and LINC02237. LINC02237 is a long intergenic non-
protein coding RNA and the other genes are all protein coding genes.
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Of the five protein coding genes found by BICOSS, two have published associations
with AUD and two have been linked to liver diseases. Specifically, KCNMAT1 is
known as a gene associated with alcohol dependency [28]. In addition, in a study
with people of Chinese Han ethnicity, ANKS1B has been found to be associated
with alcoholism [29]. Further, TPTE2 has been shown to be related to hepatic
fibrogenesis and fibrosis [30]; alchohol abuse is one of the main causes of liver fibrosis
[31]. Furthermore, ABCF1 has been shown to be overexpressed in hepatocellular
carcinoma [32]. These results indicate possibly important genes for further potential

investigation for a better understanding of alcohol use disorder.

Discussion

We have presented BICOSS, a novel Bayesian method for the analysis of GWAS
data. To take into account the correlation structure among SNPs, BICOSS iterates
a screening step and a model selection step. Simulation studies show that, while
when there are no true SNPs BICOSS tends to identify a slightly larger number
of SNPs than SMA methods, when there are true causal SNPs, BICOSS performs
much better than SMA. In the latter case when compared to SMA, BICOSS has
greater recall of true causal SNPs while maintaining a much lower FDR. In addition,
when there are SNPs with large effect sizes, BICOSS has increased recall of true
causal SNPs with small and medium effect sizes. Further, when compared to the
Bayesian iterative method GWASinlps, BICOSS maintains comparable recall while
having a much lower FDR.

While here we have implemented BICOSS within the EMMAX [4] methodology,
we note that BICOSS can be easily adapted to work with other GWAS frameworks
such as GCTA [33]. Applying BICOSS should be relatively straightforward when
the model and the likelihood can be explicitly written.

There are many possible avenues for future research. For example, a potentially
useful avenue is to extend BICOSS to use explicit prior distributions for the param-
eters. Such extension would allow the incorporation of substantive prior information
in the GWAS analysis. Another possible area of research would be to extend BI-
COSS to BioBank scale data. Finally, another possible area of research would be
to extend BICOSS for the analysis of non-Gaussian data such as the number of
lateral roots in A. Thaliana or the indicator of alcohol dependency for families with
members suffering alcohol use disorder.

Conclusion

We propose BICOSS, a novel iterative Bayesian procedure for GWAS analysis.
Compared to SMA, BICOSS increases recall of true causal SNPs while dramatically
reducing FDR. Upon publication of this article, BICOSS will be made available in
the R package GWAS.BAYES that is available of Bioconductor.

Funding
This work was supported by National Science Foundation grants DMS 1853549, DMS 1853556, and DMS 2054173.

Abbreviations

Single marker analysis (SMA),Genome-Wide Association Studies (GWAS), Single Nucleotide Polymorphisms
(SNPs), Bayesian lterative Conditional Stochastic Search (BICOSS), False Discovery Rate (FDR), Genetic
Algorithm (GA), Bayesian Information Criterion (BIC), Minor Allele Frequency (MAF).

Page 12 of 14



Williams et al.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials

The two case study datasets are publicly available from the following websites. A. Thaliana phenotype:
https://arapheno.1001genomes.org; A. Thaliana genotype: dataset available from R package qtcat.data
(https://rdrr.io/github/QTCAT/qtcat.data/; and genotype and phenotype data for Alcohol use disorder in
humans: www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/collection.cgi?study_id=phs000092.v1.pl.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JW, MARF, and TJ conceived the study. JW and MARF developed the methodology and simulation experiments.
JW implemented the simulation experiments. JW implemented the methodology and analyzed the results supervised
by MARF. MARF and TJ acquired the funding. JW and MARF wrote the manuscript. JW, MARF, and TJ reviewed
the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This version of the article has been accepted for publication, after peer review but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1186/s12859-022-05030-0. Computations for this manuscript have been performed on
supercomputers of Advanced Research Computing at Virginia Tech.

Author details
!Department of Statistics, Virginia Tech, Blacksburg,24061, USA. 2 Biostatistics, GRAIL, 94025, Menlo Park, USA.

References

1. Yu, J., Pressoir, G., Briggs, W.H., Bi, l.V., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen,
D.M., Holland, J.B., et al.: A unified mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nature Genetics 38(2), 203—-208 (2006)

2. Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J., Eskin, E.: Efficient Control of
Population Structure in Model Organism Association Mapping. Genetics 178(3), 1709-1723 (2008)

3. Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R.J., Tiwari, H.K., Gore, M.A., Bradbury, P.J., Yu, J., Arnett,
D.K., Ordovas, J.M., et al.: Mixed linear model approach adapted for genome-wide association studies. Nature
genetics 42(4), 355-360 (2010)

4. Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.-y., Freimer, N.B., Sabatti, C., Eskin, E., et al.:
Variance component model to account for sample structure in genome-wide association studies. Nature
Genetics 42(4), 348-354 (2010)

5. Stringer, S., Wray, N.R., Kahn, R.S., Derks, E.M.: Underestimated effect sizes in gwas: Fundamental
limitations of single snp analysis for dichotomous phenotypes. PloS one 6(11), 27964 (2011)

6. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A., Heath, A.C., Martin, N.G., Montgomery,
G.W., Weedon, M.N., Loos, R.J., et al.: Conditional and joint multiple-SNP analysis of GWAS summary
statistics identifies additional variants influencing complex traits. Nature Genetics 44(4), 369-375 (2012)

7. Dolejsi, E., Bodenstorfer, B., Frommlet, F.: Analyzing genome-wide association studies with an FDR controlling
modification of the Bayesian Information Criterion. PIOS ONE 9(7), 103322 (2014)

8. Allen, H.L., Estrada, K., Lettre, G., Berndt, S.l., Weedon, M.N., Rivadeneira, F., Willer, C.J., Jackson, A.U.,
Vedantam, S., Raychaudhuri, S., et al.: Hundreds of variants clustered in genomic loci and biological pathways
affect human height. Nature 467(7317), 832-838 (2010)

9. Ripke, S., Sanders, A.R., Kendler, K.S., Levinson, D.F., Sklar, P., Holmans, P.A., Lin, D.-Y., Duan, J., Ophoff,
R.A., Andreassen, O.A., et al.: Genome-wide association study identifies five new schizophrenia loci. Nature
Genetics 43(10), 969 (2011)

10. Sklar, P, Ripke, S., Scott, L.J., Andreassen, O.A., Cichon, S., Craddock, N., Edenberg, H.J., Nurnberger Jr,
J.1., Rietschel, M., Blackwood, D., et al.: Large-scale genome-wide association analysis of bipolar disorder
identifies a new susceptibility locus near ODZ4. Nature Genetics 43(10), 977 (2011)

11. He, Q., Lin, D.-Y.: A variable selection method for genome-wide association studies. Bioinformatics 27(1), 1-8
(2011)

12. Sanyal, N., Lo, M.-T., Kauppi, K., Djurovic, S., Andreassen, O.A., Johnson, V.E., Chen, C.-H.: GWASinlps:
non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics 35(1),
1-11 (2019)

13. Frommlet, F., Ruhaltinger, F., Twardg, P., Bogdan, M.: Modified versions of Bayesian Information Criterion for
genome-wide association studies. Computational Statistics & Data Analysis 56(5), 1038-1051 (2012)

14. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2), 461-464 (1978)

15. Kass, R.E., Wasserman, L.: A Reference Bayesian Test for Nested Hypotheses and its Relationship to the
Schwarz Criterion. Journal of the American Statistical Association 90(431), 928-934 (1995)

16. Langaas, M., Lindqvist, B.H., Ferkingstad, E.: Estimating the Proportion of True Null Hypotheses, with
Application to DNA Microarray Data. Journal of the Royal Statistical Society. Series B (Statistical
Methodology) 67(4), 555-572 (2005)

17. Newton, M.A., Noueiry, A., Sarkar, D., Ahlquist, P.: Detecting differential gene expression with a
semiparametric hierarchical mixture method. Biostatistics 5(2), 155-176 (2004)

Page 13 of 14


https://arapheno.1001genomes.org
https://rdrr.io/github/QTCAT/qtcat.data/
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/collection.cgi?study_id=phs000092.v1.p1

Williams et al.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Miiller, P., Parmigiani, G., Rice, K.: FDR and Bayesian multiple comparisons rules. In: Bernardo, J.M., Bayarri,
M.J., Berger, J.O., Dawid, A., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics 8, pp.
349-370. Oxford Univ. Press, Oxford (2007)

Cui, S., Guha, S., Ferreira, M.A.R., Tegge, A.N.: hmmseq: A hidden Markov model for detecting differentially
expressed genes from RNA-seq data. The Annals of Applied Statistics 9(2), 901-925 (2015)

Xie, J., Ji, T., Ferreira, M.A.R., Li, Y., Patel, B.N., Rivera, R.M.: Modeling allele-specific expression at the
gene and SNP levels simultaneously by a Bayesian logistic mixed regression model. BMC Bioinformatics 20(1),
1-13 (2019)

Scrucca, L.: GA: A Package for Genetic Algorithms in R. Journal of Statistical Software, Articles 53(4), 1-37
(2013)

Horton, M.\W., Hancock, A.M., Huang, Y.S., Toomajian, C., Atwell, S., Auton, A., Muliyati, N.W., Platt, A.,
Sperone, F.G., Vilhjdlmsson, B.J., et al.: Genome-wide patterns of genetic variation in worldwide Arabidopsis
thaliana accessions from the RegMap panel. Nature Genetics 44(2), 212-216 (2012)

Endelman, J.B.: Ridge Regression and Other Kernels for Genomic Selection with R Package rrblup. The Plant
Genome 4(3), 250-255 (2011)

Julkowska, M.M., Koevoets, |.T., Mol, S., Hoefsloot, H., Feron, R., Tester, M.A., Keurentjes, J.J.B., Korte, A.,
Haring, M.A., de Boer, G.-J., Testerink, C.: Genetic Components of Root Architecture Remodeling in Response
to Salt Stress. The Plant Cell 29(12), 3198-3213 (2017). doi:10.1105/tpc.16.00680

Jing, Y., Shi, L., Li, X, Zheng, H., Gao, J., Wang, M., He, L., Zhang, W.: OXS2 is required for salt tolerance
mainly through associating with salt Inducible genes, CA1 and Araportll, in Arabidopsis. Scientific Reports
9(1), 1-11 (2019)

Liu, D., Wang, L., Zhai, H., Song, X., He, S., Liu, Q.: A novel a/B-hydrolase gene IbMas enhances salt
tolerance in transgenic sweetpotato. PloS One 9(12), 115128 (2014)

Begleiter, H., Reich, T., Hesselbrock, V., Porjesz, B., Li, T.-K., Schuckit, M.A., Edenberg, H.J., Rice, J.P., et
al.: The Collaborative Study on the Genetics of Alcoholism. Alcohol Health and Research World 19, 228-228
(1995)

Bettinger, J.C., Davies, A.G.: The role of the BK channel in ethanol response behaviors: evidence from model
organism and human studies. Frontiers in Physiology 5, 346 (2014)

Sun, Y., Chang, S., Liu, Z., Zhang, L., Wang, F., Yue, W., Sun, H., Ni, Z., Chang, X., Zhang, Y., et al.:
Identification of novel risk loci with shared effects on alcoholism, heroin, and methamphetamine dependence.
Molecular Psychiatry 26(4), 1152-1161 (2021)

Liu, Z., Chalasani, N., Lin, J., Gawrieh, S., He, Y., Tseng, Y.J., Liu, W.: Integrative omics analysis identifies
macrophage migration inhibitory factor signaling pathways underlying human hepatic fibrogenesis and fibrosis.
Journal of bio-X research 2(01), 16-24 (2019)

Hernandez-Gea, V., Friedman, S.L.: Pathogenesis of liver fibrosis. Annual review of pathology: mechanisms of
disease 6, 425-456 (2011)

Fung, S.W., Cheung, P.F.-Y., Yip, CW., Ng, L.W.-C., Cheung, T.T., Chong, C.C.-N., Lee, C., Bo-San Lai, P.,
Chan, AW.-H., Tsao, G.S.-W., et al.: The atp-binding cassette transporter abcfl is a hepatic oncofetal protein
that promotes chemoresistance, emt and cancer stemness in hepatocellular carcinoma. Cancer Letters 457,
98-109 (2019)

Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M.: GCTA: A Tool for Genome-wide Complex Trait Analysis.
The American Journal of Human Genetics 88(1), 76-82 (2011)

Page 14 of 14


http://dx.doi.org/10.1105/tpc.16.00680

	Abstract

